JP2011025584A - 液体噴射装置及び液体噴射型印刷装置 - Google Patents
液体噴射装置及び液体噴射型印刷装置 Download PDFInfo
- Publication number
- JP2011025584A JP2011025584A JP2009175145A JP2009175145A JP2011025584A JP 2011025584 A JP2011025584 A JP 2011025584A JP 2009175145 A JP2009175145 A JP 2009175145A JP 2009175145 A JP2009175145 A JP 2009175145A JP 2011025584 A JP2011025584 A JP 2011025584A
- Authority
- JP
- Japan
- Prior art keywords
- modulation
- signal
- drive
- potential
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Abstract
【課題】消費電力を低減することが可能な液体噴射装置を提供する。
【解決手段】駆動波形データDWCOMがデューティ比30%相当の所定電位VAより大きく且つデューティ比70%相当の所定電位VBより小さい場合には、短い第1所定変調周期T1を変調周期Tpwmとし、駆動波形データDWCOMがデューティ比30%相当の所定電位VA以下か、又はデューティ比70%相当の所定電位VB以上である場合には、長い第2所定変調周期T2を変調周期Tpwmに設定することで、中間電位における電流を低減すると共に、デューティ比が大きい領域、或いは小さい領域では、変調周期Tpwmを長くしてパルス幅を確保することができ、正確な波形の駆動信号COMを得ることができる。
【選択図】図10
【解決手段】駆動波形データDWCOMがデューティ比30%相当の所定電位VAより大きく且つデューティ比70%相当の所定電位VBより小さい場合には、短い第1所定変調周期T1を変調周期Tpwmとし、駆動波形データDWCOMがデューティ比30%相当の所定電位VA以下か、又はデューティ比70%相当の所定電位VB以上である場合には、長い第2所定変調周期T2を変調周期Tpwmに設定することで、中間電位における電流を低減すると共に、デューティ比が大きい領域、或いは小さい領域では、変調周期Tpwmを長くしてパルス幅を確保することができ、正確な波形の駆動信号COMを得ることができる。
【選択図】図10
Description
本発明は、アクチュエータに駆動信号を印加して液体を噴射する液体噴射装置に関し、例えば微小な液体を液体噴射ヘッドのノズルから噴射して、微粒子(ドット)を印刷媒体上に形成することにより、所定の文字や画像等を形成するようにした液体噴射型印刷装置に好適なものである。
液体噴射型印刷装置では、電力増幅回路で電力増幅された駆動信号を圧電素子などのアクチュエータに印加してノズルから液体を噴射するが、リニア駆動されるプッシュプル接続型トランジスタなどのアナログ電力増幅器で駆動信号を電力増幅すると、電力損失が大きく、放熱のための大きなヒートシンクが必要となる。そこで、下記特許文献1では、駆動信号をデジタル電力増幅器で電力増幅することにより、電力損失を低減し、ヒートシンクを無用としている。なお、デジタル電力増幅器は、MOSFETなどのスイッチング素子をオン・オフ制御し、その出力である電力増幅変調信号を平滑フィルタで平滑化して駆動信号としている。
ところで、デジタル電力増幅器では、変調信号がデューティ比で50%程度であるとき、つまり駆動信号或いは駆動波形信号が中間電位であるときに、電流が増大する。電流が増大すると、デジタル電力増幅器や、平滑フィルタで消費される電力が増大し、損失が大きくなる。
本発明は、これらの諸問題に着目して開発されたものであり、消費電力を低減することが可能な液体噴射装置及び液体噴射装置を用いた液体噴射型印刷装置を提供することを目的とするものである。
本発明は、これらの諸問題に着目して開発されたものであり、消費電力を低減することが可能な液体噴射装置及び液体噴射装置を用いた液体噴射型印刷装置を提供することを目的とするものである。
上記諸問題を解決するため、本発明の液体噴射装置は、駆動波形信号を発生する駆動波形信号発生回路と、前記駆動波形信号をパルス変調して変調信号とする変調回路と、プッシュプル接続されたスイッチング素子対により前記変調信号を電力増幅して電力増幅変調信号とするデジタル電力増幅器と、前記電力増幅変調信号を平滑化して駆動信号とする平滑フィルタと、を備え、前記変調回路は、前記駆動波形信号のデータに基づいて、当該駆動波形信号が所定の中間電位にあるときにパルス変調の変調周期を、前記所定の中間電位以外の電位のときの変調周期より短くすることを特徴とするものである。
また、駆動波形信号を発生する駆動波形信号発生回路と、前記駆動波形信号をパルス変調して変調信号とする変調回路と、プッシュプル接続されたスイッチング素子対により前記変調信号を電力増幅して電力増幅変調信号とするデジタル電力増幅器と、前記電力増幅変調信号を平滑化して駆動信号とする平滑フィルタと、を備え、前記変調回路は、波形メモリに記憶されている変調周期データに基づいて前記パルス変調の変調周期を変更し、前記波形メモリに記憶されている変調周期データは、前記駆動波形信号が一定電位であり、かつ、所定の中間電位にあるときに、パルス変調の変調周期を前記所定の中間電位以外の領域の変調周期より短くすることを特徴とするものである。
これらの液体噴射装置によれば、駆動波形信号が所定の中間電位にあるとき、即ちデューティ比で50%程度であるときに、パルス変調の変調周期を短くすることにより、電流値を低減することができ、これにより消費電力を低減することができると共に、駆動波形信号が所定の中間電位以外の電位のときには、駆動信号の追従性を確保して正確な駆動信号を得ることができる。
また、前記変調回路は、パルス変調の変調周期の完了を検出することを特徴とするものである。
この液体噴射装置によれば、正確な変調信号を確保して駆動信号の歪みを防止することができる。
また、前記変調回路は、パルス変調の変調周期の完了を検出することを特徴とするものである。
この液体噴射装置によれば、正確な変調信号を確保して駆動信号の歪みを防止することができる。
次に、本発明の液体噴射装置の第1実施形態として、液体噴射型印刷装置に適用されたものについて説明する。
図1は、第1実施形態の液体噴射型印刷装置の概略構成図であり、図1において、印刷媒体1は、図の左から右に向けて矢印方向に搬送され、その搬送途中の印刷領域で印刷される、ラインヘッド型印刷装置である。
図1は、第1実施形態の液体噴射型印刷装置の概略構成図であり、図1において、印刷媒体1は、図の左から右に向けて矢印方向に搬送され、その搬送途中の印刷領域で印刷される、ラインヘッド型印刷装置である。
図1中の符号2は、印刷媒体1の搬送ライン上方に設けられた複数の液体噴射ヘッドであり、印刷媒体搬送方向に2列になるように且つ印刷媒体搬送方向と交差する方向に並べて配設されて、夫々、ヘッド固定プレート11に固定されている。各液体噴射ヘッド2の最下面には、多数のノズルが形成されており、この面がノズル面と呼ばれている。ノズルは、図2に示すように、噴射する液体の色毎に、印刷媒体搬送方向と交差する方向に列状に配設されており、その列をノズル列と呼んだり、その列方向をノズル列方向と呼んだりする。そして、印刷媒体搬送方向と交差する方向に配設された全ての液体噴射ヘッド2のノズル列によって、印刷媒体1の搬送方向と交差する方向の幅全長に及ぶラインヘッドが形成されている。印刷媒体1は、これらの液体噴射ヘッド2のノズル面の下方を通過するときに、ノズル面に形成されている多数のノズルから液体が噴射され、印刷が行われる。
液体噴射ヘッド2には、例えばイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4色のインクなどの液体が、図示しない液体タンクから液体供給チューブを介して供給される。そして、液体噴射ヘッド2に形成されているノズルから同時に必要箇所に必要量の液体を噴射することにより、印刷媒体1上に微小なドットを形成する。これを色毎に行うことにより、搬送部4で搬送される印刷媒体1を一度通過させるだけで、1パスによる印刷を行うことができる。
液体噴射ヘッド2のノズルから液体を噴射する方法としては、静電方式、ピエゾ方式、膜沸騰液体噴射方式などがあり、第1実施形態ではピエゾ方式を用いた。ピエゾ方式は、アクチュエータである圧電素子に駆動信号を与えると、キャビティ内の振動板が変位してキャビティ内に圧力変化を生じ、その圧力変化によって液体がノズルから噴射されるというものである。そして、駆動信号の波高値や電圧増減傾きを調整することで液体の噴射量を調整することが可能となる。なお、本発明は、ピエゾ方式以外の液体噴射方法にも、同様に適用可能である。
液体噴射ヘッド2の下方には、印刷媒体1を搬送方向に搬送するための搬送部4が設けられている。搬送部4は、駆動ローラ8及び従動ローラ9に搬送ベルト6を巻回して構成され、駆動ローラ8には図示しない電動モータが接続されている。また、搬送ベルト6の内側には、当該搬送ベルト6の表面に印刷媒体1を吸着するための図示しない吸着装置が設けられている。この吸着装置には、例えば負圧によって印刷媒体1を搬送ベルト6に吸着する空気吸引装置や、静電気力で印刷媒体1を搬送ベルト6に吸着する静電吸着装置などが用いられる。従って、給紙ローラ5によって給紙部3から印刷媒体1を一枚だけ搬送ベルト6上に送給し、電動モータによって駆動ローラ8を回転駆動すると、搬送ベルト6が印刷媒体搬送方向に回転され、吸着装置によって搬送ベルト6に印刷媒体1が吸着されて搬送される。この印刷媒体1の搬送中に、液体噴射ヘッド2から液体を噴射して印刷を行う。印刷の終了した印刷媒体1は、搬送方向下流側の排紙部10に排紙される。なお、前記搬送ベルト6には、例えばリニアエンコーダなどで構成される印刷基準信号出力装置が取付けられている。この印刷基準信号出力装置は、搬送ベルト6とそれに吸着されて搬送される印刷媒体1とが同期して移動されることに着目し、印刷媒体1が搬送経路中の所定位置を通過した後は、搬送ベルト6の移動に伴って要求される印刷解像度相当のパルス信号を出力し、このパルス信号に応じて、後述する駆動回路から駆動信号をアクチュエータ22に出力することで印刷媒体1上の所定位置に所定の色の液体を噴射し、そのドットによって印刷媒体1上に所定の画像を描画する。
第1実施形態の液体噴射装置を用いた液体噴射型印刷装置内には、液体噴射型印刷装置を制御するための制御装置が設けられている。この制御装置は、図3に示すように、ホストコンピュータ60から入力された印刷データ読込むための入力インタフェース61と、この入力インタフェース61から入力された印刷データに基づいて印刷処理等の演算処理を実行するマイクロコンピュータで構成される制御部62と、前記給紙ローラ5に接続されている給紙ローラモータ17を駆動制御する給紙ローラモータドライバ63と、液体噴射ヘッド2を駆動制御するヘッドドライバ65と、前記駆動ローラ8に接続されている電動モータ7を駆動制御する電動モータドライバ66と、給紙ローラモータドライバ63、ヘッドドライバ65、電動モータドライバ66と給紙ローラモータ17、液体噴射ヘッド2、電動モータ7とを接続するインタフェース67とを備えて構成される。
制御部62は、印刷処理等の各種処理を実行するCPU(Central Processing Unit)62aと、入力インタフェース61を介して入力された印刷データ或いは当該印刷データ印刷処理等を実行する際の各種データを一時的に格納し、或いは印刷処理等のプログラムを一時的に展開するRAM(Random Access Memory)62cと、CPU62aで実行する制御プログラム等を格納する不揮発性半導体メモリで構成されるROM(Read-Only Memory)62dを備えている。この制御部62は、入力インタフェース61を介してホストコンピュータ60から印刷データ(画像データ)を入手すると、CPU62aが、この印刷データに所定の処理を実行して、何れのノズルから液体を噴射するか或いはどの程度の液体を噴射するかというノズル選択データ(駆動パルス選択データ)を算出し、この印刷データや駆動パルス選択データ及び各種センサからの入力データに基づいて、給紙ローラモータドライバ63、ヘッドドライバ65、電動モータドライバ66に駆動信号及び制御信号を出力する。これらの駆動信号及び制御信号により、給紙ローラモータ17、電動モータ7、液体噴射ヘッド2内のアクチュエータ22などが夫々作動して、印刷媒体1の給紙及び搬送及び排紙、並びに印刷媒体1への印刷処理が実行される。なお、制御部62内の各構成要素は、図示しないバスを介して電気的に接続されている。
図4には、第1実施形態の液体噴射装置を用いた液体噴射型印刷装置の制御装置から液体噴射ヘッド2に供給され、圧電素子からなるアクチュエータ22を駆動するための駆動信号COMの一例を示す。第1実施形態では、中間電位を中心に電位が変化する信号とした。この駆動信号COMは、アクチュエータ22を駆動して液体を噴射する単位駆動信号としての駆動パルスPCOMを時系列的に接続したものであり、駆動パルスPCOMの立上がり部分がノズルに連通するキャビティ(圧力室)の容積を拡大して液体を引込む(液体の噴射面を考えればメニスカスを引き込むとも言える)段階であり、駆動パルスPCOMの立下がり部分がキャビティの容積を縮小して液体を押出す(液体の噴射面を考えればメニスカスを押出すとも言える)段階であり、液体を押出した結果、液体がノズルから噴射される。
この電圧台形波からなる駆動パルスPCOMの電圧増減傾きや波高値を種々に変更することにより、液体の引込量や引込速度、液体の押出量や押出速度を変化させることができ、これにより液体の噴射量を変化させて異なる大きさのドットを得ることができる。従って、複数の駆動パルスPCOMを時系列的に連結する場合でも、そのうちから単独の駆動パルスPCOMを選択してアクチュエータ22に供給し、液体を噴射したり、複数の駆動パルスPCOMを選択してアクチュエータ22に供給し、液体を複数回噴射したりすることで種々の大きさのドットを得ることができる。即ち、液体が乾かないうちに複数の液体を同じ位置に着弾すると、実質的に大きな液体を噴射するのと同じことになり、ドットの大きさを大きくすることができるのである。このような技術の組合せによって多階調化を図ることが可能となる。なお、図4の左端の駆動パルスPCOM1は、液体を引込むだけで押出していない。これは、微振動と呼ばれ、液体を噴射せずに、ノズルの増粘を抑制防止したりするのに用いられる。
液体噴射ヘッド2には、前記駆動信号COMの他、前記図3の制御装置から制御信号として、印刷データに基づいて噴射するノズルを選択すると共に圧電素子などのアクチュエータ22の駆動信号COMへの接続タイミングを決定する駆動パルス選択データSI&SP、全ノズルにノズル選択データが入力された後に、駆動パルス選択データSI&SPに基づいて駆動信号COMと液体噴射ヘッド2のアクチュエータ22とを接続させるラッチ信号LAT及びチャンネル信号CH、駆動パルス選択データSI&SPをシリアル信号として液体噴射ヘッド2に送信するためのクロック信号SCKが入力されている。なお、これ以後、アクチュエータ22を駆動する駆動信号の最小単位を駆動パルスPCOMとし、駆動パルスPCOMが時系列的に連結された信号全体を駆動信号COMと記す。即ち、ラッチ信号LATで一連の駆動信号COMが出力され始め、チャンネル信号CH毎に駆動パルスPCOMが出力されることになる。
図5には、駆動信号COM(駆動パルスPCOM)をアクチュエータ22に供給するために液体噴射ヘッド2内に構築されたスイッチングコントローラの具体的な構成を示す。このスイッチングコントローラは、液体を噴射させるノズルに対応した圧電素子などのアクチュエータ22を指定するための駆動パルス選択データSI&SPを保存するシフトレジスタ211と、シフトレジスタ211のデータを一時的に保存するラッチ回路212と、ラッチ回路212の出力をレベル変換して選択スイッチ201に供給することにより、駆動信号COMをピエゾ素子などのアクチュエータ22に接続するレベルシフタ213を備えて構成されている。
シフトレジスタ211には、駆動パルス選択データ信号SI&SPが順次入力されると共に、クロック信号SCKの入力パルスに応じて記憶領域が初段から順次後段にシフトする。ラッチ回路212は、ノズル数分の駆動パルス選択データSI&SPがシフトレジスタ211に格納された後、入力されるラッチ信号LATによってシフトレジスタ211の各出力信号をラッチする。ラッチ回路212に保存された信号は、レベルシフタ213によって次段の選択スイッチ201をオン・オフできる電圧レベルに変換される。これは、駆動信号COMが、ラッチ回路212の出力電圧に比べて高い電圧であり、これに合わせて選択スイッチ201の動作電圧範囲も高く設定されているためである。従って、レベルシフタ213によって選択スイッチ201が閉じられる圧電素子などのアクチュエータ22は駆動パルス選択データSI&SPの接続タイミングで駆動信号COM(駆動パルスPCOM)に接続される。また、シフトレジスタ211の駆動パルス選択データSI&SPがラッチ回路212に保存された後、次の印刷情報をシフトレジスタ211に入力し、液体の噴射タイミングに合わせてラッチ回路212の保存データを順次更新する。なお、図中の符号HGNDは、圧電素子などのアクチュエータ22のグランド端である。また、この選択スイッチ201により、圧電素子などのアクチュエータ22を駆動信号COM(駆動パルスPCOM)から切り離した後も、当該アクチュエータ22の入力電圧は、切り離す直前の電圧に維持される。
図6には、アクチュエータ22の駆動回路の概略構成を示す。このアクチュエータ駆動回路は、前記制御回路内の制御部62及びヘッドドライバ65内に構築されている。第1実施形態の駆動回路は、波形メモリ24に予め記憶されている駆動波形データDWCOMに基づいて、駆動信号COM(駆動パルスPCOM)の元、つまりアクチュエータ22の駆動を制御する信号の基準となる駆動波形信号WCOMを生成する駆動波形信号発生回路25と、駆動波形信号発生回路25で生成された駆動波形信号WCOMをパルス変調する変調回路26と、変調回路26でパルス変調された変調信号を電力増幅するデジタル電力増幅器28と、デジタル電力増幅器28で電力増幅された電力増幅変調信号を平滑化して、駆動信号COM(駆動パルスPCOM)として液体噴射ヘッド2に供給する平滑フィルタ29とを備えて構成され、この駆動信号COM(駆動パルスPCOM)が前記選択スイッチ201からアクチュエータ22に供給される。
駆動波形信号発生回路25は、波形メモリ24に記憶されている電位データなどで構成される駆動波形データDWCOMを所定のクロック周期毎に読込み、その駆動波形データDWCOMを電圧信号に変換して次のクロック信号までホールドすると共に、その電圧信号をアナログ変換して駆動波形信号WCOMとして出力する。また、変調回路26には、周知のパルス幅変調(PWM:Pulse Width Modulation)を用いた。そのため、この変調回路26は、所定のクロックタイミングで基準信号となる三角波信号を出力する三角波発振器34と、駆動波形信号発生回路25から出力された駆動波形信号WCOMと三角波発振器34から出力された三角波信号(基準信号)とを比較し、駆動波形信号WCOMが三角波信号(基準信号)より大きいときにオンデューティとなるパルスデューティの変調信号を出力する比較部35とを備えて構成される。なお、三角波信号(基準信号)の周期を変調周期、三角波信号(基準信号)の周波数を変調周波数(一般にキャリア周波数などと呼ばれている)と定義する。
デジタル電力増幅器28は、実質的に電力を増幅するためのハイサイド側スイッチング素子Q1及びローサイド側スイッチング素子Q2からなるハーフブリッジ出力段21と、変調回路26からの変調信号に基づいて、ハイサイド側スイッチング素子Q1、ローサイド側Q2のゲート−ソース間信号GH、GLを調整するためのゲートドライブ回路30とを備えて構成されている。デジタル電力増幅器28では、変調信号がハイレベルであるとき、ハイサイド側スイッチング素子Q1のゲート−ソース間信号GHはハイレベルとなり、ローサイド側スイッチング素子Q2のゲート−ソース間信号GLはローレベルとなるので、ハイサイド側スイッチング素子Q1はオン状態となり、ローサイド側スイッチング素子Q2はオフ状態となり、その結果、ハーフブリッジ出力段21の出力Vaは、供給電圧VDDとなる。一方、変調信号がローレベルであるとき、ハイサイド側スイッチング素子Q1のゲート−ソース間信号GHはローレベルとなり、ローサイド側スイッチング素子Q2のゲート−ソース間信号GLはハイレベルとなるので、ハイサイド側スイッチング素子Q1はオフ状態となり、ローサイド側スイッチング素子Q2はオン状態となり、その結果、ハーフブリッジ出力段21の出力Vaは0となる。
平滑フィルタ29には、1つのコンデンサCとコイルLからなる2次のフィルタを用いた。この平滑フィルタ29によって、前記変調回路26で生じた変調周波数、即ちパルス変調の周波数成分を減衰して除去し、前述したような波形特性の駆動信号COM(駆動パルスPCOM)を出力する。なお、図6は、理解を容易にするために回路化して示してあるが、駆動波形信号発生回路25及び変調回路26は、図3の制御部62内で行われるプログラミングによって構築されている。また、平滑フィルタ29は回路配線で発生する寄生インダクタンスや浮遊容量、若しくはアクチュエータなどを利用して構成可能であり、必ずしも回路化する必要はない。また、波形メモリ24は、前記ROM62d内に形成されている。
例えば、前記平滑フィルタ29のコイルLの両端の電位差をコイル電位差Vcoilとしたとき、コイル電位差Vcoilは、駆動信号電位VCOMからデジタル電力増幅器28の出力電位Vaを減じた値となる。図7は、デューティ比が50%(=0.5)及び25%(=0.25)のときの出力電位Va、駆動信号電位VCOM、コイル電位差Vcoil、コイルLに流れる電流Ipwmを示す。図7から明らかなように、デューティ比が50%のときのコイル電流Ipwmは、デューティ比が25%のときのコイル電流Ipwmより大きい。この傾向は、デューティ比が50%を超えると逆転し、デューティ比が大きくなるほど、コイル電流Ipwmは小さくなる。このコイル電流Ipwmは、コイルLのインダクタンスをL(説明を容易にするためにコイルと同符号を付した)、変調周期、即ち三角波信号(基準信号)の周期をT、デューティ比をDとして下記1式で表れる。
コイルLのインダクタンスL、変調周期Tを一定として、デューティ比に応じたコイル電流Ipwmを図8に示す。前記1式では、デューティ比Dと、1からデューティ比Dを減じた値(1−D)の積、換言すればオンデューティ比とオフデューティ比の積が存在しているので、デューティ比Dが0.5(=50%)のとき、コイル電流Ipwmは最大となり、それよりデューティ比が大きくても小さくても、コイル電流Ipwmは小さくなる。コイル電流Ipwmはハイサイド側スイッチング素子Q1、ローサイド側スイッチング素子Q2にも同様に流れるので、コイル電流Ipwmが大きいと、ハイサイド側スイッチング素子Q1、ローサイド側スイッチング素子Q2のスイッチングロス及びコイルLの消費電力が増大してしまう。
前記1式で、コイル電流Ipwmを小さくするためには、コイルLのインダクタンスLを大きくする方法と、変調周期Tを小さくする(短くする)方法がある。しかしながら、コイルLのインダクタンスLを大きくすると、平滑フィルタ29のカットオフ周波数が下がるため、正確な波形の駆動信号COM(駆動パルスPCOM)が得られなくなる恐れがある。そこで、第1実施形態では、変調周期Tを短くしてコイル電流Ipwmを小さくする。但し、常時、変調周期Tを短くしたのでは、デューティ比の小さい領域やデューティ比の大きい領域で、駆動信号COM(駆動パルスPCOM)の波形が正確でなくなる恐れがある。図9には、デューティ比が30%、20%、10%のときの変調周波数とオンデューティのパルス幅の関係を示す。変調周波数を高くするとデジタル電力増幅器28にて出力するパルス幅は狭くなり、特にデューティ比の小さい領域においてオンデューティのパルス幅が非常に狭くなってしまう。これは、デューティ比が大きい領域のオフデューティのパルス幅でも同じである。デジタル電力増幅器28が出力可能なパルス幅には限度があり、それ以下のパルス幅を出力することができない。このため、デューティ比の小さい領域、デューティ比の大きい領域において、変調周波数が高いと、パルス幅が非常に狭いため、デジタル電力増幅器28が出力するべきパルス幅を出力することができず、正確な波形の駆動信号COM(駆動パルスPCOM)が得られなくなる。第1実施形態では、デューティ比が30%(=0.3)から70%(=0.7)のときには変調周期Tを短くし、それ以外のときには変調周期Tを長くする。勿論、デューティ比が30%から70%の間に限らず、例えば、20%から80%の間に変調周期を短くするなどしてもよい。また、三つ以上の変調周期を有してもよい。
図10に示すように、デューティ比30%に相当する駆動波形信号WCOMの電位をVA、デューティ比70%に相当する駆動波形信号WCOMの電位をVBとしたとき、駆動波形信号WCOMの電位がVAからVBの間にあるとき、変調周期Tを短くする。変調周期Tの調整には、三角波信号(基準信号)の周期と傾きを調整する。図11に示すように、三角波信号(基準信号)の電位をVsawとしたとき、所定のクロック周期Tckで、三角波信号(基準信号)電位Vsawを所定増加電位Vstepだけ増加するので、変調周期Tpmwを変更する場合、三角波信号(基準信号)の波高値Vddを変調周期Tpwmで除して所定増加電位Vstepを算出し、これを三角波信号(基準信号)電位Vsawに所定クロック周期Tck毎に加算すればよい。なお、第1実施形態では、変調周期Tpwmは、第1所定変調周期T1と、それより長い第2所定変調周期T2の何れかとし、第1所定変調周期T1が選択されたときには、当該第1所定変調周期T1に適応する第1所定増加電位V1stepが選択され、第2所定変調周期T2が選択されたときには、当該第2所定変調周期t2に適応する第2所定増加電位V2stepが選択されるものとする。
図12は、前記三角波発振器34で行われる三角波信号(基準信号)発生のための演算処理を示すフローチャートである。この演算処理は、三角波信号(基準信号)発生指令の度に実行され、まずステップS1で、電位データからなる駆動波形信号の駆動波形データDWCOMを読込む。
次にステップS2に移行して、ステップS1で読込まれた駆動波形データDWCOMが駆動波形信号の終了を示す波形終了データであるか否かを判定し、波形終了データである場合には演算処理を終了し、そうでない場合にはステップS3に移行する。
次にステップS2に移行して、ステップS1で読込まれた駆動波形データDWCOMが駆動波形信号の終了を示す波形終了データであるか否かを判定し、波形終了データである場合には演算処理を終了し、そうでない場合にはステップS3に移行する。
ステップS3では、ステップS1で読込まれた駆動波形データDWCOMが前記所定電位VAより大きく且つ所定電位VBより小さいか否かを判定し、駆動波形データDWCOMが所定電位VAより大きく且つ所定電位VBより小さい場合にはステップS4に移行し、そうでない場合にはステップS5に移行する。
ステップS4では、前記第1所定変調周期T1を変調周期Tpwmに設定すると共に、前記第1所定増加電位V1stepを所定増加電位Vstepに設定してからステップS6に移行する。
ステップS4では、前記第1所定変調周期T1を変調周期Tpwmに設定すると共に、前記第1所定増加電位V1stepを所定増加電位Vstepに設定してからステップS6に移行する。
ステップS5では、前記第2所定変調周期T2を変調周期Tpwmに設定すると共に、前記第2所定増加電位V2stepを所定増加電位Vstepに設定してからステップS6に移行する。
ステップS6では、タイマカウンタCountをリセットすると共に三角波信号(基準信号)電位Vsawを0Vにクリアする。
ステップS6では、タイマカウンタCountをリセットすると共に三角波信号(基準信号)電位Vsawを0Vにクリアする。
次にステップS7に移行して、タイマカウンタCountが変調周期Tpwmと等しいか否かを判定し、タイマカウンタCountが変調周期Tpwmと等しい場合にはステップS3に移行し、そうでない場合にはステップS8に移行する。
ステップS8では、タイマカウンタCountをクロック周期Tckに相当する1つ分だけインクリメントすると共に、三角波信号(基準信号)電位Vsawに所定増加電位Vstepを加算した値を新たな三角波信号(基準信号)電位VsawとしてからステップS7に移行する。
ステップS8では、タイマカウンタCountをクロック周期Tckに相当する1つ分だけインクリメントすると共に、三角波信号(基準信号)電位Vsawに所定増加電位Vstepを加算した値を新たな三角波信号(基準信号)電位VsawとしてからステップS7に移行する。
この演算処理によれば、駆動波形データDWCOMがデューティ比30%相当の所定電位VAより大きく且つデューティ比70%相当の所定電位VBより小さい場合には、短い第1所定変調周期T1が変調周期Tpwmに設定されると共に、大きい第1所定増加電位V1stepが所定増加電位Vstepに設定され、駆動波形データDWCOMがデューティ比30%相当の所定電位VA以下か、又はデューティ比70%相当の所定電位VB以上である場合には、長い第2所定変調周期T2が変調周期Tpwmに設定されると共に、小さい第2所定増加電位V2stepが所定増加電位Vstepに設定される。例えば、図13に示すように、第1所定変調周期T1を第2所定変調周期T2の1.2倍とすると、変調周期Tpwmが第2所定変調周期T2のままのときの前記1式で得られるデューティ比50%時のコイル電流Ipwmは、0.125Vdd×T/Lであるのに対し、デューティ比が30%〜70%の間だけ変調周期Tpwmを第1変調周期T1とした場合にはデューティ比50%時のコイル電流Ipwmを0.104Vdd×T/Lとすることができ、これにより中間電位における消費電力を低減することができる。また、デューティ比が大きい領域、或いは小さい領域では、変調周期Tpwmを長い第2所定変調周期T2とすることにより、パルス幅を確保することができ、正確な波形の駆動信号COM(駆動パルスPCOM)を得ることができる。また、パルス変調の変調周期の完了を検出することにより、正確な変調信号を確保して駆動信号の歪みを防止することができる。
次に、本発明の液体噴射装置の第2実施形態について説明する。第2実施形態の液体噴射装置は、前記第1実施形態と同様に、液体噴射型印刷装置に適用されたものであり、その概略構成、液体噴射ヘッド近傍、制御装置、駆動信号、スイッチングコントローラ、アクチュエータ駆動回路、変調信号、ゲート−ソース間信号、出力信号は、前記第1実施形態と同様である。第2実施形態では、波形メモリ24に記憶されているデータの内容、並びにその記憶データを用いて三角波発振器34で行われる演算処理が異なる。
第2実施形態では、波形メモリ24に駆動波形データDWCOMと共に変調周期Tpwmが記憶されており、三角波発振器34では、そのときの変調周期Tpwmを読込んで三角波信号(基準信号)を創生する。
なお、波形メモリ24に記憶されている変調周期Tpwmは、前記第1実施形態と同じく、第1所定変調周期T1と、それより長い第2所定変調周期T2の何れかとし、駆動波形信号が一定電位であり且つ駆動波形データDWCOMがデューティ比30%相当の所定電位VAより大きく且つデューティ比70%相当の所定電位VBより小さい場合には、短い第1所定変調周期T1が変調周期Tpwmに設定されており、駆動波形データDWCOMの電位が一定ではない場合、又はデューティ比30%相当の所定電位VA以下か、デューティ比70%相当の所定電位VB以上である場合には、長い第2所定変調周期T2が変調周期Tpwmに設定されている。尚、デューティ比が30%から70%にある場合に変調周期を短く、それ以外デューティ比では変調周期を長くしているが、勿論、デューティ比は上記値に限らず、例えば20%から80%の間に変調周期を短くするなどとしてもよい。また、三つ以上の変調周期を有し切り替えるとしてもよい。
図14は、三角波発振器34で行われる三角波信号(基準信号)発生のための第2実施形態の演算処理を示すフローチャートである。この演算処理は、三角波信号(基準信号)発生指令の度に実行され、まずステップS11で、波形メモリ24に記憶されている駆動波形データDWCOM及び変調周期Tpwmを読込む。
なお、波形メモリ24に記憶されている変調周期Tpwmは、前記第1実施形態と同じく、第1所定変調周期T1と、それより長い第2所定変調周期T2の何れかとし、駆動波形信号が一定電位であり且つ駆動波形データDWCOMがデューティ比30%相当の所定電位VAより大きく且つデューティ比70%相当の所定電位VBより小さい場合には、短い第1所定変調周期T1が変調周期Tpwmに設定されており、駆動波形データDWCOMの電位が一定ではない場合、又はデューティ比30%相当の所定電位VA以下か、デューティ比70%相当の所定電位VB以上である場合には、長い第2所定変調周期T2が変調周期Tpwmに設定されている。尚、デューティ比が30%から70%にある場合に変調周期を短く、それ以外デューティ比では変調周期を長くしているが、勿論、デューティ比は上記値に限らず、例えば20%から80%の間に変調周期を短くするなどとしてもよい。また、三つ以上の変調周期を有し切り替えるとしてもよい。
図14は、三角波発振器34で行われる三角波信号(基準信号)発生のための第2実施形態の演算処理を示すフローチャートである。この演算処理は、三角波信号(基準信号)発生指令の度に実行され、まずステップS11で、波形メモリ24に記憶されている駆動波形データDWCOM及び変調周期Tpwmを読込む。
次にステップS12に移行して、ステップS11で読込んだ駆動波形データDWCOMが波形終了データであるか否かを判定し、駆動波形データDWCOMが波形終了データである場合には演算処理を終了し、そうでない場合にはステップS13に移行する。
ステップS13では、タイマカウンタCountをリセットすると共に、三角波信号(基準信号)電位Vsawを0Vにクリアし、三角波信号(基準信号)の波高値Vddを変調周期Tpwmで除して所定増加電位Vstepを算出する。
ステップS13では、タイマカウンタCountをリセットすると共に、三角波信号(基準信号)電位Vsawを0Vにクリアし、三角波信号(基準信号)の波高値Vddを変調周期Tpwmで除して所定増加電位Vstepを算出する。
次にステップS14に移行して、タイマカウンタCountが変調周期Tpwmと等しいか否かを判定し、タイマカウンタCountが変調周期Tpwmと等しい場合にはステップS13に移行し、そうでない場合にはステップS15に移行する。
ステップS15では、タイマカウンタCountをクロック周期Tckに相当する1つ分だけインクリメントすると共に、三角波信号(基準信号)電位Vsawに所定増加電位Vstepを加算した値を新たな三角波信号(基準信号)電位VsawとしてからステップS14に移行する。
ステップS15では、タイマカウンタCountをクロック周期Tckに相当する1つ分だけインクリメントすると共に、三角波信号(基準信号)電位Vsawに所定増加電位Vstepを加算した値を新たな三角波信号(基準信号)電位VsawとしてからステップS14に移行する。
この際に出力される駆動波形信号と、三角波信号を図15に示す。
この演算処理によれば、駆動波形データDWCOMが一定電位であり、デューティ比30%相当の所定電位VAより大きく且つデューティ比70%相当の所定電位VBより小さい場合には、短い第1所定変調周期T1が変調周期Tpwmに設定され、駆動波形データDWCOMが一定電位ではない場合又は、デューティ比30%相当の所定電位VA以下か、又はデューティ比70%相当の所定電位VB以上である場合には、長い第2所定変調周期T2が変調周期Tpwmに設定されるので、中間電位における電流を低減し、これにより消費電力を低減することができる。
また、デューティ比が大きい領域、或いは小さい領域では、変調周期Tpwmを長い第2所定変調周期T2とすることにより、パルス幅を確保することができ、正確な波形の駆動信号COM(駆動パルスPCOM)を得ることができる。また、パルス変調の変調周期の完了を検出することにより、正確な変調信号を確保して駆動信号の歪みを防止することができる。
この演算処理によれば、駆動波形データDWCOMが一定電位であり、デューティ比30%相当の所定電位VAより大きく且つデューティ比70%相当の所定電位VBより小さい場合には、短い第1所定変調周期T1が変調周期Tpwmに設定され、駆動波形データDWCOMが一定電位ではない場合又は、デューティ比30%相当の所定電位VA以下か、又はデューティ比70%相当の所定電位VB以上である場合には、長い第2所定変調周期T2が変調周期Tpwmに設定されるので、中間電位における電流を低減し、これにより消費電力を低減することができる。
また、デューティ比が大きい領域、或いは小さい領域では、変調周期Tpwmを長い第2所定変調周期T2とすることにより、パルス幅を確保することができ、正確な波形の駆動信号COM(駆動パルスPCOM)を得ることができる。また、パルス変調の変調周期の完了を検出することにより、正確な変調信号を確保して駆動信号の歪みを防止することができる。
更に、第2実施形態によれば、第1実施形態と異なり、駆動波形データが所定の中間電位にあるかどうかを、逐次判定する必要がないため、より容易に構成することができる。
又、第2の実施形態は駆動波形データが一定電位である場合に変調周波数を変更するため、液体の吐出特性を安定させることができる。
つまり、駆動波形データの電位が傾きを持つ部分は、アクチュエータに動圧与え液体を制御している領域であるため、この領域で波形歪が発生すると液体の吐出特性を損なう可能性があるが、第2実施形態においては、一定電位の領域で変調周波数を変更するため、変調周波数を変更することにより発生しうる波形歪みが液体の吐出特性に悪影響を与えることがない。
なお、前記第1〜第2実施形態では、本発明の液体噴射装置をラインヘッド型の液体噴射型印刷装置に用いた場合についてのみ詳述したが、本発明の液体噴射装置は、マルチパス型の液体噴射型印刷装置にも同様に適用可能である。
又、第2の実施形態は駆動波形データが一定電位である場合に変調周波数を変更するため、液体の吐出特性を安定させることができる。
つまり、駆動波形データの電位が傾きを持つ部分は、アクチュエータに動圧与え液体を制御している領域であるため、この領域で波形歪が発生すると液体の吐出特性を損なう可能性があるが、第2実施形態においては、一定電位の領域で変調周波数を変更するため、変調周波数を変更することにより発生しうる波形歪みが液体の吐出特性に悪影響を与えることがない。
なお、前記第1〜第2実施形態では、本発明の液体噴射装置をラインヘッド型の液体噴射型印刷装置に用いた場合についてのみ詳述したが、本発明の液体噴射装置は、マルチパス型の液体噴射型印刷装置にも同様に適用可能である。
また、本発明の液体噴射装置は、インク以外の他の液体(液体以外にも、機能材料の粒子が分散されている液状体、ジェルなどの流状体を含む)や液体以外の流体(流体として流して噴射できる固体など)を噴射する液体噴射装置に具体化することもできる。例えば、液晶ディスプレイ、EL(エレクトロルミネッサンス)ディスプレイ、面発光ディスプレイ、カラーフィルタの製造などに用いられる電極材や色材などの材料を分散又は溶解の形態で含む液状体を噴射する液状体噴射装置、バイオチップ製造に用いられる生体有機物を噴射する液体噴射装置、精密ピペットとして用いられて試料となる液体を噴射する液体噴射装置であってもよい。更に、時計やカメラなどの精密機械にピンポイントで潤滑油を噴射する液体噴射装置、光通信素子などに用いられる微小半球レンズ(光学レンズ)などを形成するための紫外線硬化樹脂などの透明樹脂液を基板上に噴射する液体噴射装置、基板などをエッチングするために酸又はアルカリなどのエッチング液を噴射する液体噴射装置、ジェルを噴射する流状体噴射装置、トナーなどの粉体を例とする固体を噴射する流体噴射式記録装置であってもよい。そして、これらのうち何れか一種の噴射装置に本発明を適用することができる。
1は印刷媒体、2は液体噴射ヘッド、3は給紙部、4は搬送部、5は給紙ローラ、6は搬送ベルト、7は電動モータ、8は駆動ローラ、9は従動ローラ、10は排紙部、11はヘッド固定プレート、21はハーフブリッジ出力段、22はアクチュエータ、24は波形メモリ、25は駆動波形信号発生回路、26は変調回路、28はデジタル電力増幅器、29は平滑フィルタ、30はゲートドライブ回路、34は三角波発振器、35は比較部、65はヘッドドライバ
Claims (4)
- 駆動波形信号を発生する駆動波形信号発生回路と、
前記駆動波形信号をパルス変調して変調信号とする変調回路と、
プッシュプル接続されたスイッチング素子対により前記変調信号を電力増幅して電力増幅変調信号とするデジタル電力増幅器と、
前記電力増幅変調信号を平滑化して駆動信号とする平滑フィルタと、
を備え、
前記変調回路は、前記駆動波形信号のデータに基づいて、当該駆動波形信号が所定の中間電位にあるときにパルス変調の変調周期を、前記所定の中間電位以外の電位のときの変調周期より短くすることを特徴とする液体噴射装置。 - 駆動波形信号を発生する駆動波形信号発生回路と、
前記駆動波形信号をパルス変調して変調信号とする変調回路と、
プッシュプル接続されたスイッチング素子対により前記変調信号を電力増幅して電力増幅変調信号とするデジタル電力増幅器と、
前記電力増幅変調信号を平滑化して駆動信号とする平滑フィルタと、
を備え、
前記変調回路は、波形メモリに記憶されている変調周期データに基づいて前記パルス変調の変調周期を変更し、
前記波形メモリに記憶されている変調周期データは、前記駆動波形信号が一定電位であり、かつ、所定の中間電位にあるときに、パルス変調の変調周期を前記所定の中間電位以外の領域の変調周期より短くすることを特徴とする液体噴射装置。 - 前記変調回路は、パルス変調の変調周期の完了を検出することを特徴とする請求項1又は2に記載の液体噴射装置。
- 請求項1乃至3の何れか一項に記載の液体噴射装置を備えた液体噴射型印刷装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009175145A JP2011025584A (ja) | 2009-07-28 | 2009-07-28 | 液体噴射装置及び液体噴射型印刷装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009175145A JP2011025584A (ja) | 2009-07-28 | 2009-07-28 | 液体噴射装置及び液体噴射型印刷装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011025584A true JP2011025584A (ja) | 2011-02-10 |
Family
ID=43634904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009175145A Withdrawn JP2011025584A (ja) | 2009-07-28 | 2009-07-28 | 液体噴射装置及び液体噴射型印刷装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011025584A (ja) |
-
2009
- 2009-07-28 JP JP2009175145A patent/JP2011025584A/ja not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4957756B2 (ja) | 容量性負荷駆動回路、液体噴射装置および印刷装置 | |
JP5471325B2 (ja) | 液体噴射装置及び印刷装置及び手術具 | |
JP5212336B2 (ja) | 液体噴射装置、液体噴射型印刷装置および液体噴射装置の駆動方法 | |
JP5145921B2 (ja) | 液体噴射装置 | |
JP5256768B2 (ja) | 液体噴射装置 | |
JP5109651B2 (ja) | 液体噴射装置および印刷装置 | |
JP5245767B2 (ja) | アクチュエータの駆動方法及び電力増幅装置 | |
JP2010114711A (ja) | 電力増幅装置 | |
JP2010114500A (ja) | 電力増幅装置 | |
JP2009226627A (ja) | 液体噴射装置 | |
JP2011088294A (ja) | 電力増幅回路及び液体噴射装置及び液体噴射型印刷装置 | |
JP5521315B2 (ja) | 電力増幅装置および液体噴射装置、液体噴射型印刷装置 | |
JP2009178950A (ja) | 液体噴射装置 | |
JP2009196197A (ja) | 液体噴射装置 | |
JP5263331B2 (ja) | 容量性負荷駆動回路、液体噴射装置および印刷装置 | |
JP5024145B2 (ja) | 液体噴射装置 | |
JP2011025584A (ja) | 液体噴射装置及び液体噴射型印刷装置 | |
JP5783203B2 (ja) | 液体噴射装置および印刷装置、液体噴射装置の駆動方法 | |
JP5407763B2 (ja) | 液体噴射装置及び液体噴射型印刷装置 | |
JP5783205B2 (ja) | 容量性負荷駆動回路、液体噴射装置および印刷装置 | |
JP5136613B2 (ja) | 容量性負荷駆動回路、液体噴射装置および印刷装置 | |
JP2011025622A (ja) | 液体噴射装置及び液体噴射型印刷装置 | |
JP2011093104A (ja) | 液体噴射装置及び液体噴射型印刷装置 | |
JP5790801B2 (ja) | 手術具 | |
JP2015180557A (ja) | 液体噴射装置および液体噴射型印刷装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20121002 |