JP2011023767A - Light-emitting device, and lighting system - Google Patents

Light-emitting device, and lighting system Download PDF

Info

Publication number
JP2011023767A
JP2011023767A JP2010247469A JP2010247469A JP2011023767A JP 2011023767 A JP2011023767 A JP 2011023767A JP 2010247469 A JP2010247469 A JP 2010247469A JP 2010247469 A JP2010247469 A JP 2010247469A JP 2011023767 A JP2011023767 A JP 2011023767A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
emitting element
reflecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010247469A
Other languages
Japanese (ja)
Other versions
JP5174125B2 (en
Inventor
Kosuke Katabe
浩介 形部
Daisuke Sakumoto
大輔 作本
Shingo Matsuura
真吾 松浦
Hiroki Mori
裕樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010247469A priority Critical patent/JP5174125B2/en
Publication of JP2011023767A publication Critical patent/JP2011023767A/en
Application granted granted Critical
Publication of JP5174125B2 publication Critical patent/JP5174125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable light-emitting device the output of which is not reduced and the light-emitting characteristic of which is not changed, even when heat or impact from soldering and the like is applied. <P>SOLUTION: This light-emitting device 1 is equipped with: a light-emitting element 4; a translucent member 5 covering the light-emitting element 4; a reflective member 2 for reflecting light generated by the light-emitting element 4; and a wavelength conversion member 6 covering the translucent member 5 and containing a phosphor. The reflective member 2 has a porous structure where a plurality of particles of an inorganic material are partially integrated with one another, and also has a permeation region in which a part of the translucent member 5 permeates, and the permeation region surrounds the light-emitting element 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発光素子から発せられる光を外部に放出する発光装置および照明装置に関する。   The present invention relates to a light emitting device and an illumination device that emit light emitted from a light emitting element to the outside.

従来の発光ダイオード(LED)等の発光素子24を収容するための発光装置を図9に示す。図9に示すように、発光装置21は、上面の中央部に発光素子24を搭載するとともに、発光素子24と発光素子収納用パッケージ(以下、単にパッケージともいう)の内外を電気的に導通接続するリード端子などの配線導体(図示せず)が形成された絶縁体から成る基体23と、基体23の上面に接着固定され、中央部に発光素子24を収納するための貫通孔が形成された、金属、樹脂またはセラミックス等から成る反射部材22とから主に構成される。   A light emitting device for housing a light emitting element 24 such as a conventional light emitting diode (LED) is shown in FIG. As shown in FIG. 9, the light emitting device 21 has a light emitting element 24 mounted on the center of the upper surface, and electrically connects the light emitting element 24 and the inside and outside of the light emitting element storage package (hereinafter also simply referred to as a package). A base 23 made of an insulator on which a wiring conductor (not shown) such as a lead terminal is formed, and a through hole for accommodating the light emitting element 24 at the center are formed by being bonded and fixed to the upper surface of the base 23. And a reflecting member 22 made of metal, resin, ceramics or the like.

基体23は酸化アルミニウム質焼結体(アルミナセラミックス)や窒化アルミニウム質焼結体、ムライト質焼結体、ガラスセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂から成る。基体23がセラミックスから成る場合、その上面にメタライズ配線層から成る配線導体(図示せず)がタングステン(W)、モリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを高温で焼成して形成される。また、基体23が樹脂から成る場合、基体23をモールド成型する際に、銅(Cu)や鉄(Fe)−ニッケル(Ni)合金等から成る配線導体(リード端子)が基体23の内部に一端部が突出するように固定される。   The substrate 23 is made of an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, ceramics such as glass ceramics, or a resin such as an epoxy resin. When the substrate 23 is made of ceramics, a wiring conductor (not shown) made of a metallized wiring layer is formed on the upper surface by baking a metal paste made of tungsten (W), molybdenum (Mo) -manganese (Mn), etc. at a high temperature. Is done. Further, when the base 23 is made of a resin, when the base 23 is molded, a wiring conductor (lead terminal) made of copper (Cu), iron (Fe) -nickel (Ni) alloy, or the like is provided inside the base 23 at one end. The part is fixed so as to protrude.

また、反射部材22は、アルミニウム(Al)やFe−Ni−コバルト(Co)合金等の金属、アルミナ質焼結体等のセラミックスまたはエポキシ、ポリフタロアミド等の樹脂から成り、切削加工や金型成形、押し出し成型等の成形技術により筒状に形成される。反射部材22の中央部には上方に向かうに伴って外側に広がる貫通孔が形成されている。なお、貫通孔の内周面の光の反射率を向上させる場合、この内周面にAl等の金属が蒸着法やメッキ法により被着される。そして、反射部材22は、半田、銀ロウ等のロウ材または樹脂接着剤により、基体23の上面に接合される。反射部材22と基体23は、このように別に製造し接合してもよいし、一体に形成してもよい。   The reflecting member 22 is made of a metal such as aluminum (Al) or Fe-Ni-cobalt (Co) alloy, ceramics such as an alumina sintered body, or a resin such as epoxy or polyphthalamide. It is formed into a cylindrical shape by a molding technique such as molding or extrusion molding. A through hole is formed in the center of the reflecting member 22 so as to expand outward as it goes upward. In addition, when improving the reflectance of the light of the internal peripheral surface of a through-hole, metals, such as Al, are adhered to this internal peripheral surface by the vapor deposition method or the plating method. The reflecting member 22 is bonded to the upper surface of the base 23 with a brazing material such as solder, silver brazing, or a resin adhesive. The reflection member 22 and the base body 23 may be separately manufactured and joined as described above, or may be integrally formed.

そして、基体23表面に形成した配線導体(図示せず)と発光素子24の電極とをボンディングワイヤやバンプ、半田(ともに図示せず)などを介して電気的に接続し、しかる後、反射部材22の内側に透光性部材25を注入し熱硬化させ、さらに波長変換部材26を配することで、発光素子24からの光を波長変換部材26により波長変換し、所望の波長スペクトルを有する光を取り出せる発光装置21と成すことができる。   Then, a wiring conductor (not shown) formed on the surface of the base 23 and the electrode of the light emitting element 24 are electrically connected via bonding wires, bumps, solder (both not shown), and the like, and then a reflecting member. Light is transmitted from the light-emitting element 24 by the wavelength conversion member 26 by injecting a light-transmitting member 25 inside the substrate 22 and thermally cured, and a wavelength conversion member 26 is disposed. The light has a desired wavelength spectrum. Can be formed with the light emitting device 21 that can take out the light.

図9において、反射部材22の機能は、発光素子24の発する光を反射することと、波長変換部材26が発する蛍光を反射することであるから、反射部材22の内周面の反射率は高いほうが好ましい。よって、反射部材22の内周面を金属で作る場合、反射率の高いアルミニウム、銀、ロジウムなどが使用される。製造方法としては、金属のバルク材を切削加工やプレス加工で反射部材22の形状にする方法や、樹脂材料やガラス材料を反射部材12の形状に成形した後、反射部材22の少なくとも内周面にアルミニウム、銀、ロジウムなどを蒸着して反射面を形成する方法がある。   In FIG. 9, the function of the reflecting member 22 is to reflect the light emitted from the light emitting element 24 and to reflect the fluorescence emitted from the wavelength converting member 26, so that the reflectance of the inner peripheral surface of the reflecting member 22 is high. Is preferred. Therefore, when the inner peripheral surface of the reflecting member 22 is made of metal, aluminum, silver, rhodium or the like having high reflectivity is used. As a manufacturing method, a metal bulk material is formed into a shape of the reflective member 22 by cutting or pressing, or after molding a resin material or a glass material into the shape of the reflective member 12, at least the inner peripheral surface of the reflective member 22 There is a method of forming a reflecting surface by vapor-depositing aluminum, silver, rhodium or the like.

しかしながら、金属は一般的に大気に晒すと表面が酸化して金属光沢が失われたり、着色されたりするため、反射面の反射率が低下する場合が多い。また反射部材22を形成する金属の表面粗さが粗いと大気と接する表面積が広くなることにより、表面酸化が進みやすくなる。反射部材22を形成する金属の表面粗さを滑らかにすると反射率は向上するが、加
工の難易度が上がり、製造コストが上がってしまう。
However, when the metal is exposed to the atmosphere, the surface is oxidized and the metallic luster is lost or colored, so that the reflectance of the reflecting surface often decreases. Further, when the surface roughness of the metal forming the reflecting member 22 is large, the surface area in contact with the air is increased, and thus the surface oxidation is likely to proceed. If the surface roughness of the metal forming the reflecting member 22 is smoothed, the reflectance is improved, but the difficulty of processing increases and the manufacturing cost increases.

このような問題があるため、反射部材22の材料として、酸化チタン(チタニア)から成るフィラーを分散させた樹脂材料が広く用いられている。チタニアは屈折率が高く、効率よく光を散乱するため、反射率は高く、発光素子24や波長変換部材26の光を良好に反射することができる。そして、これらを反射部材22の材料として用いると、高効率な発光装置21を得ることができる。   Because of these problems, a resin material in which a filler made of titanium oxide (titania) is dispersed is widely used as the material of the reflecting member 22. Since titania has a high refractive index and efficiently scatters light, the reflectance is high, and the light from the light emitting element 24 and the wavelength conversion member 26 can be favorably reflected. If these are used as the material of the reflecting member 22, a highly efficient light-emitting device 21 can be obtained.

特開1999−29745号公報JP 1999-29745 A

しかしながら、このような発光装置21の基体23を外部電気回路基板に半田付け等により電気的に接続する際の熱により、反射部材22と透光性部材25との接合界面の一部もしくは全部が剥がれる場合がある。反射部材22と透光性部材25との接合界面の一部もしくは全部が剥がれると、生じた空隙に光が閉じ込められたり、空隙から水分が侵入したりする結果、発光装置21の出力が低下したり、発光特性が変化したりするという問題が生じる。   However, part or all of the bonding interface between the reflecting member 22 and the translucent member 25 is caused by heat when the base 23 of the light emitting device 21 is electrically connected to the external electric circuit board by soldering or the like. May peel off. If part or all of the bonding interface between the reflective member 22 and the translucent member 25 is peeled off, light is confined in the generated gap or moisture enters the gap, resulting in a decrease in the output of the light emitting device 21. Or the light emission characteristics change.

さらに、上記の発光装置が実装される発光装置駆動回路基板(図示せず)の温度が変化する場合、発光装置駆動回路基板から基体23を介して発光素子24に伝導される熱によって発光素子24の活性層のバンドギャップが変化し、発光素子24から安定した発光効率かつ所望するピーク波長を有する光が出射されないといった問題点を有していた。   Further, when the temperature of the light emitting device driving circuit board (not shown) on which the light emitting device is mounted changes, the light emitting element 24 is heated by the heat conducted from the light emitting device driving circuit board to the light emitting element 24 through the base 23. The band gap of the active layer changes, and there is a problem that light having a stable luminous efficiency and a desired peak wavelength is not emitted from the light emitting element 24.

さらにまた、上記の発光装置に一時的な熱負荷が印加された場合、透光性部材25の熱膨張や熱収縮により、基体23および反射部材22と透光性部材25とが剥がれ、発光装置の長期信頼性が低下するとともに、黄変等の着色が発生したりすることにより、透光性部材25の透過率が劣化したり、発光装置の発光効率が低下するとった問題点を有していた。   Furthermore, when a temporary heat load is applied to the light emitting device, the base 23, the reflecting member 22, and the light transmitting member 25 are peeled off due to the thermal expansion or contraction of the light transmitting member 25, and the light emitting device. As a result, the long-term reliability of the light-emitting device deteriorates, and yellowing or other coloring occurs, resulting in deterioration of the transmittance of the translucent member 25 or a decrease in the light-emitting efficiency of the light-emitting device. It was.

また、発光素子24や発光装置駆動回路基板からの熱により、基体23および反射部材22が着色され、表面の反射率が低下することから、発光装置の発光効率が低下するとった問題点を有していた。   In addition, the base 23 and the reflecting member 22 are colored by heat from the light emitting element 24 and the light emitting device driving circuit board, and the reflectance of the surface is lowered, so that the light emitting efficiency of the light emitting device is lowered. Was.

本発明は、上記問題に鑑みてなされたものであり、その目的は、半田付けなどや作動環境による熱や衝撃が印加されても、出力が低下したり、発光特性が変化したりすることがない信頼性の高い発光装置を提供することにある。   The present invention has been made in view of the above problems, and its purpose is that even when heat or impact due to soldering or an operating environment is applied, the output may decrease or the light emission characteristics may change. There is no need to provide a highly reliable light-emitting device.

本発明の発光装置は、発光素子と、前記発光素子を覆う透光性部材と、前記発光素子によって発生された光を反射する反射部材と、前記透光性部材を覆うとともに、蛍光体を含有する波長変換部材とを備えており、該反射部材は、無機材料の複数の粒子が互いに部分的に一体化された多孔質構造を有しているとともに前記透光性部材の一部が浸透している浸透領域を有しており、前記浸透領域が前記発光素子を囲んでいることを特徴とする。 The light-emitting device of the present invention includes a light-emitting element, a translucent member that covers the light-emitting element, a reflective member that reflects light generated by the light-emitting element, and a phosphor that covers the translucent member. The reflective member has a porous structure in which a plurality of particles of an inorganic material are partially integrated with each other and a part of the translucent member penetrates. And the penetration region surrounds the light emitting element.

また、本発明の発光装置は、発光素子と、前記発光素子を覆う透光性部材と、前記透光性部材を覆うとともに、蛍光体を含有する波長変換部材と、前記発光素子が搭載された上面を有する基体とを備えており、該基体は、前記上面に、無機材料の複数の粒子が互いに部分的に一体化されていた多孔質構造を有しているとともに前記透光性部材の一部が浸透している浸透領域を有していることを特徴とする。 The light-emitting device of the present invention includes a light-emitting element, a translucent member that covers the light-emitting element, a wavelength conversion member that covers the translucent member, and contains a phosphor, and the light-emitting element. A substrate having an upper surface, and the substrate has a porous structure in which a plurality of particles of an inorganic material are partially integrated with each other on the upper surface, and one of the translucent members. It has the penetration area | region which the part has penetrated.

本発明の発光装置は、上面に発光素子の搭載部を有し、発光素子の搭載部を取り囲むように反射部材が形成された発光素子収納用パッケージと、搭載部に搭載された発光素子と、発光素子を覆うように反射部材の内側に注入された透光性部材とを具備しており、上面および反射部材の少なくとも一方は多孔質な材料から成り、透光性部材は、その一部を上面または反射部材中に浸透させて上面または反射部材に接合されていることから、アンカー効果によって透光性部材と上面または反射部材とが非常に強固に接着されることになり、半田付けや作動環境等の熱や衝撃により、基体または反射部材と透光性部材との接合界面において、その一部もしくは全部が剥がれるという問題が生じることがなくなる。その結果、発光装置の光出力が低下したり、長期間にわたり発光特性が変化したりすることがない。   The light emitting device of the present invention has a light emitting element mounting portion on the upper surface, a light emitting element storage package in which a reflective member is formed so as to surround the light emitting element mounting portion, a light emitting element mounted on the mounting portion, A translucent member injected inside the reflecting member so as to cover the light emitting element, and at least one of the upper surface and the reflecting member is made of a porous material, and the translucent member has a part thereof Since it penetrates into the upper surface or the reflecting member and is bonded to the upper surface or the reflecting member, the translucent member and the upper surface or the reflecting member are bonded very firmly by the anchor effect, and soldering or operation There is no problem that a part or all of the substrate or the reflecting member and the translucent member is peeled off due to heat or impact of the environment or the like. As a result, the light output of the light emitting device does not decrease and the light emission characteristics do not change over a long period of time.

さらに、基体の上面または反射部材は多孔質な材料から成ることから、低熱伝導率であり、基体または反射部材を介して、発光装置が実装される発光装置駆動回路基板から発光素子に熱が伝わり難くできる。すなわち、多孔質な材料内には、多数の空隙が形成されていることから、発光装置駆動回路基板からの熱が多孔質な材料を介して発光素子に伝導され難くなる。その結果、黄変等が発生したりすることによって、透光性部材の透過率が劣化したりし難く、発光装置駆動回路基板の温度変化に対しても、安定した光出力、発光効率、および所望するピーク波長の光を発光素子から出射させることができる。   Further, since the upper surface of the substrate or the reflecting member is made of a porous material, it has low thermal conductivity, and heat is transmitted from the light emitting device driving circuit board on which the light emitting device is mounted to the light emitting element via the substrate or the reflecting member. It can be difficult. That is, since a large number of voids are formed in the porous material, it is difficult for heat from the light emitting device driving circuit board to be conducted to the light emitting element through the porous material. As a result, it is difficult for the transmittance of the translucent member to deteriorate due to occurrence of yellowing or the like, and stable light output, luminous efficiency, and Light having a desired peak wavelength can be emitted from the light emitting element.

また、本発明の発光装置において好ましくは、反射部材の内周面が上方に向かうに従って外側に広がる傾斜面とされていることにより、発光素子から側方に出射された光は、反射部材の内周面で上方に反射され、発光装置の輝度や照度、発光効率をより向上させることができる。   In the light emitting device of the present invention, preferably, the light emitted from the light emitting element to the side is reflected on the inner side of the reflecting member because the inner peripheral surface of the reflecting member is an inclined surface that spreads outward as it goes upward. The light is reflected upward on the peripheral surface, and the luminance, illuminance, and light emission efficiency of the light emitting device can be further improved.

また、本発明の発光装置において好ましくは、上面または反射部材は、その気孔率が15〜43%である多孔質な無機材料から成ることから、基体の上面または反射部材内に適度な量の気孔が形成されて、適度な強度を有する基体または反射部材とできるとともに、透光性部材が適度に浸透するものとできる。また、無機材料は変質しにくく、耐候性等の環境性能がよいので信頼性に優れた基体または反射部材とすることができる。   In the light emitting device of the present invention, preferably, the upper surface or the reflecting member is made of a porous inorganic material having a porosity of 15 to 43%, so that an appropriate amount of pores is formed in the upper surface of the substrate or in the reflecting member. Can be formed into a base or a reflecting member having an appropriate strength, and the light-transmitting member can be appropriately permeated. In addition, since the inorganic material hardly changes in quality and has good environmental performance such as weather resistance, a highly reliable substrate or reflecting member can be obtained.

また、本発明の発光装置において好ましくは、上面または反射部材は、複数の気孔同士がつながって、上面または反射部材の内側の気孔と連通していることにより、透光性部材は基体または反射部材中に浸透し易くなり、また、複雑形状に連通した気孔に浸透することにより、非常に強固に透光性部材と基体または反射部材とを接着させることができる。   In the light emitting device of the present invention, preferably, the upper surface or the reflection member is formed by connecting a plurality of pores and communicating with the inner surface of the upper surface or the reflection member. The light-transmitting member and the substrate or the reflecting member can be bonded very firmly by being easily penetrated into the pores and penetrating into the pores communicating in a complicated shape.

また、本発明の照明装置は、上記本発明の発光装置と、発光装置が搭載され、発光装置を駆動する電気配線を有する駆動部と、発光装置から出射される光を反射する光反射手段とを含むことから、光出力が低下したり、長期間にわたり発光特性が変化したりすることがなく、均一な照度面が得られる照明装置とすることができる。   The lighting device of the present invention includes the light emitting device of the present invention, a drive unit on which the light emitting device is mounted and having electric wiring for driving the light emitting device, and a light reflecting means for reflecting light emitted from the light emitting device. Therefore, it is possible to provide an illumination device that can obtain a uniform illuminance surface without lowering light output or changing light emission characteristics over a long period of time.

(a)は本発明の発光装置の実施の形態の他の例を示す断面図、(b)は反射部材を模式的に拡大表示した断面図である。(A) is sectional drawing which shows the other example of embodiment of the light-emitting device of this invention, (b) is sectional drawing which expanded and displayed the reflection member typically. 本発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of this invention. 本発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of this invention. 本発明の照明装置の実施の形態の一例を示す平面図である。It is a top view which shows an example of embodiment of the illuminating device of this invention. 図4の照明装置の断面図である。It is sectional drawing of the illuminating device of FIG. 本発明の照明装置の実施の形態の他の例を示す平面図である。It is a top view which shows the other example of embodiment of the illuminating device of this invention. 図6の照明装置の断面図である。It is sectional drawing of the illuminating device of FIG. 従来の発光装置の断面図である。It is sectional drawing of the conventional light-emitting device. 気孔率と反射率との測定結果を示すグラフであり、(a)は測定波長が400nm、(b)は測定波長が600nmのときの結果を示すものである。It is a graph which shows the measurement result of a porosity and a reflectance, (a) shows a result when a measurement wavelength is 400 nm and (b) is a measurement wavelength of 600 nm.

本発明の発光装置について以下に詳細に説明する。図1(a)は、本発明の発光装置1の実施の形態の一例を示す断面図であり、図2および図3は本発明の発光装置1の実施の形態の他の例である。これら図1,図2,図3において2は反射部材、3は基体、4は発光素子、5は透明樹脂やガラスなどの透光性部材、7は反射部材2に透光性部材5が浸透している浸透層であり、主としてこれらで発光装置1が構成されている。なお、6は透明部材に蛍光体を含有して成る波長変換部材を示す。   The light emitting device of the present invention will be described in detail below. FIG. 1A is a cross-sectional view showing an example of an embodiment of the light emitting device 1 of the present invention, and FIGS. 2 and 3 are other examples of the embodiment of the light emitting device 1 of the present invention. 1, 2, and 3, 2 is a reflecting member, 3 is a base, 4 is a light emitting element, 5 is a translucent member such as transparent resin or glass, and 7 is a translucent member 5 that penetrates the reflecting member 2. The light-emitting device 1 is mainly composed of the permeation layer. Reference numeral 6 denotes a wavelength conversion member comprising a transparent member containing a phosphor.

本発明における基体3は、酸化アルミニウム質焼結体(アルミナセラミックス)、窒化アルミニウム質焼結体、ムライト質焼結体、ガラスセラミックス等のセラミックス、またはシリカなどのガラス絶縁体や樹脂から成る。基体3の上面3bには、発光素子4の搭載部3aが設けられ、発光素子4を支持する支持部材として機能する。   The substrate 3 in the present invention is made of an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, ceramics such as glass ceramics, or a glass insulator or resin such as silica. A mounting portion 3 a for the light emitting element 4 is provided on the upper surface 3 b of the base 3 and functions as a support member that supports the light emitting element 4.

また、基体3の表面または内部には、発光装置1の内外を電気的に導通接続するためのW、Mo、Mn等の金属粉末を用いたメタライズ配線層等から成る配線導体や金属線が埋設された配線導体(図示せず)が形成されており、基体3の上面3bに露出した配線導体の部位に発光素子4の電極が電気的に接続され、基体3の下面や側面に露出した配線導体の部位に外部電気回路(図示せず)が接続される。これによって、基体3は、外部電気回路と発光素子4とを接続する基板としても機能する。   Further, a wiring conductor or a metal wire made of a metallized wiring layer using a metal powder such as W, Mo, or Mn for electrically connecting the inside and outside of the light emitting device 1 is embedded in the surface or inside of the substrate 3. The wiring conductor (not shown) is formed, the electrode of the light emitting element 4 is electrically connected to the portion of the wiring conductor exposed on the upper surface 3b of the base 3, and the wiring exposed on the lower and side surfaces of the base 3 An external electric circuit (not shown) is connected to the conductor portion. Thus, the base 3 also functions as a substrate that connects the external electric circuit and the light emitting element 4.

または、配線導体は、基体3の下面等の外部に露出した部位が、Cu、Fe−Ni合金等の金属から成るリード端子やバンプ導体(図示せず)などを介して外部電気回路に接続される。これにより、発光素子4が配線導体を介して外部電気回路と電気的に接続される。   Alternatively, the exposed portion of the wiring conductor such as the lower surface of the base 3 is connected to an external electric circuit via a lead terminal made of a metal such as Cu or Fe—Ni alloy, a bump conductor (not shown), or the like. The Thereby, the light emitting element 4 is electrically connected to the external electric circuit through the wiring conductor.

なお、配線導体は、その露出する表面にNiや金(Au)等の耐食性に優れる金属を1〜20μm程度の厚みで被着させておくのがよく、配線導体が酸化腐食するのを有効に防止できるとともに、配線導体と発光素子4との電気的な接続および配線導体と半田、金バンプなどの導電性接着部材(図示せず)との接続を強固にすることができる。従って、配線導体の露出表面には、厚さ1〜10μm程度のNiメッキ層と厚さ0.1〜3μm程度のAuメッキ層とが電解メッキ法や無電解メッキ法により順次被着されていることがより好ましい。   The wiring conductor should be coated with a metal with excellent corrosion resistance, such as Ni or gold (Au), with a thickness of about 1 to 20 μm on the exposed surface, which effectively prevents the wiring conductor from being oxidatively corroded. In addition to preventing this, it is possible to strengthen the electrical connection between the wiring conductor and the light emitting element 4 and the connection between the wiring conductor and a conductive adhesive member (not shown) such as solder or gold bump. Therefore, a Ni plating layer having a thickness of about 1 to 10 μm and an Au plating layer having a thickness of about 0.1 to 3 μm are sequentially deposited on the exposed surface of the wiring conductor by an electrolytic plating method or an electroless plating method. More preferred.

そして、本発明の発光装置においては、基体3の上面3bおよび反射部材2の少なくとも一方は多孔質な材料から成り、透光性部材5は、その一部を基体3の上面3b中に浸透させた浸透層7、または、その一部を反射部材2中に浸透させた浸透層7によって基体3の上面3bまたは反射部材2に接合されている。例えば、図1(a)は、反射部材2が多孔質な材料から成り、透光性部材5の浸透層7が反射部材2の内周面に形成されている例を示し、図2は、反射部材2および基体3が多孔質な材料から成り、浸透層7が反射部材2の内周面および基体3の上面3bに形成されている例を示す。この他にも基体3が多孔質な材料から成り、基体3上面3bに浸透層7が形成されて透光性部材5が接合されていてもよい。   In the light emitting device of the present invention, at least one of the upper surface 3b of the base 3 and the reflecting member 2 is made of a porous material, and the translucent member 5 allows a part thereof to penetrate into the upper surface 3b of the base 3. The permeation layer 7 or a permeation layer 7 in which a part of the permeation layer 7 is permeated into the reflection member 2 is joined to the upper surface 3 b of the base 3 or the reflection member 2. For example, FIG. 1A shows an example in which the reflecting member 2 is made of a porous material, and the permeation layer 7 of the translucent member 5 is formed on the inner peripheral surface of the reflecting member 2, and FIG. An example in which the reflecting member 2 and the base 3 are made of a porous material and the permeation layer 7 is formed on the inner peripheral surface of the reflecting member 2 and the upper surface 3 b of the base 3 is shown. In addition, the base 3 may be made of a porous material, and the permeable member 5 may be bonded to the upper surface 3b of the base 3 by forming the permeation layer 7 thereon.

基体3の上面3bに浸透層7を形成する場合は、少なくともその上面3bが、例えば複数の粒子を互いに一部分で一体化させて粒子間に多くの空隙が形成されている多孔質な材
料から成る。これにより、反射部材2の内側に透光性部材5が注入されると、透光性部材5が基体3の上面3bに浸透し浸透層7が形成される。そして、浸透層7が透光性部材5のアンカーの作用をなし、透光性部材5と基体3の上面3bとは強固に接着されることになる。その結果、基体3の配線導体を半田付けするときなど、熱や衝撃による負荷が印加された場合、透光性部材5と基体3とが剥がれることは少なくなり、信頼性の高い発光装置を得ることができる。
When the permeation layer 7 is formed on the upper surface 3b of the substrate 3, at least the upper surface 3b is made of, for example, a porous material in which a plurality of particles are partially integrated with each other to form many voids between the particles. . As a result, when the translucent member 5 is injected inside the reflecting member 2, the translucent member 5 penetrates into the upper surface 3 b of the base 3 and the permeation layer 7 is formed. The penetrating layer 7 functions as an anchor of the translucent member 5, and the translucent member 5 and the upper surface 3b of the base 3 are firmly bonded. As a result, when a load due to heat or impact is applied, such as when soldering the wiring conductor of the substrate 3, the translucent member 5 and the substrate 3 are less likely to peel off, and a highly reliable light-emitting device is obtained. be able to.

さらに、多孔質な材料から成ることから、基体3は低熱伝導率なものとなり、発光装置が実装される発光装置駆動回路基板から基体3を介して発光素子4に熱が伝わり難いものとなる。すなわち、多孔質な材料の内部には、図1(b)の模式的に拡大表示した断面図に示すように、多数の空隙32が形成されていることから、発光装置駆動回路基板からの熱が多孔質な材料を介して発光素子4に伝導され難くなる。その結果、発光素子4は、発光装置駆動回路基板の温度変化に対しても、安定した光出力、発光効率および所望するピーク波長の光を出射することができる。   Further, since the substrate 3 is made of a porous material, the substrate 3 has low thermal conductivity, and it is difficult for heat to be transmitted to the light emitting element 4 through the substrate 3 from the light emitting device driving circuit board on which the light emitting device is mounted. That is, since a large number of voids 32 are formed in the porous material as shown in the schematic enlarged sectional view of FIG. 1B, heat from the light emitting device driving circuit board is formed. Is difficult to be conducted to the light emitting element 4 through the porous material. As a result, the light emitting element 4 can emit light having a stable light output, light emission efficiency, and a desired peak wavelength even with respect to a temperature change of the light emitting device driving circuit board.

図1(b)は、基体3または反射部材2の組織を拡大して示した模式図であり、31は粒子、32は粒子31間に形成された気孔(以下、空隙ともいう)を示す。このような基体3または反射部材2として、例えば、フッ素系樹脂の粒子31を押し固めた後に焼成することにより、粒子31間に生じた空隙32を利用して光を散乱,反射させる材料等が挙げられる。この材料は可視領域の波長に対し高い反射率を有する。   FIG. 1B is a schematic diagram showing an enlarged structure of the substrate 3 or the reflecting member 2, in which 31 indicates particles and 32 indicates pores (hereinafter also referred to as voids) formed between the particles 31. Examples of the base 3 or the reflecting member 2 include a material that scatters and reflects light by using the voids 32 generated between the particles 31 by pressing and solidifying the fluororesin particles 31 and firing them. Can be mentioned. This material has a high reflectivity for wavelengths in the visible region.

なお、発光素子4は、動作温度が変化すると、発光する光のピーク波長が変化したり、発光効率(発光素子4への入力電力に対する、発光素子4から出射される光エネルギーや光束量の比率)が変化したりする。これにより、発光装置から出射される光の色が変化したり、光出力および発光効率が変化したりする。従って、発光素子4の光出力、発光効率およびピーク波長等の作動特性を安定化させるためには、発光素子4の温度を一定に安定させることが必要となる。   Note that when the operating temperature changes, the light emitting element 4 changes the peak wavelength of emitted light, or the light emission efficiency (ratio of the light energy and the amount of light emitted from the light emitting element 4 to the input power to the light emitting element 4). ) Will change. Thereby, the color of the light emitted from the light emitting device changes, or the light output and the light emission efficiency change. Therefore, in order to stabilize the operational characteristics such as the light output, light emission efficiency, and peak wavelength of the light emitting element 4, it is necessary to stabilize the temperature of the light emitting element 4 at a constant level.

基体3は、少なくとも発光素子4が搭載される搭載部3aを含む上面3bの一部に、多孔質な材料が設けられていてもよく、上記と同様に発光装置駆動回路基板から基体3を介して発光素子4に熱が伝わり難くなる。なお、基体3は、全体を多孔質な材料によって作製されてもよいことはいうまでもない。   The base body 3 may be provided with a porous material at least on a part of the upper surface 3b including the mounting portion 3a on which the light emitting element 4 is mounted, and in the same manner as described above, from the light emitting device driving circuit board through the base body 3. Thus, it becomes difficult for heat to be transmitted to the light emitting element 4. Needless to say, the entire substrate 3 may be made of a porous material.

反射部材2に浸透層7を形成する場合は、少なくともその内周面2aが、例えば複数の粒子を互いに一部分で一体化させて粒子間に多くの空隙が形成されている多孔質な材料から成り、上下方向に貫通孔を有する筒状に形成される。好ましくは、貫通孔の内周面2aで光が上方へ反射されやすくするために、図1(a),図2,図3に示されるように、上方に向かうに伴って外側に拡がる貫通孔とされる。そして、反射部材2の下面が基体3の上面3bに樹脂接着剤等で接着固定されることによって、基体3の上面3bおよび反射部材2の貫通孔の内周面2aで囲まれた凹所が形成される。その後、この凹所に透光性部材5となる未硬化の透明樹脂等が注入されるとともに、透光性部材5は常温硬化、加熱硬化、光照射等による光硬化によって硬化される。   When the permeation layer 7 is formed on the reflecting member 2, at least the inner peripheral surface 2a is made of, for example, a porous material in which a plurality of particles are partially integrated with each other to form many voids between the particles. It is formed in a cylindrical shape having through holes in the vertical direction. Preferably, in order to make light easily reflected upward on the inner peripheral surface 2a of the through hole, as shown in FIG. 1A, FIG. 2, and FIG. 3, the through hole that expands outward as it goes upward. It is said. Then, the lower surface of the reflecting member 2 is bonded and fixed to the upper surface 3b of the base 3 with a resin adhesive or the like, so that a recess surrounded by the upper surface 3b of the base 3 and the inner peripheral surface 2a of the through hole of the reflecting member 2 is formed. It is formed. Thereafter, an uncured transparent resin or the like that becomes the translucent member 5 is injected into the recess, and the translucent member 5 is cured by photocuring by room temperature curing, heat curing, light irradiation, or the like.

また、反射部材2は、その発光素子4を取り囲むように配置される内周面2aが、上方に向かうに従って外側に広がる傾斜面とされていることにより、発光素子4から側方に出射された光は内周面2aで上方に反射され、発光装置の輝度や照度、発光効率が向上する。すなわち、内周面2aが垂直面や上方に向かうに従って内側に狭くなるように形成された反射面である場合に比して、内周面2aによって拡散反射された光が発光装置の内部で閉じ込められることがなく、発光素子4からの光は効率よく発光装置の外部に出射され、発光装置の光出力および発光効率は増加する。   Further, the reflecting member 2 is emitted from the light emitting element 4 to the side because the inner peripheral surface 2a disposed so as to surround the light emitting element 4 is an inclined surface that spreads outward as it goes upward. The light is reflected upward by the inner peripheral surface 2a, and the luminance, illuminance, and luminous efficiency of the light emitting device are improved. That is, the light diffusely reflected by the inner peripheral surface 2a is confined inside the light emitting device as compared with the case where the inner peripheral surface 2a is a vertical surface or a reflecting surface formed so as to narrow toward the upper side. Therefore, the light from the light emitting element 4 is efficiently emitted to the outside of the light emitting device, and the light output and the light emitting efficiency of the light emitting device are increased.

そして、本発明の発光装置において、基体3または反射部材2は、これら多孔質な材料の空隙32に、未硬化のシリコーン樹脂やエポキシ樹脂などの透光性部材5が注入されることにより、基体3または反射部材2の貫通孔表面付近の空隙32に透光性部材5が染み込むように浸透し、その後樹脂を硬化させることによって浸透層7が形成される。この際、透光性部材5となる未硬化樹脂の注入後にその表面に圧力を加えたり、未硬化樹脂の注入を減圧下で行なったりした後に、大気圧下で加熱硬化あるいは常温硬化、光照射等によって硬化させる光硬化を行なわせると、浸透層7の形成が容易になる。   In the light emitting device of the present invention, the substrate 3 or the reflecting member 2 is formed by injecting a translucent member 5 such as uncured silicone resin or epoxy resin into the void 32 of the porous material. 3 or the penetration member 7 is formed by allowing the translucent member 5 to permeate into the gap 32 near the surface of the through hole of the reflecting member 2 and then curing the resin. At this time, after injecting the uncured resin to be the translucent member 5, pressure is applied to the surface, or after injecting the uncured resin under reduced pressure, heat curing or room temperature curing under atmospheric pressure, light irradiation When the photocuring is performed by, for example, curing, the penetration layer 7 can be easily formed.

このように、反射部材2の内側に充填された透光性部材5と浸透層7の樹脂とは一体に形成されることにより、浸透層7が透光性部材5のアンカーの作用をなし、透光性部材5と基体3または反射部材2とは強固に接着されることになる。その結果、基体3の配線導体を半田付けするときなど、熱や衝撃による負荷が印加された場合、透光性部材5と基体3または反射部材2とが剥がれることは少なくなり、信頼性の高い発光装置を得ることができる。   Thus, the translucent member 5 filled inside the reflecting member 2 and the resin of the osmotic layer 7 are integrally formed, so that the osmotic layer 7 functions as an anchor of the translucent member 5, The translucent member 5 and the base 3 or the reflecting member 2 are firmly bonded. As a result, when a load due to heat or impact is applied, such as when the wiring conductor of the base 3 is soldered, the translucent member 5 and the base 3 or the reflecting member 2 are less likely to be peeled off, and the reliability is high. A light emitting device can be obtained.

さらに、基体3または反射部材2中の複数の空隙32同士がその一部で互いにつながるように一体化され、基体3または反射部材2の表面と内部の空隙32とが連通していることが好ましい。このように基体3または反射部材2の表面から内部深くの空隙32まで連通していることにより、浸透層7の厚みが厚くなり、浸透層7によるアンカー効果が大きくなる。また、基体3中または反射部材2中の空隙32が外部と連通している場合、透光性部材5が基体3中または反射部材2中の空隙32に表面から内部に向けて染み込み、基体3または反射部材2に浸透層7を形成する際、空隙32内の空気などの気体が速やかに排出されやすくなるため、容易に浸透層7を形成することができる。   Furthermore, it is preferable that the plurality of gaps 32 in the base 3 or the reflecting member 2 are integrated so that they are partially connected to each other, and the surface of the base 3 or the reflecting member 2 and the inner gap 32 are communicated with each other. . Thus, by communicating from the surface of the base | substrate 3 or the reflection member 2 to the space | gap 32 deep inside, the thickness of the osmosis | permeation layer 7 becomes thick and the anchor effect by the osmosis | permeation layer 7 becomes large. Further, when the gap 32 in the base 3 or the reflecting member 2 communicates with the outside, the translucent member 5 penetrates into the gap 32 in the base 3 or the reflecting member 2 from the surface to the inside. Alternatively, when the osmotic layer 7 is formed on the reflecting member 2, gas such as air in the gap 32 is easily discharged quickly, so that the osmotic layer 7 can be easily formed.

また、浸透層7の厚さは50μm以上1000μm以下であることが好ましい。浸透層7の厚さが50μm未満の場合、十分なアンカー効果を発揮させにくい。また、基体3または反射部材2の表面から透光性部材5が染み込む深さが1000μm以上の場合、粒子31間の空隙32と粒子31との界面の屈折率差に起因して生じる全反射が、浸透層7においては屈折率差が小さくなるために小さくなり、基体3または反射部材2の反射率が低下してしまう。よって、基体3または反射部材2の表面から透光性部材5が染み込む深さは1μm以上1000μm未満が好ましい。   Moreover, it is preferable that the thickness of the osmosis | permeation layer 7 is 50 micrometers or more and 1000 micrometers or less. When the thickness of the osmotic layer 7 is less than 50 μm, it is difficult to exert a sufficient anchor effect. Further, when the depth at which the translucent member 5 penetrates from the surface of the substrate 3 or the reflecting member 2 is 1000 μm or more, total reflection caused by the difference in refractive index at the interface between the void 32 and the particle 31 between the particles 31 occurs. In the permeation layer 7, the difference in refractive index is small, so the permeation layer 7 is small, and the reflectance of the substrate 3 or the reflecting member 2 is lowered. Therefore, the depth at which the translucent member 5 penetrates from the surface of the substrate 3 or the reflecting member 2 is preferably 1 μm or more and less than 1000 μm.

また、基体3または反射部材2は、アルミナ、イットリア、ジルコニア、チタニア、ダイヤモンド、酸化カルシウム、および硫酸バリウムなど無機材料の粒子31が互いに一部分で一体化されることで多数の空隙32を有する多孔質に形成されているのが好ましい。   The substrate 3 or the reflecting member 2 is a porous material having a large number of voids 32 by integrating particles 31 of inorganic material such as alumina, yttria, zirconia, titania, diamond, calcium oxide, and barium sulfate in a part of each other. It is preferable that it is formed.

なお、基体3または反射部材2は全体が多孔質部材によって形成されている必要はなく、少なくとも透光性部材5が浸透する深さまで基体3または反射部材2の貫通孔の内周面2aに形成されていればよい。   The base 3 or the reflecting member 2 does not need to be entirely formed of a porous member, and is formed on the inner peripheral surface 2a of the through hole of the base 3 or the reflecting member 2 at least to a depth that allows the translucent member 5 to penetrate. It only has to be done.

基体3または反射部材2が互いに一部分で一体化された粒子31から成る場合、粒子31の表面に対して全反射角よりも小さな角度で入射した光は、表面を透過して、粒子31の内部に進入する。この透過光は、粒子31中を透過した後に反対側の表面に至り、その表面と、それよりも屈折率の低い空隙32との界面で、屈折率差によって全反射されて、基体3または反射部材2外部に出射させることができる。すなわち、粒子31と空隙32との界面が光入射角度に対して全反射する角度で存在する場合、入射した光は全反射される。一方、粒子31と空隙32との界面が光入射角度に対して全反射する角度で存在しない場合には入射光は透過するが、この透過した光の光路の先には粒子31と空隙32との界面が幾つも存在し、それらの界面の中には、光入射角度に対して全反射する角度で存在する界面が高確率で存在
する。その結果、基体3または反射部材2の内部に進入した透過光は、いずれかの界面において全反射されて、基体3または反射部材2の外部に出射される。この様な現象が連続的に生じることによって、基体3または反射部材2の内部に進入した透過光は、効果的に反射され、基体3または反射部材2の外部に出射される。なお、全反射角とは、粒子31側から空隙32との界面に入射する光が、空隙32に進行しなくなったときの界面に垂直な線と入射光とのなす臨界角度以上の角度を意味する。
When the substrate 3 or the reflecting member 2 is composed of particles 31 partially integrated with each other, the light incident on the surface of the particle 31 at an angle smaller than the total reflection angle is transmitted through the surface, and the inside of the particle 31 Enter. This transmitted light reaches the opposite surface after passing through the particles 31, and is totally reflected by the difference in refractive index at the interface between the surface and the gap 32 having a lower refractive index than that of the substrate 3 or reflected. The light can be emitted to the outside of the member 2. That is, when the interface between the particle 31 and the gap 32 exists at an angle that totally reflects the light incident angle, the incident light is totally reflected. On the other hand, when the interface between the particle 31 and the void 32 does not exist at an angle that totally reflects the light incident angle, the incident light is transmitted, but the particle 31 and the void 32 are located at the end of the optical path of the transmitted light. There are several interfaces, and among these interfaces, there is a high probability that there is an interface that exists at an angle of total reflection with respect to the light incident angle. As a result, the transmitted light that has entered the inside of the base 3 or the reflecting member 2 is totally reflected at any interface and is emitted to the outside of the base 3 or the reflecting member 2. When such a phenomenon occurs continuously, the transmitted light that has entered the base 3 or the reflecting member 2 is effectively reflected and emitted to the outside of the base 3 or the reflecting member 2. The total reflection angle means an angle equal to or greater than a critical angle formed by a line perpendicular to the interface when the light incident on the interface with the void 32 from the particle 31 side does not travel to the void 32 and the incident light. To do.

上述の作用から理解できるように、入射光を効率良く反射させる観点から、無機粒子31としては、屈折率が高くて全反射角を大きく確保できるものを使用するのが好ましい。また、基体3または反射部材2における光減衰を少なくする観点からは、反射すべき光に対する吸収が少ない(たとえば光吸収率が5%以下の)無機材料を使用するのが好ましい。また、透光性部材5には、屈折率の低いものを使用するのが好ましく、これによって、浸透層7においても粒子31と空隙32に浸透した透光性部材5との界面において、光の全反射を生じやすくできる。   As can be understood from the above action, from the viewpoint of efficiently reflecting incident light, it is preferable to use the inorganic particles 31 having a high refractive index and a large total reflection angle. Further, from the viewpoint of reducing light attenuation in the substrate 3 or the reflecting member 2, it is preferable to use an inorganic material that has little absorption with respect to light to be reflected (for example, the light absorption rate is 5% or less). In addition, it is preferable to use a material having a low refractive index as the translucent member 5, so that, in the permeation layer 7, light can be transmitted at the interface between the particles 31 and the translucent member 5 penetrating into the voids 32. Total reflection can be easily generated.

これらの無機材料のうち、屈折率の観点からは、全反射角を大きく確保できるもの、たとえばチタニア(ルチル;n=2.8)あるいはジルコニア(n=2.1)が特に好ましい。   Among these inorganic materials, from the viewpoint of refractive index, those that can ensure a large total reflection angle, such as titania (rutile; n = 2.8) or zirconia (n = 2.1) are particularly preferable.

また、無機材料は、光吸収(透過率)の観点からは反射すべき光の波長に応じて選択することができる。たとえばチタニアは屈折率の観点からは好ましいが、光の波長350nm
前後の近紫外領域で光を吸収する特性を有する。そのため、基体3または反射部材2を波長が350nm前後の近紫外光を反射するように構成するためには、近紫外光を吸収しにく
いアルミナを使用するのが好ましい。
The inorganic material can be selected according to the wavelength of light to be reflected from the viewpoint of light absorption (transmittance). For example, titania is preferable from the viewpoint of refractive index, but the wavelength of light is 350 nm.
It has the property of absorbing light in the front and back near ultraviolet region. Therefore, in order to configure the base 3 or the reflecting member 2 so as to reflect near-ultraviolet light having a wavelength of around 350 nm, it is preferable to use alumina that hardly absorbs near-ultraviolet light.

また、一般的に粒子31の粒径が入射する光の波長より小さくなる場合、光と粒子31との相互作用が小さくなるため、粒子31と空隙32との界面で光を反射する効果は小さくなる。特に粒径が光の波長の1/4未満になる場合、光を反射する効果が非常に小さくなる。よって、本発明に用いる無機材料から成る粒子31の粒径は、基体3または反射部材2の入射する光の波長の1/4より大きく、かつできるだけ小さいものを使用するのが好ましい。   In general, when the particle size of the particle 31 is smaller than the wavelength of the incident light, the interaction between the light and the particle 31 is reduced, so the effect of reflecting light at the interface between the particle 31 and the void 32 is small. Become. In particular, when the particle diameter is less than ¼ of the wavelength of light, the effect of reflecting light becomes very small. Therefore, it is preferable that the particle 31 made of the inorganic material used in the present invention has a particle size that is larger than ¼ of the wavelength of light incident on the substrate 3 or the reflecting member 2 and as small as possible.

また、この無機材料は全反射面を空間的に多数存在させることで全体の反射率を向上させているので、無機粒子の粒径が大きすぎる場合には、単位空間あたりの粒子31と空隙32とが接することによって形成される反射面が少なくなり、好ましくない。さらに、入射した光を全反射する確率を上げる観点からは、無機粒子31としては、球形状よりも板形状や柱形状などの不定形なものを使用するのが好ましい。   In addition, since this inorganic material improves the overall reflectivity by having a large number of spatially reflecting surfaces, when the particle size of the inorganic particles is too large, the particles 31 and voids 32 per unit space. The number of reflecting surfaces formed by contact with each other decreases, which is not preferable. Furthermore, from the viewpoint of increasing the probability of total reflection of incident light, it is preferable to use an irregular shape such as a plate shape or a column shape as the inorganic particle 31 rather than a spherical shape.

また、これらの基体3または反射部材2は、基体3または反射部材2の内部に進入した透過光を、高確率で反射・出射させるために、気孔率が15〜43%となるように形成するのが好ましい。これは、気孔率が不当に小さい場合、あるいは不当に大きい場合には、空隙32が少なくなるために、光反射に寄与する反射面の数が少なくなるとともに、良好な浸透層7が形成されにくくなるからであり、気孔率を不当に大きくした場合には、基体3または反射部材2の強度が低下するからである。   The base 3 or the reflecting member 2 is formed so as to have a porosity of 15 to 43% in order to reflect and emit the transmitted light that has entered the base 3 or the reflecting member 2 with high probability. Is preferred. This is because, when the porosity is unreasonably small or unreasonably large, the gap 32 is reduced, so that the number of reflecting surfaces contributing to light reflection is reduced, and a good penetration layer 7 is difficult to be formed. This is because, when the porosity is unduly increased, the strength of the substrate 3 or the reflecting member 2 is lowered.

図9(a)および図9(b)から分かるように、アルミナ粒子を使用した反射部材は、測定波長に拘わらず、気孔率が10〜45%の範囲において高い反射率を示している。とくに、気孔率が15〜43%の範囲では、比較例として用いたラブスフェア社製の標準反射板(商品名「スペクトラロン」)よりも高い反射率を示している。したがって、アルミナを用いて反射部材を形成する場合には、気孔率を15〜43%の範囲に設定するのが好ましいといえる。   As can be seen from FIGS. 9 (a) and 9 (b), the reflective member using alumina particles exhibits a high reflectance in the range of porosity of 10 to 45% regardless of the measurement wavelength. In particular, when the porosity is in the range of 15 to 43%, the reflectance is higher than that of a standard reflector (trade name “Spectralon”) manufactured by Labsphere, which is used as a comparative example. Therefore, when the reflecting member is formed using alumina, it can be said that the porosity is preferably set in the range of 15 to 43%.

ここで、気孔率は、下記数式1により定義されるものである。   Here, the porosity is defined by the following mathematical formula 1.

Figure 2011023767
Figure 2011023767

数式1における嵩密度はアルキメデス法により、真密度は気相置換法(ピクノメータ法)により測定することができる。また、多孔質部分が薄い場合、反射層の断面を顕微鏡により観察し、その断面における気孔の面積率(気孔の面積の総和を総面積で割ることにより求められる)を求め、この気孔の面積率を3/2乗することにより気孔率を求めることができる。   The bulk density in Formula 1 can be measured by the Archimedes method, and the true density can be measured by the gas phase substitution method (pycnometer method). If the porous part is thin, observe the cross section of the reflective layer with a microscope, find the area ratio of pores in the cross section (obtained by dividing the total area of the pores by the total area), and determine the area ratio of the pores. The porosity can be obtained by raising the power to 3/2.

このような基体3または反射部材2は、複数の無機材料から成る粒子31を基体3または反射部材2の形状に成形した後に、仮焼成することにより形成することができる。なお、仮焼成とは、無機材料から成る粒子31を間に空隙がほとんど存在しない状態(気孔率が0.001〜1%程度)の焼結体(セラミック)とは異なり、適度な気孔率を有する多孔質体を形成するための不完全な焼成を意味している。   Such a base 3 or the reflecting member 2 can be formed by forming particles 31 made of a plurality of inorganic materials into the shape of the base 3 or the reflecting member 2 and then pre-baking. Note that pre-firing is different from a sintered body (ceramic) in which there are almost no voids between particles 31 made of an inorganic material (porosity is about 0.001 to 1%), and a porous material having an appropriate porosity. It means incomplete firing to form a mass.

無機材料から成る粒子31層の仮焼成は、使用する無機材料、達成すべき気孔率および抗折強度によって異なるが、通常、1000〜1400℃において1〜5時間行なわれる。仮焼成においては、焼結温度を下げるための助剤を添加してもよい。この場合に使用する助剤としては、たとえばカルシアやマグネシアが挙げられ、その添加量は1〜10質量%とされる。   The temporary firing of the particle 31 layer made of an inorganic material is usually performed at 1000 to 1400 ° C. for 1 to 5 hours, depending on the inorganic material to be used, the porosity to be achieved and the bending strength. In the preliminary firing, an auxiliary agent for lowering the sintering temperature may be added. Examples of the auxiliary agent used in this case include calcia and magnesia, and the addition amount is 1 to 10% by mass.

このような仮焼成を行なうことにより、無機材料から成る粒子31が相互に一体化され、適度な気孔率および抗折強度、たとえば気孔率が15〜43%、抗折強度が1〜300MPaである多孔質体を得ることができる。そして、無機材料から成る粒子31層にバインダ樹脂を含ませておいた場合には、バインダ樹脂は、仮焼成の加熱によって、蒸散あるいは燃焼させることで除去される。   By performing such preliminary firing, the particles 31 made of an inorganic material are integrated with each other, and have an appropriate porosity and bending strength, for example, a porosity of 15 to 43% and a bending strength of 1 to 300 MPa. A porous body can be obtained. When the binder resin is contained in the particle 31 layer made of an inorganic material, the binder resin is removed by transpiration or combustion by heating in the pre-baking.

これらの無機材料から成る粒子31から成る基体3または反射部材2は、フッ素系樹脂の粒子31を押し固めた後に焼成することにより、粒子31間に生じた空隙32を利用して光を散乱,反射させる材料と比較し、高い反射率を有するため、より発光効率の高い発光装置1を得ることができる。また、無機材料で基体3または反射部材2を形成した場合、その吸収特性によって発光素子4の発する光が着色されたり、無機材料は耐熱性にも優れることから高温下で使用した場合に炭化して着色したりすることがないため、信頼性の高い発光装置1を得ることができる。   The substrate 3 or the reflecting member 2 made of the particles 31 made of these inorganic materials scatters light by using the voids 32 formed between the particles 31 by pressing the fluoric resin particles 31 and firing them. Compared with the material to reflect, since it has a high reflectance, the light-emitting device 1 with higher luminous efficiency can be obtained. Further, when the substrate 3 or the reflecting member 2 is formed of an inorganic material, the light emitted from the light-emitting element 4 is colored due to its absorption characteristics, or the inorganic material is also excellent in heat resistance, so that it is carbonized when used at a high temperature. Therefore, the light emitting device 1 with high reliability can be obtained.

また、基体3または反射部材2を仮焼成によって作製する場合は、無機材料の粒子31をプレス成型し、複数の粒子31を互いに一部分で一体化させて粒子31間に空隙32を形成する加圧工程とその後の仮焼成工程とを分けることができるため、プレス成型機で大量に基体3または反射部材2を成形した後、それを一度に仮焼成することによって基体3または反射部材2を得ることができるから、低コストで効率的に基体3または反射部材2を製造することができる。   Further, when the base 3 or the reflecting member 2 is prepared by pre-baking, the inorganic material particles 31 are press-molded, and a plurality of particles 31 are partially integrated with each other to form voids 32 between the particles 31. Since the process and the subsequent pre-baking process can be separated, the base body 3 or the reflecting member 2 is obtained by forming the base body 3 or the reflecting member 2 in a large amount with a press molding machine and then pre-baking it at once. Therefore, the base 3 or the reflecting member 2 can be efficiently manufactured at a low cost.

次に、発光素子4は、例えば、液相成長法やMOCVD法等によりサファイア等の透明基板上にガリウム(Ga)−アルミニウム(Al)−窒素(N)、亜鉛(Zn)−硫黄(S)、Zn−セレン(Se)、珪素(Si)−炭素(C)、Ga−リン(P)、Ga−A
l−砒素(As)、Al−インジウム(In)−Ga−P、In−Ga−N、Ga−N、Al−In−Ga−N等の半導体を発光層として形成させたLED等が用いられる。半導体の構造としては、MIS接合やpn接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構造のものが挙げられる。これら発光素子4は半導体層の材料やその混晶度によって、発光波長を紫外光から赤外光まで種々選択することができる。なお、透明基板とは、この発光層が形成される半導体を支持する目的で用いられる。
Next, the light emitting element 4 is made of, for example, gallium (Ga) -aluminum (Al) -nitrogen (N), zinc (Zn) -sulfur (S) on a transparent substrate such as sapphire by liquid phase growth method, MOCVD method, or the like. Zn-selenium (Se), silicon (Si) -carbon (C), Ga-phosphorus (P), Ga-A
An LED or the like in which a semiconductor such as l-arsenic (As), Al-indium (In) -Ga-P, In-Ga-N, Ga-N, or Al-In-Ga-N is formed as a light-emitting layer is used. . Examples of the semiconductor structure include a homo structure having a MIS junction and a pn junction, a hetero structure, and a double hetero structure. These light emitting elements 4 can select various emission wavelengths from ultraviolet light to infrared light depending on the material of the semiconductor layer and the degree of mixed crystal. The transparent substrate is used for the purpose of supporting the semiconductor on which the light emitting layer is formed.

また、発光素子4は、Au−Sn共晶半田などの導電性接着部材(図示せず)を介したフリップチップボンディングにより、基体3の搭載部3aに形成された配線導体に接続されることによって基体3に搭載される。あるいは基体3の搭載部3aに半田やゾルゲルガラス,低融点ガラスなどの無機接着剤、もしくはエポキシ樹脂などの有機接着剤で取り付けられ、発光素子4の電極がボンディングワイヤを介して搭載部3a近傍の配線導体に電気的に接続される。   The light emitting element 4 is connected to a wiring conductor formed on the mounting portion 3a of the base 3 by flip chip bonding via a conductive adhesive member (not shown) such as Au—Sn eutectic solder. Mounted on the substrate 3. Alternatively, it is attached to the mounting portion 3a of the base 3 with an inorganic adhesive such as solder, sol-gel glass or low melting glass, or an organic adhesive such as epoxy resin, and the electrode of the light emitting element 4 is located near the mounting portion 3a via a bonding wire. It is electrically connected to the wiring conductor.

透光性部材5は、発光素子4が発する光に対して透過率が95%以上の透明な材料であり、かつ発光素子4を成す透明基板に近い屈折率を有する材料が好ましい。例えば、フェニル基が導入されたシリコーン樹脂や、チタニアやジルコニアのナノ粒子(粒径50nm未満)が均一分散されたシリコーン樹脂、エポキシ樹脂、チタニアやジルコニアを骨格内に持つ有機無機ハイブリッド材料、スズリン系低融点ガラス、透明ポリイミド樹脂などが使用できる。   The translucent member 5 is preferably a transparent material having a transmittance of 95% or more with respect to light emitted from the light emitting element 4 and a refractive index close to that of the transparent substrate forming the light emitting element 4. For example, silicone resin with phenyl group introduced, silicone resin in which titania or zirconia nanoparticles (particle size less than 50 nm) are uniformly dispersed, epoxy resin, organic-inorganic hybrid material having titania or zirconia in the skeleton, tin phosphorus Low melting glass, transparent polyimide resin, etc. can be used.

なお、浸透層7では屈折率の小さい樹脂を用いることが好ましいため、発光素子4の周囲では上記樹脂を用い、基体3または反射部材2の周囲では上記樹脂と密着力の大きい樹脂であって屈折率の小さいフッ素系樹脂等の低屈折率の樹脂5aを用いる多層構造にしてもよい(図3参照)。例えば、反射部材2の内周面2aに低屈折率の樹脂5aを反射部材2表面に浸透させるとともに、基体3の上面3bまたは反射部材2の内周面2aを覆うように被覆させ、その内側に発光素子4を覆うように上記樹脂を注入することによって透光性部材5を形成すればよい。これにより、発光素子4からの光は透光性部材5と低屈折率の樹脂5aとの界面でスネルの法則に従って反射され、浸透層7の反射率に応じて発生する光損失が抑制され、発光装置の光出力および発光効率は向上する。   Since it is preferable to use a resin having a low refractive index for the permeation layer 7, the resin is used around the light emitting element 4, and the resin around the base 3 or the reflecting member 2 is a resin having a high adhesion with the resin and is refracted. A multilayer structure using a resin 5a having a low refractive index such as a fluorine resin having a low refractive index may be used (see FIG. 3). For example, a resin 5a having a low refractive index is infiltrated into the surface of the reflecting member 2 on the inner peripheral surface 2a of the reflecting member 2, and is covered so as to cover the upper surface 3b of the base 3 or the inner peripheral surface 2a of the reflecting member 2. The light transmissive member 5 may be formed by injecting the resin so as to cover the light emitting element 4. Thereby, the light from the light emitting element 4 is reflected according to Snell's law at the interface between the translucent member 5 and the low refractive index resin 5a, and the light loss generated according to the reflectance of the permeation layer 7 is suppressed. The light output and luminous efficiency of the light emitting device are improved.

波長変換部材6に用いる透明部材は、発光素子4が発する光と、波長変換部材6に含有された蛍光体(図示せず)が発する蛍光の両者に対し透明な材料を選ぶ必要がある。例えば、シリコーン樹脂や、エポキシ樹脂、ユリア樹脂、フッ素系樹脂、ゾルゲルガラス、有機無機ハイブリッド材料、低融点ガラス、透明ポリイミド樹脂などが使用できる。   The transparent member used for the wavelength conversion member 6 needs to select a material that is transparent to both the light emitted from the light emitting element 4 and the fluorescence emitted from the phosphor (not shown) contained in the wavelength conversion member 6. For example, silicone resin, epoxy resin, urea resin, fluorine resin, sol-gel glass, organic-inorganic hybrid material, low melting point glass, transparent polyimide resin, and the like can be used.

また、蛍光体は、発光素子4の光で励起され異なる波長の光を放出することのできる様々な材料が用いられ、一例としては赤色(約580〜780nm)の蛍光を発するLaS:Eu、やYS:Eu、LiEuW、黄色(約480〜700nm)の蛍光を発するYAl12:Ce、緑色(約450〜650nm)の蛍光を発生する(BaMgAl)1012:Eu,MnやZnS:Cu,Al、SrGa:Eu、青色(約420〜550nm)の蛍光を発生するBaMgAl1012:Eu、(Sr,Ca,Ba,Mg)10(PO)l2:Euなどが用いられる。 As the phosphor, various materials that can be excited by the light of the light emitting element 4 and emit light of different wavelengths are used. For example, La 2 O 2 S that emits red (about 580 to 780 nm) fluorescence. : Eu, Y 2 O 2 S: Eu, LiEuW 2 O 8 , Y 3 Al 5 O 12 that emits yellow (about 480 to 700 nm) fluorescence: Ce, green (about 450 to 650 nm) fluorescence is emitted ( BaMgAl) 10 O 12 : Eu, Mn, ZnS: Cu, Al, SrGa 2 S 4 : Eu, BaMgAl 10 O 12 : Eu, (Sr, Ca, Ba, Mg) generating blue (about 420 to 550 nm) fluorescence ) 10 (PO 4) 6 C l2: Eu or the like is used.

また、波長変換部材6は、透光性部材5を被覆するように形成され、その設置方法としては、蛍光体を透明部材に含有して成る波長変換部材6を予め所望の形状に成形した後、透光性部材5の上方に配置することにより、または蛍光体と透明部材とを混練した後、液状の波長変換部材6の前駆体の状態でディスペンサを用い透光性部材5の上に所望の厚さに塗布した後、オーブンで熱硬化させたり、紫外線を照射して硬化させたりすることによって行なわれる。   Further, the wavelength conversion member 6 is formed so as to cover the translucent member 5, and as the installation method thereof, after the wavelength conversion member 6 containing the phosphor in the transparent member is formed into a desired shape in advance. By placing the phosphor and the transparent member on the translucent member 5 or after kneading the phosphor and the transparent member, the liquid wavelength conversion member 6 is used as a precursor on the translucent member 5 using a dispenser. After being applied to the thickness of the film, it is cured by heat curing in an oven or by irradiation with ultraviolet rays.

なお、紫外から青色光の領域に発光ピークを有する発光素子4を用い、この発光を波長変換させて白色光等に変換する必要がない場合は、波長変換部材6は省略可能である。   Note that the wavelength conversion member 6 can be omitted when the light emitting element 4 having a light emission peak in the ultraviolet to blue light region is used and it is not necessary to convert the light emission into a wavelength such as white light.

また、本発明の照明装置は、1個の本発明の発光装置1を所定の配置となるように設置し、本発明の発光装置1を光源として用いたことにより、または複数個を、例えば、格子状や千鳥状,出射状,複数の発光装置から成る、円状や多角形状の発光装置群を同心状に複数群形成したもの等所定の配置となるように設置し、本発明の発光装置1を光源として用いたことにより、照明装置とすることができる。半導体から成る発光素子4の電子の再結合による発光を利用する照明装置は、従来の放電を用いた照明装置よりも低消費電力かつ長寿命とすることが可能であり、発熱の少ない小型の照明装置とすることができる。   In addition, the lighting device of the present invention is configured such that one light emitting device 1 of the present invention is installed in a predetermined arrangement and the light emitting device 1 of the present invention is used as a light source, or a plurality of the light emitting devices 1 The light emitting device of the present invention is installed in a predetermined arrangement such as a plurality of circular or polygonal light emitting device groups formed of a lattice shape, a staggered shape, an emission shape, or a plurality of light emitting devices. By using 1 as a light source, a lighting device can be obtained. A lighting device using light emission by recombination of electrons of the light-emitting element 4 made of a semiconductor can have lower power consumption and longer life than a conventional lighting device using discharge, and is a small-sized illumination with less heat generation. It can be a device.

また、本発明の発光装置1を発光装置1が搭載され駆動される電気配線を有する駆動部上に光源として所定の配置に設置するとともに、これらの発光装置1の周囲に任意の形状に光学設計した反射板や光学レンズ、光拡散板等の光反射手段を設置することにより、任意の配光分布の光を出射できる照明装置とすることができる。   In addition, the light emitting device 1 of the present invention is installed in a predetermined arrangement as a light source on a driving unit having an electric wiring on which the light emitting device 1 is mounted and driven, and an optical design in an arbitrary shape around the light emitting device 1 By installing light reflecting means such as a reflecting plate, an optical lens, or a light diffusing plate, an illuminating device that can emit light having an arbitrary light distribution can be obtained.

例えば、図5,図6に示す平面図,断面図のように複数個の発光装置101が発光装置駆動回路基板等の駆動部102に複数列に配置され、発光装置101の周囲に任意の形状に光学設計した反射板等の光反射手段103が設置されて成る照明装置の場合、隣接する一列上に配置された複数個の発光装置101の間に、隣り合う発光装置101が配置されるような配置、いわゆる千鳥状の配置とすることが好ましい。発光装置101が格子状に配置される際には、光源となる発光装置101が直線上に配列されることによりグレアが強くなり、このような照明装置が人の視覚に入ってくることにより、不快感を起こしやすくなるのに対し、千鳥状とすることにより、グレアが抑制され人間の目に対する不快感を低減することができる。   For example, as shown in FIG. 5 and FIG. 6, a plurality of light emitting devices 101 are arranged in a plurality of rows on a driving unit 102 such as a light emitting device driving circuit board, and an arbitrary shape is formed around the light emitting device 101. In the case of an illuminating device in which light reflecting means 103 such as an optically designed reflector is installed, adjacent light emitting devices 101 are arranged between a plurality of light emitting devices 101 arranged on adjacent rows. It is preferable to use a so-called staggered arrangement. When the light emitting device 101 is arranged in a grid, the glare is strengthened by arranging the light emitting device 101 as a light source on a straight line, and when such a lighting device comes into human vision, Whereas discomfort is likely to occur, the staggered pattern can suppress glare and reduce discomfort to the human eye.

さらに、隣り合う発光装置101間の距離が長くなることにより、隣接する発光装置101間の熱的な干渉が有効に抑制され、発光装置101が実装された発光装置駆動部102内における熱のこもりが抑制され、発光装置101の外部に効率よく熱が放散される。その結果、人の目に対して不快感を生じにくく、長期間にわたり光学特性の安定した長寿命の照明装置を作製することができる。   In addition, since the distance between the adjacent light emitting devices 101 is increased, thermal interference between the adjacent light emitting devices 101 is effectively suppressed, and heat is accumulated in the light emitting device driving unit 102 in which the light emitting devices 101 are mounted. Is suppressed, and heat is efficiently dissipated outside the light emitting device 101. As a result, it is possible to manufacture a long-life lighting device that hardly causes discomfort to the human eye and has stable optical characteristics over a long period of time.

また、照明装置が、図7,図8に示す平面図,断面図のような発光装置駆動部102上に複数の発光装置101から成る円状や多角形状の発光装置101群を、同心状に複数群形成した照明装置の場合、1つの円状や多角形状の発光装置101群における発光装置101の配置数を照明装置の中央側より外周側ほど多くすることが好ましい。これにより、発光装置101同士の間隔を適度に保ちながら発光装置101をより多く配置することができ、照明装置の照度をより向上させることができる。また、照明装置の中央部の発光装置101の密度を低くして発光装置駆動部102の中央部における熱のこもりを抑制することができる。よって、発光装置駆動部102内における温度分布が一様となり、照明装置を設置した外部電気回路基板やヒートシンクに効率よく熱が伝導され、発光装置101の温度上昇を抑制することができる。その結果、発光装置101は長期間にわたり安定して動作することができるとともに長寿命の照明装置を作製することができる。   In addition, the lighting device is a concentric arrangement of a circular or polygonal light emitting device 101 group composed of a plurality of light emitting devices 101 on the light emitting device driving unit 102 as shown in the plan view and the sectional view shown in FIGS. In the case of a plurality of groups of lighting devices, it is preferable to increase the number of light emitting devices 101 arranged in one circular or polygonal light emitting device 101 group toward the outer peripheral side from the center side of the lighting device. Thereby, it is possible to arrange more light emitting devices 101 while maintaining an appropriate interval between the light emitting devices 101, and it is possible to further improve the illuminance of the lighting device. Further, it is possible to reduce the density of the light emitting device 101 in the central portion of the lighting device, and to suppress heat accumulation in the central portion of the light emitting device driving unit 102. Therefore, the temperature distribution in the light emitting device driving unit 102 becomes uniform, heat is efficiently conducted to the external electric circuit board or the heat sink on which the lighting device is installed, and the temperature rise of the light emitting device 101 can be suppressed. As a result, the light-emitting device 101 can operate stably over a long period of time, and a long-life lighting device can be manufactured.

このような照明装置としては、例えば、室内や室外で用いられる、一般照明用器具、シャンデリア用照明器具、住宅用照明器具、オフィス用照明器具、店装,展示用照明器具、街路灯用照明器具、誘導灯器具、信号装置、舞台、スタジオ用の照明器具、広告灯、照明用ポール、水中照明用ライト、ストロボ用ライト、スポットライト、電柱等に埋め込む防犯用照明、非常用照明器具、懐中電灯、電光掲示板等、調光器、自動点滅器、ディスプレ
イ等のバックライト、動画装置の照明、装飾品、照光式スイッチ、光センサ、医療用ライトおよび車載ライト等が挙げられる。
Examples of such lighting devices include general lighting fixtures, chandelier lighting fixtures, residential lighting fixtures, office lighting fixtures, store lighting, display lighting fixtures, and street lamp lighting fixtures that are used indoors and outdoors. , Guide lights, signal equipment, stage, studio lighting, advertising lights, lighting poles, underwater lighting, strobe lights, spotlights, security lights embedded in power poles, emergency lighting, flashlights , Electronic bulletin boards, etc., backlights for dimmers, automatic flashers, displays, etc., illumination of moving image devices, ornaments, illuminated switches, optical sensors, medical lights and in-vehicle lights.

本発明の発光装置1を以下のとおり評価した。   The light emitting device 1 of the present invention was evaluated as follows.

まず、フッ素系樹脂から成る粒子31を押し固めた後に焼成することにより、粒子31間に生じた空隙32を利用して光を散乱,反射させる材料を用いて反射部材2を切削加工法で形成した。また、透光性部材5としてシリコーン樹脂を用意した。次にフッ素系樹脂から成る粒子31を押し固めた後に焼成することにより、粒子31間に生じた空隙32を利用して光を散乱,反射させる材料で形成された反射部材2のうち、発光素子4の光や蛍光体の光が反射される貫通孔の内周面2aに、シリコーン樹脂を染みこませる深さ、即ち、浸透層7の厚さを変更したものを作製した。なお、浸透層7の厚さは1100μm、900μm、50μm、10μmの4通りのものとした。浸透層7の厚さは、シリコーン樹脂を染みこませる前に反射部材2をプレヒーティングする温度にて制御した。   First, the reflecting member 2 is formed by a cutting method using a material that scatters and reflects light by utilizing the voids 32 formed between the particles 31 by pressing and solidifying the particles 31 made of a fluorine-based resin. did. Moreover, a silicone resin was prepared as the translucent member 5. Next, among the reflecting members 2 formed of a material that scatters and reflects light using the voids 32 formed between the particles 31 by pressing and solidifying the particles 31 made of a fluorine resin, the light emitting element The depth in which the silicone resin is soaked into the inner peripheral surface 2a of the through hole where the light of No. 4 and the light of the phosphor are reflected, that is, the thickness of the permeation layer 7 is changed. In addition, the thickness of the osmosis | permeation layer 7 was made into 4 types, 1100 micrometers, 900 micrometers, 50 micrometers, and 10 micrometers. The thickness of the osmotic layer 7 was controlled at a temperature at which the reflective member 2 was preheated before the silicone resin was soaked.

また、基体3として白色アルミナセラミックス製の搭載部3aと配線導体が形成された基体3を用意し、発光素子4の搭載部3aに発光素子4を金バンプにてフリップチップ実装した。次に発光素子4を取り囲むようにシリコーン樹脂を染み込ませた反射部材2をエポキシ接着剤で基体3の上面3bに取り付けた後、反射部材2に染み込ませたシリコーン樹脂と同じシリコーン樹脂を反射部材2の内側に充填して150℃で1時間熱硬化させ、発光装置1を作製した。   Also, as the substrate 3, a mounting portion 3a made of white alumina ceramics and a substrate 3 on which a wiring conductor was formed were prepared, and the light emitting element 4 was flip-chip mounted on the mounting portion 3a of the light emitting element 4 with gold bumps. Next, the reflective member 2 soaked with a silicone resin so as to surround the light emitting element 4 is attached to the upper surface 3b of the base 3 with an epoxy adhesive, and then the same silicone resin as the silicone resin soaked into the reflective member 2 is applied to the reflective member 2. Was filled in and thermally cured at 150 ° C. for 1 hour to produce a light emitting device 1.

次に、作製した浸透層7が4通りの発光装置1の光出力を測定した結果を表1に示す。   Next, Table 1 shows the result of measuring the light output of the light-emitting device 1 having four types of the osmotic layer 7 produced.

Figure 2011023767
Figure 2011023767

表1の結果より、シリコーン樹脂を染みこませる深さ、即ち浸透層7の厚さが1100μmでは、浸透層7が50μmの光出力を1として発光装置1の光出力は82%まで大きく低下した。これは、フッ素系樹脂から成る粒子31を押し固めた後に焼成することにより、粒子31間に生じた空隙32を利用して光を散乱,反射させる材料で形成された反射部材2にシリコーン樹脂が染み込み過ぎ、反射部材2を構成するフッ素系樹脂からなる微細な粒子31間の空隙32をフッ素系樹脂の屈折率1.3より大きい屈折率1.41を持つシリコーン樹脂が埋めてしまったため、この反射材が本来持つ反射率が損なわれ、反射部材2によって発光素子4の光エネルギーを効率よく反射することができなくなって、発光装置1の光出力が低下したものと考えられる。   From the results shown in Table 1, when the penetration depth of the silicone resin, that is, the thickness of the permeation layer 7 is 1100 μm, the light output of the light-emitting device 1 is greatly reduced to 82%, assuming that the permeation layer 7 has a light output of 50 μm as 1. . This is because the silicone resin is applied to the reflecting member 2 made of a material that scatters and reflects light by utilizing the voids 32 formed between the particles 31 by pressing and solidifying the particles 31 made of fluorine resin. Since the silicone resin having a refractive index 1.41 larger than the refractive index 1.3 of the fluororesin is buried in the void 32 between the fine particles 31 made of the fluororesin constituting the reflecting member 2 because of excessive penetration, this reflective material is originally It is considered that the reflectance of the light emitting device 1 is impaired, the light energy of the light emitting element 4 cannot be efficiently reflected by the reflecting member 2, and the light output of the light emitting device 1 is reduced.

次に、作製した4種類の発光装置1を半田リフロー炉に投入した。なお、温度条件は、ピーク温度が260℃以上280℃未満で10秒間保持された後に60秒間で室温に戻すように設定した。また、炉内雰囲気は窒素雰囲気とした。   Next, the prepared four types of light emitting devices 1 were put into a solder reflow furnace. The temperature condition was set so that the peak temperature was maintained at 260 ° C. or higher and lower than 280 ° C. for 10 seconds and then returned to room temperature in 60 seconds. The furnace atmosphere was a nitrogen atmosphere.

リフロー炉投入後に光出力を測定した結果を表2に示す。   Table 2 shows the results of measuring the light output after the reflow furnace was introduced.

Figure 2011023767
Figure 2011023767

表2の結果より、シリコーン樹脂を染みこませる深さが10μmの場合、発光装置1の光出力は、浸透層7が50μmの光出力に対して72%に大きく低下した。これはシリコーン樹脂が、フッ素系樹脂から成る粒子31を押し固めた後に焼成することにより、粒子31間に生じた空隙32を利用して光を散乱,反射させる材料で形成された反射部材2に浸透する深さが十分深くないため、この反射材で形成された反射部材2の内面に充填されたシリコーン樹脂を硬化させる際に、反射部材2とシリコーン樹脂とが密着するものの、アンカー効果が十分に発揮されず、反射部材2とシリコーン樹脂との熱膨張差に起因して発生する応力により、透光性部材5が反射部材2から剥がれてしまって、発光装置1の光出力が低下したものと考えられる。   From the results in Table 2, when the depth at which the silicone resin is soaked is 10 μm, the light output of the light-emitting device 1 is greatly reduced to 72% with respect to the light output of the penetration layer 7 of 50 μm. This is because the silicone resin presses and solidifies the particles 31 made of a fluororesin, and then baked to make the reflecting member 2 formed of a material that scatters and reflects light using the voids 32 formed between the particles 31. Since the penetration depth is not deep enough, when the silicone resin filled on the inner surface of the reflecting member 2 formed of the reflecting material is cured, the reflecting member 2 and the silicone resin are in close contact with each other, but the anchor effect is sufficient. The light-transmitting member 5 is peeled off from the reflecting member 2 due to the stress generated due to the difference in thermal expansion between the reflecting member 2 and the silicone resin, and the light output of the light emitting device 1 is reduced. it is conceivable that.

したがって、浸透層7の深さは、50μm以上900μm以下が好ましいことが分かった。   Therefore, it was found that the depth of the permeation layer 7 is preferably 50 μm or more and 900 μm or less.

なお、本発明は以上の実施の形態の例および実施例に限定されず、本発明の要旨を逸脱しない範囲内であれば種々の変更を行なうことは何等支障ない。例えば、反射部材2は、貫通孔が形成された筒形状に形成されるだけではなく、上視平面において一方の側面が開放されたコの字形状でもよく、また断面において一方向の側面に切り欠きが形成された鍵形状、所謂、サイドビュー用の反射部材2として形成されてもよい。   It should be noted that the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention. For example, the reflecting member 2 is not only formed in a cylindrical shape with a through-hole, but also may have a U shape with one side open in the top view plane, or cut in one side in the cross section. It may be formed as a key shape having a notch, so-called side view reflecting member 2.

また、本発明の照明装置は、複数個の発光装置1を所定の配置となるように設置したものだけでなく、1個の発光装置を所定の配置となるように設置したものでもよい。   Moreover, the lighting device of the present invention is not limited to one in which a plurality of light emitting devices 1 are installed in a predetermined arrangement, but may be one in which one light emitting device is installed in a predetermined arrangement.

1:発光装置
2:反射部材
3:基体
3a:搭載部
4:発光素子
5:透光性部材
6:波長変換部材
7:浸透層
1: Light-emitting device 2: Reflective member 3: Base 3a: Mounting portion 4: Light-emitting element 5: Translucent member 6: Wavelength converting member 7: Penetration layer

Claims (6)

発光素子と、A light emitting element;
前記発光素子を覆う透光性部材と、A translucent member covering the light emitting element;
前記発光素子によって発生された光を反射する反射部材と、A reflective member that reflects light generated by the light emitting element;
前記透光性部材を覆うとともに、蛍光体を含有する波長変換部材とを備えており、The light-transmitting member is covered and a wavelength conversion member containing a phosphor is provided,
該反射部材は、無機材料の複数の粒子が互いに部分的に一体化された多孔質構造を有しているとともに前記透光性部材の一部が浸透している浸透領域を有しており、前記浸透領域が前記発光素子を囲んでいることを特徴とする発光装置。The reflective member has a porous structure in which a plurality of particles of an inorganic material are partially integrated with each other, and has a penetrating region through which a part of the translucent member penetrates, The light-emitting device, wherein the permeation region surrounds the light-emitting element.
前記波長変換部材は、前記反射部材の内周面によって囲まれていることを特徴とする請求項1に記載の発光装置。The light emitting device according to claim 1, wherein the wavelength conversion member is surrounded by an inner peripheral surface of the reflection member. 前記浸透領域は、15〜43%の気孔率を有していることを特徴とする請求項1または請求項2に記載の発光装置。The light-emitting device according to claim 1, wherein the permeation region has a porosity of 15 to 43%. 発光素子と、A light emitting element;
前記発光素子を覆う透光性部材と、A translucent member covering the light emitting element;
前記透光性部材を覆うとともに、蛍光体を含有する波長変換部材と、While covering the translucent member, a wavelength conversion member containing a phosphor,
前記発光素子が搭載された上面を有する基体とを備えており、A base having an upper surface on which the light emitting element is mounted;
該基体は、前記上面に、無機材料の複数の粒子が互いに部分的に一体化されていた多孔質構造を有しているとともに前記透光性部材の一部が浸透している浸透領域を有していることを特徴とする発光装置。The base has a porous structure in which a plurality of particles of an inorganic material are partially integrated with each other on the upper surface, and has a permeation region through which a part of the translucent member permeates. A light emitting device characterized by that.
前記波長変換部材は、前記反射部材の内周面によって囲まれていることを特徴とする請求項4に記載の発光装置。The light emitting device according to claim 4, wherein the wavelength conversion member is surrounded by an inner peripheral surface of the reflection member. 前記浸透領域は、15〜43%の気孔率を有していることを特徴とする請求項4または請求項5に記載の発光装置。The light-emitting device according to claim 4, wherein the permeation region has a porosity of 15 to 43%.
JP2010247469A 2006-01-30 2010-11-04 Light emitting device and lighting device Active JP5174125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010247469A JP5174125B2 (en) 2006-01-30 2010-11-04 Light emitting device and lighting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006020451 2006-01-30
JP2006020451 2006-01-30
JP2010247469A JP5174125B2 (en) 2006-01-30 2010-11-04 Light emitting device and lighting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006090200A Division JP4744335B2 (en) 2006-01-30 2006-03-29 Light emitting device and lighting device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2012149373A Division JP5474133B2 (en) 2006-01-30 2012-07-03 Light emitting device
JP2012149374A Division JP5535276B2 (en) 2006-01-30 2012-07-03 Light emitting device

Publications (2)

Publication Number Publication Date
JP2011023767A true JP2011023767A (en) 2011-02-03
JP5174125B2 JP5174125B2 (en) 2013-04-03

Family

ID=43633499

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010247469A Active JP5174125B2 (en) 2006-01-30 2010-11-04 Light emitting device and lighting device
JP2012149373A Active JP5474133B2 (en) 2006-01-30 2012-07-03 Light emitting device
JP2012149374A Active JP5535276B2 (en) 2006-01-30 2012-07-03 Light emitting device

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2012149373A Active JP5474133B2 (en) 2006-01-30 2012-07-03 Light emitting device
JP2012149374A Active JP5535276B2 (en) 2006-01-30 2012-07-03 Light emitting device

Country Status (1)

Country Link
JP (3) JP5174125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212926A (en) * 2006-01-30 2012-11-01 Kyocera Corp Light emitting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM496091U (en) * 2014-03-26 2015-02-21 Leadray Energy Co Ltd LED with silicon substrate and LED lamp
EP3546544A1 (en) 2014-10-08 2019-10-02 Seoul Semiconductor Co., Ltd. Light emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123457A (en) * 2003-10-17 2005-05-12 Nichia Chem Ind Ltd Light emitting device and manufacturing method thereof
JP2005159311A (en) * 2003-10-30 2005-06-16 Nichia Chem Ind Ltd Support for semiconductor element, method of manufacturing the same, and semiconductor device
JP2005183727A (en) * 2003-12-19 2005-07-07 Kyocera Corp Light emitting apparatus
WO2005123627A1 (en) * 2004-06-21 2005-12-29 Tokuyama Corporation Nitride sintered compact and method for production thereof
JP2006287132A (en) * 2005-04-04 2006-10-19 Kyoritsu Elex Co Ltd Light emitting diode and package therefor
JP2007012993A (en) * 2005-07-01 2007-01-18 Rohm Co Ltd Chip semiconductor light emitting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174125B2 (en) * 2006-01-30 2013-04-03 京セラ株式会社 Light emitting device and lighting device
JP2010080823A (en) * 2008-09-29 2010-04-08 Kyocera Corp Light-emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123457A (en) * 2003-10-17 2005-05-12 Nichia Chem Ind Ltd Light emitting device and manufacturing method thereof
JP2005159311A (en) * 2003-10-30 2005-06-16 Nichia Chem Ind Ltd Support for semiconductor element, method of manufacturing the same, and semiconductor device
JP2005183727A (en) * 2003-12-19 2005-07-07 Kyocera Corp Light emitting apparatus
WO2005123627A1 (en) * 2004-06-21 2005-12-29 Tokuyama Corporation Nitride sintered compact and method for production thereof
JP2006287132A (en) * 2005-04-04 2006-10-19 Kyoritsu Elex Co Ltd Light emitting diode and package therefor
JP2007012993A (en) * 2005-07-01 2007-01-18 Rohm Co Ltd Chip semiconductor light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212926A (en) * 2006-01-30 2012-11-01 Kyocera Corp Light emitting device

Also Published As

Publication number Publication date
JP5474133B2 (en) 2014-04-16
JP5535276B2 (en) 2014-07-02
JP2012212925A (en) 2012-11-01
JP5174125B2 (en) 2013-04-03
JP2012212926A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP4744335B2 (en) Light emitting device and lighting device
JP4847954B2 (en) Reflecting member, light emitting device and lighting device using the same
TWI433344B (en) Light emitting apparatus and illuminating apparatus
KR100620844B1 (en) Light-emitting apparatus and illuminating apparatus
JP4789672B2 (en) Light emitting device and lighting device
JP5196711B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP3978451B2 (en) Light emitting device
TW200537716A (en) Light-emitting apparatus and illuminating apparatus
JP2007266356A (en) Light-emitting device and illuminator using the same
JP5036222B2 (en) Light emitting device
TW200527716A (en) Package for housing light-emitting element, light-emitting apparatus and illumination apparatus
JP2006049814A (en) Light emitting device and illumination system
JP3921474B2 (en) Light emitting device and lighting device
JP4847793B2 (en) Light emitting device
JP4948841B2 (en) Light emitting device and lighting device
JP4707433B2 (en) Light emitting device and lighting device
JP2006093399A (en) Light-emitting device, its manufacturing method and luminaire
JP2005277331A (en) Light emitting device and lighting device
JP5474133B2 (en) Light emitting device
JP2006066657A (en) Light emitting device and lighting device
JP4417757B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP5351669B2 (en) Wavelength converting member and light emitting device using the same
JP2005310911A (en) Package for housing light emitting element, light emitting device, and lighting apparatus
JP4624069B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP2006156604A (en) Light emitting device and lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5174125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150