JP5351669B2 - Wavelength converting member and light emitting device using the same - Google Patents

Wavelength converting member and light emitting device using the same Download PDF

Info

Publication number
JP5351669B2
JP5351669B2 JP2009205060A JP2009205060A JP5351669B2 JP 5351669 B2 JP5351669 B2 JP 5351669B2 JP 2009205060 A JP2009205060 A JP 2009205060A JP 2009205060 A JP2009205060 A JP 2009205060A JP 5351669 B2 JP5351669 B2 JP 5351669B2
Authority
JP
Japan
Prior art keywords
refractive index
phosphor particles
particles
light
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009205060A
Other languages
Japanese (ja)
Other versions
JP2010100827A (en
Inventor
圭一 山崎
博司 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009205060A priority Critical patent/JP5351669B2/en
Publication of JP2010100827A publication Critical patent/JP2010100827A/en
Application granted granted Critical
Publication of JP5351669B2 publication Critical patent/JP5351669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength conversion member further improving incident efficiency of exciting light into a fluorescent particle and extraction efficiency of converted light from the fluorescent particle; and to provide a light-emitting device using the member. <P>SOLUTION: The wavelength conversion member 70 includes an antireflection section 76 composed of: a moss eye-like structure 74 having minute concavo-convex structure on the surface-side of the fluorescent particle 71; and a translucent medium 73 intruding into tapering gaps between fine protrusions 75 of the moss eye-like structure 74. The individual fine protrusions 75 of the moss eye-like structure 74 are formed by combining fine particles 72 smaller in particle diameter than the fluorescent particle 71 and larger in refractive index than the translucent medium 73 with the fluorescent particles 71 on the surface-side of the fluorescent particle 71. When the refractive index n<SB>2</SB>of the fine particle 72 is made the same as the refractive index n<SB>1</SB>of the fluorescent particle 71, effective refractive index of the antireflection section 76 varies continuously between the refractive index n<SB>1</SB>of the fluorescent particle 71 and the refractive index n<SB>3</SB>of the translucent medium 73, in the normal direction of the surface of the fluorescent particle 71, as shown in Figure (d). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、蛍光体粒子が当該蛍光体粒子よりも屈折率が小さな透光性媒体内に散在する波長変換部材に関し、特に、蛍光体粒子としてLEDチップ(発光ダイオードチップ)からの光(励起光)によって励起されてLEDチップよりも長波長の可視光を放射する蛍光体粒子を用いた波長変換部材に関するものである。また、本発明は、波長変換部材を用いた発光装置に関するものである。   The present invention relates to a wavelength conversion member in which phosphor particles are scattered in a translucent medium having a refractive index smaller than that of the phosphor particles, and in particular, light (excitation light) from an LED chip (light emitting diode chip) as the phosphor particles. ) And a wavelength conversion member using phosphor particles that emit visible light having a wavelength longer than that of the LED chip. The present invention also relates to a light emitting device using a wavelength conversion member.

従来から、LEDチップを用いたLEDランプは、信号灯、携帯電話機、各種の電飾、車載用表示器、各種の表示装置など、多くの分野に利用されている。また、LEDチップとLEDチップから放射された光によって励起されてLEDチップよりも長波長の光を放射する蛍光体粒子とを組み合わせてLEDチップの発光色とは異なる色合いの光を出す発光装置の研究開発が各所で行われている。この種の発光装置としては、例えば、LEDチップと蛍光体とを組み合わせて白色の光(白色光の発光スペクトル)を得る白色発光装置(一般的に白色LEDと呼ばれている)の商品化がなされており、液晶表示器のバックライト、小型ストロボなどへの応用が盛んになってきている。   Conventionally, LED lamps using LED chips have been used in many fields such as signal lamps, mobile phones, various types of lighting, in-vehicle displays, and various types of display devices. Further, a light emitting device that emits light of a color different from the emission color of the LED chip by combining the LED chip and phosphor particles that are excited by the light emitted from the LED chip and emit light having a longer wavelength than the LED chip. Research and development are taking place at various locations. As this type of light-emitting device, for example, there is a commercialization of a white light-emitting device (generally called a white LED) that obtains white light (white light emission spectrum) by combining an LED chip and a phosphor. As a result, its application to liquid crystal display backlights, small strobes, etc. has become popular.

また、最近の白色LEDの高出力化に伴い、白色LEDを照明用途に展開する研究開発が盛んになってきており、長寿命・水銀フリーといった長所を活かすことにより、環境負荷の小さい蛍光灯代替光源として期待されている。   In addition, with the recent increase in output of white LEDs, research and development to expand white LEDs into lighting applications has become active. By taking advantage of long life and mercury-free, it can replace fluorescent lamps with low environmental impact. Expected to be a light source.

上述の白色LEDとしては、例えば、青色光を放射するLEDチップと、赤色蛍光体粒子および緑色蛍光体粒子を透光性媒体(シリコーン樹脂、ガラスなど)に分散させた波長変換部材(色変換部材)とを組み合わせた発光装置がある(例えば、特許文献1参照)。   As the above-mentioned white LED, for example, an LED chip that emits blue light, and a wavelength conversion member (color conversion member) in which red phosphor particles and green phosphor particles are dispersed in a translucent medium (silicone resin, glass, etc.) ) In combination (for example, see Patent Document 1).

ここにおいて、上記特許文献1に開示された波長変換部材は、蛍光体粒子(赤色蛍光体粒子、緑色蛍光体粒子)が透光性被膜で覆われており、当該透光性被膜の材料として、蛍光体粒子の屈折率と透光性媒体の屈折率との中間の屈折率のものを用いているので、LEDチップから放射される光が蛍光体粒子内へ入射する効率(蛍光体粒子への励起光の入射効率)および蛍光体粒子からの変換光の取り出し効率を向上できる。   Here, in the wavelength conversion member disclosed in Patent Document 1, phosphor particles (red phosphor particles, green phosphor particles) are covered with a light-transmitting film, and as a material of the light-transmitting film, Since one having a refractive index intermediate between the refractive index of the phosphor particles and the refractive index of the translucent medium is used, the efficiency with which the light emitted from the LED chip is incident on the phosphor particles (to the phosphor particles) (Incidence efficiency of excitation light) and extraction efficiency of converted light from the phosphor particles can be improved.

特開2007−324475号公報JP 2007-324475 A

しかしながら、上記特許文献1に開示された波長変換部材では、図8(a)に示すように、蛍光体粒子171の屈折率をn11、透光性媒体173の屈折率をn13、透光性被膜172の屈折率をn12とすると、n13<n12<n11であり、図8(b)に示すように蛍光体粒子171の表面の法線方向において屈折率が段階的に変化しており、透光性媒体173と透光性被膜172との界面、透光性被膜172と蛍光体粒子171との界面それぞれでLEDチップからの励起光の一部はフレネル反射するので、蛍光体粒子171への励起光の入射効率のより一層の向上が望まれている。また、上述の波長変換部材では、蛍光体粒子171の屈折率n11に比べて透光性被膜172の屈折率n12が小さくなっており、蛍光体粒子171と透光性被膜172との界面で蛍光体粒子171からの変換光が全反射される全反射角が存在するので、蛍光体粒子171からの変換光の取り出し効率のより一層の向上が望まれている。 However, in the wavelength conversion member disclosed in Patent Document 1, as shown in FIG. 8A, the refractive index of the phosphor particles 171 is n 11 , the refractive index of the translucent medium 173 is n 13 , and the translucent light is transmitted. Assuming that the refractive index of the conductive coating 172 is n 12 , n 13 <n 12 <n 11 and the refractive index changes stepwise in the normal direction of the surface of the phosphor particle 171 as shown in FIG. Since part of the excitation light from the LED chip is Fresnel-reflected at the interface between the translucent medium 173 and the translucent film 172 and at the interface between the translucent film 172 and the phosphor particles 171, It is desired to further improve the incident efficiency of the excitation light to the body particles 171. Further, in the above-described wavelength conversion member, the refractive index n 12 of the light-transmitting coating 172 is smaller than the refractive index n 11 of the phosphor particles 171, and the interface between the phosphor particles 171 and the light-transmitting coating 172. Therefore, since there is a total reflection angle at which the converted light from the phosphor particles 171 is totally reflected, further improvement in the extraction efficiency of the converted light from the phosphor particles 171 is desired.

本発明は上記事由に鑑みて為されたものであり、その目的は、蛍光体粒子への励起光の入射効率のより一層の向上および蛍光体粒子からの変換光の取り出し効率のより一層の向上を図れる波長変換部材およびそれを用いた発光装置を提供することにある。   The present invention has been made in view of the above reasons, and its purpose is to further improve the incident efficiency of the excitation light to the phosphor particles and further improve the extraction efficiency of the converted light from the phosphor particles. It is an object to provide a wavelength conversion member capable of achieving the above and a light emitting device using the same.

請求項1の発明は、蛍光体粒子が当該蛍光体粒子よりも屈折率が小さな透光性媒体内に散在する波長変換部材であって、蛍光体粒子の表面側に、微細凹凸構造を有するモスアイ状構造部とモスアイ状構造部の先細り状の微細突起間に入り込んだ前記透光性媒体とで構成される反射防止部を備え、モスアイ状構造部の各微細突起は、蛍光体粒子よりも粒径が小さく且つ前記透光性媒体よりも屈折率が大きな微粒子を蛍光体粒子の表面側において蛍光体粒子に複合化することにより形成されてなり、微粒子の屈折率が蛍光体粒子の屈折率と同じであることを特徴とする。 The invention of claim 1 is a wavelength conversion member in which phosphor particles are scattered in a translucent medium having a refractive index smaller than that of the phosphor particles, and the moth-eye has a fine uneven structure on the surface side of the phosphor particles. Each of the fine projections of the moth-eye structure portion is more granular than the phosphor particles. It is formed by combining fine particles having a small diameter and a refractive index larger than that of the light-transmitting medium with the phosphor particles on the surface side of the phosphor particles, and the refractive index of the fine particles is the refractive index of the phosphor particles. It is characterized by being the same .

この発明によれば、蛍光体粒子の表面側に、微細凹凸構造を有するモスアイ状構造部とモスアイ状構造部の先細り状の微細突起間に入り込んだ透光性媒体とで構成される反射防止部を備え、モスアイ状構造部の各微細突起が、蛍光体粒子よりも粒径が小さく且つ透光性媒体よりも屈折率が大きな微粒子を蛍光体粒子の表面側において蛍光体粒子に複合化することにより形成されているので、フレネル反射の抑制によって蛍光体粒子への励起光の入射効率のより一層の向上および蛍光体粒子からの変換光の取り出し効率のより一層の向上を図れる。   According to this invention, on the surface side of the phosphor particles, an antireflection portion composed of a moth-eye structure portion having a fine concavo-convex structure and a translucent medium that has entered between the tapered fine protrusions of the moth-eye structure portion. Each of the fine projections of the moth-eye structure has a particle size smaller than that of the phosphor particles and a refractive index larger than that of the translucent medium, and is combined with the phosphor particles on the surface side of the phosphor particles. Therefore, by suppressing the Fresnel reflection, it is possible to further improve the incident efficiency of the excitation light to the phosphor particles and further improve the extraction efficiency of the converted light from the phosphor particles.

また、この発明によれば、微粒子の屈折率が蛍光体粒子の屈折率と同じであるので、蛍光体粒子の表面の法線方向において反射防止部の有効屈折率が蛍光体粒子の屈折率と前記透光性媒体の屈折率との間で連続的に変化するので、蛍光体粒子への励起光の入射効率の向上および蛍光体粒子からの変換光の取り出し効率の向上を図れる。 Further, according to the present invention, since the refractive index of the fine particles is the same as the refractive index of the phosphor particles, the effective refractive index of fluorescent particles of reflection preventing portion Te direction normal odor of the surface of the fluorescent particles since continuously varies between the refractive index and refractive index of the transparent medium, and to improve the extraction efficiency of the converted light from the improvement and phosphor particles of efficiency of incidence of the excitation light to the fluorescent particles I can plan.

請求項2の発明は、蛍光体粒子が当該蛍光体粒子よりも屈折率が小さな透光性媒体内に散在する波長変換部材であって、蛍光体粒子の表面側に、微細凹凸構造を有するモスアイ状構造部とモスアイ状構造部の先細り状の微細突起間に入り込んだ前記透光性媒体とで構成される反射防止部を備え、モスアイ状構造部の各微細突起は、蛍光体粒子よりも粒径が小さく且つ前記透光性媒体よりも屈折率が大きな微粒子を蛍光体粒子の表面側において蛍光体粒子に複合化することにより形成されてなり、微粒子の屈折率が蛍光体粒子の屈折率よりも大きいことを特徴とする。 The invention according to claim 2 is a wavelength conversion member in which phosphor particles are scattered in a light-transmitting medium having a refractive index smaller than that of the phosphor particles, and the moth-eye having a fine uneven structure on the surface side of the phosphor particles. Each of the fine projections of the moth-eye structure portion is more granular than the phosphor particles. diameter becomes formed by complexing the phosphor particles in the small and the surface side of the phosphor particles a refractive index of particulates larger than the transparent medium, the refractive index of refraction of the fine particles of the fluorescent particles It is characterized by being larger than the rate.

この発明によれば、蛍光体粒子の表面側に、微細凹凸構造を有するモスアイ状構造部とモスアイ状構造部の先細り状の微細突起間に入り込んだ透光性媒体とで構成される反射防止部を備え、モスアイ状構造部の各微細突起が、蛍光体粒子よりも粒径が小さく且つ透光性媒体よりも屈折率が大きな微粒子を蛍光体粒子の表面側において蛍光体粒子に複合化することにより形成されているので、フレネル反射の抑制によって蛍光体粒子への励起光の入射効率のより一層の向上および蛍光体粒子からの変換光の取り出し効率のより一層の向上を図れる。また、この発明によれば、微粒子の屈折率が蛍光体粒子の屈折率よりも大きいので、微粒子の屈折率が蛍光体粒子の屈折率よりも小さい場合に比べて、蛍光体粒子からの変換光が微粒子中へ入射しやすくなり、蛍光体粒子からの変換光の取り出し効率を向上できる。 According to this invention, on the surface side of the phosphor particles, an antireflection portion composed of a moth-eye structure portion having a fine concavo-convex structure and a translucent medium that has entered between the tapered fine protrusions of the moth-eye structure portion. Each of the fine projections of the moth-eye structure has a particle size smaller than that of the phosphor particles and a refractive index larger than that of the translucent medium, and is combined with the phosphor particles on the surface side of the phosphor particles. Therefore, by suppressing the Fresnel reflection, it is possible to further improve the incident efficiency of the excitation light to the phosphor particles and further improve the extraction efficiency of the converted light from the phosphor particles. Further, according to this invention, since the refractive index of the fine particles is larger than the refractive index of the phosphor particles, as compared with the case where the refractive index of the fine particles is smaller than the refractive index of the fluorescent particles, fluorescent particles converted light from tends to enter the fine particles, it can be improved extraction efficiency of converted light from the fluorescent particles.

請求項3の発明は、請求項1または請項2の発明において、前記微粒子は、前記蛍光体粒子への励起光および前記蛍光体粒子からの変換光に対して透明な金属酸化物により形成されてなることを特徴とする。 Formation of invention of claim 3, in the invention of claim 1 or billed to claim 2, wherein the fine particles of a transparent metal oxide with respect to converted light from the excitation light and the fluorescent particles to the phosphor particles It is characterized by being made.

この発明によれば、前記微粒子が前記蛍光体粒子への励起光および前記蛍光体粒子からの変換光に対して透明であり、励起光や変換光が前記微粒子に吸収されるのを防止することができる。   According to this invention, the fine particles are transparent to the excitation light to the phosphor particles and the converted light from the phosphor particles, and the excitation light and the converted light are prevented from being absorbed by the fine particles. Can do.

請求項4の発明は、請求項1または請項2の発明において、前記蛍光体粒子の前記表面の全体が前記蛍光体粒子と略同一の屈折率を有する金属酸化物層によりコーティングされ、前記微粒子が前記金属酸化物層を介して前記蛍光体粒子に複合化されてなり、当該略同一とは、前記蛍光体粒子の屈折率をn 、前記金属酸化物層の屈折率をn とするとき、屈折率差|n −n |の屈折率n に対する比率{|n −n |/n }×100が、15%以下の場合であることを特徴とする。 The invention of claim 4 is the invention of claim 1 or billed to claim 2, coated with a metal oxide layer across the surface of the phosphor particles having the phosphor particles substantially the same refractive index, the Fine particles are combined with the phosphor particles through the metal oxide layer. The substantially same means that the refractive index of the phosphor particles is n 1 , and the refractive index of the metal oxide layer is n 4 . The ratio {| n 1 −n 4 | / n 1 } × 100 of the refractive index difference | n 1 −n 4 | to the refractive index n 1 is 15% or less .

この発明によれば、前記蛍光体粒子の前記表面の全体が前記蛍光体粒子と略同一の屈折率を有する金属酸化物層によりコーティングされており、前記蛍光体粒子と前記微粒子との間に金属酸化物層が介在しているので、外部からの水分が前記蛍光体粒子へ到達するのを抑制することができ、耐湿性を向上させることができる(湿度の影響で前記蛍光体粒子の特性が劣化するのを抑制することができる)から、前記蛍光体粒子の材料の選択の自由度が高くなり、しかも、前記金属酸化物層の屈折率が前記蛍光体粒子の屈折率と略同一であることにより、前記モスアイ状構造部の反射防止効果の低下を抑制することができるとともに励起光の反射を抑制できる。   According to the present invention, the entire surface of the phosphor particles is coated with the metal oxide layer having substantially the same refractive index as that of the phosphor particles, and a metal is disposed between the phosphor particles and the fine particles. Since the oxide layer is interposed, moisture from the outside can be prevented from reaching the phosphor particles, and moisture resistance can be improved (the characteristics of the phosphor particles are affected by humidity). The degree of freedom of selection of the material of the phosphor particles is increased, and the refractive index of the metal oxide layer is substantially the same as the refractive index of the phosphor particles. As a result, it is possible to suppress a decrease in the antireflection effect of the moth-eye structure and to suppress reflection of excitation light.

請求項5の発明は、請求項1または請項2の発明において、前記透光性媒体は、前記微粒子が前記表面に複合化された前記蛍光体粒子が散在する透光性母材と、前記透光性母材と略同一の屈折率を有し前記蛍光体粒子と前記微粒子との複合粒子と前記透光性母材との間に介在して前記反射防止部の一部を構成する金属酸化物層とからなり、当該略同一とは、前記透光性母材の屈折率をn 、前記金属酸化物層の屈折率をn とするとき、屈折率差|n −n |の屈折率n に対する比率{|n −n |/n }×100が、15%以下の場合であることを特徴とする。 The invention of claim 5 is the invention of claim 1 or billed to claim 2, wherein the transparent medium has a light-transmitting base material in which the phosphor particles wherein the fine particles are complexed to the surface are scattered, A part of the anti-reflection portion is formed between the light-transmitting base material having a refractive index substantially the same as that of the light-transmitting base material, and being interposed between the composite particles of the phosphor particles and the fine particles. It is composed of a metal oxide layer, and the substantially same means that the refractive index difference | n 3 −n when the refractive index of the translucent base material is n 3 and the refractive index of the metal oxide layer is n 4. The ratio of 4 | to the refractive index n 3 {| n 3 −n 4 | / n 3 } × 100 is 15% or less .

この発明によれば、前記透光性媒体が、前記微粒子が前記表面に複合化された前記蛍光体粒子が散在する透光性母材と、前記透光性母材と略同一の屈折率を有し前記蛍光体粒子と前記微粒子との複合粒子と前記透光性母材との間に介在して前記反射防止部の一部を構成する金属酸化物層とからなるので、前記蛍光体粒子の前記表面側において前記微粒子間の隙間が金属酸化物層によりコーティングされており、外部からの水分が前記蛍光体粒子へ到達するのを抑制することができ、耐湿性を向上させることができる(湿度の影響で前記蛍光体粒子の特性が劣化するのを抑制することができる)から、前記蛍光体粒子の材料の選択の自由度が高くなり、しかも、前記金属酸化物層の屈折率が前記透光性母材の屈折率と略同一であることにより、前記モスアイ状構造部の反射防止効果の低下を抑制することができるとともに励起光の反射を抑制できる。   According to this invention, the translucent medium has a refractive index substantially the same as that of the translucent base material in which the phosphor particles in which the fine particles are combined on the surface are scattered, and the translucent base material. The phosphor particles comprising a composite particle of the phosphor particles and the fine particles and a metal oxide layer that forms part of the antireflection portion interposed between the translucent base material. On the surface side, the gaps between the fine particles are coated with a metal oxide layer, so that moisture from the outside can be prevented from reaching the phosphor particles, and moisture resistance can be improved ( It is possible to suppress the deterioration of the characteristics of the phosphor particles due to the influence of humidity), so that the degree of freedom in selecting the material of the phosphor particles is increased, and the refractive index of the metal oxide layer is By being substantially the same as the refractive index of the translucent base material, The reflection of the excitation light can be suppressed can be suppressed to decrease the reflection preventing effect of the serial moth-eye-like structure.

請求項6の発明は、請求項1ないし請求項4の発明において、前記透光性媒体は、シリコーン樹脂もしくはガラスであることを特徴とする。 According to a sixth aspect of the present invention, in the first to fourth aspects of the present invention, the translucent medium is a silicone resin or glass.

この発明によれば、前記蛍光体粒子の励起光として一般的な青色光や紫外光を採用した場合に前記透光性媒体が励起光により劣化するのを抑制することができる。   According to this invention, it is possible to suppress deterioration of the translucent medium due to excitation light when general blue light or ultraviolet light is employed as excitation light for the phosphor particles.

請求項7の発明は、請求項5の発明において、前記透光性母材は、シリコーン樹脂もしくはガラスであることを特徴とする。 The invention of claim 7 is the invention of claim 5 , wherein the translucent base material is a silicone resin or glass.

この発明によれば、前記蛍光体粒子の励起光として一般的な青色光や紫外光を採用した場合に前記透光性媒体が励起光により劣化するのを抑制することができる。   According to this invention, it is possible to suppress deterioration of the translucent medium due to excitation light when general blue light or ultraviolet light is employed as excitation light for the phosphor particles.

請求項8の発明は、LEDチップと、LEDチップから放射される光の一部を当該光よりも長波長の光に変換して放射する色変換部材とを備え、当該色変換部材として請求項1ないし請求項7のいずれか1項に記載の波長変換部材を用いてなることを特徴とする。 The invention of claim 8 includes an LED chip and a color conversion member that converts and emits a part of light emitted from the LED chip into light having a longer wavelength than the light, and as the color conversion member. The wavelength conversion member according to any one of claims 1 to 7 is used.

この発明によれば、LEDチップから放射される光の一部を当該光よりも長波長の光に変換して放射する色変換部材として請求項1ないし請求項7のいずれか1項に記載の波長変換部材を用いているので、色変換部材における蛍光体粒子への励起光の入射効率のより一層の向上および蛍光体粒子からの変換光の取り出し効率のより一層の向上を図れ、光出力の高出力化を図れる。 According to this invention, the color conversion member that converts part of the light emitted from the LED chip into light having a longer wavelength than the light and emits the light is described in any one of claims 1 to 7 . Since the wavelength conversion member is used, it is possible to further improve the incident efficiency of the excitation light to the phosphor particles in the color conversion member and further improve the extraction efficiency of the converted light from the phosphor particles. High output can be achieved.

請求項1の発明では、蛍光体粒子への励起光の入射効率のより一層の向上および蛍光体粒子からの変換光の取り出し効率のより一層の向上を図れるという効果がある。   In the invention of claim 1, there is an effect that it is possible to further improve the incident efficiency of the excitation light to the phosphor particles and further improve the extraction efficiency of the converted light from the phosphor particles.

請求項8の発明では、色変換部材における蛍光体粒子への励起光の入射効率のより一層の向上および蛍光体粒子からの変換光の取り出し効率のより一層の向上を図れ、光出力の高出力化を図れるという効果がある。 According to the eighth aspect of the present invention, it is possible to further improve the incident efficiency of the excitation light to the phosphor particles in the color conversion member and further improve the extraction efficiency of the converted light from the phosphor particles. There is an effect that can be achieved.

実施形態1を示し、(a)は波長変換部材を用いた発光装置の概略断面図、(b)〜(d)は波長変換部材の要部説明図である。Embodiment 1 is shown, (a) is a schematic cross-sectional view of a light emitting device using a wavelength conversion member, and (b) to (d) are explanatory views of the main part of the wavelength conversion member. 同上における発光装置の概略分解斜視図である。It is a general | schematic disassembled perspective view of the light-emitting device same as the above. 同上における理想的な波長変換部材の要部説明図である。It is principal part explanatory drawing of the ideal wavelength conversion member in the same as the above. 実施形態2を示し、(a)は波長変換部材を用いた発光装置の概略断面図、(b)〜(d)は波長変換部材の要部説明図である。Embodiment 2 is shown, (a) is a schematic cross-sectional view of a light-emitting device using a wavelength conversion member, and (b) to (d) are explanatory views of main parts of the wavelength conversion member. 同上における波長変換部材の要部説明図である。It is principal part explanatory drawing of the wavelength conversion member in the same as the above. 実施形態3を示し、(a)は波長変換部材を用いた発光装置の概略断面図、(b)〜(d)は波長変換部材の要部説明図である。Embodiment 3 is shown, (a) is a schematic sectional drawing of the light-emitting device using the wavelength conversion member, (b)-(d) is principal part explanatory drawing of a wavelength conversion member. 同上における波長変換部材の要部説明図である。It is principal part explanatory drawing of the wavelength conversion member in the same as the above. 従来例を示す波長変換部材の要部説明図である。It is principal part explanatory drawing of the wavelength conversion member which shows a prior art example.

(実施形態1)
本実施形態では、図1(a)および図2に示すようにLEDチップ10と波長変換部材70とを備えた発光装置1について説明した後で、波長変換部材70について説明する。
(Embodiment 1)
In the present embodiment, the wavelength conversion member 70 will be described after the light emitting device 1 including the LED chip 10 and the wavelength conversion member 70 as illustrated in FIGS. 1A and 2 is described.

本実施形態における発光装置1は、LEDチップ10と、一表面側にLEDチップ10への給電用の導体パターン23,23を有しLEDチップ10が上記一表面側に実装された矩形板状の実装基板20と、LEDチップ10から放射された光の配光を制御する光学部材であって実装基板20との間にLEDチップ10を収納する形で実装基板20の上記一表面側に固着された透光性材料からなるドーム状の光学部材60と、光学部材60と実装基板20とで囲まれた空間に充実されLEDチップ10および当該LEDチップ10に電気的に接続された複数本(本実施形態では、2本)のボンディングワイヤ14を封止した透光性の封止材料からなる封止部50と、LEDチップ10から放射された光(励起光)によって励起されて励起光よりも長波長の光(LEDチップ10の発光色とは異なる色の光からなる変換光)を放射する蛍光体粒子71(図1(b)参照)が透光性媒体73(図1(b)参照)に分散されたものであって実装基板20の上記一表面側において実装基板20との間にLEDチップ10などを囲む形で配設されるドーム状の波長変換部材(色変換部材)70とを備え、光学部材60と波長変換部材70との間に気体層(例えば、空気層など)80が形成されている。ここにおいて、実装基板20は、上記一表面において光学部材60の外側に、光学部材60を実装基板20に固着する際に上記空間から溢れ出た封止樹脂を堰き止める環状の堰部27が突設されている。   The light emitting device 1 in the present embodiment has a rectangular plate shape in which the LED chip 10 has conductor patterns 23 and 23 for supplying power to the LED chip 10 on one surface side, and the LED chip 10 is mounted on the one surface side. An optical member that controls the light distribution of the light emitted from the mounting substrate 20 and the LED chip 10 and is fixed to the one surface side of the mounting substrate 20 in such a manner that the LED chip 10 is housed between the mounting substrate 20 and the mounting substrate 20. A plurality of dome-shaped optical members 60 made of a translucent material, and a plurality of LED chips 10 that are electrically connected to the LED chips 10 in a space surrounded by the optical members 60 and the mounting substrate 20 (books). In the embodiment, the sealing portion 50 made of a light-transmitting sealing material that seals the two bonding wires 14 and the excitation light that is excited by the light (excitation light) emitted from the LED chip 10. In addition, phosphor particles 71 (see FIG. 1B) that emit long-wavelength light (converted light composed of light of a color different from the emission color of the LED chip 10) are translucent medium 73 (FIG. 1B). Dome-shaped wavelength conversion member (color conversion member) 70 disposed on the one surface side of the mounting substrate 20 so as to surround the LED chip 10 and the like on the one surface side. The gas layer 80 (for example, air layer etc.) is formed between the optical member 60 and the wavelength conversion member 70. Here, the mounting substrate 20 has an annular weir 27 projecting outside the optical member 60 on the one surface and blocking the sealing resin overflowing from the space when the optical member 60 is fixed to the mounting substrate 20. It is installed.

LEDチップ10は、青色光を放射するGaN系の青色LEDチップであり、結晶成長用基板としてサファイア基板に比べて格子定数や結晶構造がGaNに近く且つ導電性を有するn形のSiC基板を用いており、SiC基板の主表面側にGaN系化合物半導体材料により形成されて例えばダブルへテロ構造を有する積層構造部からなる発光部がエピタキシャル成長法(例えば、MOVPE法など)により成長されている。ここで、LEDチップ10は、一表面側(図1(a)における上面側)にアノード電極(図示せず)が形成され、他表面側(図1(a)における下面側)にカソード電極が形成されている。上記カソード電極および上記アノード電極は、Ni膜とAu膜との積層膜により構成してあるが、上記カソード電極および上記アノード電極の材料は特に限定するものではなく、良好なオーミック特性が得られる材料であればよく、例えば、Alなどを採用してもよい。また、LEDチップ10の構造は特に限定するものではなく、例えば、結晶成長用基板の主表面側に発光部などをエピタキシャル成長した後に発光部を支持する支持基板(例えば、Si基板など)を発光部に固着してから、結晶成長用基板などを除去したものを用いてもよい。   The LED chip 10 is a GaN-based blue LED chip that emits blue light, and uses an n-type SiC substrate having a lattice constant and a crystal structure close to GaN as compared to a sapphire substrate and having conductivity as a crystal growth substrate. In addition, a light emitting portion formed of a GaN-based compound semiconductor material and having a double-heterostructure, for example, on the main surface side of the SiC substrate is grown by an epitaxial growth method (for example, MOVPE method). Here, the LED chip 10 has an anode electrode (not shown) formed on one surface side (upper surface side in FIG. 1A) and a cathode electrode on the other surface side (lower surface side in FIG. 1A). Is formed. The cathode electrode and the anode electrode are composed of a laminated film of a Ni film and an Au film, but the material of the cathode electrode and the anode electrode is not particularly limited, and a material capable of obtaining good ohmic characteristics For example, Al or the like may be employed. Further, the structure of the LED chip 10 is not particularly limited. For example, a light emitting unit is formed by supporting a light emitting unit after epitaxially growing the light emitting unit or the like on the main surface side of the crystal growth substrate. Alternatively, a substrate obtained by removing the crystal growth substrate or the like may be used.

実装基板20は、熱伝導性材料からなりLEDチップ10が搭載される矩形板状の伝熱板21と、伝熱板21の一面側(図1(a)における上面側)に例えばポリオレフィン系の固着シート29(図2参照)を介して固着された矩形板状のフレキシブルプリント配線板からなる配線基板22とで構成され、配線基板22の中央部に伝熱板21におけるLEDチップ10の実装面(上記一面の一部)を露出させる矩形状の窓孔24が形成されており、LEDチップ10が窓孔24の内側に配置された後述のサブマウント部材30を介して伝熱板21に搭載されている。したがって、LEDチップ10で発生した熱が配線基板22を介さずにサブマウント部材30および伝熱板21に伝熱されるようになっている。   The mounting substrate 20 is made of a thermally conductive material and has a rectangular plate-shaped heat transfer plate 21 on which the LED chip 10 is mounted, and one surface side of the heat transfer plate 21 (upper surface side in FIG. 1A), for example, polyolefin-based. And a wiring board 22 made of a rectangular flexible printed wiring board fixed via a fixing sheet 29 (see FIG. 2). The mounting surface of the LED chip 10 on the heat transfer plate 21 at the center of the wiring board 22 A rectangular window hole 24 for exposing (a part of the one surface) is formed, and the LED chip 10 is mounted on the heat transfer plate 21 via a submount member 30 described later disposed inside the window hole 24. Has been. Therefore, the heat generated in the LED chip 10 is transferred to the submount member 30 and the heat transfer plate 21 without passing through the wiring board 22.

上述の配線基板22は、ポリイミドフィルムからなる絶縁性基材22aの一表面側に、LEDチップ10への給電用の一対の導体パターン23,23が設けられるとともに、各導体パターン23,23および絶縁性基材22aにおいて導体パターン23,23が形成されていない部位を覆う白色系のレジスト(樹脂)からなる保護層26が積層されている。したがって、LEDチップ10の側面から放射され保護層26の表面に入射した光が保護層26の表面で反射されるので、LEDチップ10から放射された光が配線基板22に吸収されるのを防止することができ、外部への光取り出し効率の向上による光出力の向上を図れる。なお、各導体パターン23,23は、絶縁性基材22aの外周形状の半分よりもやや小さな外周形状に形成されている。また、絶縁性基材22aの材料としては、FR4、FR5、紙フェノールなどを採用してもよい。   The above-mentioned wiring board 22 is provided with a pair of conductor patterns 23 and 23 for supplying power to the LED chip 10 on one surface side of an insulating base material 22a made of a polyimide film. A protective layer 26 made of a white resist (resin) covering a portion of the conductive base material 22a where the conductor patterns 23, 23 are not formed is laminated. Therefore, the light emitted from the side surface of the LED chip 10 and incident on the surface of the protective layer 26 is reflected by the surface of the protective layer 26, thereby preventing the light emitted from the LED chip 10 from being absorbed by the wiring substrate 22. Thus, the light output can be improved by improving the light extraction efficiency to the outside. In addition, each conductor pattern 23 and 23 is formed in the outer periphery shape a little smaller than half of the outer periphery shape of the insulating base material 22a. Further, FR4, FR5, paper phenol or the like may be employed as the material of the insulating base material 22a.

保護層26は、配線基板22の窓孔24の近傍において各導体パターン23,23の2箇所が露出し、配線基板22の周部において各導体パターン23,23の1箇所が露出するようにパターニングされており、各導体パターン23,23は、配線基板22の窓孔24近傍において露出した2つの矩形状の部位が、ボンディングワイヤ14が接続される端子部23aを構成し、配線基板22の周部において露出した円形状の部位が外部接続用電極部23bを構成している。なお、配線基板22の導体パターン23,23は、Cu膜とNi膜とAu膜との積層膜により構成されている。   The protective layer 26 is patterned so that two portions of the conductor patterns 23 and 23 are exposed in the vicinity of the window hole 24 of the wiring substrate 22 and one portion of the conductor patterns 23 and 23 is exposed in the peripheral portion of the wiring substrate 22. In each conductor pattern 23, 23, two rectangular portions exposed in the vicinity of the window hole 24 of the wiring substrate 22 constitute a terminal portion 23 a to which the bonding wire 14 is connected. The circular part exposed in the part constitutes the external connection electrode part 23b. The conductor patterns 23 and 23 of the wiring board 22 are constituted by a laminated film of a Cu film, a Ni film, and an Au film.

ところで、LEDチップ10は、LEDチップ10と伝熱板21との線膨張率の差に起因してLEDチップ10に働く応力を緩和する上述のサブマウント部材30を介して伝熱板21に搭載されている。ここで、サブマウント部材30は、LEDチップ10のチップサイズよりも大きなサイズの矩形板状に形成されている。   By the way, the LED chip 10 is mounted on the heat transfer plate 21 via the above-described submount member 30 that relieves stress acting on the LED chip 10 due to a difference in linear expansion coefficient between the LED chip 10 and the heat transfer plate 21. Has been. Here, the submount member 30 is formed in a rectangular plate shape having a size larger than the chip size of the LED chip 10.

サブマウント部材30は、上記応力を緩和する機能だけでなく、LEDチップ10で発生した熱を伝熱板21においてLEDチップ10のチップサイズよりも広い範囲に伝熱させる熱伝導機能を有している。したがって、本実施形態における発光装置1では、LEDチップ10がサブマウント部材30を介して伝熱板21に搭載されているので、LEDチップ10で発生した熱をサブマウント部材30および伝熱板21を介して効率良く放熱させることができるとともに、LEDチップ10と伝熱板21との線膨張率差に起因してLEDチップ10に働く応力を緩和することができる。   The submount member 30 has not only a function of relieving the stress but also a heat conduction function of transferring heat generated in the LED chip 10 to a range wider than the chip size of the LED chip 10 in the heat transfer plate 21. Yes. Therefore, in the light emitting device 1 according to the present embodiment, since the LED chip 10 is mounted on the heat transfer plate 21 via the submount member 30, the heat generated by the LED chip 10 is transferred to the submount member 30 and the heat transfer plate 21. The heat acting on the LED chip 10 due to the difference in linear expansion coefficient between the LED chip 10 and the heat transfer plate 21 can be relieved.

サブマウント部材30の材料としては、熱伝導率が比較的高く且つ絶縁性を有するAlNを採用しており、LEDチップ10は、上記カソード電極がサブマウント部材30におけるLEDチップ10側の表面に設けられ上記カソード電極と接続される電極パターン(図示せず)および金属細線(例えば、金細線、アルミニウム細線など)からなるボンディングワイヤ14を介して一方の導体パターン23と電気的に接続され、上記アノード電極がボンディングワイヤ14を介して他方の導体パターン23と電気的に接続されている。なお、LEDチップ10とサブマウント部材30とは、例えば、SnPb、AuSn、SnAgCuなどの半田や、銀ペーストなどを用いて接合すればよいが、AuSn、SnAgCuなどの鉛フリー半田を用いて接合することが好ましく、サブマウント部材30がCuであって、AuSnを用いて接合する場合には、サブマウント部材30およびLEDチップ10における接合表面にあらかじめAuまたはAgからなる金属層を形成する前処理が必要である。また、サブマウント部材30と伝熱板21とは、例えば、AuSn、SnAgCuなどの鉛フリー半田を用いて接合することが好ましいが、AuSnを用いて接合する場合には、伝熱板21における接合表面にあらかじめAuまたはAgからなる金属層を形成する前処理が必要である。   As the material of the submount member 30, AlN having a relatively high thermal conductivity and insulation is employed, and the LED chip 10 has the cathode electrode provided on the surface of the submount member 30 on the LED chip 10 side. The electrode pattern (not shown) connected to the cathode electrode and electrically connected to one conductor pattern 23 via a bonding wire 14 made of a metal fine wire (for example, a gold fine wire, an aluminum fine wire, etc.), and the anode The electrode is electrically connected to the other conductor pattern 23 via the bonding wire 14. The LED chip 10 and the submount member 30 may be bonded using, for example, solder such as SnPb, AuSn, SnAgCu, or silver paste, but may be bonded using lead-free solder such as AuSn, SnAgCu. Preferably, when the submount member 30 is Cu and is bonded using AuSn, a pretreatment for forming a metal layer made of Au or Ag in advance on the bonding surface of the submount member 30 and the LED chip 10 is performed. is necessary. Further, the submount member 30 and the heat transfer plate 21 are preferably bonded using, for example, lead-free solder such as AuSn or SnAgCu. However, when bonding using AuSn, the bonding in the heat transfer plate 21 is performed. A pretreatment for forming a metal layer made of Au or Ag in advance on the surface is necessary.

サブマウント部材30の材料はAlNに限らず、線膨張率が結晶成長用基板の材料である6H−SiCに比較的近く且つ熱伝導率が比較的高い材料であればよく、例えば、複合SiC、Si、Cu、CuWなどを採用してもよい。なお、サブマウント部材30は、上述の熱伝導機能を有しており、伝熱板21におけるLEDチップ10側の表面の面積はLEDチップ10における伝熱板21側の表面の面積よりも十分に大きいことが望ましい。   The material of the submount member 30 is not limited to AlN, and may be any material that has a linear expansion coefficient that is relatively close to 6H—SiC that is a material for a crystal growth substrate and that has a relatively high thermal conductivity. Si, Cu, CuW or the like may be employed. The submount member 30 has the above-described heat conduction function, and the area of the surface of the heat transfer plate 21 on the LED chip 10 side is sufficiently larger than the area of the surface of the LED chip 10 on the heat transfer plate 21 side. Larger is desirable.

また、本実施形態における発光装置1では、サブマウント部材30の厚み寸法を、当該サブマウント部材30の表面が配線基板22の保護層26の表面よりも伝熱板21から離れるように設定してあり、LEDチップ10から側方に放射された光が配線基板22の窓孔24の内周面を通して配線基板22に吸収されるのを防止することができる。なお、サブマウント部材30においてLEDチップ10が接合される側の表面においてLEDチップ10との接合部位の周囲に、LEDチップ10から放射された光を反射する反射膜を形成すれば、LEDチップ10の側面から放射された光がサブマウント部材30に吸収されるのを防止することができ、外部への光取出し効率をさらに高めることが可能となる。ここで、反射膜は、例えば、Ni膜とAg膜との積層膜により構成すればよい。   In the light emitting device 1 according to this embodiment, the thickness dimension of the submount member 30 is set so that the surface of the submount member 30 is farther from the heat transfer plate 21 than the surface of the protective layer 26 of the wiring board 22. In addition, light emitted from the LED chip 10 to the side can be prevented from being absorbed by the wiring board 22 through the inner peripheral surface of the window hole 24 of the wiring board 22. In addition, if a reflective film that reflects the light emitted from the LED chip 10 is formed around the bonding portion with the LED chip 10 on the surface of the submount member 30 on the side to which the LED chip 10 is bonded, the LED chip 10 is formed. It is possible to prevent the light radiated from the side surface from being absorbed by the submount member 30 and to further increase the light extraction efficiency to the outside. Here, the reflective film may be formed of, for example, a laminated film of a Ni film and an Ag film.

上述の封止部50の材料である封止材料としては、シリコーン樹脂を用いているが、シリコーン樹脂に限らず、例えば、アクリル樹脂や、ガラスなどを用いてもよい。   As the sealing material that is the material of the sealing portion 50 described above, a silicone resin is used. However, it is not limited to the silicone resin, and for example, an acrylic resin or glass may be used.

光学部材60は、透光性材料(例えば、シリコーン樹脂、ガラスなど)の成形品であってドーム状に形成されている。ここで、光学部材60をシリコーン樹脂の成形品により構成すれば、光学部材60と封止部50との屈折率差および線膨張率差を小さくすることができる。   The optical member 60 is a molded product of a translucent material (for example, silicone resin, glass, etc.) and is formed in a dome shape. Here, if the optical member 60 is formed of a molded product of silicone resin, the refractive index difference and the linear expansion coefficient difference between the optical member 60 and the sealing portion 50 can be reduced.

また、光学部材60は、光出射面60bが、光入射面60aから入射した光を光出射面60bと上述の空気層80との境界で全反射させない凸曲面状に形成されており、LEDチップ10と光軸が一致するように配置されている。したがって、LEDチップ10から放射され光学部材60の光入射面60aに入射された光が光出射面60bと気体層80との境界で全反射されることなく波長変換部材70まで到達しやすくなり、全光束を高めることができる。なお、光学部材60は、位置によらず法線方向に沿って肉厚が一様となるように形成されている。   Further, the optical member 60 has a light emitting surface 60b formed in a convex curved surface shape that does not totally reflect light incident from the light incident surface 60a at the boundary between the light emitting surface 60b and the air layer 80 described above. 10 and the optical axis coincide with each other. Therefore, the light emitted from the LED chip 10 and incident on the light incident surface 60a of the optical member 60 can easily reach the wavelength conversion member 70 without being totally reflected at the boundary between the light emitting surface 60b and the gas layer 80, The total luminous flux can be increased. The optical member 60 is formed to have a uniform thickness along the normal direction regardless of the position.

波長変換部材70は、蛍光体粒子71が当該蛍光体粒子71よりも屈折率が小さな透光性媒体(例えば、シリコーン樹脂など)73に分散されており(蛍光体粒子71が透光性媒体73内に散在しており)、蛍光体粒子71として、赤色蛍光体粒子および緑色蛍光体粒子を採用している。したがって、本実施形態における発光装置1は、LEDチップ10から放射された青色光と波長変換部材70の赤色蛍光体粒子および緑色蛍光体粒子それぞれから光とが波長変換部材70の光出射面(外面)70bを通して放射されることとなり、白色光を得ることができる。ここで、波長変換部材70の蛍光体粒子71としては、赤色蛍光体粒子および緑色蛍光体粒子を用いる代わりに、例えば、黄色蛍光体粒子を用いてもよいし、緑色蛍光体粒子と橙色蛍光体粒子とを用いてもよいし、黄緑色蛍光体粒子と橙色蛍光体粒子とを用いてもよい。また、LEDチップ10として青色光を放射する青色LEDチップを用いる代わりに、紫外光を放射する紫外LEDチップを用い、蛍光体粒子71として赤色蛍光体粒子、緑色蛍光体粒子および青色蛍光体粒子を用いることで白色光を得るようにしてもよい。また、波長変換部材70の材料として用いる透光性媒体73は、シリコーン樹脂に限らず、例えば、ガラスでもよく、シリコーン樹脂やガラスを採用することにより、励起光として一般的な青色光や紫外光を採用した場合に透光性媒体73が励起光により劣化するのを抑制することができる。   In the wavelength conversion member 70, the phosphor particles 71 are dispersed in a translucent medium (for example, silicone resin) having a refractive index smaller than that of the phosphor particles 71 (the phosphor particles 71 are translucent medium 73). As the phosphor particles 71, red phosphor particles and green phosphor particles are employed. Therefore, in the light emitting device 1 according to the present embodiment, the blue light emitted from the LED chip 10 and the light from the red phosphor particles and the green phosphor particles of the wavelength conversion member 70 are emitted from the light emitting surface (outer surface) of the wavelength conversion member 70. ) 70b is emitted and white light can be obtained. Here, as the phosphor particles 71 of the wavelength conversion member 70, for example, yellow phosphor particles may be used instead of the red phosphor particles and the green phosphor particles, or the green phosphor particles and the orange phosphor particles may be used. Particles may be used, and yellow-green phosphor particles and orange phosphor particles may be used. Further, instead of using a blue LED chip that emits blue light as the LED chip 10, an ultraviolet LED chip that emits ultraviolet light is used, and red phosphor particles, green phosphor particles, and blue phosphor particles are used as the phosphor particles 71. You may make it obtain white light by using. Moreover, the translucent medium 73 used as the material of the wavelength conversion member 70 is not limited to a silicone resin, and may be glass, for example. By adopting a silicone resin or glass, general blue light or ultraviolet light is used as excitation light. It is possible to suppress the light transmissive medium 73 from being deteriorated by the excitation light in the case of adopting the above.

また、波長変換部材70は、光入射面(内面)70aが光学部材60の光出射面60bに沿った形状に形成されている。したがって、光学部材60の光出射面60bの位置によらず法線方向における当該光学部材60の光出射面60bと波長変換部材70との間の距離が略一定値となっている。なお、波長変換部材70は、位置によらず法線方向に沿った肉厚が一様となるように成形されている。また、波長変換部材70は、実装基板20側の端縁(開口部の周縁)を実装基板20に対して、例えば接着剤(例えば、シリコーン樹脂、エポキシ樹脂など)を用いて固着すればよい。   The wavelength converting member 70 has a light incident surface (inner surface) 70 a formed along the light emitting surface 60 b of the optical member 60. Therefore, the distance between the light emitting surface 60b of the optical member 60 and the wavelength conversion member 70 in the normal direction is a substantially constant value regardless of the position of the light emitting surface 60b of the optical member 60. In addition, the wavelength conversion member 70 is shape | molded so that the thickness along a normal line direction may become uniform irrespective of a position. In addition, the wavelength conversion member 70 may be fixed to the mounting substrate 20 with an end edge (periphery of the opening) on the mounting substrate 20 side using, for example, an adhesive (for example, silicone resin, epoxy resin, or the like).

ところで、本実施形態の波長変換部材70は、図1(b),(c)に示すように、蛍光体粒子71の表面側に、微細凹凸構造を有するモスアイ状構造部74とモスアイ状構造部74の先細り状の微細突起75間に入り込んだ透光性媒体73とで構成される反射防止部76を備えており、モスアイ状構造部74の各微細突起75が、蛍光体粒子71よりも粒径が小さく且つ透光性媒体73よりも屈折率が大きな微粒子72を蛍光体粒子71の表面に複合化することにより形成されている(蛍光体粒子71の表面の略全面が多数の微粒子72により被覆されている)。ここで、蛍光体粒子71の表面に微粒子72を複合化するにあたっては、例えば、蛍光体粒子71を分散した微粒子72の前駆体の水溶液を噴霧熱分解法によって噴霧熱分解することにより、各蛍光体粒子71それぞれに多数の微粒子72を複合化しており、上記水溶液における微粒子72の前駆体の濃度および噴霧熱分解温度を調整することにより、微粒子72の粒径を制御している。なお、微粒子72を蛍光体粒子71の表面に複合化する方法は、上述の方法に限らず、例えば、ゾル−ゲル法、プラズマ蒸着法などを適用してもよい。   By the way, as shown in FIGS. 1B and 1C, the wavelength conversion member 70 of the present embodiment has a moth-eye structure portion 74 and a moth-eye structure portion having a fine uneven structure on the surface side of the phosphor particles 71. 74 is provided with an antireflection portion 76 composed of a light-transmitting medium 73 entering between 74 tapered fine protrusions 75, and each of the fine protrusions 75 of the moth-eye-shaped structure portion 74 is more granular than the phosphor particles 71. It is formed by compositing fine particles 72 having a small diameter and a refractive index larger than that of the translucent medium 73 on the surface of the phosphor particles 71 (almost the entire surface of the phosphor particles 71 is formed by a large number of fine particles 72. Coated). Here, when the fine particles 72 are complexed on the surface of the phosphor particles 71, for example, an aqueous solution of the precursor of the fine particles 72, in which the phosphor particles 71 are dispersed, is spray pyrolyzed by a spray pyrolysis method, thereby causing each fluorescence. A large number of fine particles 72 are combined with each of the body particles 71, and the particle size of the fine particles 72 is controlled by adjusting the concentration of the precursor of the fine particles 72 and the spray pyrolysis temperature in the aqueous solution. The method for compositing the fine particles 72 on the surface of the phosphor particles 71 is not limited to the above-described method, and for example, a sol-gel method, a plasma deposition method, or the like may be applied.

モスアイ状構造部74における微細突起75の突出寸法および微細突起75のピッチは、励起光の波長をλ、透光性媒体73の屈折率をnとすれば、λ/n以下に設定する必要がある。したがって、例えば、励起光が青色光で当該青色光の波長λが480nm、透光性媒体73がシリコーン樹脂で屈折率nが1.4の場合には、微細突起75の突出寸法およびピッチを480/1.4≒343nm以下に設定する必要があり、λ=350nm〜480nm、n=1.4の場合には、微細突起75の最大突出寸法および最大ピッチを250nm〜343nmの範囲で適宜設定すればよい。 The protrusion dimensions of the fine protrusions 75 and the pitch of the fine protrusions 75 in the moth-eye structure 74 are set to λ / n 3 or less, assuming that the wavelength of the excitation light is λ and the refractive index of the translucent medium 73 is n 3. There is a need. Therefore, for example, when the excitation light is blue light, the wavelength λ of the blue light is 480 nm, the translucent medium 73 is silicone resin, and the refractive index n 3 is 1.4, the protrusion size and pitch of the fine protrusions 75 are set as follows. It is necessary to set 480 / 1.4≈343 nm or less. When λ = 350 nm to 480 nm and n 3 = 1.4, the maximum protrusion size and the maximum pitch of the fine protrusions 75 are appropriately set within a range of 250 nm to 343 nm. You only have to set it.

ところで、仮に、図3(a)に示すように、蛍光体粒子71の表面側の反射防止部76におけるモスアイ状構造部74が錐状の微細突起75が配列された微細凹凸構造を有しており、微細突起75間に入り込んだ透光性媒体73の屈折率をn、蛍光体粒子71の屈折率をnとし、微細突起75の屈折率が蛍光体粒子71の屈折率と同じであるとすれば、反射防止部76の有効屈折率は、蛍光体粒子71の表面の法線方向において図3(b)に示すように蛍光体粒子71の屈折率nと透光性媒体73の屈折率nとの間で連続的に変化する。 By the way, as shown in FIG. 3A, the moth-eye structure portion 74 in the antireflection portion 76 on the surface side of the phosphor particles 71 has a fine concavo-convex structure in which conical fine protrusions 75 are arranged. The refractive index of the translucent medium 73 entering between the fine protrusions 75 is n 3 , the refractive index of the phosphor particles 71 is n 1, and the refractive index of the fine protrusions 75 is the same as the refractive index of the phosphor particles 71. If there is, the effective refractive index of the antireflection part 76 is such that the refractive index n 1 of the phosphor particles 71 and the translucent medium 73 in the normal direction of the surface of the phosphor particles 71 as shown in FIG. continuously varies between the refractive index n 3 of the.

しかしながら、蛍光体粒子71の表面側に図3(a)に示すような微細凹凸構造を有するモスアイ状構造部74を形成するのは困難であり、本実施形態の波長変換部材70では、図1(b),(c)に示すような先細り状の微細突起75が配列された微細凹凸構造となっており、微粒子72の屈折率nを蛍光体粒子71の屈折率nと同じにすれば、反射防止部76の有効屈折率は、蛍光体粒子71の表面の法線方向において図1(d)に示すように蛍光体粒子71の屈折率nと透光性媒体73の屈折率nとの間で連続的に変化する。なお、微粒子72の中心粒径d50は、λ/(10n)≦d50≦λ/nの範囲で設定することが好ましい。 However, it is difficult to form the moth-eye structure portion 74 having a fine concavo-convex structure as shown in FIG. 3A on the surface side of the phosphor particles 71. In the wavelength conversion member 70 of the present embodiment, FIG. (B), (c) has a fine concavo-convex structure in which tapered fine protrusions 75 are arranged, and the refractive index n 2 of the fine particles 72 is made the same as the refractive index n 1 of the phosphor particles 71. For example, the effective refractive index of the antireflection part 76 is such that the refractive index n 1 of the phosphor particles 71 and the refractive index of the translucent medium 73 are as shown in FIG. 1 (d) in the normal direction of the surface of the phosphor particles 71. continuously changes between n 3. The center particle diameter d 50 of the fine particles 72 is preferably set in the range of λ / (10n 3 ) ≦ d 50 ≦ λ / n 3 .

また、波長変換部材70における蛍光体粒子71に関し、赤色蛍光体粒子として組成がCaAlSiN:Eu2+で屈折率が2.0、中心粒径d50が10μmの蛍光体粒子を用い、緑色蛍光体粒子として組成がCaSc:Ce3+で屈折率が1.9、中心粒径d50が8μmの蛍光体粒子を用いているが、これらの組成に限定するものではなく、赤色蛍光体粒子としては、例えば、組成が、(Ca、Sr)AlSiN:Eu2+、CaS:Eu2+、(Ca、Sr)Si:Eu2+などのものを用いてもよく、緑色蛍光体粒子としては、例えば、組成が、CaScSi12:Ce3+、(Ca、Sr、Ba)Al:Eu2+、SrGa:Eu2+などのものを用いてもよい。また、蛍光体粒子71として黄色蛍光体粒子を採用する場合には、例えば、組成が、YAl12:Ce3+、(Ca、Sr、Ba、Zn)SiO:Eu2+などのものを用いればよく、蛍光体粒子71として黄緑色蛍光体粒子と橙色蛍光体粒子とを採用する場合には、例えば、黄緑色蛍光体粒子として、組成が、(Ba、Sr)SiO:Eu2+などのものを用いればよく、橙色蛍光体粒子として、組成が、SrSiO:Eu2+、Ca0.7Sr0.3AlSiN:Eu2+などのものを用いればよい。なお、蛍光体粒子71は、中心粒径d50が大きい方が、欠陥密度が小さくエネルギ損失が少なくて発光効率が高くなるので、発光効率の観点から中心粒径d50が5μm以上のものを採用することが好ましい。 Further, regarding the phosphor particles 71 in the wavelength conversion member 70, as the red phosphor particles, phosphor particles having a composition of CaAlSiN 3 : Eu 2+ , a refractive index of 2.0, and a center particle diameter d 50 of 10 μm are used. As the particles, phosphor particles having a composition of CaSc 2 O 4 : Ce 3+ , a refractive index of 1.9, and a center particle diameter d 50 of 8 μm are used. However, the present invention is not limited to these compositions. For example, the composition may be (Ca, Sr) AlSiN 3 : Eu 2+ , CaS: Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+, etc., and green phosphor particles as, for example, composition, Ca 3 Sc 2 Si 3 O 12: Ce 3+, (Ca, Sr, Ba) Al 2 O 4: Eu 2+, SrGa 2 S 4: using such things as Eu 2+ Good. Further, when yellow phosphor particles are employed as the phosphor particles 71, for example, the composition is Y 3 Al 5 O 12 : Ce 3+ , (Ca, Sr, Ba, Zn) 2 SiO 4 : Eu 2+ or the like. When yellow-green phosphor particles and orange phosphor particles are adopted as the phosphor particles 71, for example, the composition of the yellow-green phosphor particles is (Ba, Sr) 2 SiO 4 : may be used those such as Eu 2+, as orange phosphor particles, composition, Sr 3 SiO 5: Eu 2+ , Ca 0.7 Sr 0.3 AlSiN 3: may be used in an as such Eu 2+. The phosphor particles 71 having a larger central particle diameter d 50 have a smaller defect density and less energy loss, resulting in higher luminous efficiency. From the viewpoint of luminous efficiency, the phosphor particles 71 should have a central particle diameter d 50 of 5 μm or more. It is preferable to adopt.

本実施形態では、微粒子72の材料として、蛍光体粒子71への励起光および蛍光体粒子71からの変換光に対して透明な金属酸化物(例えば、ZrOなど)を採用しているので、微粒子72が蛍光体粒子71への励起光および蛍光体粒子71からの変換光に対して透明であり、励起光や変換光が微粒子72に吸収されるのを防止することができる。ここで、微粒子72の屈折率をnとすれば、微粒子72としては、屈折率nが蛍光体粒子71の屈折率n以上のものを採用することが好ましく、屈折率nが2.05のZrOを採用しているが、ZrOに限らず、例えば、屈折率nが2.3〜2.55のTiOを採用してもよい。ただし、微粒子72の屈折率nについては、蛍光体粒子71の屈折率と同じであるのがより好ましい。なお、微粒子72の材料は、蛍光体粒子71の屈折率nおよび透光性媒体73の屈折率nに応じて各種金属酸化物から適宜選択すればよく、例えば、SiO、Al、Yなどを採用することも可能である。ここで、SiOの屈折率は1.46、Alの屈折率は1.63、Yの屈折率は1.87であり、例えば、蛍光体粒子71がYAG:Ce3+からなる黄色蛍光体粒子で屈折率nが1.83、透光性媒体73がシリコーン樹脂で屈折率nが1.4の場合には、微粒子72として屈折率nが1.87のYを採用すれば、蛍光体粒子71の屈折率nと微粒子72の屈折率nとが略同じとなる。 In the present embodiment, as the material of the fine particles 72, a metal oxide (for example, ZrO 2 ) that is transparent to the excitation light to the phosphor particles 71 and the converted light from the phosphor particles 71 is employed. The fine particles 72 are transparent to the excitation light to the phosphor particles 71 and the converted light from the phosphor particles 71, and the excitation light and the converted light can be prevented from being absorbed by the fine particles 72. Here, if the refractive index of the fine particles 72 and n 2, as the particles 72, it is preferable that the refractive index n 2 is adopted as the refractive index n 1 or more of the phosphor particles 71, the refractive index n 2 is 2 .05 ZrO 2 is employed, but not limited to ZrO 2 , for example, TiO 2 having a refractive index n 2 of 2.3 to 2.55 may be employed. However, the refractive index n 2 of the fine particles 72 is more preferably the same as the refractive index of the phosphor particles 71. The material of the fine particles 72 may be appropriately selected from various metal oxides according to the refractive index n 1 of the phosphor particles 71 and the refractive index n 3 of the translucent medium 73. For example, SiO 2 , Al 2 O 3 , Y 2 O 3, or the like can also be employed. Here, the refractive index of SiO 2 is 1.46, the refractive index of Al 2 O 3 is 1.63, and the refractive index of Y 2 O 3 is 1.87. For example, the phosphor particles 71 are YAG: Ce 3+. When the refractive index n 1 is 1.83, the translucent medium 73 is a silicone resin, and the refractive index n 3 is 1.4, the fine particles 72 have a refractive index n 2 of 1.87. by employing the Y 2 O 3, comprising a refractive index n 2 of the refractive index n 1 and the fine particles 72 of phosphor particles 71 and is substantially the same.

以上説明した本実施形態の波長変換部材70では、蛍光体粒子71の表面側に、微細凹凸構造を有するモスアイ状構造部74とモスアイ状構造部74の先細り状の微細突起75間に入り込んだ透光性媒体73とで構成される反射防止部76を備え、モスアイ状構造部74の各微細突起75が、蛍光体粒子71よりも粒径が小さく且つ透光性媒体73よりも屈折率が大きな微粒子72を蛍光体粒子71の表面に複合化することにより形成されているので、フレネル反射の抑制によって蛍光体粒子71への励起光の入射効率のより一層の向上および蛍光体粒子71からの変換光の取り出し効率のより一層の向上を図れ(励起光の反射損失の低減を図れるとともに変換光の反射損失の低減を図れ)、結果として、波長変換部材70の光取り出し効率が向上し、発光装置1全体の外部への光取り出し効率が向上し、光束を向上させることができる。しかして、本実施形態の発光装置1は、LEDチップ10から放射される光の一部を当該光よりも長波長の光に変換して放射する色変換部材として上述の波長変換部材70を用いているので、色変換部材における蛍光体粒子71への励起光の入射効率のより一層の向上および蛍光体粒子71からの変換光の取り出し効率のより一層の向上を図れ、光出力の高出力化を図れる。   In the wavelength conversion member 70 of the present embodiment described above, on the surface side of the phosphor particles 71, the moth-eye structure portion 74 having a fine concavo-convex structure and the transparent fine protrusions 75 of the moth-eye structure portion 74 that have entered the gap are formed. The antireflection part 76 comprised with the optical medium 73 is provided, and each fine protrusion 75 of the moth-eye structure part 74 has a smaller particle diameter than the fluorescent substance particle 71, and a refractive index larger than the translucent medium 73. Since the fine particles 72 are formed on the surface of the phosphor particles 71, the incident efficiency of the excitation light to the phosphor particles 71 is further improved and the conversion from the phosphor particles 71 is suppressed by suppressing Fresnel reflection. The light extraction efficiency can be further improved (the reflection loss of the excitation light can be reduced and the reflection loss of the converted light can be reduced). As a result, the light extraction efficiency of the wavelength conversion member 70 can be reduced. Improved, the light emitting device 1 to improve the light extraction efficiency to the entire outside can be improved luminous flux. Therefore, the light emitting device 1 of the present embodiment uses the above-described wavelength conversion member 70 as a color conversion member that converts and emits a part of the light emitted from the LED chip 10 into light having a longer wavelength than the light. Therefore, it is possible to further improve the incident efficiency of the excitation light to the phosphor particles 71 in the color conversion member and further improve the extraction efficiency of the converted light from the phosphor particles 71, thereby increasing the light output. Can be planned.

また、本実施形態の波長変換部材70では、微粒子72の屈折率nを蛍光体粒子71の屈折率nと同じにすれば、蛍光体粒子71の表面の法線方向において反射防止部76の有効屈折率が蛍光体粒子71の屈折率nと透光性媒体73の屈折率nとの間で連続的に変化するので、蛍光体粒子71への励起光の入射効率の向上および蛍光体粒子71からの変換光の取り出し効率の向上を図れ、微粒子72の屈折率nを蛍光体粒子71の屈折率nよりも大きくすれば、微粒子72の屈折率nが蛍光体粒子71の屈折率nよりも小さい場合(つまり、n>n>nの場合)に比べて、蛍光体粒子71からの変換光が微粒子72中へ入射しやすくなり、蛍光体粒子71からの変換光の取り出し効率を向上できる。 Further, in the wavelength conversion member 70 of the present embodiment, when the refractive index n 2 of the fine particles 72 is the same as the refractive index n 1 of the phosphor particles 71, the antireflection portion 76 in the normal direction of the surface of the phosphor particles 71. since the effective refractive index varies continuously between the refractive index n 2 of the refractive index n 1 and the transparent medium 73 of the phosphor particles 71, improvement in efficiency of incidence of the excitation light to the phosphor particles 71 and the If the efficiency of extracting converted light from the phosphor particles 71 can be improved and the refractive index n 2 of the fine particles 72 is made larger than the refractive index n 1 of the phosphor particles 71, the refractive index n 2 of the fine particles 72 can be increased. Compared with a case where the refractive index is smaller than the refractive index n 1 of 71 (that is, when n 1 > n 2 > n 3 ), the converted light from the phosphor particles 71 is easily incident into the fine particles 72. The extraction efficiency of the converted light from the can be improved.

(実施例1)
本実施例では、実施形態1の発光装置1において、LEDチップ10として発光ピーク波長が460nmの青色LEDチップを採用し、波長変換部材70に関して、透光性媒体73として、屈折率が1.4のシリコーン樹脂を採用し、蛍光体粒子71に関して、赤色蛍光体粒子として組成がCaAlSiN:Eu2+で屈折率が2.0、中心粒径d50が10μmの蛍光体粒子、緑色蛍光体粒子として組成がCaSc:Ce3+で屈折率が1.9、中心粒径d50が8μmの蛍光体粒子を採用し、微粒子72として屈折率nが2.05のZrOを採用し、蛍光体粒子71を分散した微粒子72の前駆体の水溶液であるオキシ硝酸ジルコニウム水溶液を熱噴霧乾燥することにより、各蛍光体粒子71それぞれに中心粒径d50が100nmの微粒子72を複合化しており、蛍光体粒子71に微粒子72を複合化してない波長変換部材70を用いた比較例1に比べて、発光装置1の光束が約7%向上した。
Example 1
In this example, in the light emitting device 1 of Embodiment 1, a blue LED chip having an emission peak wavelength of 460 nm is adopted as the LED chip 10, and the refractive index of the wavelength conversion member 70 is 1.4 as the translucent medium 73. As a red phosphor particle, the composition is CaAlSiN 3 : Eu 2+ with a refractive index of 2.0 and a center particle size d 50 of 10 μm as a phosphor particle and a green phosphor particle. Phosphor particles having a composition of CaSc 2 O 4 : Ce 3+ and a refractive index of 1.9 and a center particle diameter d 50 of 8 μm are used, and ZrO 2 having a refractive index n 2 of 2.05 is used as the fine particles 72. by the aqueous solution of zirconium oxynitrate an aqueous solution of a precursor of fine particles 72 dispersed phosphor particles 71 thermally spray drying, median particle size d to each of the phosphor particles 71 0 microparticles 72 100nm is complexed, as compared with Comparative Example 1 using the wavelength conversion member 70 that is not complexed to particles 72 to the phosphor particles 71, the light beam of the light emitting device 1 is improved by about 7%.

(実施形態2)
図4(a)に示す本実施形態の発光装置1の基本構成は実施形態1と同じであり、波長変換部材70に関して、図4(b)〜(d)に示すように、蛍光体粒子71の表面の全体が蛍光体粒子71と略同一の屈折率を有する金属酸化物層77によりコーティングされ、微粒子72が金属酸化物層77を介して蛍光体粒子71に複合化されている点が相違するだけである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the light emitting device 1 of the present embodiment shown in FIG. 4A is the same as that of the first embodiment. With respect to the wavelength conversion member 70, as shown in FIGS. The entire surface is coated with a metal oxide layer 77 having substantially the same refractive index as that of the phosphor particles 71, and the fine particles 72 are combined with the phosphor particles 71 through the metal oxide layer 77. Just do it. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

金属酸化物層77の材料は、蛍光体粒子71の屈折率に応じて各種の金属酸化物から適宜選択すればよく、例えば、ZrO、Yなどを採用すればよい。また、本実施形態では、金属酸化物層77の厚みを100nm〜150nmの範囲で設定してあるが、この数値は一例であり、特に限定するものではない。 The material of the metal oxide layer 77 may be appropriately selected from various metal oxides according to the refractive index of the phosphor particles 71. For example, ZrO 2 or Y 2 O 3 may be employed. Moreover, in this embodiment, although the thickness of the metal oxide layer 77 is set in the range of 100 nm-150 nm, this numerical value is an example and it does not specifically limit it.

ここで、蛍光体粒子71の表面側に微粒子72を複合化するにあたっては、まず、蛍光体粒子71の表面に金属酸化物層77をコーティングし、その後、微粒子72を複合化する。ここにおいて、蛍光体粒子71の表面に金属酸化物層77をコーティングするにあたっては、例えば、所定量の蛍光体粒子71を分散した金属酸化物層77の前駆体のスラリーを熱噴霧乾燥することにより、各蛍光体粒子71それぞれの表面に金属酸化物層77を形成している。更に緻密な金属酸化物層77とするために、必要に応じて熱処理を行ってもよい。その後、金属酸化物層77がコーティングされた蛍光体粒子71を分散した微粒子72の前駆体のスラリーを熱噴霧乾燥することにより、各蛍光体粒子71それぞれの表面側に金属酸化物層77を介して多数の微粒子72を複合化しており、上記スラリーにおける微粒子72の前駆体の濃度および噴霧熱乾燥温度を調整することにより、微粒子72の粒径を制御している。なお、微粒子72を蛍光体粒子71の表面側に複合化する方法は、上述の方法に限らず、例えば、ゾル−ゲル法、流動層コーティング法、プラズマ蒸着法などを適用してもよい。   Here, when the fine particles 72 are combined on the surface side of the phosphor particles 71, first, the surface of the phosphor particles 71 is coated with the metal oxide layer 77, and then the fine particles 72 are combined. Here, when the metal oxide layer 77 is coated on the surface of the phosphor particles 71, for example, a precursor slurry of the metal oxide layer 77 in which a predetermined amount of the phosphor particles 71 is dispersed is thermally spray-dried. A metal oxide layer 77 is formed on the surface of each phosphor particle 71. In order to obtain a denser metal oxide layer 77, heat treatment may be performed as necessary. Thereafter, a slurry of the precursor of the fine particles 72 in which the phosphor particles 71 coated with the metal oxide layer 77 are dispersed is thermally spray-dried, so that the surface of each phosphor particle 71 passes through the metal oxide layer 77. In this slurry, the particle size of the fine particles 72 is controlled by adjusting the concentration of the precursor of the fine particles 72 and the spray heat drying temperature in the slurry. The method for compositing the fine particles 72 on the surface side of the phosphor particles 71 is not limited to the above-described method, and for example, a sol-gel method, a fluidized bed coating method, a plasma deposition method, or the like may be applied.

ここにおいて、実施形態1と同様、微粒子72の屈折率をn、蛍光体粒子71の屈折率をn、透光性媒体73の屈折率をnとし、金属酸化物層77の屈折率をnとすれば、反射防止部76の有効屈折率は、蛍光体粒子71の表面の法線方向において図4(d)に示すように微粒子72の屈折率nと透光性媒体73の屈折率nとの間で連続的に変化する。微粒子72の屈折率nは、蛍光体粒子71の屈折率nよりも高く設定してあるが、微粒子72の屈折率nと蛍光体粒子71の屈折率nとは略同一であることが好ましく、同一であることがより好ましい。また、金属酸化物層77の屈折率nは、蛍光体粒子71の屈折率nと略同一としてあるが、図4(d)では、金属酸化物層77の屈折率nに関して、蛍光体粒子71の屈折率nと略同一とみなす屈折率nの上限値をn4max、下限値をn4minとして図示してある。 Here, as in the first embodiment, the refractive index of the fine particles 72 is n 2 , the refractive index of the phosphor particles 71 is n 1 , the refractive index of the translucent medium 73 is n 3, and the refractive index of the metal oxide layer 77. Is n 4 , the effective refractive index of the antireflection portion 76 is such that the refractive index n 2 of the fine particles 72 and the translucent medium 73 in the normal direction of the surface of the phosphor particles 71 as shown in FIG. continuously varies between the refractive index n 3 of the. Refractive index n 2 of the fine particles 72 is is set to be higher than the refractive index n 1 of the phosphor particles 71, are substantially identical to the refractive index n 1 of the refractive index n 2 and the phosphor particles 71 of the particulate 72 It is preferable that they are the same. Further, the refractive index n 4 of the metal oxide layer 77 is substantially the same as the refractive index n 1 of the phosphor particles 71, but in FIG. 4D, the refractive index n 4 of the metal oxide layer 77 is fluorescent. The upper limit value of the refractive index n 4 regarded as substantially the same as the refractive index n 1 of the body particle 71 is shown as n 4max and the lower limit value is shown as n 4 min .

ここで、金属酸化物層77の屈折率nを蛍光体粒子71の屈折率nと略同一であるとみなす範囲を規定するために、蛍光体粒子71の屈折率nと金属酸化物層77の屈折率nとの屈折率差(|n−n|)の蛍光体粒子71の屈折率nに対する比率({|n−n|/n}×100)と、金属酸化物層77と蛍光体粒子71との界面(屈折率界面)における相対反射損失(正反射成分のみを考慮した反射損失の相対値)との関係をシミュレーションした結果を図5に示す。図5から分かるように、屈折率差の屈折率nに対する比率が22%以上になると、金属酸化物層77と蛍光体粒子71との界面(屈折率界面)における相対反射損失が1%を超える。一方、上述の実施例1の発光装置1では、比較例1に対する光取り出し効率のアップ率が7%であるので、相対反射損失の1%という値は無視できる値ではない。そこで、屈折率差の屈折率nに対する比率が15%以下(相対反射損失が0.5%以下)となる場合に、金属酸化物層77の屈折率nを蛍光体粒子71の屈折率nと略同一であるとみなすこととする。なお、微粒子72の屈折率nが蛍光体粒子71の屈折率nよりも大きい場合、微粒子72の屈折率nと金属酸化物層77の屈折率nとの屈折率差を小さくする観点から、金属酸化物層77の屈折率nを蛍光体粒子71の屈折率nと略同一であるとみなす屈折率nの範囲においては、n>nであることが好ましい。 Here, in order to define a range in which the refractive index n 4 of the metal oxide layer 77 is considered to be substantially the same as the refractive index n 1 of the phosphor particles 71, the refractive index n 1 of the phosphor particles 71 and the metal oxide The ratio ({| n 1 −n 4 | / n 1 } × 100) of the refractive index difference (| n 1 −n 4 |) with respect to the refractive index n 1 of the phosphor particles 71 to the refractive index n 4 of the layer 77 FIG. 5 shows the result of simulating the relationship with the relative reflection loss (relative value of the reflection loss considering only the regular reflection component) at the interface (refractive index interface) between the metal oxide layer 77 and the phosphor particles 71. As can be seen from FIG. 5, when the ratio of the refractive index difference to the refractive index n 1 is 22% or more, the relative reflection loss at the interface (refractive index interface) between the metal oxide layer 77 and the phosphor particles 71 is 1%. Exceed. On the other hand, in the light-emitting device 1 of Example 1 described above, the increase rate of the light extraction efficiency with respect to Comparative Example 1 is 7%, so the value of 1% of the relative reflection loss is not negligible. Therefore, when the ratio of the refractive index difference to the refractive index n 1 is 15% or less (relative reflection loss is 0.5% or less), the refractive index n 4 of the metal oxide layer 77 is changed to the refractive index of the phosphor particles 71. and it is regarded as n 1 is substantially the same. Incidentally, when the refractive index n 2 of the fine particles 72 is larger than the refractive index n 1 of the phosphor particles 71, to reduce the refractive index difference between the refractive index n 4 of the refractive index n 2 and the metal oxide layer 77 of microparticle 72 from the viewpoint, the range of the refractive index n 4 of the refractive index n 4 regarded as substantially the same as the refractive index n 1 of the phosphor particles 71 of the metal oxide layer 77 is preferably n 4> n 1.

以上説明した本実施形態の波長変換部材70では、蛍光体粒子71の表面の全体が蛍光体粒子71と略同一の屈折率nを有する金属酸化物層77によりコーティングされており、蛍光体粒子71と微粒子72との間に金属酸化物層77が介在しているので、外部からの水分が蛍光体粒子71へ到達するのを抑制することができ、耐湿性を向上させることができる(湿度の影響で蛍光体粒子71の特性が劣化するのを抑制することができる)から、蛍光体粒子71の材料の選択の自由度が高くなり、しかも、金属酸化物層77の屈折率nが蛍光体粒子71の屈折率nと略同一であることにより、モスアイ状構造部74の反射防止効果の低下を抑制することができるとともに蛍光体粒子71と金属酸化物層77との界面での励起光の反射を抑制できる。 In the wavelength conversion member 70 of the present embodiment described above, the entire surface of the phosphor particle 71 is coated with the metal oxide layer 77 having substantially the same refractive index n 4 as the phosphor particle 71, and the phosphor particle Since the metal oxide layer 77 is interposed between the fine particles 71 and the fine particles 72, it is possible to prevent moisture from the outside from reaching the phosphor particles 71 and to improve moisture resistance (humidity). Therefore, the degree of freedom in selecting the material of the phosphor particles 71 is increased, and the refractive index n 4 of the metal oxide layer 77 is increased. By being substantially the same as the refractive index n 1 of the phosphor particles 71, it is possible to suppress a decrease in the antireflection effect of the moth-eye structure portion 74 and at the interface between the phosphor particles 71 and the metal oxide layer 77. Excitation light reflection It can be suppressed.

また、本実施形態の発光装置1も、実施形態1と同様、LEDチップ10から放射される光の一部を当該光よりも長波長の光に変換して放射する色変換部材として上述の波長変換部材70を用いているので、色変換部材における蛍光体粒子71への励起光の入射効率のより一層の向上および蛍光体粒子71からの変換光の取り出し効率のより一層の向上を図れ、光出力の高出力化を図れる。   The light emitting device 1 of the present embodiment also has the above-described wavelength as a color conversion member that converts and emits a part of light emitted from the LED chip 10 into light having a longer wavelength than the light, as in the first embodiment. Since the conversion member 70 is used, the incident efficiency of the excitation light to the phosphor particles 71 in the color conversion member and the extraction efficiency of the converted light from the phosphor particles 71 can be further improved. High output can be achieved.

(実施例2)
本実施例では実施形態2の発光装置1において、LEDチップ10として発光ピーク波長が460nmの青色LEDチップを採用し、波長変換部材70に関して、透光性媒体73として、屈折率が1.4のシリコーン樹脂を採用し、蛍光体粒子71に関して、緑色蛍光体粒子として組成がCaSc:Ce3+で屈折率が1.9、中心粒径d50が8μmの蛍光体粒子、橙色蛍光体粒子として組成がCa0.7Sr0.3AlSiN:Eu2+で屈折率が2.1、中心粒径d50が10μmの蛍光体粒子を採用し、金属酸化物層77として屈折率が2.05のZrOを採用し、微粒子72として屈折率nが2.05のZrOを採用している。
(Example 2)
In this example, in the light emitting device 1 of the second embodiment, a blue LED chip having an emission peak wavelength of 460 nm is adopted as the LED chip 10, and the refractive index of the wavelength conversion member 70 is 1.4 as the translucent medium 73. Silicone resin and phosphor particles 71, green phosphor particles having a composition of CaSc 2 O 4 : Ce 3+ with a refractive index of 1.9 and a center particle size d 50 of 8 μm, orange phosphor particles As the metal oxide layer 77, phosphor particles having a composition of Ca 0.7 Sr 0.3 AlSiN 3 : Eu 2+ with a refractive index of 2.1 and a center particle diameter d 50 of 10 μm are employed. the ZrO 2 of 05 employed, the refractive index n 2 as fine particles 72 have adopted ZrO 2 of 2.05.

ここにおいて、波長変換部材70の製造に際し、蛍光体粒子71の表面に金属酸化物層77をコーティングするにあたっては、例えば、緑色蛍光体粒子、橙色蛍光体粒子それぞれについて、n−ブタノール中で所定量の蛍光体粒子71(所定量の緑色蛍光体粒子、或いは、所定量の橙色蛍光体粒子)、ジルコニウムテトライソプロポキシド、微量の水を混合攪拌して得たスラリーを熱噴霧乾燥し、次いで350℃で熱処理することにより、各蛍光体粒子71それぞれの表面に厚さが100nm〜150nm程度のZrO層からなる金属酸化物層77を形成している。また、蛍光体粒子71の表面側に微粒子72を複合化するにあたっては、金属酸化物層77がコーティングされた緑色蛍光体粒子、金属酸化物層77がコーティングされた橙色蛍光体粒子それぞれについて、n−ブタノール中で上述の金属酸化物層77がコーティングされた所定量の蛍光体粒子71(金属酸化物層77がコーティングされた所定量の緑色蛍光体粒子、或いは、金属酸化物層77がコーティングされた所定量の橙色蛍光体粒子)、酸化ジルコニウムのゾルを混合攪拌して得たスラリーを熱噴霧乾燥することにより、各蛍光体粒子71それぞれの表面側に金属酸化物層77を介して中心粒径d50が100nm〜150nm程度の多数のZrO微粒子からなる微粒子72を複合化している。その後、微粒子72が複合化された蛍光体粒子71を屈折率が1.4のシリコーン樹脂に分散し、ドーム状に成形することにより、波長変換部材70を形成している。また、比較例2として、実施例2と同様の構成で金属酸化物層77および微粒子72を備えていない発光装置を作成した。 Here, when the metal oxide layer 77 is coated on the surface of the phosphor particles 71 when the wavelength conversion member 70 is manufactured, for example, a predetermined amount of each of the green phosphor particles and the orange phosphor particles in n-butanol. The slurry obtained by mixing and stirring the phosphor particles 71 (predetermined amount of green phosphor particles or predetermined amount of orange phosphor particles), zirconium tetraisopropoxide, and a small amount of water is heat spray dried, and then 350 By performing heat treatment at ° C., a metal oxide layer 77 composed of a ZrO 2 layer having a thickness of about 100 nm to 150 nm is formed on the surface of each phosphor particle 71. Further, when the fine particles 72 are compounded on the surface side of the phosphor particles 71, the green phosphor particles coated with the metal oxide layer 77 and the orange phosphor particles coated with the metal oxide layer 77 are each n -A predetermined amount of phosphor particles 71 coated with the above metal oxide layer 77 in butanol (a predetermined amount of green phosphor particles coated with the metal oxide layer 77 or a metal oxide layer 77 is coated). The slurry obtained by mixing and stirring a predetermined amount of the orange phosphor particles) and the zirconium oxide sol is subjected to thermal spray drying, whereby the center particles are disposed on the surface side of each phosphor particle 71 via the metal oxide layer 77. Fine particles 72 made of a large number of ZrO 2 fine particles having a diameter d 50 of about 100 nm to 150 nm are combined. Thereafter, the phosphor particles 71 in which the fine particles 72 are combined are dispersed in a silicone resin having a refractive index of 1.4 and formed into a dome shape, thereby forming the wavelength conversion member 70. Further, as Comparative Example 2, a light emitting device having the same configuration as that of Example 2 and having no metal oxide layer 77 and fine particles 72 was produced.

以上説明した実施例2および比較例2について、温度85℃、相対湿度85%RH、断続通電(30分点灯、30分消灯のサイクル)の試験条件で信頼性加速試験を行った。試験前の全光束および試験開始から1000時間が経過した後の全光束それぞれを測定した結果を下記表1に示す。なお、表1では、比較例2の試験前の光束を100として規格化した相対値を記載してある。   About the Example 2 and the comparative example 2 which were demonstrated above, the reliability acceleration test was done on the test conditions of temperature 85 degreeC, relative humidity 85% RH, and intermittent electricity supply (30-minute lighting, 30-minute light-off cycle). Table 1 below shows the results of measuring the total luminous flux before the test and the total luminous flux after 1000 hours had elapsed from the start of the test. In Table 1, relative values normalized with the luminous flux before the test of Comparative Example 2 as 100 are shown.

Figure 0005351669
Figure 0005351669

表1から、実施例2の発光装置1では、比較例2に比べて、試験開始前の光束が7%向上するとともに、試験開始から1000時間が経過した後の光束の劣化も少なくなっており、高出力化および耐湿性の向上を図れていることが分かる。   From Table 1, in the light-emitting device 1 of Example 2, the luminous flux before the start of the test is improved by 7% compared to Comparative Example 2, and the degradation of the luminous flux after 1000 hours from the start of the test is also reduced. It can be seen that high output and moisture resistance can be improved.

(実施例3)
本実施例では実施形態2の発光装置1において、LEDチップ10として発光ピーク波長が460nmの青色LEDチップを採用し、波長変換部材70に関して、透光性媒体73として、屈折率が1.4のシリコーン樹脂を採用し、蛍光体粒子71に関して、黄緑色蛍光体粒子として組成が(Ba,Sr)SiO:Eu2+で屈折率が1.9、中心粒径d50が10μmの蛍光体粒子、橙色蛍光体粒子として組成がSrSiO:Eu2+で屈折率が1.9、中心粒径d50が10μmの蛍光体粒子を採用し、金属酸化物層77として屈折率が1.87のYを採用し、微粒子72として屈折率nが1.87のYを採用している。
(Example 3)
In this example, in the light emitting device 1 of the second embodiment, a blue LED chip having an emission peak wavelength of 460 nm is adopted as the LED chip 10, and the refractive index of the wavelength conversion member 70 is 1.4 as the translucent medium 73. A phosphor resin that employs a silicone resin and has a composition of (Ba, Sr) 2 SiO 4 : Eu 2+ with a refractive index of 1.9 and a center particle diameter d 50 of 10 μm as yellow-green phosphor particles with respect to the phosphor particles 71. As the orange phosphor particles, phosphor particles having a composition of Sr 3 SiO 5 : Eu 2+ and a refractive index of 1.9 and a center particle diameter d 50 of 10 μm are adopted, and the metal oxide layer 77 has a refractive index of 1.87. adopted for Y 2 O 3, the refractive index n 2 as fine particles 72 have adopted Y 2 O 3 of 1.87.

ここにおいて、波長変換部材70の製造に際し、蛍光体粒子71の表面に金属酸化物層77をコーティングするにあたっては、例えば、黄緑色蛍光体粒子、橙色蛍光体粒子それぞれについて、n−ブタノール中で所定量の蛍光体粒子71(所定量の黄緑色蛍光体粒子、或いは、所定量の橙色蛍光体粒子)、イットリウムトリイソプロポキシド、微量の水を混合攪拌して得たスラリーを熱噴霧乾燥し、次いで300℃で熱処理することにより、各蛍光体粒子71それぞれの表面に厚さが100nm〜150nm程度のY層からなる金属酸化物層77を形成している。また、蛍光体粒子71の表面側に微粒子72を複合化するにあたっては、金属酸化物層77がコーティングされた黄色蛍光体粒子、金属酸化物層77がコーティングされた橙色蛍光体粒子それぞれについて、n−ブタノール中で上述の金属酸化物層77がコーティングされた所定量の蛍光体粒子71(金属酸化物層77がコーティングされた所定量の黄緑色蛍光体粒子、或いは、金属酸化物層77がコーティングされた所定量の橙色蛍光体粒子)、酸化イットリウムのゾルを混合攪拌して得たスラリーを熱噴霧乾燥することにより、各蛍光体粒子71それぞれの表面側に金属酸化物層77を介して中心粒径d50が100nm〜150nm程度の多数のY微粒子からなる微粒子72を複合化している。その後、微粒子72が複合化された蛍光体粒子71を屈折率が1.4のシリコーン樹脂に分散し、ドーム状に成形することにより、波長変換部材70を形成している。また、比較例3として、実施例3と同様の構成で金属酸化物層77および微粒子72を備えていない発光装置を作成した。 Here, when the metal oxide layer 77 is coated on the surface of the phosphor particle 71 when the wavelength conversion member 70 is manufactured, for example, each of the yellow-green phosphor particle and the orange phosphor particle is placed in n-butanol. A slurry obtained by mixing and stirring a predetermined amount of phosphor particles 71 (a predetermined amount of yellow-green phosphor particles or a predetermined amount of orange phosphor particles), yttrium triisopropoxide, and a small amount of water is heat spray dried, Next, by performing heat treatment at 300 ° C., a metal oxide layer 77 made of a Y 2 O 3 layer having a thickness of about 100 nm to 150 nm is formed on the surface of each phosphor particle 71. Further, when the fine particles 72 are compounded on the surface side of the phosphor particles 71, each of the yellow phosphor particles coated with the metal oxide layer 77 and the orange phosphor particles coated with the metal oxide layer 77 is divided into n -Predetermined amount of phosphor particles 71 coated with the above-described metal oxide layer 77 in butanol (predetermined amount of yellow-green phosphor particles coated with the metal oxide layer 77, or coated with the metal oxide layer 77) A predetermined amount of the orange phosphor particles) and a slurry obtained by mixing and stirring the yttrium oxide sol are thermally spray-dried to center each phosphor particle 71 through the metal oxide layer 77 on the surface side. Fine particles 72 composed of a large number of Y 2 O 3 fine particles having a particle diameter d 50 of about 100 nm to 150 nm are combined. Thereafter, the phosphor particles 71 in which the fine particles 72 are combined are dispersed in a silicone resin having a refractive index of 1.4 and formed into a dome shape, thereby forming the wavelength conversion member 70. Further, as Comparative Example 3, a light emitting device having the same configuration as that of Example 3 and having no metal oxide layer 77 and fine particles 72 was produced.

以上説明した実施例3および上述の比較例3について、温度85℃、相対湿度85%RH、断続通電(30分点灯、30分消灯のサイクル)の試験条件で信頼性加速試験を行った。試験前の光束および試験開始から1000時間が経過した後の光束を測定した結果を下記表2に示す。なお、表2では、比較例3の試験前の光束を100として規格化した相対値を記載してある。   About the Example 3 demonstrated above and the above-mentioned comparative example 3, the reliability acceleration test was done on the test conditions of temperature 85 degreeC, relative humidity 85% RH, and intermittent electricity supply (30-minute lighting, 30-minute light-off cycle). The results of measuring the luminous flux before the test and the luminous flux after 1000 hours from the start of the test are shown in Table 2 below. In Table 2, relative values normalized with the luminous flux before the test of Comparative Example 3 as 100 are shown.

Figure 0005351669
Figure 0005351669

表2から、実施例3の発光装置1では、比較例3に比べて、試験開始前の光束が10%向上するとともに、試験開始から1000時間が経過した後の光束の劣化も少なくなっており、高出力化および耐湿性の向上を図れていることが分かる。   From Table 2, in the light emitting device 1 of Example 3, the light flux before the start of the test is improved by 10% and the deterioration of the light flux after 1000 hours from the start of the test is less than that of Comparative Example 3. It can be seen that high output and moisture resistance can be improved.

(実施形態3)
図6(a)に示す本実施形態の発光装置1の基本構成は実施形態1と同じであり、波長変換部材70に関して、図6(b)〜(d)に示すように、透光性媒体73が、微粒子72が表面に複合化された蛍光体粒子71が散在する透光性母材(例えば、シリコーン樹脂、ガラスなど)73aと、透光性母材73aと略同一の屈折率を有し蛍光体粒子71と微粒子72との複合粒子と透光性母材73aとの間に介在して反射防止部76の一部を構成する金属酸化物層73bとからなる点が相違するだけである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 3)
The basic configuration of the light emitting device 1 of the present embodiment shown in FIG. 6A is the same as that of the first embodiment. With respect to the wavelength conversion member 70, as shown in FIGS. 73 has a light-transmitting base material (for example, silicone resin, glass, etc.) 73a in which phosphor particles 71 in which fine particles 72 are combined are scattered on the surface, and substantially the same refractive index as the light-transmitting base material 73a. The only difference is that the composite particles of the phosphor particles 71 and the fine particles 72 and the metal oxide layer 73b constituting a part of the antireflection portion 76 are interposed between the translucent base material 73a. is there. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

金属酸化物層73bの材料は、透光性母材73aの屈折率に応じて各種の金属酸化物から適宜選択すればよく、例えば、SiOなどを採用すればよい。また、本実施形態では、金属酸化物層73bの厚みを100nm〜150nmの範囲で設定してあるが、この数値は一例であり、特に限定するものではない。 The material of the metal oxide layer 73b may be appropriately selected from various metal oxides according to the refractive index of the translucent base material 73a. For example, SiO 2 may be employed. Moreover, in this embodiment, although the thickness of the metal oxide layer 73b is set in the range of 100 nm-150 nm, this numerical value is an example and it does not specifically limit it.

ここで、波長変換部材70の製造に際しては、蛍光体粒子71を分散した微粒子72の前駆体のスラリーを熱噴霧乾燥することにより、各蛍光体粒子71それぞれの表面に多数の微粒子72を複合化し、その後、金属酸化物層73bを例えばゾル−ゲル法により形成してから、当該金属酸化物層73bによりコーティングされた蛍光体粒子71を透光性母材73aの材料であるシリコーン樹脂もしくはガラスに分散し、ドーム状に成形している。なお、金属酸化物層73bの形成方法は、ゾル−ゲル法に限らず、例えば、プラズマ蒸着法でもよい。更に緻密な金属酸化物層73bとするために、必要に応じて熱処理を行ってもよい。   Here, when the wavelength conversion member 70 is manufactured, a slurry of the precursor of the fine particles 72 in which the phosphor particles 71 are dispersed is thermally spray-dried, so that a large number of fine particles 72 are combined on the surface of each phosphor particle 71. Then, after forming the metal oxide layer 73b by, for example, a sol-gel method, the phosphor particles 71 coated with the metal oxide layer 73b are applied to a silicone resin or glass that is a material of the translucent base material 73a. Dispersed and formed into a dome shape. The method for forming the metal oxide layer 73b is not limited to the sol-gel method, and for example, a plasma deposition method may be used. In order to obtain a denser metal oxide layer 73b, heat treatment may be performed as necessary.

ここにおいて、実施形態1と同様、微粒子72の屈折率をn、蛍光体粒子71の屈折率をnとし、透光性母材73aの屈折率をn、金属酸化物層73bの屈折率をnとすれば、反射防止部76の有効屈折率は、蛍光体粒子71の表面の法線方向において図6(d)に示すように微粒子72の屈折率nと金属酸化物層73bの屈折率nとの間で連続的に変化する。微粒子72の屈折率nは、蛍光体粒子71の屈折率nよりも高く設定してあるが、微粒子72の屈折率nと蛍光体粒子71の屈折率nとは略同一であることが好ましく、同一であることがより好ましい。また、金属酸化物層73bの屈折率nは、透光性母材73aの屈折率nと略同一としてあるが、図6(d)では、金属酸化物層73bの屈折率nに関して、透光性母材73aの屈折率nと略同一とみなす屈折率nの上限値をn4max、下限値をn4minとして図示してある。 Here, as in the first embodiment, the refractive index of the fine particles 72 is n 2 , the refractive index of the phosphor particles 71 is n 1 , the refractive index of the translucent base material 73 a is n 3 , and the refractive index of the metal oxide layer 73 b. If the rate is n 4 , the effective refractive index of the antireflection part 76 is such that the refractive index n 2 of the fine particles 72 and the metal oxide layer in the normal direction of the surface of the phosphor particles 71 as shown in FIG. continuously changes between 73b refractive index n 4 of the. Refractive index n 2 of the fine particles 72 is is set to be higher than the refractive index n 1 of the phosphor particles 71, are substantially identical to the refractive index n 1 of the refractive index n 2 and the phosphor particles 71 of the particulate 72 It is preferable that they are the same. Further, the refractive index n 4 of the metal oxide layer 73b is substantially the same as the refractive index n 3 of the translucent base material 73a, but in FIG. 6D, the refractive index n 4 of the metal oxide layer 73b is related. The upper limit value of the refractive index n 4 regarded as substantially the same as the refractive index n 3 of the translucent base material 73 a is shown as n 4max and the lower limit value is shown as n 4 min .

ここで、金属酸化物層73bの屈折率nを透光性母材73aの屈折率nと略同一であるとみなす範囲を規定するために、透光性母材73aの屈折率nと金属酸化物層73bの屈折率nとの屈折率差(|n−n|)の透光性母材73aの屈折率nに対する比率({|n−n|/n}×100)と、透光性母材73aと金属酸化物層73bとの界面(屈折率界面)における相対反射損失(正反射成分のみを考慮した反射損失の相対値)との関係をシミュレーションした結果を図7に示す。図7から分かるように、屈折率差の屈折率nに対する比率が22%以上になると、透光性母材73aと金属酸化物層73bとの界面(屈折率界面)における相対反射損失が1%を超える。一方、上述の実施例1の発光装置1では、比較例1に対する光取り出し効率のアップ率が7%であるので、相対反射損失の1%という値は無視できる値ではない。そこで、屈折率差の屈折率nに対する比率が15%以下(相対反射損失が0.5%以下)となる場合に、金属酸化物層73bの屈折率nを透光性母材73aの屈折率nと略同一であるとみなすこととする。 Here, in order to define the range considered a refractive index n 4 of the metal oxide layer 73b and is substantially the same as the refractive index n 3 of the light-transmitting base material 73a, the refractive index n 3 of the light-transmitting base material 73a the refractive index difference between the refractive index n 4 of the metal oxide layer 73b proportion to the refractive index n 3 of the light-transmitting base material 73a of ({(| | n 3 -n 4) | n 3 -n 4 | / n 3 } × 100) and the relative reflection loss (relative value of the reflection loss considering only the specular reflection component) at the interface (refractive index interface) between the translucent base material 73a and the metal oxide layer 73b. The results are shown in FIG. As can be seen from FIG. 7, when the ratio of the refractive index difference to the refractive index n 3 is 22% or more, the relative reflection loss at the interface (refractive index interface) between the translucent base material 73a and the metal oxide layer 73b is 1. %. On the other hand, in the light-emitting device 1 of Example 1 described above, the increase rate of the light extraction efficiency with respect to Comparative Example 1 is 7%, so the value of 1% of the relative reflection loss is not negligible. Therefore, when the ratio of the refractive index difference to the refractive index n 3 is 15% or less (relative reflection loss is 0.5% or less), the refractive index n 4 of the metal oxide layer 73b is changed to that of the translucent base material 73a. and it is considered a refractive index n 3 and is substantially the same.

以上説明した本実施形態の波長変換部材70では、透光性媒体73が、微粒子72が表面に複合化された蛍光体粒子71が散在する透光性母材73aと、透光性母材73aと略同一の屈折率nを有し蛍光体粒子71と微粒子72との複合粒子と透光性母材73aとの間に介在して反射防止部76の一部を構成する金属酸化物層73bとからなるので、蛍光体粒子71の表面側において微粒子72間の隙間が金属酸化物層73bによりコーティングされており、外部からの水分が蛍光体粒子71へ到達するのを抑制することができ、耐湿性を向上させることができる(湿度の影響で蛍光体粒子71の特性が劣化するのを抑制することができる)から、蛍光体粒子71の材料の選択の自由度が高くなり、しかも、金属酸化物層73bの屈折率nが透光性母材73aの屈折率nと略同一であることにより、モスアイ状構造部74の反射防止効果の低下を抑制することができるとともに励起光の反射を抑制できる。 In the wavelength conversion member 70 of the present embodiment described above, the translucent medium 73 includes the translucent base material 73a in which the phosphor particles 71 in which the fine particles 72 are combined on the surface are scattered, and the translucent base material 73a. Oxide layer having a refractive index n 4 that is substantially the same as that of the anti-reflection portion 76 and interposed between the composite particles of the phosphor particles 71 and the fine particles 72 and the translucent base material 73a. 73b, the gaps between the fine particles 72 are coated with the metal oxide layer 73b on the surface side of the phosphor particles 71, and moisture from the outside can be prevented from reaching the phosphor particles 71. Since the moisture resistance can be improved (deterioration of the properties of the phosphor particles 71 due to the influence of humidity), the degree of freedom in selecting the material of the phosphor particles 71 is increased, and Refractive index n of metal oxide layer 73b 4 By is substantially the same as the refractive index n 3 of the light-transmitting base material 73a, can suppress the reflection of the excitation light it is possible to suppress a decrease in anti-reflection effect of the moth-eye-like structure 74.

また、本実施形態の波長変換部材70では、透光性母材73aが、シリコーン樹脂もしくはガラスであるので、蛍光体粒子71の励起光として一般的な青色光や紫外光を採用した場合に透光性媒体73が励起光により劣化するのを抑制することができる。   Further, in the wavelength conversion member 70 of the present embodiment, the translucent base material 73a is made of silicone resin or glass. Therefore, when general blue light or ultraviolet light is used as excitation light for the phosphor particles 71, the translucent base material 73a is transparent. The optical medium 73 can be prevented from being deteriorated by the excitation light.

また、本実施形態の発光装置1も、実施形態1と同様、LEDチップ10から放射される光の一部を当該光よりも長波長の光に変換して放射する色変換部材として上述の波長変換部材70を用いているので、色変換部材における蛍光体粒子71への励起光の入射効率のより一層の向上および蛍光体粒子71からの変換光の取り出し効率のより一層の向上を図れ、光出力の高出力化を図れる。   The light emitting device 1 of the present embodiment also has the above-described wavelength as a color conversion member that converts and emits a part of light emitted from the LED chip 10 into light having a longer wavelength than the light, as in the first embodiment. Since the conversion member 70 is used, the incident efficiency of the excitation light to the phosphor particles 71 in the color conversion member and the extraction efficiency of the converted light from the phosphor particles 71 can be further improved. High output can be achieved.

(実施例4)
本実施例では実施形態3の発光装置1において、LEDチップ10として発光ピーク波長が460nmの青色LEDチップを採用し、波長変換部材70に関して、透光性母材73aとして、屈折率が1.4のシリコーン樹脂を採用し、蛍光体粒子71に関して、緑色蛍光体粒子として組成がCaSc:Ce3+で屈折率が1.9、中心粒径d50が8μmの蛍光体粒子、赤色蛍光体粒子として組成がCa0.7Sr0.3AlSiN:Eu2+で屈折率が2.1、中心粒径d50が10μmの蛍光体粒子を採用し、金属酸化物層73bとして屈折率が1.5のSiOを採用し、微粒子72として屈折率nが2.05のZrOを採用している。
Example 4
In this example, in the light emitting device 1 of the third embodiment, a blue LED chip having an emission peak wavelength of 460 nm is adopted as the LED chip 10, and the refractive index of the wavelength conversion member 70 is 1.4 as the translucent base material 73a. As a green phosphor particle, a phosphor particle having a composition of CaSc 2 O 4 : Ce 3+ with a refractive index of 1.9 and a center particle size d 50 of 8 μm, a red phosphor As the particles, phosphor particles having a composition of Ca 0.7 Sr 0.3 AlSiN 3 : Eu 2+ with a refractive index of 2.1 and a center particle diameter d 50 of 10 μm are adopted, and the refractive index of the metal oxide layer 73b is 1. .5 SiO 2 and ZrO 2 having a refractive index n 2 of 2.05 are adopted as the fine particles 72.

ここにおいて、波長変換部材70の製造に際し、蛍光体粒子71の表面に微粒子72を複合化するにあたっては、緑色蛍光体粒子、赤色蛍光体粒子それぞれについて、イソプロパノール中で所定量の蛍光体粒子71(所定量の緑色蛍光体粒子、或いは、所定量の赤色蛍光体粒子)、酸化ジルコニウムのゾルを混合攪拌して得たスラリーを熱噴霧乾燥することにより、各蛍光体粒子71それぞれの表面に中心粒径d50が100nmの多数のZrO微粒子からなる微粒子72を複合化している。その後、蛍光体粒子71の表面側に金属酸化物層73bをコーティングするにあたっては、例えば、微粒子72が複合化された緑色蛍光体粒子、微粒子72が複合化された赤色蛍光体粒子それぞれについて、イソプロパノール中で所定量の蛍光体粒子71(所定量の緑色蛍光体粒子、或いは、所定量の赤色蛍光体粒子)、TEOS(テトラエチルオルソシリケート)、水、触媒としての塩酸を60℃で所定時間(6時間)だけ混合攪拌して得たスラリーを、濾過、洗浄、300℃での熱処理を施すことにより、SiO層からなる金属酸化物層73bを形成している。その後、微粒子72が複合化され更に金属酸化物層73bによりコーティングされた蛍光体粒子71を屈折率が1.4のシリコーン樹脂に分散し、ドーム状に成形することにより、波長変換部材70を形成している。 Here, in the production of the wavelength conversion member 70, when the fine particles 72 are combined on the surface of the phosphor particles 71, a predetermined amount of the phosphor particles 71 (in the isopropanol for each of the green phosphor particles and the red phosphor particles) ( A slurry obtained by mixing and stirring a predetermined amount of green phosphor particles or a predetermined amount of red phosphor particles) and a zirconium oxide sol is subjected to thermal spray drying, whereby a central particle is formed on the surface of each phosphor particle 71. Fine particles 72 made of a large number of ZrO 2 fine particles having a diameter d 50 of 100 nm are combined. Then, when coating the metal oxide layer 73b on the surface side of the phosphor particles 71, for example, for each of the green phosphor particles combined with the fine particles 72 and the red phosphor particles combined with the fine particles 72, isopropanol Among them, a predetermined amount of phosphor particles 71 (predetermined amount of green phosphor particles or predetermined amount of red phosphor particles), TEOS (tetraethylorthosilicate), water, hydrochloric acid as a catalyst at 60 ° C. for a predetermined time (6 The slurry obtained by mixing and stirring for only (time) is filtered, washed, and subjected to heat treatment at 300 ° C., thereby forming the metal oxide layer 73b composed of the SiO 2 layer. Thereafter, the phosphor particles 71, in which the fine particles 72 are combined and coated with the metal oxide layer 73b, are dispersed in a silicone resin having a refractive index of 1.4 and formed into a dome shape, thereby forming the wavelength conversion member 70. doing.

(実施例5)
本実施例の発光装置1の基本構成は実施形態1と同じであり、金属酸化物層73bを形成していない点のみが実施例4と相違する。
(Example 5)
The basic configuration of the light emitting device 1 of this example is the same as that of the first embodiment, and only the point that the metal oxide layer 73b is not formed is different from the example 4.

以上説明した実施例4、金属酸化物層73bを形成していない実施例5、および上述の比較例2について、温度85℃、相対湿度85%RH、断続通電(30分点灯、30分消灯のサイクル)の試験条件で信頼性加速試験を行った。試験前の光束および試験開始から1000時間が経過した後の光束を測定した結果を下記表3に示す。なお、表3では、比較例2の試験前の光束を100として規格化した相対値を記載してある。   For Example 4 described above, Example 5 in which the metal oxide layer 73b is not formed, and Comparative Example 2 described above, temperature 85 ° C., relative humidity 85% RH, intermittent energization (30 minutes on, 30 minutes off) Acceleration test was performed under the test conditions of (cycle). The results of measuring the luminous flux before the test and the luminous flux after 1000 hours from the start of the test are shown in Table 3 below. In Table 3, relative values normalized with the luminous flux before the test of Comparative Example 2 as 100 are shown.

Figure 0005351669
Figure 0005351669

表3から、実施例4,5の発光装置1では、比較例2に比べて、試験開始前の光束が7%向上するとともに、試験開始から1000時間が経過した後の光束の劣化も少なくなっており、高出力化および耐湿性の向上を図れていることが分かる。また、実施例4と実施例5との比較から、金属酸化物層73bを備えた実施例4の方が金属酸化物層73bを備えていない実施例5に比べて、耐湿性が向上していることが分かる。   From Table 3, in the light-emitting devices 1 of Examples 4 and 5, the luminous flux before the start of the test is improved by 7% compared to Comparative Example 2, and the degradation of the luminous flux after 1000 hours from the start of the test is also reduced. It can be seen that high output and moisture resistance can be improved. Further, from the comparison between Example 4 and Example 5, the moisture resistance is improved in Example 4 including the metal oxide layer 73b as compared with Example 5 including no metal oxide layer 73b. I understand that.

(実施例6)
本実施例では実施形態3の発光装置1において、LEDチップ10として発光ピーク波長が460nmの青色LEDチップを採用し、波長変換部材70に関して、透光性母材73aとして、屈折率が1.4のシリコーン樹脂を採用し、蛍光体粒子71に関して、黄緑色蛍光体粒子として組成が(Ba、Sr)SiO:Eu2+で屈折率が1.9、中心粒径d50が10μmの蛍光体粒子、橙色蛍光体粒子として組成がSrSiO:Eu2+で屈折率が1.9、中心粒径d50が10μmの蛍光体粒子を採用し、金属酸化物層73bとして屈折率が1.5のSiOを採用し、微粒子72として屈折率nが1.87のYを採用している。
(Example 6)
In this example, in the light emitting device 1 of the third embodiment, a blue LED chip having an emission peak wavelength of 460 nm is adopted as the LED chip 10, and the refractive index of the wavelength conversion member 70 is 1.4 as the translucent base material 73a. A phosphor having a composition of (Ba, Sr) 2 SiO 4 : Eu 2+ , a refractive index of 1.9, and a center particle diameter d 50 of 10 μm as a yellow-green phosphor particle. The phosphor particles having a composition of Sr 3 SiO 5 : Eu 2+ and a refractive index of 1.9 and a center particle diameter d 50 of 10 μm are employed as the orange phosphor particles, and the refractive index of the metal oxide layer 73b is 1. 5 of SiO 2 is adopted, the refractive index n 2 as fine particles 72 have adopted Y 2 O 3 of 1.87.

ここにおいて、波長変換部材70の製造に際し、蛍光体粒子71の表面に微粒子72を複合化するにあたっては、黄緑色蛍光体粒子、橙色蛍光体粒子それぞれについて、n−ブタノール中で所定量の蛍光体粒子71(所定量の黄緑色蛍光体粒子、或いは、所定量の橙色蛍光体粒子)、イットリウムトリイソプロポキシド、微量の水を混合攪拌して得たスラリーを噴霧熱分解法によって噴霧熱分解することにより、各蛍光体粒子71それぞれの表面に中心粒径d50が100nm〜150nm程度の多数のY微粒子からなる微粒子72を複合化している。その後、蛍光体粒子71の表面側に金属酸化物層73bをコーティングするにあたっては、例えば、微粒子72が複合化された黄緑色蛍光体粒子、微粒子72が複合化された橙色蛍光体粒子それぞれについて、イソプロパノール中で所定量の蛍光体粒子71(所定量の黄緑色蛍光体粒子、或いは、所定量の橙色蛍光体粒子)、TEOS(テトラエチルオルソシリケート)、水、触媒としての塩酸を60℃で所定時間(6時間)だけ混合攪拌して得たスラリーを、濾過、洗浄、300℃での熱処理を施すことにより、SiO層からなる金属酸化物層73bを形成している。その後、微粒子72が複合化され更に金属酸化物層73bによりコーティングされた蛍光体粒子71を屈折率が1.4のシリコーン樹脂に分散し、ドーム状に成形することにより、波長変換部材70を形成している。 Here, when the fine particles 72 are combined on the surface of the phosphor particles 71 when the wavelength conversion member 70 is manufactured, a predetermined amount of phosphor in n-butanol is used for each of the yellow-green phosphor particles and the orange phosphor particles. A slurry obtained by mixing and stirring particles 71 (a predetermined amount of yellow-green phosphor particles or a predetermined amount of orange phosphor particles), yttrium triisopropoxide, and a small amount of water is subjected to spray pyrolysis by spray pyrolysis. As a result, fine particles 72 composed of a large number of Y 2 O 3 fine particles having a center particle diameter d 50 of about 100 nm to 150 nm are combined on the surface of each phosphor particle 71. Thereafter, in coating the metal oxide layer 73b on the surface side of the phosphor particles 71, for example, for each of the yellow-green phosphor particles combined with the fine particles 72 and the orange phosphor particles combined with the fine particles 72, In isopropanol, a predetermined amount of phosphor particles 71 (a predetermined amount of yellow-green phosphor particles or a predetermined amount of orange phosphor particles), TEOS (tetraethylorthosilicate), water, and hydrochloric acid as a catalyst at 60 ° C. for a predetermined time. The slurry obtained by mixing and stirring for (6 hours) is filtered, washed, and subjected to heat treatment at 300 ° C. to form a metal oxide layer 73b made of a SiO 2 layer. Thereafter, the phosphor particles 71, in which the fine particles 72 are combined and coated with the metal oxide layer 73b, are dispersed in a silicone resin having a refractive index of 1.4 and formed into a dome shape, thereby forming the wavelength conversion member 70. doing.

(実施例7)
本実施例の発光装置1の基本構成は実施形態1と同じであり、金属酸化物層73bを形成していない点のみが実施例6と相違する。
(Example 7)
The basic configuration of the light emitting device 1 of this example is the same as that of the first embodiment, and only the point that the metal oxide layer 73b is not formed is different from the example 6.

以上説明した実施例6、金属酸化物層73bを形成していない実施例7、および上述の比較例3について、温度85℃、相対湿度85%RH、断続通電(30分点灯、30分消灯のサイクル)の試験条件で信頼性加速試験を行った。試験前の光束および試験開始から1000時間が経過した後の光束を測定した結果を下記表4に示す。なお、表4では、比較例3の試験前の光束を100として規格化した相対値を記載してある。   For Example 6 described above, Example 7 in which the metal oxide layer 73b is not formed, and Comparative Example 3 described above, temperature 85 ° C., relative humidity 85% RH, intermittent energization (30 minutes on, 30 minutes off) Acceleration test was performed under the test conditions of (cycle). Table 4 below shows the results of measuring the luminous flux before the test and the luminous flux after 1000 hours had elapsed from the start of the test. In Table 4, relative values normalized with the luminous flux before the test of Comparative Example 3 as 100 are shown.

Figure 0005351669
Figure 0005351669

表4から、実施例6,7の発光装置1では、比較例3に比べて、試験開始前の光束が10%向上するとともに、試験開始から1000時間が経過した後の光束の劣化も少なくなっており、高出力化および耐湿性の向上を図れていることが分かる。また、実施例6と実施例7との比較から、金属酸化物層73bを備えた実施例6の方が金属酸化物層73bを備えていない実施例7に比べて、耐湿性が向上していることが分かる。   From Table 4, in the light-emitting devices 1 of Examples 6 and 7, the luminous flux before the start of the test is improved by 10% compared to Comparative Example 3, and the degradation of the luminous flux after 1000 hours from the start of the test is also reduced. It can be seen that high output and moisture resistance can be improved. Moreover, from the comparison between Example 6 and Example 7, the moisture resistance is improved in Example 6 including the metal oxide layer 73b compared to Example 7 not including the metal oxide layer 73b. I understand that.

ところで、波長変換部材70の形状および波長変換部材70を適用する発光装置1の構造は上記各実施形態および上記各実施例の構造に限定するものではなく、波長変換部材70の形状はドーム状に限らず、例えば、シート状の形状でもよい。   By the way, the shape of the wavelength conversion member 70 and the structure of the light emitting device 1 to which the wavelength conversion member 70 is applied are not limited to the structures of the above embodiments and the above examples, and the shape of the wavelength conversion member 70 is a dome shape. For example, it may be a sheet-like shape.

1 発光装置
10 LEDチップ
70 波長変換部材(色変換部材)
71 蛍光体粒子
72 微粒子
73 透光性媒体
73a 透光性母材
73b 金属酸化物層
74 モスアイ状構造部
75 微細突起
76 反射防止部
77 金属酸化物層
DESCRIPTION OF SYMBOLS 1 Light-emitting device 10 LED chip 70 Wavelength conversion member (color conversion member)
71 Phosphor Particles 72 Fine Particles 73 Translucent Medium 73a Translucent Base Material 73b Metal Oxide Layer 74 Mosaic Structure 75 Fine Projection 76 Antireflection Unit 77 Metal Oxide Layer

Claims (8)

蛍光体粒子が当該蛍光体粒子よりも屈折率が小さな透光性媒体内に散在する波長変換部材であって、蛍光体粒子の表面側に、微細凹凸構造を有するモスアイ状構造部とモスアイ状構造部の先細り状の微細突起間に入り込んだ前記透光性媒体とで構成される反射防止部を備え、モスアイ状構造部の各微細突起は、蛍光体粒子よりも粒径が小さく且つ前記透光性媒体よりも屈折率が大きな微粒子を蛍光体粒子の表面側において蛍光体粒子に複合化することにより形成されてなり、微粒子の屈折率が蛍光体粒子の屈折率と同じであることを特徴とする波長変換部材。 A wavelength conversion member in which phosphor particles are scattered in a translucent medium having a refractive index smaller than that of the phosphor particles, and a moth-eye structure and a moth-eye structure having a fine uneven structure on the surface side of the phosphor particles Each of the fine projections of the moth-eye structure is smaller in size than the phosphor particles and has the light-transmitting property. It is formed by combining fine particles having a refractive index larger than that of the fluorescent medium with the phosphor particles on the surface side of the phosphor particles, and the refractive index of the fine particles is the same as the refractive index of the phosphor particles. Wavelength conversion member to be used. 蛍光体粒子が当該蛍光体粒子よりも屈折率が小さな透光性媒体内に散在する波長変換部材であって、蛍光体粒子の表面側に、微細凹凸構造を有するモスアイ状構造部とモスアイ状構造部の先細り状の微細突起間に入り込んだ前記透光性媒体とで構成される反射防止部を備え、モスアイ状構造部の各微細突起は、蛍光体粒子よりも粒径が小さく且つ前記透光性媒体よりも屈折率が大きな微粒子を蛍光体粒子の表面側において蛍光体粒子に複合化することにより形成されてなり、微粒子の屈折率が蛍光体粒子の屈折率よりも大きいことを特徴とする波長変換部材。 A wavelength conversion member in which phosphor particles are scattered in a translucent medium having a refractive index smaller than that of the phosphor particles, and a moth-eye structure and a moth-eye structure having a fine uneven structure on the surface side of the phosphor particles Each of the fine projections of the moth-eye structure is smaller in size than the phosphor particles and has the light-transmitting property. than sex medium will be formed by conjugating the phosphor particles in the surface side of the phosphor particles larger particle refractive index, the refractive index of the fine particles and Okiiko than the refractive index of the fluorescent particles wavelength conversion member characterized. 前記微粒子は、前記蛍光体粒子への励起光および前記蛍光体粒子からの変換光に対して透明な金属酸化物により形成されてなることを特徴とする請求項1または請求項2記載の波長変換部材。 The fine particles may claim 1 or claim 2 Symbol mounting features that you become formed of a transparent metal oxide with respect to converted light from the excitation light and the fluorescent particles to the phosphor particles Wavelength conversion member. 前記蛍光体粒子の前記表面の全体が前記蛍光体粒子と略同一の屈折率を有する金属酸化物層によりコーティングされ、前記微粒子が前記金属酸化物層を介して前記蛍光体粒子に複合化されてなり、当該略同一とは、前記蛍光体粒子の屈折率をn 、前記金属酸化物層の屈折率をn とするとき、屈折率差|n −n |の屈折率n に対する比率{|n −n |/n }×100が、15%以下の場合であることを特徴とする請求項1または請求項2記載の波長変換部材。 The entire surface of the phosphor particles is coated with a metal oxide layer having substantially the same refractive index as the phosphor particles, and the fine particles are combined with the phosphor particles through the metal oxide layer. becomes, the said substantially identical, wherein n 1 the refractive index of the phosphor particles, when the refractive index of the metal oxide layer and the n 4, the refractive index difference | to the refractive index n 1 of | n 1 -n 4 ratio {| n 1 -n 4 | / n 1} × 100 is, according to claim 1 or claim 2 Symbol placement wavelength conversion member, characterized in that the case for 15% or less. 前記透光性媒体は、前記微粒子が前記表面に複合化された前記蛍光体粒子が散在する透光性母材と、前記透光性母材と略同一の屈折率を有し前記蛍光体粒子と前記微粒子との複合粒子と前記透光性母材との間に介在して前記反射防止部の一部を構成する金属酸化物層とからなり、当該略同一とは、前記透光性母材の屈折率をn 、前記金属酸化物層の屈折率をn とするとき、屈折率差|n −n |の屈折率n に対する比率{|n −n |/n }×100が、15%以下の場合であることを特徴とする請求項1または請求項2記載の波長変換部材。 The translucent medium has a translucent matrix in which the phosphor particles in which the fine particles are combined on the surface are scattered, and the phosphor particles having substantially the same refractive index as the translucent matrix. And a metal oxide layer constituting a part of the antireflection part interposed between the composite particles of the fine particles and the translucent base material, and the substantially same means the translucent base When the refractive index of the material is n 3 and the refractive index of the metal oxide layer is n 4 , the ratio of the refractive index difference | n 3 −n 4 | to the refractive index n 3 {| n 3 −n 4 | / n 3} × 100 is, according to claim 1 or claim 2 Symbol placement wavelength conversion member, characterized in that the case for 15% or less. 前記透光性媒体は、シリコーン樹脂もしくはガラスであることを特徴とする請求項1ないし請求項4のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 4, wherein the translucent medium is a silicone resin or glass . 前記透光性母材は、シリコーン樹脂もしくはガラスであることを特徴とする請求項5記載の波長変換部材。 The light-transmitting base material, the wavelength converting member according to claim 5 Symbol mounting, characterized in that a silicone resin or glass. LEDチップと、LEDチップから放射される光の一部を当該光よりも長波長の光に変換して放射する色変換部材とを備え、当該色変換部材として請求項1ないし請求項7のいずれか1項に記載の波長変換部材を用いてなることを特徴とする発光装置。 An LED chip, and a color conversion member that converts a part of light emitted from the LED chip into light having a longer wavelength than the light and emits the light, and the color conversion member is any one of claims 1 to 7. or the light emitting device you characterized by using a wavelength conversion member according to item 1.
JP2009205060A 2008-09-25 2009-09-04 Wavelength converting member and light emitting device using the same Active JP5351669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205060A JP5351669B2 (en) 2008-09-25 2009-09-04 Wavelength converting member and light emitting device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008246914 2008-09-25
JP2008246914 2008-09-25
JP2009205060A JP5351669B2 (en) 2008-09-25 2009-09-04 Wavelength converting member and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2010100827A JP2010100827A (en) 2010-05-06
JP5351669B2 true JP5351669B2 (en) 2013-11-27

Family

ID=42291732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205060A Active JP5351669B2 (en) 2008-09-25 2009-09-04 Wavelength converting member and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP5351669B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128357A (en) * 2009-12-17 2011-06-30 Canon Inc Image display device
DE102010029368A1 (en) 2010-05-27 2011-12-01 Osram Opto Semiconductors Gmbh Electronic device and method for manufacturing an electronic device
KR101950866B1 (en) * 2011-11-24 2019-02-21 엘지이노텍 주식회사 Display device
JP6068473B2 (en) * 2012-08-01 2017-01-25 パナソニック株式会社 Wavelength converting particle, wavelength converting member, and light emitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895574B2 (en) * 2005-11-02 2012-03-14 シャープ株式会社 Wavelength conversion member and light emitting device
JP2007324475A (en) * 2006-06-02 2007-12-13 Sharp Corp Wavelength conversion member and light emitting device
JP2008150518A (en) * 2006-12-19 2008-07-03 Sharp Corp Wavelength converting member and light-emitting device

Also Published As

Publication number Publication date
JP2010100827A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5543884B2 (en) Wavelength converting particle, wavelength converting member using the same, and light emitting device
JP4698412B2 (en) Light emitting device and lighting device
KR100620844B1 (en) Light-emitting apparatus and illuminating apparatus
KR100752586B1 (en) Light-emitting apparatus and illuminating apparatus
JP4789672B2 (en) Light emitting device and lighting device
TWI481077B (en) Semiconductor light emitting device and manufacturing method of semiconductor light emitting device
JP3978451B2 (en) Light emitting device
JP4744335B2 (en) Light emitting device and lighting device
JP2006237264A (en) Light emitting device and lighting apparatus
JP2007266356A (en) Light-emitting device and illuminator using the same
JP2007035885A (en) Light emitting device and illumination device employing it
JP2011114096A (en) Illumination device
JP2008147610A (en) Light emitting device
JP4948841B2 (en) Light emitting device and lighting device
JP2007266358A (en) Light-emitting device and illuminator
JP2006093399A (en) Light-emitting device, its manufacturing method and luminaire
JP2005277331A (en) Light emitting device and lighting device
JP5351669B2 (en) Wavelength converting member and light emitting device using the same
JP2006066657A (en) Light emitting device and lighting device
JP4417757B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP5474133B2 (en) Light emitting device
JP5085851B2 (en) Light emitting device and lighting device
JP4624069B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
US20220190208A1 (en) Support structures for light emitting diode packages
JP2006093612A (en) Light emitting device and illuminator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100709

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5351669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150