JP2011020202A - Cutting plotter - Google Patents

Cutting plotter Download PDF

Info

Publication number
JP2011020202A
JP2011020202A JP2009166046A JP2009166046A JP2011020202A JP 2011020202 A JP2011020202 A JP 2011020202A JP 2009166046 A JP2009166046 A JP 2009166046A JP 2009166046 A JP2009166046 A JP 2009166046A JP 2011020202 A JP2011020202 A JP 2011020202A
Authority
JP
Japan
Prior art keywords
guide rail
cutting
carriage
medium
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009166046A
Other languages
Japanese (ja)
Other versions
JP5606697B2 (en
Inventor
Masabumi Okabe
正文 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mimaki Engineering Co Ltd
Original Assignee
Mimaki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mimaki Engineering Co Ltd filed Critical Mimaki Engineering Co Ltd
Priority to JP2009166046A priority Critical patent/JP5606697B2/en
Priority to EP10799554.0A priority patent/EP2455184B1/en
Priority to PCT/JP2010/003480 priority patent/WO2011007490A1/en
Priority to KR20127001069A priority patent/KR20120027533A/en
Priority to CN201080040944.1A priority patent/CN102497956B/en
Publication of JP2011020202A publication Critical patent/JP2011020202A/en
Priority to US13/348,982 priority patent/US8757941B2/en
Application granted granted Critical
Publication of JP5606697B2 publication Critical patent/JP5606697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C1/00Milling machines not designed for particular work or special operations
    • B23C1/007Milling machines not designed for particular work or special operations movable milling machines, e.g. on rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C1/00Milling machines not designed for particular work or special operations
    • B23C1/06Milling machines not designed for particular work or special operations with one vertical working-spindle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • B23Q15/24Control or regulation of position of tool or workpiece of linear position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/3806Cutting-out; Stamping-out wherein relative movements of tool head and work during cutting have a component tangential to the work surface
    • B26F1/3813Cutting-out; Stamping-out wherein relative movements of tool head and work during cutting have a component tangential to the work surface wherein the tool head is moved in a plane parallel to the work in a coordinate system fixed with respect to the work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/26Means for mounting or adjusting the cutting member; Means for adjusting the stroke of the cutting member
    • B26D2007/2678Means for mounting or adjusting the cutting member; Means for adjusting the stroke of the cutting member for cutting pens mounting in a cutting plotter
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41139Compensate dynamic deflection of slide, calculated with position, speed, torque deflection values
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45038Cutting plotter
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49189Bending of driven table, lag between real and commanded position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50173Machine tool hang and move on rail above workpiece
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/306664Milling including means to infeed rotary cutter toward work
    • Y10T409/307224Milling including means to infeed rotary cutter toward work with infeed control means energized in response to activator stimulated by condition sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/306664Milling including means to infeed rotary cutter toward work
    • Y10T409/307728Milling including means to infeed rotary cutter toward work including gantry-type cutter-carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/30784Milling including means to adustably position cutter
    • Y10T409/307952Linear adjustment
    • Y10T409/308008Linear adjustment with control for adjustment means responsive to activator stimulated by condition sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/309576Machine frame
    • Y10T409/309744Machine frame including means to compensate for deformation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/141With means to monitor and control operation [e.g., self-regulating means]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting plotter that, even if warpage occurs in a guide rail or the like that movably supports a carriage, can prevent loss of cutting quality due to the warpage. <P>SOLUTION: The cutting plotter includes: a work table that supports a sheet-shaped medium that is being worked; an end mill that is provided above the medium supported by the work table and that cuts the medium; guide rails 31, a Y-bar 32, and a cutting drive mechanism that are provided above the work table and that support the end mill such that the end mill can move forward and backward, right and left, and up and down; and a control unit 50 that moves the end mill forward and backward, right and left, and up and down, and controls the end mill so as to cut the medium that is being worked. The cutting plotter also includes a carriage shape measurement mechanism 100 that detects warpage in the guide rails 31 and the Y-bar 32. Correction of the moving direction of a work tool is controlled on the basis of the detected warpage of the guide rails 31 and Y-bar 32. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、シート状の被加工媒体を支持する支持面を有する加工テーブルと、加工テーブル上に設けられた第1ガイドレール、第1ガイドレールに沿って移動可能に支持された第2ガイドレール、及び第2ガイドレールに沿って移動可能に支持されたキャリッジにより構成される加工具支持手段と、上記キャリッジに取り付けられ被加工媒体を所望の形状に切削加工するエンドミル等の加工具とを備えたカッティングプロッタに関する。   The present invention relates to a processing table having a support surface for supporting a sheet-like processing medium, a first guide rail provided on the processing table, and a second guide rail supported so as to be movable along the first guide rail. And a processing tool support means comprising a carriage supported so as to be movable along the second guide rail, and a processing tool such as an end mill that is attached to the carriage and cuts the processing medium into a desired shape. It relates to a cutting plotter.

シート状の被加工媒体に所望の加工を施す媒体加工装置としてプリンタ装置やカッティングプロッタ等がある。これらの媒体加工装置は、平板状の加工テーブル上に被加工媒体を載置保持し、この加工テーブルの上方に直線状に延びるように設けられる第1ガイドレールと、第1ガイドレールが延びる方向と交差する方向に延びるように設けられ第1ガイドレールに沿って移動可能に支持された第2ガイドレール(Yバーとも称される)と、第2ガイドレールに沿って移動可能に支持されたキャリッジ等により構成される加工具支持手段と、加工具支持手段に取り付けられ被加工媒体に加工を施す加工具と、加工具支持手段及び加工具の移動制御を行うことにより前記加工を制御する制御機構とを備えたものが周知となっている(例えば、特許文献1参照)。   There are a printer device, a cutting plotter, and the like as a medium processing device that performs a desired processing on a sheet-like processing medium. These medium processing apparatuses place and hold a medium to be processed on a flat processing table, and a first guide rail provided so as to extend linearly above the processing table, and a direction in which the first guide rail extends. A second guide rail (also referred to as a Y bar) provided so as to extend in a direction intersecting with the first guide rail and movably supported along the first guide rail, and supported movably along the second guide rail A processing tool support means configured by a carriage, a processing tool attached to the processing tool support means for processing a workpiece medium, and a control for controlling the processing by controlling movement of the processing tool support means and the processing tool. A device including a mechanism is well known (for example, see Patent Document 1).

上記のような媒体加工装置の一種であり、被加工媒体を所望の形状に切削加工する機器としてカッティングプロッタがある。カッティングプロッタにおいても、上述したような構成のものは周知になっている。このようなカッティングプロッタでは、カッター刃またはエンドミル等が加工具として使用され、加工具が制御機構の制御により上記キャリッジに対し上下方向に移動され被加工媒体に押し付けまたは離隔されるとともに、キャリッジの第2ガイドレール上での移動制御及び第2ガイドレールの第1ガイドレール上での移動制御を行うことにより、加工具を被加工媒体に対して上下または前後左右に移動させることが可能になり、被加工媒体を所望の形状に切削加工できるようになっている。   A cutting plotter is a kind of medium processing apparatus as described above, and is an apparatus for cutting a medium to be processed into a desired shape. Also in the cutting plotter, the thing of the above structures is known. In such a cutting plotter, a cutter blade, an end mill, or the like is used as a processing tool, and the processing tool is moved up and down with respect to the carriage under the control of a control mechanism and pressed against or separated from the processing medium. By performing movement control on the two guide rails and movement control on the first guide rail of the second guide rail, it becomes possible to move the processing tool up and down, front and rear, left and right with respect to the workpiece medium, The workpiece medium can be cut into a desired shape.

特開2004−148745号公報JP 2004-148745 A

ところで、上述したようなカッティングプロッタでは、第1ガイドレールまたは第2ガイドレールに公差等による微小な曲がりが存在していることがある。例えば、第2ガイドレールでは長さが1m程度のもので0.9mm程度の曲がりが発生しているものもある。このような曲がりを有する第1または第2ガイドレールを用いて切削加工を行うと、ガイドレールに沿ってキャリッジを真直に移動できないことは勿論、所望の形状に被加工媒体を切削加工できなくなるという問題が発生し、被加工媒体の切削加工の品質が劣化するという課題があった。   By the way, in the cutting plotter as described above, a minute bend due to tolerance or the like may exist in the first guide rail or the second guide rail. For example, some second guide rails have a length of about 1 m and have a curvature of about 0.9 mm. When cutting is performed using the first or second guide rail having such a bend, the carriage cannot be moved straight along the guide rail, and the processing medium cannot be cut into a desired shape. There was a problem that a problem occurred and the quality of cutting of the workpiece medium deteriorated.

本発明は、上記課題に鑑みてなされたものであり、キャリッジを移動可能に支持するガイドレール等に曲がりが発生していても、当該曲がりによる切削加工の品質劣化を防止できるカッティングプロッタを提供することを目的とする。   The present invention has been made in view of the above problems, and provides a cutting plotter that can prevent deterioration in cutting quality due to the bending even if the guide rail or the like that supports the carriage to be movable is bent. For the purpose.

上記目的を達成するため、本発明に係るカッティングプロッタは、シート状の被加工媒体を支持する支持面を有する媒体支持手段(例えば、実施形態における加工テーブル20)と、媒体支持手段に支持面に対して平行な第1方向に延びて設けられた第1ガイドレール(例えば、実施形態におけるガイドレール31)と、第1ガイドレールに沿って第1方向に移動可能に取り付けられ、支持面に対して平行且つ第1方向に交差する第2方向に延びて設けられた第2ガイドレール(例えば、実施形態におけるYバー32)と、第2ガイドレールに沿って第2方向に移動可能に取り付けられたキャリッジ(例えば、実施形態におけるスライダ41)と、キャリッジに支持面に対して垂直な第3方向に移動可能に取り付けられ、被加工媒体の切削加工を行う加工具(例えば、実施形態におけるエンドミル43)と、第2ガイドレールを第1ガイドレールに沿って第1方向に移動させる制御と、キャリッジを第2ガイドレールに沿って第2方向に移動させる制御と、加工具をキャリッジに対して第3方向に移動させる制御とを行って、加工具により被加工媒体を切削加工させる加工制御手段(例えば、実施形態におけるコントロールユニット50)とを備えたカッティングプロッタにおいて、キャリッジを第2ガイドレールに沿って第2方向に移動させたときの第2ガイドレールに対するキャリッジの移動経路が所期の移動経路に対して第2方向と直交する方向にずれるずれの大きさを示す第2ガイドレールずれ量を測定する第2方向ずれ検出手段(例えば、実施形態における変位センサ101、X方向治具103)を備え、加工制御手段は、第2ガイドレール上でのキャリッジの移動制御において第2ガイドレールずれ量を補正するように第1ガイドレール上での第2ガイドレールの移動制御を加えた制御を行うことを特徴とする。   In order to achieve the above object, a cutting plotter according to the present invention includes a medium supporting means (for example, the processing table 20 in the embodiment) having a supporting surface for supporting a sheet-like workpiece medium, and a medium supporting means on the supporting surface. A first guide rail (for example, guide rail 31 in the embodiment) provided extending in a first direction parallel to the first guide rail, and attached to be movable in the first direction along the first guide rail. And a second guide rail (for example, the Y bar 32 in the embodiment) provided to extend in a second direction that is parallel to and intersects the first direction, and is attached to be movable in the second direction along the second guide rail. A carriage (for example, the slider 41 in the embodiment), and a carriage that is movably attached in a third direction perpendicular to the support surface. A processing tool (for example, the end mill 43 in the embodiment), a control for moving the second guide rail in the first direction along the first guide rail, and a carriage in the second direction along the second guide rail. And control for moving the processing tool in the third direction with respect to the carriage, and a processing control means (for example, the control unit 50 in the embodiment) for cutting the medium to be processed by the processing tool. In the cutting plotter, when the carriage is moved in the second direction along the second guide rail, the movement path of the carriage relative to the second guide rail is shifted in a direction perpendicular to the second direction with respect to the intended movement path. Second direction deviation detecting means for measuring the second guide rail deviation amount indicating the size of the first guide rail (for example, the displacement sensor 1 in the embodiment). 1 and an X-direction jig 103), and the machining control means includes a second guide rail on the first guide rail so as to correct the shift amount of the second guide rail in the movement control of the carriage on the second guide rail. It is characterized in that control is added to the above movement control.

また、本発明に係るカッティングプロッタにおいて、第2ガイドレールを第1ガイドレールに沿って第1方向に移動させたときの第1ガイドレールに対する第2ガイドレールの移動経路が所期の移動経路に対して第1方向と直交する方向にずれるずれの大きさを示す第1ガイドレールずれ量を測定する第1方向ずれ検出手段(例えば、実施形態における変位センサ101、Y方向治具104)を備え、加工制御手段は、第1ガイドレール上での第2ガイドレールの移動制御において第1ガイドレールずれ量を補正するように第2ガイドレール上でのキャリッジの移動制御を加えた制御を行うことが好ましい。   Further, in the cutting plotter according to the present invention, when the second guide rail is moved in the first direction along the first guide rail, the movement path of the second guide rail with respect to the first guide rail becomes an intended movement path. In contrast, first direction deviation detecting means (for example, the displacement sensor 101 and the Y direction jig 104 in the embodiment) that measures the first guide rail deviation amount indicating the magnitude of deviation in the direction orthogonal to the first direction is provided. The machining control means performs control including carriage movement control on the second guide rail so as to correct the shift amount of the first guide rail in the movement control of the second guide rail on the first guide rail. Is preferred.

そして、第1及び第2ガイドレールは、直線上に延びて設けられ、第1方向ずれ検出手段は、第1ガイドレールの曲がりを測定し、第2方向ずれ検出手段は、第2ガイドレールの曲がりを測定することが好ましい。   The first and second guide rails are provided so as to extend on a straight line, the first direction deviation detecting means measures the bending of the first guide rail, and the second direction deviation detecting means is provided on the second guide rail. It is preferable to measure the bending.

本発明に係るカッティングプロッタにおいては、キャリッジを第2ガイドレールに沿って移動させたときの移動経路から、所期の移動経路に対する第2方向と直交する方向のずれを検出する第2方向ずれ検出手段が設けられ、当該ずれを補正するように第2ガイドレールを第1ガイドレールに対して第1方向に移動させる制御を加えて行う。これにより、キャリッジを支持する第2ガイドレールの曲がりを切削加工前に測定し、当該測定結果に基づいて、第2ガイドレールの第1ガイドレールに対する前記第1方向への移動を制御し、加工具の被加工媒体に対する移動を補正することが可能になるため、キャリッジを支持する第2ガイドレールに曲がり等が存在する場合においても、当該曲がりによる切削加工の品質劣化を防止することができる。   In the cutting plotter according to the present invention, the second direction deviation detection for detecting a deviation in the direction orthogonal to the second direction with respect to the intended movement path from the movement path when the carriage is moved along the second guide rail. Means are provided for performing control to move the second guide rail in the first direction with respect to the first guide rail so as to correct the deviation. Accordingly, the bending of the second guide rail supporting the carriage is measured before cutting, and the movement of the second guide rail in the first direction relative to the first guide rail is controlled based on the measurement result. Since the movement of the tool relative to the workpiece medium can be corrected, even when the second guide rail that supports the carriage has a bend or the like, it is possible to prevent the quality of the cutting process from being deteriorated due to the bend.

また、第2ガイドレールを第1ガイドレールに沿って移動させたときの移動経路から、所期の移動経路に対する第1方向と直交する方向のずれを検出するずれ検出手段が設けられ、当該第1方向と直交する方向のずれを補正するようにキャリッジを第2ガイドレールに沿って第2方向に移動させる制御を加えて行う。これにより、第2ガイドレールを支持する第1ガイドレールに曲がり等が存在する場合でも、曲がりによる切削加工の品質劣化を防止することができる。   Further, there is provided a deviation detecting means for detecting a deviation in a direction perpendicular to the first direction with respect to an intended movement path from a movement path when the second guide rail is moved along the first guide rail. Control is performed to move the carriage in the second direction along the second guide rail so as to correct the deviation in the direction orthogonal to the one direction. As a result, even when there is a bend in the first guide rail that supports the second guide rail, it is possible to prevent the quality deterioration of the cutting due to the bend.

本発明が適用されるカッティングプロッタを示す斜視図である。It is a perspective view which shows the cutting plotter to which this invention is applied. 上記カッティングプロッタに設けられたエンドミルの長手方向に延びる方向で切断したときの部分断面図であり、エンドミルにより被加工媒体を切削している様子を示す図である。It is a fragmentary sectional view when it cut | disconnects in the direction extended in the longitudinal direction of the end mill provided in the said cutting plotter, and is a figure which shows a mode that the to-be-processed medium is cut with the end mill. 上記カッティングプロッタによる切削加工制御構成を示すブロック図である。It is a block diagram which shows the cutting process control structure by the said cutting plotter. 上記カッティングプロッタにX及びY方向治具並びに変位センサを取り付けた様子を示す斜視図である。It is a perspective view which shows a mode that the X and Y direction jig | tool and the displacement sensor were attached to the said cutting plotter. (a)は、変位センサを示す斜視図である。(b)は、センサ支持部材に変位センサが取り付けられ、センサ支持部材がスライダ上に取り付けられる様子を示す斜視図である。(A) is a perspective view which shows a displacement sensor. (B) is a perspective view which shows a mode that a displacement sensor is attached to a sensor support member, and a sensor support member is attached on a slider. 上記カッティングプロッタにおいてX方向治具を用いてYバーのX軸方向の曲がりを測定する様子を示す斜視図である。It is a perspective view which shows a mode that the curvature of the X-axis direction of a Y bar is measured using the X direction jig | tool in the said cutting plotter. (a)は、X軸方向に曲がっているYバーの曲がりを変位センサを用いて測定する様子を示した上面図である。(b)は、上記変位センサにより測定されたYバーの曲がりの測定結果とその測定結果を基に作成されたカッティングデータを示す図である。(c)は、所望の加工領域とその加工領域の形状に切削加工するためのカッティングデータを示す図である。(A) is the top view which showed a mode that the bending of Y bar | burr bent in the X-axis direction was measured using a displacement sensor. (B) is a figure which shows the measurement data produced based on the measurement result of the bending of the Y bar measured by the displacement sensor, and the measurement result. (C) is a figure which shows the cutting data for cutting into a desired process area | region and the shape of the process area. 上記カッティングプロッタにX及びY方向治具並びに変位センサを取り付けら様子を示す上面図である。It is a top view which shows a mode that the X and Y direction jig | tool and the displacement sensor are attached to the said cutting plotter. (a)は、Y軸方向に曲がっているガイドレールの曲がりを変位センサを用いて測定する様子を示した上面図である。(b)は、上記変位センサにより測定されたガイドレールの曲がりの測定結果とその測定結果を基に作成されたカッティングデータを示す図である。(c)は、所望の加工領域とその加工領域の形状に切削加工するためのカッティングデータを示す図である。(A) is the top view which showed a mode that the curve of the guide rail bent in the Y-axis direction was measured using a displacement sensor. (B) is a figure which shows the measurement result of the bending of the guide rail measured by the said displacement sensor, and the cutting data produced based on the measurement result. (C) is a figure which shows the cutting data for cutting into a desired process area | region and the shape of the process area.

以下、図面を参照しながら本発明の好ましい実施形態について説明する。本発明を適用したカッティングプロッタ(カッティング装置)の一例として、アクリル板やアルミ複合板等の素材で形成されたシート状の被加工媒体を加工テーブルに固定保持させ、この被加工媒体に対してエンドミルを当接させ上下方向に昇降、及び水平面内の直交二軸方向に移動させて被加工媒体を所望の形状に切削加工する、X―Yプロッタタイプのカッティングプロッタ1の概略構成を図1に示す。以下の説明では、図1の紙面における上方向をZ軸正方向、また、図1の紙面において右下方向(後述するYバー32に平行な方向)をY軸正方向、図1の紙面における左下方向(後述するガイドレール31に平行な方向)をX軸正方向とする。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As an example of a cutting plotter (cutting device) to which the present invention is applied, a sheet-like processing medium formed of a material such as an acrylic plate or an aluminum composite plate is fixedly held on a processing table, and an end mill is attached to the processing medium. FIG. 1 shows a schematic configuration of an XY plotter type cutting plotter 1 that lifts up and down in the vertical direction and moves the workpiece medium in a desired shape by moving it in two orthogonal directions in a horizontal plane. . In the following description, the upward direction on the paper surface of FIG. 1 is the positive Z-axis direction, the lower right direction (the direction parallel to the Y bar 32 described later) on the paper surface of FIG. A lower left direction (a direction parallel to a guide rail 31 described later) is defined as a positive X-axis direction.

カッティングプロッタ1は、被加工媒体2を固定保持する加工テーブル20と、加工テーブル20を水平に保持するとともに各機構の取り付けベースとなる本体フレーム10と、加工テーブル20の上方にX軸方向(前後方向)に移動自在に支持され後述するX軸駆動機構35によりX軸方向に移動可能なX軸キャリッジ30と、後述するYバー32に沿ってY軸方向(左右方向)に移動自在に支持され後述するY軸駆動機構45によりY軸方向に移動可能な切削ユニット40と、X軸キャリッジ30の水平移動並びに後述するエンドミル43の上下移動を制御し、当該制御により加工テーブル20に固定保持された被加工媒体2の切削加工を制御するコントロールユニット50等により構成される。   The cutting plotter 1 includes a processing table 20 that holds the processing medium 2 fixedly, a main body frame 10 that holds the processing table 20 horizontally and serves as a mounting base for each mechanism, and an X-axis direction (front and rear) above the processing table 20. X-axis carriage 30 that is movably supported in a direction) and is movable in the X-axis direction by an X-axis drive mechanism 35 described later, and is supported movably in the Y-axis direction (left-right direction) along a Y-bar 32 described later. A cutting unit 40 that can be moved in the Y-axis direction by a Y-axis drive mechanism 45, which will be described later, and a horizontal movement of the X-axis carriage 30 and a vertical movement of an end mill 43, which will be described later, are controlled. The control unit 50 is configured to control cutting of the workpiece medium 2.

加工テーブル20は、平坦面を有する支持盤21と、支持盤21の下面側に設けられた減圧室22と、減圧室22の空気を排気して減圧室22を負圧に設定可能な真空ブロア23と、加工テーブル20の上方から見たときの中央部分に設けられその上面にシート状の被加工媒体2を載置させ固定保持可能な矩形のバキュームテーブル24と、バキュームテーブル24の上面を覆うように載置され被加工媒体2を支持する厚みが3mm程度の2枚のフェルト25等により構成されている(図1及び図2参照)。   The processing table 20 includes a support plate 21 having a flat surface, a decompression chamber 22 provided on the lower surface side of the support plate 21, and a vacuum blower capable of setting the decompression chamber 22 to a negative pressure by exhausting air from the decompression chamber 22. 23, a rectangular vacuum table 24 which is provided at the center portion when viewed from above the processing table 20 and on which the sheet-like processing medium 2 can be placed and fixedly held, and covers the upper surface of the vacuum table 24 Thus, it is configured by two felts 25 having a thickness of about 3 mm for supporting the processing medium 2 (see FIGS. 1 and 2).

支持盤21の上面には、図1に示すように、後述するX方向治具103及びY方向治具104の脚部を載置させるための載置部21a,21bが設けられている。また、バキュームテーブル24には、上下に貫通する微細な空気孔(図示せず)が多数形成され、当該空気孔と減圧室22はバキュームテーブル24の下面側に設けられ、バキュームテーブル24の上面が2枚のシート状のフェルト25に覆われた構成にすることにより、空気孔及びフェルト25を介して上下方向に空気を通過させることが可能になっている。従って、真空ブロア23により減圧室22を負圧に設定することにより、被加工媒体2をバキュームテーブル24に真空吸着させて固定保持させることができるようになっている。   As shown in FIG. 1, mounting portions 21 a and 21 b for mounting legs of an X-direction jig 103 and a Y-direction jig 104 to be described later are provided on the upper surface of the support board 21. The vacuum table 24 has a number of fine air holes (not shown) penetrating vertically. The air holes and the decompression chamber 22 are provided on the lower surface side of the vacuum table 24, and the upper surface of the vacuum table 24 is By adopting a configuration covered with two sheet-like felts 25, it is possible to allow air to pass through the air holes and the felts 25 in the vertical direction. Therefore, by setting the decompression chamber 22 to a negative pressure by the vacuum blower 23, the workpiece medium 2 can be vacuum-sucked and held on the vacuum table 24.

X軸キャリッジ30は、支持盤21の上面に、X軸方向に平行に延びて設けられる左右一対のガイドレール31,31と、Y軸方向に延びるように設けられガイドレール31,31にX軸方向に移動自在に保持されているYバー32と、ガイドレール31,31にそれぞれ嵌合されYバー32の左端部及び右端部を固定させるためのスライドブロック33,34と、Yバー32をX軸方向に移動させるX軸駆動機構35とにより構成されている。ガイドレール31は、直動ガイドあるいはリニアガイドとも称される直動軸受の支持レールが用いられている。Yバー32は、アルミ材を用いて棒状に延びるように形成され、支持盤21の上方を跨いだ状態でX軸方向にスライド移動自在に支持されている。X軸駆動機構35は、加工テーブル20の下面側にガイドレール31と平行に前後に延びて配設されたボールネジ(図示せず)と、ボールネジを回転駆動させるサーボモータ(図示せず)と、ボールネジに嵌合支持されX軸キャリッジ30に固定されたボールナットとにより構成されており、サーボモータを回転駆動させることによりYバー32及びスライドブロック33,34をX軸方向に移動させることが可能になっている。   The X-axis carriage 30 has a pair of left and right guide rails 31 and 31 provided on the upper surface of the support plate 21 so as to extend in parallel with the X-axis direction, and an X-axis carriage provided on the guide rails 31 and 31 so as to extend in the Y-axis direction. Y bar 32 held movably in the direction, slide blocks 33 and 34 fitted to guide rails 31 and 31, respectively, for fixing the left end and right end of Y bar 32, and Y bar 32 It is comprised by the X-axis drive mechanism 35 moved to an axial direction. As the guide rail 31, a support rail of a linear motion bearing, which is also referred to as a linear motion guide or a linear guide, is used. The Y bar 32 is formed using an aluminum material so as to extend in a rod shape, and is supported so as to be slidable in the X-axis direction while straddling the upper side of the support board 21. The X-axis drive mechanism 35 includes a ball screw (not shown) disposed on the lower surface side of the processing table 20 so as to extend back and forth in parallel with the guide rail 31, a servo motor (not shown) that rotationally drives the ball screw, It consists of a ball nut fitted and supported by a ball screw and fixed to the X-axis carriage 30, and the Y bar 32 and slide blocks 33 and 34 can be moved in the X-axis direction by rotating the servo motor. It has become.

切削ユニット40は、図1、図2、及び図4に示すように、Yバー32の前面にY軸方向に延びるように固定されたY軸ガイドレール32aに嵌合され左右にスライド移動自在に支持されたスライダ41と、スライダ41の前面側に着脱可能に支持され後述するエンドミル43をその長手方向に延びる軸を中心として回転駆動させる回転駆動部42と、回転駆動部42の下部に着脱可能に構成され被加工媒体2を切削可能なエンドミル43と、スライダ41をY軸方向に移動可能なY軸駆動機構45と、回転駆動部42によりエンドミル43を回転させるとともに、エンドミル43を回転駆動部42に対して上下方向に移動させることが可能な切削駆動機構46とを備えて構成されている。スライダ41は、その上面に係合孔41aを有し、後述するセンサ支持部材102の突起部を係合孔41aに嵌合させることによりキャリッジ形状測定機構100(後に詳述)をスライダ41に取り付けることが可能になっている。また、エンドミル43は回転駆動部42に対して上下移動することができるようになっており、切削駆動機構46が回転駆動部42を用いてエンドミル43を回転させ回転させたエンドミル43を被加工媒体2に押圧及び移動させることにより被加工媒体2の切削加工を行うことが可能になっている。なお、回転駆動部42には、エンドミル43だけでなくカッター刃等を着脱することも可能になっている。   As shown in FIGS. 1, 2, and 4, the cutting unit 40 is fitted to a Y-axis guide rail 32a fixed to the front surface of the Y bar 32 so as to extend in the Y-axis direction, and is slidable to the left and right. A supported slider 41, a rotary drive unit 42 that is detachably supported on the front side of the slider 41, and that rotates an end mill 43, which will be described later, around an axis extending in the longitudinal direction thereof, and a removable unit at the lower part of the rotary drive unit 42 The end mill 43 configured to cut the workpiece medium 2, the Y-axis drive mechanism 45 capable of moving the slider 41 in the Y-axis direction, and the rotation drive unit 42 rotate the end mill 43, and the end mill 43 is rotated to the rotation drive unit. The cutting drive mechanism 46 is configured to be movable in the vertical direction with respect to 42. The slider 41 has an engagement hole 41 a on the upper surface thereof, and a carriage shape measuring mechanism 100 (detailed later) is attached to the slider 41 by fitting a protrusion of a sensor support member 102 to be described later into the engagement hole 41 a. It is possible. Further, the end mill 43 can be moved up and down with respect to the rotation drive unit 42, and the end mill 43 obtained by rotating and rotating the end mill 43 using the rotation drive unit 42 is rotated by the cutting drive mechanism 46. It is possible to cut the workpiece medium 2 by pressing and moving it 2. In addition, not only the end mill 43 but also a cutter blade or the like can be attached to and detached from the rotation drive unit 42.

Y軸駆動機構45は、Yバー32の左端側と右端側にそれぞれ回転自在に設けられた駆動プーリ(図示せず)及び従動プーリ(図示せず)と、駆動プーリを回転駆動させるサーボモータ(図示せず)と、駆動プーリと従動プーリに巻き掛けられた無端ベルト状の駆動ベルト(図示せず)とにより構成され、駆動ベルトの中間部にスライダ41を固定するように構成されている。なお、駆動ベルトの内周面には多数の歯が形成されたタイミングベルト、駆動プーリ及び従動プーリにはタイミングプーリが用いられ切削ユニット40の移動(移動方向、移動速度、左右方向位置等)を微細に制御することができるようになっている。   The Y-axis drive mechanism 45 includes a drive pulley (not shown) and a driven pulley (not shown) rotatably provided on the left end side and the right end side of the Y bar 32, and a servo motor (rotatingly driving the drive pulley). (Not shown) and an endless belt-like drive belt (not shown) wound around the drive pulley and the driven pulley, and the slider 41 is fixed to the intermediate portion of the drive belt. A timing belt having a large number of teeth formed on the inner peripheral surface of the drive belt, and a timing pulley is used for the drive pulley and the driven pulley to move the cutting unit 40 (moving direction, moving speed, left-right position, etc.). It can be finely controlled.

コントロールユニット50は、図3に示すように、切削形状データ読込部52と、切削形状設定部53と、駆動制御部54と、入力部55と、表示部56等により構成されている。切削形状データ読込部52は、所定の加工プログラム及びユーザにより入力された所望の加工形状(以下、加工形状データと称する)を読み込み、加工形状データを切削形状設定部53に送信するように構成される。切削形状設定部53は、切削形状データ読込部52から受信した加工形状データを参照して被加工媒体2を切削加工する際に用いられるカッティングデータ(形状データ)を作成し、作成したカッティングデータを駆動制御部54に送信する。駆動制御部54は、カッティングプロッタ1の各軸駆動機構を含む装置全体を制御することが可能であり、切削形状設定部53から受信したカッティングデータに基づいて、上述したX軸駆動機構35、Y軸駆動機構45、及び切削駆動機構46等の作動を制御することによりX軸キャリッジ30及び切削ユニット40の水平移動並びにエンドミル43の上下移動を制御し、この制御により加工テーブル20に固定保持された被加工媒体2を切削加工することが可能になっている。   As shown in FIG. 3, the control unit 50 includes a cutting shape data reading unit 52, a cutting shape setting unit 53, a drive control unit 54, an input unit 55, a display unit 56, and the like. The cutting shape data reading unit 52 is configured to read a predetermined machining program and a desired machining shape (hereinafter referred to as machining shape data) input by the user, and transmit the machining shape data to the cutting shape setting unit 53. The The cutting shape setting unit 53 refers to the machining shape data received from the cutting shape data reading unit 52 to create cutting data (shape data) used when cutting the workpiece medium 2 and uses the created cutting data. It transmits to the drive control part 54. The drive control unit 54 can control the entire apparatus including each axis driving mechanism of the cutting plotter 1, and based on the cutting data received from the cutting shape setting unit 53, the above-described X-axis driving mechanism 35, Y The horizontal movement of the X-axis carriage 30 and the cutting unit 40 and the vertical movement of the end mill 43 are controlled by controlling the operations of the shaft drive mechanism 45, the cutting drive mechanism 46, and the like. The workpiece medium 2 can be cut.

入力部55は、ユーザがカッティングプロッタ1を作動させるための指示を入力するために設けられたタッチパネルであり、ユーザは、入力部55を介して切削手順の指示(例えば、時計回りまたは反時計回りに切削加工を行わせる指示や、切削速度、エンドミルの被加工媒体への押し付け力等の切削条件の指示)を行うとともに、スライダ41をY軸方向にそしてYバー32をX軸方向に往復移動させてガイドレール31及びYバー32の形状測定を行うことも可能になっている(後に詳述)。また、表示部59は、上記切削条件や切削形状、カッティングプロッタ1の作動結果を表示するディスプレイとして使用される。   The input unit 55 is a touch panel provided for a user to input an instruction for operating the cutting plotter 1, and the user can input a cutting procedure instruction (for example, clockwise or counterclockwise) via the input unit 55. Instructing to perform cutting, cutting speed, and cutting conditions such as the pressing force of the end mill against the work medium) and reciprocating the slider 41 in the Y-axis direction and the Y bar 32 in the X-axis direction. Thus, the shape of the guide rail 31 and the Y bar 32 can be measured (detailed later). The display unit 59 is used as a display that displays the cutting conditions, the cutting shape, and the operation result of the cutting plotter 1.

ところで、上述したガイドレール31及びYバー32は真直に延びる棒状に形成されているものの、その製造段階で微細な曲がり(真直度公差)が生じることがある。例えば、Yバー32では長さが1m程度のもので0.9mm程度の曲がりが発生しているものもある。このような曲がりを有するガイドレール31、Yバー32を用いて切削加工を行うと、切削ユニット40を真直にX方向及びY方向に移動させることができず、加工形状データの形状で切削加工ができなくなるといった切削加工の品質が劣化する問題が発生する。   By the way, although the guide rail 31 and the Y bar 32 described above are formed in a bar shape extending straight, a fine bend (straightness tolerance) may occur in the manufacturing stage. For example, some Y bars 32 have a length of about 1 m and have a curvature of about 0.9 mm. When cutting is performed using the guide rail 31 and the Y bar 32 having such a bend, the cutting unit 40 cannot be moved straight in the X direction and the Y direction, and cutting is performed in the shape of the machining shape data. There arises a problem that the quality of the cutting process is deteriorated such that it cannot be performed.

そこで、本実施形態におけるカッティングプロッタ1では、図3に示すように、キャリッジ形状読込部51およびキャリッジ形状測定機構100が設けられ、カッティングプロッタ1の製造後出荷前に、キャリッジ形状測定機構100によりガイドレール31及びYバー32の曲がりを測定して、この測定結果を基に加工形状データを補正することにより、ガイドレール31及びYバー32の曲がりが実際の切削加工に影響しないようにすることが可能になっている。以下で、キャリッジ形状読込部51及びキャリッジ形状測定機構100の構成について説明する。   Therefore, in the cutting plotter 1 according to the present embodiment, as shown in FIG. 3, a carriage shape reading unit 51 and a carriage shape measuring mechanism 100 are provided, and a guide is provided by the carriage shape measuring mechanism 100 before the cutting plotter 1 is manufactured and shipped. By measuring the bending of the rail 31 and the Y bar 32 and correcting the machining shape data based on the measurement result, it is possible to prevent the bending of the guide rail 31 and the Y bar 32 from affecting the actual cutting. It is possible. Hereinafter, configurations of the carriage shape reading unit 51 and the carriage shape measuring mechanism 100 will be described.

キャリッジ形状読込部51は、図3に示すようにコントロールユニット50に設けられ、キャリッジ形状測定機構100によりガイドレール31及びYバー32の曲がり(以下、キャリッジ形状データと称する)を読み込み、読み込んだキャリッジ形状データを切削形状設定部53に送信するように構成されている。切削形状設定部53は、当該キャリッジ形状データを用いて切削形状データ読込部52から受信した加工形状データを補正してカッティングデータを作成する(後に詳述)。   The carriage shape reading unit 51 is provided in the control unit 50 as shown in FIG. 3, reads the bending of the guide rail 31 and the Y bar 32 (hereinafter referred to as carriage shape data) by the carriage shape measuring mechanism 100, and reads the read carriage. The shape data is configured to be transmitted to the cutting shape setting unit 53. The cutting shape setting unit 53 corrects the machining shape data received from the cutting shape data reading unit 52 using the carriage shape data and creates cutting data (detailed later).

キャリッジ形状測定機構100は、図4、図5、及び図6に示すように、ガイドレール31及びYバー32の曲がりを測定する変位センサ101と、変位センサ101に設けられた凸部101aと嵌合させるための嵌合孔102a,102b及び突起部(図示せず)を有するセンサ支持部材102と、Y軸方向に延びるように配置可能に構成されるX方向治具103と、X軸方向に延びるように配置可能に構成されるY方向治具104とにより構成されている。センサ支持部材102の嵌合孔102a,102bに変位センサ101の凸部101aを嵌合させることにより変位センサ101をセンサ支持部材102に固定支持させることが可能になっているとともに、センサ支持部材102の突起部(図示せず)をスライダ41の係合孔41aに係合させることにより変位センサ101及びセンサ支持部材102をスライダ41に固定支持することが可能になっている。また、本実施形態における変位センサ101は、接触式の変位センサ101であり、対象物を測定する際には、棒状に延びる測定部101bの先端を対象物に当接させることにより変位を測定することが可能になっている。なお、ここで用いる変位センサは接触式の変位センサ101に限定されることなく、例えば、ダイヤルゲージ式、また、渦電流式、光学式、エアセンサ等、非接触式の変位センサを使用してもよい。   As shown in FIGS. 4, 5, and 6, the carriage shape measuring mechanism 100 is fitted with a displacement sensor 101 that measures the bending of the guide rail 31 and the Y bar 32, and a protrusion 101 a provided on the displacement sensor 101. A sensor support member 102 having fitting holes 102a and 102b and projections (not shown) for mating, an X-direction jig 103 that can be arranged to extend in the Y-axis direction, and an X-axis direction. It is comprised with the Y direction jig | tool 104 comprised so that arrangement | positioning is possible so that it may extend. By fitting the convex portions 101a of the displacement sensor 101 into the fitting holes 102a and 102b of the sensor support member 102, the displacement sensor 101 can be fixedly supported by the sensor support member 102, and the sensor support member 102 is also supported. The displacement sensor 101 and the sensor support member 102 can be fixedly supported on the slider 41 by engaging the protrusions (not shown) of the protrusions with the engagement holes 41 a of the slider 41. Further, the displacement sensor 101 in the present embodiment is a contact-type displacement sensor 101, and when measuring an object, the displacement is measured by bringing the tip of a measuring unit 101b extending in a bar shape into contact with the object. It is possible. The displacement sensor used here is not limited to the contact type displacement sensor 101. For example, a non-contact type displacement sensor such as a dial gauge type, an eddy current type, an optical type, an air sensor or the like may be used. Good.

X方向治具103は、図6に示すように、Y方向治具104を固定するための孔部103aを有し、Y方向治具104の長手方向に延びる一端に設けられた凸部(図示せず)を孔部103aに嵌合させることにより、図4のようにY方向治具104をX方向治具103に固定することが可能になっている。治具103,104は、長手方向に延びる両端部分に脚部を有し、治具103,104の長手方向に延びる棒状部分の下面が被加工媒体2及び支持盤21等に接しないようになっている。また、治具103,104の長手方向に延びる棒状部分のXY平面と直交する面(側面)に変位センサ101の測定部101bの先端が接するようになっている。   As shown in FIG. 6, the X-direction jig 103 has a hole 103 a for fixing the Y-direction jig 104, and a convex portion provided at one end extending in the longitudinal direction of the Y-direction jig 104 (see FIG. 6). 4), the Y-direction jig 104 can be fixed to the X-direction jig 103 as shown in FIG. The jigs 103 and 104 have legs at both end portions extending in the longitudinal direction, and the lower surfaces of the rod-like portions extending in the longitudinal direction of the jigs 103 and 104 do not come into contact with the workpiece medium 2 and the support plate 21. ing. In addition, the tip of the measurement unit 101b of the displacement sensor 101 is in contact with a surface (side surface) orthogonal to the XY plane of the rod-shaped portion extending in the longitudinal direction of the jigs 103 and 104.

以上のように構成されるカッティングプロッタ1及びキャリッジ形状測定機構100を用いてガイドレール31及びYバー32の曲がりを測定しその測定結果を実際の切削加工に反映させる方法について以下で説明する。まず、Y軸方向に延びて設けられるYバー32の曲がりを測定しその測定結果を反映させる方法を説明する。事前準備として、図5(b)に示すようにセンサ支持部材102の突起部(図示せず)をスライダ41の係合孔41a、変位センサ101の凸部101aをセンサ支持部材102の嵌合孔102aに嵌合させて、変位センサ101を、その測定部101bの先端がX軸正方向を向くように取り付ける。そして、図6に示すように、X方向治具103を、その一端に設けられた脚部が載置部21aの上面に載置されるように配置し、変位センサ101の測定部101bの先端がX方向治具103の側面に当接するように位置の微調整を行う。   A method for measuring the bending of the guide rail 31 and the Y bar 32 using the cutting plotter 1 and the carriage shape measuring mechanism 100 configured as described above and reflecting the measurement results in actual cutting will be described below. First, a method for measuring the bending of the Y bar 32 provided extending in the Y-axis direction and reflecting the measurement result will be described. As a preliminary preparation, as shown in FIG. 5B, the protrusion (not shown) of the sensor support member 102 is the engagement hole 41a of the slider 41, and the projection 101a of the displacement sensor 101 is the engagement hole of the sensor support member 102. The displacement sensor 101 is fitted to 102a so that the tip of the measuring unit 101b faces the positive direction of the X axis. Then, as shown in FIG. 6, the X-direction jig 103 is arranged so that the leg portion provided at one end thereof is placed on the upper surface of the placement portion 21 a, and the distal end of the measurement portion 101 b of the displacement sensor 101. Is finely adjusted so as to contact the side surface of the X-direction jig 103.

以下で、図7(a)に示すような、Yバー32が、その左端部分が長さe1、右端部分が長さe2だけX軸負方向に曲がっている場合について説明する。まず、上記のように、X方向治具103を配置した状態で電源スイッチをオンにした後、入力部55を操作してスライダ41をY軸方向に往復移動させYバー32の曲がりの測定を行う。スライダ41をY軸方向に往復移動させると、スライダ41に固定支持された変位センサ101もY軸方向に往復移動し、変位センサ101は、図7(b)に示すような、左端部分が長さe1、右端部分が長さe2だけX軸負方向に曲がっている形状のYバー形状測定結果121をキャリッジ形状データとして出力する。キャリッジ形状読込部51は、当該キャリッジ形状データ(Yバー形状測定結果121)を読み込み、切削形状設定部53に送信する。   Hereinafter, a case where the Y bar 32 as shown in FIG. 7A is bent in the X-axis negative direction by the length e1 at the left end portion and the length e2 at the right end portion will be described. First, as described above, after the power switch is turned on with the X-direction jig 103 disposed, the input unit 55 is operated to reciprocate the slider 41 in the Y-axis direction to measure the bending of the Y bar 32. Do. When the slider 41 is reciprocated in the Y-axis direction, the displacement sensor 101 fixedly supported by the slider 41 also reciprocates in the Y-axis direction. The displacement sensor 101 has a long left end portion as shown in FIG. The Y bar shape measurement result 121 in which the right end portion is bent in the negative direction of the X axis by the length e2 is output as carriage shape data. The carriage shape reading unit 51 reads the carriage shape data (Y bar shape measurement result 121) and transmits it to the cutting shape setting unit 53.

ここで、例えば加工形状データ(所望の加工形状)が図7(b)に示すようなY軸方向に平行な直線122の場合は、そのまま切削加工をするとYバー32の曲がりの影響を受けてYバー形状測定結果121のような形状に切削されてしまう。このような事態を防止するために、切削形状設定部53は、所期の直線122に対するYバー形状測定結果121のX軸方向の曲がりの変位を計算し、左端部分が長さe1、右端部分が長さe2だけX軸正方向に曲がっているカッティングデータ123を作成する。そして、駆動制御部54の制御によりカッティングデータ123に基づいて被加工媒体2の切削加工を行うと、Yバー32の曲がりがカッティングデータ123により相殺され、直線122のように切削加工することができる。このように、加工形状データ(所望の加工形状)を補正してカッティングデータ123を作成することでYバー32の曲がりの影響を受けずに切削加工できるようになり、例えば、所望の加工領域が領域131のような長方形の場合は、図7(c)に示すようなカッティングデータ132を作成して切削加工することで、結果的に領域131のように切削加工することが可能になる。また、所望の加工領域が領域161のような直角三角形の場合は、カッティングデータ162を作成して切削加工することで結果的に領域161のように切削加工することが可能になる。   Here, for example, in the case where the machining shape data (desired machining shape) is a straight line 122 parallel to the Y-axis direction as shown in FIG. 7B, if the machining is performed as it is, it is affected by the bending of the Y bar 32. It will be cut into a shape like the Y bar shape measurement result 121. In order to prevent such a situation, the cutting shape setting unit 53 calculates the displacement of the bend in the X-axis direction of the Y bar shape measurement result 121 with respect to the intended straight line 122, the left end portion is the length e1, and the right end portion Cutting data 123 bent in the positive direction of the X axis by the length e2. When the machining medium 2 is cut based on the cutting data 123 under the control of the drive control unit 54, the bending of the Y bar 32 is offset by the cutting data 123 and can be cut like a straight line 122. . In this way, by cutting the machining shape data (desired machining shape) and creating the cutting data 123, it becomes possible to perform cutting without being affected by the bending of the Y bar 32. In the case of a rectangle such as the region 131, cutting data 132 as shown in FIG. 7C is created and cut, and as a result, cutting can be performed as in the region 131. If the desired machining area is a right triangle such as the area 161, the cutting data 162 is created and cut, so that the cutting can be performed like the area 161 as a result.

次に、X軸方向に延びて設けられるガイドレール31の曲がりを測定しその測定結果を切削加工に反映させる方法を説明する。まず、図5及び図8に示すように、変位センサ101の凸部101aをセンサ支持部材の嵌合孔102bに嵌合させることにより、変位センサ101を、その測定部101bの先端がY軸正方向を向くように取り付ける。そして、Y方向治具104を、その長手方向に延びる一端に設けられた凸部(図示せず)をX方向治具103の孔部103aに嵌合させ固定するとともに、他端に設けられた脚部が載置部21b(図1参照)に載置されるように配置し、変位センサ101の測定部101bの先端がY方向治具104の側面に当接するように位置の微調整を行う。   Next, a method for measuring the bending of the guide rail 31 provided extending in the X-axis direction and reflecting the measurement result in the cutting process will be described. First, as shown in FIGS. 5 and 8, by fitting the convex portion 101a of the displacement sensor 101 into the fitting hole 102b of the sensor support member, the distal end of the measuring portion 101b is positively aligned with the Y axis. Install so that it faces the direction. Then, the Y-direction jig 104 is fixed by fitting a convex portion (not shown) provided at one end extending in the longitudinal direction into the hole 103a of the X-direction jig 103, and provided at the other end. The leg portion is arranged so as to be placed on the placement portion 21b (see FIG. 1), and the position is finely adjusted so that the tip of the measurement portion 101b of the displacement sensor 101 contacts the side surface of the Y-direction jig 104. .

以下で、図9(a)に示すような、ガイドレール31が、その上端部分が長さe3だけY軸負方向に、下端部分が長さe4だけY軸正方向に曲がっている場合について説明する。まず、上記のようにY方向治具104を配置した状態で、入力部55を操作してスライダ41をX軸方向に往復移動させガイドレール31の曲がりの測定を行う。スライダ41をX軸方向に往復移動させると、スライダ41に固定支持された変位センサ101もX軸方向に往復移動し、変位センサ101は、図9(b)に示すような、上端部分が長さe3だけY軸負方向に、下端部分が長さe4だけY軸正方向に曲がっている形状のガイドレール形状測定結果141をキャリッジ形状データとして出力する。キャリッジ形状読込部51は、当該キャリッジ形状データ(ガイドレール形状測定結果141)を読み込み、切削形状設定部53に送信する。   Hereinafter, as shown in FIG. 9A, the guide rail 31 is bent at the upper end portion in the Y-axis negative direction by the length e3 and the lower end portion by the length e4 in the Y-axis positive direction. To do. First, with the Y-direction jig 104 arranged as described above, the input unit 55 is operated to reciprocate the slider 41 in the X-axis direction and measure the bending of the guide rail 31. When the slider 41 is reciprocated in the X-axis direction, the displacement sensor 101 fixedly supported by the slider 41 also reciprocates in the X-axis direction. The displacement sensor 101 has a long upper end as shown in FIG. A guide rail shape measurement result 141 having a shape in which the lower end portion is bent in the Y-axis positive direction by the length e4 by the length e3 is output as carriage shape data. The carriage shape reading unit 51 reads the carriage shape data (guide rail shape measurement result 141) and transmits it to the cutting shape setting unit 53.

そして、Yバー32の曲がりを測定した場合と同じように、切削形状設定部53は、直線142に対するガイドレール形状測定結果141のY軸方向の曲がりの変位を計算し、上端部分が長さe3だけY軸正方向に、下端部分が長さe4だけY軸負方向に曲がっているカッティングデータ143を作成する。そして駆動制御部54の制御によりカッティングデータ143に基づいて被加工媒体2の切削加工を行うと、ガイドレール31の曲がりがカッティングデータ143により相殺され、直線142のように切削加工することができる。このように、加工形状データ(所望の加工形状)を補正してカッティングデータ143を作成することでガイドレール31の曲がりの影響を受けずに切削加工できるようになり、例えば、所望の加工領域が領域151のような長方形の場合は、図9(c)に示すようなカッティングデータ152を作成して切削加工することで、結果的に領域151のように切削加工することが可能になる。また、所望の加工領域が領域171のような直角三角形の場合は、カッティングデータ172を作成して切削加工することで結果的に領域171のように切削加工することが可能になる。   Then, similarly to the case where the bending of the Y bar 32 is measured, the cutting shape setting unit 53 calculates the displacement of the bending in the Y-axis direction of the guide rail shape measurement result 141 with respect to the straight line 142, and the upper end portion has the length e3. Cutting data 143 is created in which the lower end portion is bent in the Y-axis negative direction only by the length e4. When the machining medium 2 is cut based on the cutting data 143 under the control of the drive control unit 54, the bending of the guide rail 31 is offset by the cutting data 143 and can be cut like a straight line 142. Thus, by cutting the machining shape data (desired machining shape) and creating the cutting data 143, it becomes possible to perform cutting without being affected by the bending of the guide rail 31. For example, a desired machining area can be obtained. In the case of a rectangle such as the area 151, it is possible to cut as shown in the area 151 by creating cutting data 152 as shown in FIG. Further, when the desired processing area is a right triangle such as the area 171, the cutting data 172 is created and cut, and as a result, the cutting can be performed like the area 171.

以上のように、スライダ41に変位センサ101を取り付け、治具103,104を用いて取得したキャリッジ形状データはキャリッジ形状読込部51に保持され、キャリッジ形状データが保持された後は、常に、切削形状設定部53が加工形状データ(所望の加工形状)をキャリッジ形状データにより補正して切削加工するように作動する。ただし、キャリッジ形状データは、上記のようにキャリッジ形状測定機構100を用いることにより随時更新することが可能になっている。例えば、長年カッティングプロッタ1を使用し続けガイドレール31及びYバー32の形状が変化したような場合は、再度、キャリッジ形状測定機構100を用いてキャリッジ形状読込部51のキャリッジ形状データを更新することにより、ガイドレール31またはYバー32の形状変化により加工品質が劣化する問題を完全に無くすことができる。   As described above, the displacement sensor 101 is attached to the slider 41, and the carriage shape data acquired using the jigs 103 and 104 is held in the carriage shape reading unit 51. After the carriage shape data is held, cutting is always performed. The shape setting unit 53 operates to correct the machining shape data (desired machining shape) with the carriage shape data for cutting. However, the carriage shape data can be updated as needed by using the carriage shape measuring mechanism 100 as described above. For example, when the shape of the guide rail 31 and the Y bar 32 is changed for a long time using the cutting plotter 1, the carriage shape data of the carriage shape reading unit 51 is updated again using the carriage shape measuring mechanism 100. Thus, it is possible to completely eliminate the problem that the processing quality deteriorates due to the shape change of the guide rail 31 or the Y bar 32.

以上、本実施形態におけるカッティングプロッタ1においては、キャリッジ形状測定機構100によりガイドレール31及びYバー32の曲がりを測定し、この測定結果を用いて加工形状データ(所望の加工形状)を補正して作成したカッティングデータに基づいて切削加工を行うことにより、ガイドレール31及びYバー32の曲がり(真直度公差)の影響を受け加工物の品質が劣化する問題を解消することができる。   As described above, in the cutting plotter 1 according to the present embodiment, the bending of the guide rail 31 and the Y bar 32 is measured by the carriage shape measuring mechanism 100, and the machining shape data (desired machining shape) is corrected using the measurement result. By performing the cutting process based on the created cutting data, it is possible to solve the problem that the quality of the workpiece deteriorates due to the influence of the bending (straightness tolerance) of the guide rail 31 and the Y bar 32.

また、本実施形態においては、カッティングプロッタ1の製造後出荷前に、キャリッジ形状測定機構100を用いてキャリッジ形状読込部51のキャリッジ形状データを更新する例について示したが、キャリッジ形状データを更新するタイミングはカッティングプロッタ1の製造後出荷前に限られず、例えば、電源スイッチをオンにする度に毎回実行してもよいし、カッティングプロッタ1のメンテナンス時に実行してもよい。   In the present embodiment, an example in which the carriage shape data of the carriage shape reading unit 51 is updated using the carriage shape measuring mechanism 100 before the cutting plotter 1 is manufactured and before shipment is shown. However, the carriage shape data is updated. The timing is not limited to before the production of the cutting plotter 1 and before shipment. For example, the timing may be executed every time the power switch is turned on, or may be executed during maintenance of the cutting plotter 1.

そして、本実施形態におけるキャリッジ形状測定機構100では、変位センサを用いてガイドレール31及びYバー32の曲がりを測定する例について示したが、曲がりを測定する機器として必ずしも変位センサを用いなければならないわけではなく、例えば、レーザ側長器、真直度測定器等を用いてもよい。   In the carriage shape measuring mechanism 100 according to the present embodiment, the example in which the bending of the guide rail 31 and the Y bar 32 is measured using the displacement sensor has been described. However, the displacement sensor must be used as a device for measuring the bending. However, for example, a laser side length measuring device, a straightness measuring device, or the like may be used.

さらに、キャリッジ形状測定機構100及びキャリッジ形状読込部51を用いてガイドレール31及びYバー32の曲がりを補正して切削加工を行うことを特徴とする本発明は、上述した実施形態だけでなく、例えば、被加工媒体駆動型等の他の種類のカッティングプロッタまたはプリンタ装置に適用させることができる。   Further, the present invention is characterized in that the cutting is performed by correcting the bending of the guide rail 31 and the Y bar 32 using the carriage shape measuring mechanism 100 and the carriage shape reading unit 51. For example, the present invention can be applied to other types of cutting plotters or printer apparatuses such as a work medium drive type.

例えば、上方(Z軸正方向)からエンドミル43を被加工媒体2に押し付けて切削加工するタイプのカッティングプロッタ1ではなく、被加工媒体2を、その加工面が横方向(XY平面に対して平行な方向)を向くように吸着保持させ、横方向からエンドミル43を押しつけて切削加工するタイプのカッティングプロッタ等にも本発明を適用することができる。   For example, instead of the cutting plotter 1 of the type that presses the end mill 43 against the workpiece medium 2 from above (Z-axis positive direction), the machining surface of the workpiece medium 2 is transverse (parallel to the XY plane). The present invention can also be applied to a cutting plotter of the type in which the end mill 43 is pressed from the lateral direction and is cut and processed by suction.

1 カッティングプロッタ
2 被加工媒体
20 加工テーブル(媒体支持手段)
31 ガイドレール(第1ガイドレール)
32 Yバー(第2ガイドレール)
41 スライダ(キャリッジ)
43 エンドミル(加工具)
50 コントロールユニット(加工制御手段)
101 変位センサ(第1方向ずれ検出手段、第2方向ずれ検出手段)
103 X方向治具(第2方向ずれ検出手段)
104 Y方向治具(第1方向ずれ検出手段)
1 Cutting plotter
2 Work medium 20 Work table (medium support means)
31 Guide rail (first guide rail)
32 Y bar (second guide rail)
41 Slider (carriage)
43 End mill (processing tool)
50 Control unit (processing control means)
101 Displacement sensor (first direction deviation detection means, second direction deviation detection means)
103 X direction jig (second direction deviation detecting means)
104 Y direction jig (first direction deviation detecting means)

Claims (3)

シート状の被加工媒体を支持する支持面を有する媒体支持手段と、
前記媒体支持手段に前記支持面に対して平行な第1方向に延びて設けられた第1ガイドレールと、
前記第1ガイドレールに沿って前記第1方向に移動可能に取り付けられ、前記支持面に対して平行且つ前記第1方向に交差する第2方向に延びて設けられた第2ガイドレールと、
前記第2ガイドレールに沿って前記第2方向に移動可能に取り付けられたキャリッジと、
前記キャリッジに前記支持面に対して垂直な第3方向に移動可能に取り付けられ、前記被加工媒体の切削加工を行う加工具と、
前記第2ガイドレールを前記第1ガイドレールに沿って前記第1方向に移動させる制御と、前記キャリッジを前記第2ガイドレールに沿って前記第2方向に移動させる制御と、前記加工具を前記キャリッジに対して前記第3方向に移動させる制御とを行って、前記加工具により前記被加工媒体を切削加工させる加工制御手段とを備えたカッティングプロッタにおいて、
前記キャリッジを前記第2ガイドレールに沿って前記第2方向に移動させたときの前記第2ガイドレールに対する前記キャリッジの移動経路が所期の移動経路に対して前記第2方向と直交する方向にずれるずれの大きさを示す第2ガイドレールずれ量を測定する第2方向ずれ検出手段を備え、
前記加工制御手段は、前記第2ガイドレール上での前記キャリッジの移動制御において前記第2ガイドレールずれ量を補正するように前記第1ガイドレール上での前記第2ガイドレールの移動制御を加えた制御を行うことを特徴とするカッティングプロッタ。
Medium support means having a support surface for supporting the sheet-like workpiece medium;
A first guide rail provided on the medium support means so as to extend in a first direction parallel to the support surface;
A second guide rail that is movably attached in the first direction along the first guide rail, and that extends in a second direction that is parallel to the support surface and intersects the first direction;
A carriage mounted for movement in the second direction along the second guide rail;
A processing tool attached to the carriage so as to be movable in a third direction perpendicular to the support surface, and for cutting the workpiece medium;
Control for moving the second guide rail in the first direction along the first guide rail, control for moving the carriage in the second direction along the second guide rail, and In a cutting plotter comprising a processing control means for performing control to move the carriage in the third direction and cutting the workpiece medium by the processing tool,
When the carriage is moved in the second direction along the second guide rail, the movement path of the carriage with respect to the second guide rail is in a direction perpendicular to the second direction with respect to an intended movement path. A second direction deviation detecting means for measuring a second guide rail deviation amount indicating the magnitude of deviation,
The machining control means adds movement control of the second guide rail on the first guide rail so as to correct the amount of deviation of the second guide rail in movement control of the carriage on the second guide rail. Cutting plotter characterized by performing control.
前記第2ガイドレールを前記第1ガイドレールに沿って前記第1方向に移動させたときの前記第1ガイドレールに対する前記第2ガイドレールの移動経路が所期の移動経路に対して前記第1方向と直交する方向にずれるずれの大きさを示す第1ガイドレールずれ量を測定する第1方向ずれ検出手段を備え、
前記加工制御手段は、前記第1ガイドレール上での前記第2ガイドレールの移動制御において前記第1ガイドレールずれ量を補正するように前記第2ガイドレール上での前記キャリッジの移動制御を加えた制御を行うことを特徴とする請求項1に記載のカッティングプロッタ。
When the second guide rail is moved in the first direction along the first guide rail, the movement path of the second guide rail relative to the first guide rail is the first movement path with respect to the intended movement path. A first direction deviation detecting means for measuring a first guide rail deviation amount indicating a magnitude of deviation in a direction orthogonal to the direction;
The machining control means adds movement control of the carriage on the second guide rail so as to correct the shift amount of the first guide rail in the movement control of the second guide rail on the first guide rail. The cutting plotter according to claim 1, wherein control is performed.
前記第1及び第2ガイドレールは、直線上に延びて設けられ、
前記第1方向ずれ検出手段は、前記第1ガイドレールの曲がりを測定し、
前記第2方向ずれ検出手段は、前記第2ガイドレールの曲がりを測定することを特徴とする請求項1または2に記載のカッティングプロッタ。
The first and second guide rails are provided to extend on a straight line,
The first direction deviation detecting means measures the bending of the first guide rail,
The cutting plotter according to claim 1 or 2, wherein the second direction deviation detecting means measures a bending of the second guide rail.
JP2009166046A 2009-07-14 2009-07-14 Cutting plotter Active JP5606697B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009166046A JP5606697B2 (en) 2009-07-14 2009-07-14 Cutting plotter
EP10799554.0A EP2455184B1 (en) 2009-07-14 2010-05-25 Cutting plotter
PCT/JP2010/003480 WO2011007490A1 (en) 2009-07-14 2010-05-25 Cutting plotter
KR20127001069A KR20120027533A (en) 2009-07-14 2010-05-25 Cutting plotter
CN201080040944.1A CN102497956B (en) 2009-07-14 2010-05-25 Cutting plotter
US13/348,982 US8757941B2 (en) 2009-07-14 2012-01-12 Cutting plotter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166046A JP5606697B2 (en) 2009-07-14 2009-07-14 Cutting plotter

Publications (2)

Publication Number Publication Date
JP2011020202A true JP2011020202A (en) 2011-02-03
JP5606697B2 JP5606697B2 (en) 2014-10-15

Family

ID=43449102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166046A Active JP5606697B2 (en) 2009-07-14 2009-07-14 Cutting plotter

Country Status (6)

Country Link
US (1) US8757941B2 (en)
EP (1) EP2455184B1 (en)
JP (1) JP5606697B2 (en)
KR (1) KR20120027533A (en)
CN (1) CN102497956B (en)
WO (1) WO2011007490A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706850A (en) * 2013-12-25 2014-04-09 镇江市大兴机械制造有限公司 Novel milling machine
JP2014124757A (en) * 2012-12-27 2014-07-07 Mitsuboshi Diamond Industrial Co Ltd Processing device
KR101937028B1 (en) * 2017-06-02 2019-01-09 안영재 Device for Cutting Acrylic plate and method using the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6285093B2 (en) * 2012-09-07 2018-02-28 株式会社ミマキエンジニアリング Inkjet printer and printing method
DE102013015792A1 (en) 2012-10-31 2014-04-30 Heidelberger Druckmaschinen Ag Device for generating score lines in sheet-like elements, has positioning unit to position respective sheet-like element relative to lower tool and is provided with gripper to hold sheet-like element
US10245803B2 (en) * 2013-03-13 2019-04-02 Xerox Corporation Apparatus, system and method for cutting and creasing media
CN104890063B (en) * 2015-06-23 2017-06-23 安阳市凤舞木工机械有限公司 A kind of multi-functional timber process equipment
NL2015103B1 (en) * 2015-07-07 2017-01-31 Securo B V Device and method for processing a flexible sheet.
CN105150290A (en) * 2015-08-13 2015-12-16 王永志 Automatic drilling device for building wood plate
CN105290477A (en) * 2015-10-12 2016-02-03 广西平果恒通铜铝门业有限公司 Groove milling machine for aluminum board
JP1571646S (en) * 2016-09-09 2017-03-13
CN109093176B (en) * 2018-07-10 2020-01-21 常德瑞齐隆科技发展有限公司 Cutting device with angle material collecting function for mechanical equipment production
USD971278S1 (en) * 2019-01-25 2022-11-29 Marshalltown Company Portable scoring and cutting machine
EP4037907A4 (en) 2019-10-04 2023-11-08 Kana Holdings, LLC System for providing three-dimensional features on large format print products

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06312347A (en) * 1993-04-28 1994-11-08 Ando Electric Co Ltd Nc machine tool
JP2002333923A (en) * 2001-05-10 2002-11-22 Yokogawa Electric Corp Device for inspecting precision of motor
JP2009050978A (en) * 2007-08-28 2009-03-12 Mimaki Engineering Co Ltd Cutting plotter
JP2009068957A (en) * 2007-09-12 2009-04-02 Mitsutoyo Corp Straightness measuring apparatus, thickness fluctuation measuring apparatus, and orthogonality measuring apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1025578C (en) * 1991-05-06 1994-08-03 华中理工大学 Closed loop localizing device
DE4134371A1 (en) * 1991-10-17 1993-04-22 Zeiss Carl Fa METHOD FOR MEASURING THE EFFECTIVE CURRENT POSITION OF A KEY ELEMENT OR BEARED BY A SLIDE. TOOL
JP2004148745A (en) 2002-10-31 2004-05-27 Seiko Epson Corp Method for generating head movement data, and printing method
US6949733B2 (en) * 2003-03-10 2005-09-27 Asm Technology Singapore Pte Ltd Determination of a movable gantry position including a dual measurement module
CN2633936Y (en) * 2003-06-26 2004-08-18 上海理工大学附属二厂 Non contact type two-way rail straight line automatic measurer
DE102005003321A1 (en) * 2005-01-18 2006-07-27 Carl Zeiss Industrielle Messtechnik Gmbh Method for determining a spatial coordinate of a measuring point on a measuring object and corresponding coordinate measuring machine
DE102006044358A1 (en) * 2006-09-20 2008-04-03 Etel S.A. Positioning device in gantry design
CN101105389A (en) * 2007-05-30 2008-01-16 中国人民解放军第二炮兵装备研究院第四研究所 High accuracy non-contact tri-dimensional facial type measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06312347A (en) * 1993-04-28 1994-11-08 Ando Electric Co Ltd Nc machine tool
JP2002333923A (en) * 2001-05-10 2002-11-22 Yokogawa Electric Corp Device for inspecting precision of motor
JP2009050978A (en) * 2007-08-28 2009-03-12 Mimaki Engineering Co Ltd Cutting plotter
JP2009068957A (en) * 2007-09-12 2009-04-02 Mitsutoyo Corp Straightness measuring apparatus, thickness fluctuation measuring apparatus, and orthogonality measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124757A (en) * 2012-12-27 2014-07-07 Mitsuboshi Diamond Industrial Co Ltd Processing device
CN103706850A (en) * 2013-12-25 2014-04-09 镇江市大兴机械制造有限公司 Novel milling machine
KR101937028B1 (en) * 2017-06-02 2019-01-09 안영재 Device for Cutting Acrylic plate and method using the same

Also Published As

Publication number Publication date
KR20120027533A (en) 2012-03-21
US8757941B2 (en) 2014-06-24
JP5606697B2 (en) 2014-10-15
EP2455184A4 (en) 2013-09-04
US20120103154A1 (en) 2012-05-03
CN102497956B (en) 2014-07-23
EP2455184B1 (en) 2017-03-15
WO2011007490A1 (en) 2011-01-20
CN102497956A (en) 2012-06-13
EP2455184A1 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5606697B2 (en) Cutting plotter
TWI448438B (en) Assembly method and scribing method for multi - stroke thread loading
JP5333816B2 (en) Glass plate cutting apparatus and method
US10661522B2 (en) Multilayer-type sheet processing apparatus
CN102744451B (en) Method and apparatus for machining work by cutting tool
KR101365376B1 (en) Scribe device
JPWO2008126502A1 (en) Scribing apparatus and scribing method
JP2008126322A (en) Cutting tool working method and cutting tool working device
KR20110058734A (en) Method and apparatus for machining glass substrate
JP2006123087A (en) Surface processing machine
JP5670032B2 (en) Cutting plotter
US20210170510A1 (en) Method for machining plate material by using linear saw and numerical control saw machine apparatus
JP5597328B2 (en) Cutting plotter and cutting method using the same
KR20150049102A (en) Cutting and single-sided machining device
JP2009160670A (en) Input support program of cutting conditions, input support method and cutting plotter
JP2005335002A (en) Squeegee polishing device
CN203636510U (en) Processing machine tool
CN112390518B (en) Method for controlling scribing device
JP6940663B1 (en) Electric discharge machine and sensor unit
JP2004284000A (en) Straightness control stage
JP5939946B2 (en) Polishing equipment
JP2003062789A (en) Shaft run-out preventive device in cutter
JPH05169315A (en) Automatic saw blade guide width adjusting method and apparatus for band saw machine
KR20120073410A (en) Residual stress measuring apparatus
WO2018061344A1 (en) Processing apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140604

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140827

R150 Certificate of patent or registration of utility model

Ref document number: 5606697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250