JP2011020182A - Polishing tool suitable for pad conditioning, and polishing method using the same - Google Patents

Polishing tool suitable for pad conditioning, and polishing method using the same Download PDF

Info

Publication number
JP2011020182A
JP2011020182A JP2009164566A JP2009164566A JP2011020182A JP 2011020182 A JP2011020182 A JP 2011020182A JP 2009164566 A JP2009164566 A JP 2009164566A JP 2009164566 A JP2009164566 A JP 2009164566A JP 2011020182 A JP2011020182 A JP 2011020182A
Authority
JP
Japan
Prior art keywords
cutting edge
polishing
polishing tool
cutting
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009164566A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishizuka
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU KAIHATSU KK
Original Assignee
SHINGIJUTSU KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU KAIHATSU KK filed Critical SHINGIJUTSU KAIHATSU KK
Priority to JP2009164566A priority Critical patent/JP2011020182A/en
Publication of JP2011020182A publication Critical patent/JP2011020182A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool for conditioning which is easy to control a process and capable of improving a tool service life. <P>SOLUTION: (1) A polishing tool includes a rigid substrate having a planar circular surface and a plurality of cutting edges 1 having a flat top face located within a constant level with respect to the circular surface fixedly disposed on the substrate. The top face 6 is surrounded by a plurality of linear ridges and is adjacent to a side face extending in a direction of a tool axis via the ridge, and at least the summit of the cutting edge is formed of sintered diamond. (2) A polishing method for removing a workpiece material using the polishing tool includes the steps of: pressing the cutting edge against the surface of the workpiece, thereby causing a deforming area displaced in the pressed direction on the surface of the workpiece; and removing the workpiece material at a border between the deforming area and a remaining area by further causing the linear ridge on the top of the cutting edge to relatively move from the deforming area. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、研磨工具、特に硬質ウレタン等で構成されたCMPパッドのコンディショニングを高能率で実施可能な研磨工具に関する。   The present invention relates to a polishing tool, in particular, a polishing tool that can efficiently condition a CMP pad made of hard urethane or the like.

電子産業で使用されるメモリーチップ、その他のLSIデバイスの製造工程には、シリコンウェハ表面や、多層構造における層間絶縁膜の超精密平坦化が不可欠であり、これは一般に、研磨材を含むスラリーと研磨パッドを用いたシステムにより行われている。研磨パッドは一般に硬質発泡ポリウレタン製であるが、平坦性及びウェハ研磨速度を維持するためには、常時又は間欠的にパッドの表面をコンディショニングする必要があり、この目的のために主として、ダイヤモンド砥粒を電着により基板に固着した、或いは、一般に超硬合金で裏打ちされている焼結ダイヤモンド層にピラミッド状突起の列を設けた工具(コンディショナー、ドレッサー)が知られている。   In the manufacturing process of memory chips and other LSI devices used in the electronics industry, it is indispensable to ultra-precision planarize the surface of silicon wafers and interlayer insulation films in multilayer structures. This is done by a system using a polishing pad. The polishing pad is generally made of rigid foamed polyurethane, but in order to maintain flatness and wafer polishing rate, the surface of the pad must be conditioned at all times or intermittently. There are known tools (conditioners, dressers) in which a pyramid-like row of protrusions is provided on a sintered diamond layer that is fixed to a substrate by electrodeposition or generally lined with a cemented carbide.

電着タイプのコンディショニング用の工具(コンディショナー、ドレッサー)としては、例えば次のような回転研磨工具が公知である。   As an electrodeposition type conditioning tool (conditioner, dresser), for example, the following rotary polishing tools are known.

円板形基台の円形表面の中央に、砥粒を配置しない中空領域を、その外側に第一の、さらにその外側に第二の砥粒層領域をそれぞれ設ける。第一の砥粒層領域には、間隔をおいて小砥粒層部が複数列設けられ、各小砥粒層部は、略部分球面状を呈する隆起部の表面に、超砥粒を金属めっき相で固着したものである。第二の砥粒層領域は、リング状の円周隆起部に超砥粒を金属めっき相で固着して構成されている。
特開2002-337050号公報
A hollow area where no abrasive grains are arranged is provided at the center of the circular surface of the disk-shaped base, and a first abrasive grain area is provided outside the hollow area, and a second abrasive grain area is provided outside the hollow area. In the first abrasive layer region, a plurality of rows of small abrasive layer portions are provided at intervals, and each of the small abrasive layer portions is made of metal with superabrasive grains on the surface of a raised portion having a substantially spherical shape. It is fixed in the plating phase. The second abrasive layer region is configured by adhering superabrasive grains to a ring-shaped circumferential ridge with a metal plating phase.
JP 2002-337050 A

前記の金属めっき相で固着された個々の超砥粒粒子に代えて、ピラミッド状突起の列を焼結ダイヤモンドで形成した工具が、例えば下記公報に記載されているが、この公知技術において研磨単位と称される突起群は、超硬合金で裏打ちされている焼結ダイヤモンド層に、ワイヤカットで切り込むことにより形成される。研磨単位の形状は面間角度が90°のピラミッド型(四角錐)や四角錐台、他にも三角錐や三角錐台等が記載されている。研磨単位同士は交差する直線溝群に沿って、かつこの溝群により隔てて配設されている。
WO-A1-2007023249公報
In place of the individual superabrasive particles fixed in the metal plating phase, a tool in which a row of pyramidal protrusions is formed of sintered diamond is described in, for example, the following publication. The projection group called is formed by cutting a sintered diamond layer lined with a cemented carbide with a wire cut. As the shape of the polishing unit, a pyramid type (square pyramid) or a quadrangular pyramid with an angle between faces of 90 °, a triangular pyramid, a triangular frustum, or the like is described. The polishing units are arranged along the intersecting linear groove group and separated by the groove group.
WO-A1-2007023249

前記の従来技術によるコンディショニングは、電着された超砥粒によるものも、焼結ダイヤモンド層に形成された研磨単位群によるものも、個々の粒子や研磨単位の尖端や突起(ポイント)でパッド表面を削り取る研磨作用に基づく。このためパッド表面の平坦度の確保には尖端を細かくしたり、突起の密度を増加させる方法が採られる。   Conditioning according to the above-described prior art is based on the surface of the pad with the individual particles and the tips and protrusions (points) of the polishing unit, both by electrodeposited superabrasive grains and by the polishing unit group formed on the sintered diamond layer. Based on the polishing action to scrape off. Therefore, in order to ensure the flatness of the pad surface, a method of making the tip fine or increasing the density of the protrusions is employed.

しかしながら、上記のように研磨単位の尖端(ポイント)でパッド表面を削り取る従来型のドレッサーによるパッド表面の平坦化機構において、研磨単位尖端の微細化や研磨単位の密度の増加によって平坦度を確保することは、必ずしも容易ではなかった。   However, in the pad surface flattening mechanism by the conventional dresser that scrapes the pad surface at the point (point) of the polishing unit as described above, the flatness is ensured by making the polishing unit point finer and increasing the density of the polishing unit. That was not always easy.

本発明は従来のパッド・コンディショニングに伴う前記の問題を解決し、工程制御が容易でかつ工具寿命の向上も達成可能なコンディショニングのための工具を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems associated with conventional pad conditioning, and to provide a tool for conditioning that can be easily controlled and can also improve tool life.

本発明者は、以下の知見を得た。即ちパッド・ドレッサーの切れ刃を焼結ダイヤモンドのように剛性の高い物質で構成し、またパッドと接する切れ刃先端の頂面を平面とし、パッドに対する切削加工が主として、切れ刃の頂面を囲む稜線を含む面、特に側面で行なわれる構成とした場合、パッドへの加工工程はかんな(鉋)掛けやのみ(鑿)打ちのように平面状の刃でパッド構成材の薄片を削り取る切削加工となるが、この加工方式では、負荷荷重の調節により工程の制御が容易で、工具寿命の向上も達成できる。かかる知見に基づき、本発明を完成するに至った。   The present inventor has obtained the following knowledge. That is, the cutting edge of the pad dresser is made of a highly rigid material such as sintered diamond, and the top surface of the cutting edge tip in contact with the pad is flat, and the cutting process for the pad mainly surrounds the top surface of the cutting edge. When it is configured to be performed on the surface including the ridge line, especially on the side surface, the processing process to the pad is a cutting process in which a thin blade of the pad constituent material is scraped off with a flat blade like a planer (鉋) hook or chisel (鑿) strike. However, in this processing method, the process can be easily controlled by adjusting the load, and the tool life can be improved. Based on this knowledge, the present invention has been completed.

本発明の要旨とするところは、剛性基板が平面状の円形表面を有し、該基板に、該円形表面に関して一定レベル内に位置する平坦な頂面を持つ切れ刃を複数個固定配置した研磨工具であって、該頂面は複数個の直線状稜線に囲まれかつ該稜線を介して工具軸方向に延びた側面と隣接し、切れ刃の少なくとも頂部が焼結ダイヤモンドで構成されていることを特徴とする研磨工具にある。   The gist of the present invention is that the rigid substrate has a flat circular surface, and a plurality of cutting edges having a flat top surface located within a certain level with respect to the circular surface are fixedly arranged on the substrate. A tool, wherein the top surface is surrounded by a plurality of linear ridge lines and is adjacent to a side surface extending in the tool axis direction via the ridge lines, and at least the top portion of the cutting edge is made of sintered diamond. A polishing tool characterized by

本発明の研磨工具を用いた研磨工程は、工具軸方向荷重を主体とする従来の研磨機構とは異なり、主として切れ刃の側方向(半径方向)の負荷荷重下における、切れ刃の特に稜線及び隣接した頂部側面による切削機構に基づく。即ち被加工物表面の押圧により材質を圧縮率に応じて変位させた状態で切れ刃との間に相対運動を行う場合、切れ刃側面がパッド構成材を削り取る工程となる。   The polishing process using the polishing tool of the present invention is different from the conventional polishing mechanism mainly based on the load in the tool axial direction, and mainly under the load load in the side direction (radial direction) of the cutting edge. Based on cutting mechanism with adjacent top sides. That is, when the relative movement between the cutting edge and the cutting edge is performed in a state where the material is displaced according to the compression ratio by pressing the surface of the workpiece, the side surface of the cutting edge is a step of scraping the pad constituent material.

従って本発明は別の側面において、かかる研磨工具を用いて被加工物材料を除去する研磨方法において、上記切れ刃を被加工物の表面へ押圧することにより被加工物表面に押圧方向へ変位した変形部分を生ぜしめ、さらに切れ刃頂部の直線状稜線を該変形部分に対して相対的に運動せしめることによって変形部分と残部との境界における被加工物材料を除去することを特徴とする研磨方法も要旨とする。   Accordingly, in another aspect of the present invention, in a polishing method for removing workpiece material using such a polishing tool, the cutting edge is pressed against the surface of the workpiece, thereby being displaced in the pressing direction on the surface of the workpiece. A polishing method characterized by removing a workpiece material at a boundary between a deformed portion and a remaining portion by generating a deformed portion and further moving a linear ridge line of a cutting edge top portion relative to the deformed portion. Is also a summary.

本発明の研磨工具は特に硬質ウレタンの精密研磨において、時間当たりの材料除去率(カットレート)が高く、かつ仕上げ面の粗さRaも充分に小さい。しかもこの性能が従来の同様の工具に比較して数倍維持されるという利点を有する。
以下に本発明を、添付の説明図に拠って説明する。
The polishing tool of the present invention has a high material removal rate (cut rate) per hour and a sufficiently small roughness Ra of the finished surface, particularly in precision polishing of hard urethane. Moreover, this performance has the advantage that it is maintained several times as compared with the conventional similar tool.
The present invention will be described below with reference to the accompanying explanatory drawings.

本発明の研磨工具における切れ刃の部分断面図である。It is a fragmentary sectional view of the cutting edge in the polishing tool of the present invention. 本発明の研磨工具における切れ刃配置の例の説明図である。It is explanatory drawing of the example of the cutting edge arrangement | positioning in the polishing tool of this invention. 本発明の研磨工具における切れ刃配置について、別の例の説明図である。It is explanatory drawing of another example about cutting-edge arrangement | positioning in the grinding | polishing tool of this invention. 本発明の研磨工具における切れ刃配置について、さらに別の例を示す説明図である。It is explanatory drawing which shows another example about cutting-edge arrangement | positioning in the polishing tool of this invention. 実施例1で用いたダイヤモンド焼結体から成る扇形素材の説明図である。It is explanatory drawing of the fan-shaped raw material which consists of a diamond sintered compact used in Example 1. FIG. 実施例1で、ダイヤモンド層表面に形成した線状突起の部分断面図である。In Example 1, it is a fragmentary sectional view of the linear protrusion formed in the diamond layer surface. 実施例1、2で作成した研磨工具について、テスト結果(カットレートの経時変化)を示すグラフである。It is a graph which shows a test result (time-dependent change of a cut rate) about the polishing tool created in Example 1,2. 本発明の研磨工具において、切れ刃構成の一例を示す説明図である。It is explanatory drawing which shows an example of a cutting-blade structure in the polishing tool of this invention.

本発明の方法においては、工具のカットレート(一定時間内にワーク(パッド材)厚さを減少させる性能)は、本質的に切れ刃の頂面に対する負荷荷重並びに切れ刃面の形状によって決まり、またワーク(パッド)の平滑度は切れ刃頂面に加えられる単位面積当たりの負荷荷重の大きさにより変化する。即ち、負荷荷重の調節により、作業効率及び仕上げ面の粗さを制御することが可能である。   In the method of the present invention, the cutting rate of the tool (the ability to reduce the workpiece (pad material) thickness within a certain time) is essentially determined by the load applied to the top surface of the cutting edge and the shape of the cutting edge surface, The smoothness of the workpiece (pad) varies depending on the magnitude of the load applied per unit area applied to the top surface of the cutting edge. That is, it is possible to control the working efficiency and the roughness of the finished surface by adjusting the load.

さらに工具の寿命は切れ刃構成における側面の稜線長さ及び傾斜角度に応じて変化し、また先端面の周長にも依存する。従って、切れ刃の形状を適切に選択することにより工具寿命を最適化することができる。図1に本発明の研磨工具における切れ刃の部分断面図を示す。本発明において切れ刃1の側面2の傾斜は、工具の中心軸を含みかつ対象側面に平面行な面、従ってかかる面に平行な任意の基準面4(切れ刃軸面と言う)に対する軸方向(Z方向)の傾斜角度(切れ刃軸面角度)αで表わす。切れ刃1は通常ワイヤ放電加工で形成されるため、基礎部5はワイヤ断面の影響を受けて丸みを帯び、切れ刃側面が湾曲面を呈することがある。この場合上記側面の傾斜角度は接線面の角度を指す。   Furthermore, the tool life varies depending on the ridge line length and the inclination angle of the side surface in the cutting edge configuration, and also depends on the peripheral length of the tip surface. Therefore, the tool life can be optimized by appropriately selecting the shape of the cutting edge. FIG. 1 is a partial sectional view of a cutting edge in a polishing tool of the present invention. In the present invention, the inclination of the side surface 2 of the cutting edge 1 is the axial direction with respect to an arbitrary reference plane 4 (referred to as a cutting edge axis surface) that includes the central axis of the tool and that is flat on the target side surface, and thus parallel to the surface. It is represented by an inclination angle (cutting edge axial surface angle) α in the (Z direction). Since the cutting edge 1 is usually formed by wire electric discharge machining, the base portion 5 may be rounded under the influence of the wire cross section, and the side surface of the cutting edge may exhibit a curved surface. In this case, the inclination angle of the side surface indicates the angle of the tangential surface.

本発明における研磨工具(パッド・ドレッサー)において、各切れ刃は四角柱乃至四角錐台、或いは三角柱乃至三角錐台状に形成するのが好適である。切れ刃1の頂面6に対する隣接各側面の傾斜角度は、少なくとも頂面に隣接する部分を頂面に対して垂直、即ち前記切れ刃軸面に対する傾斜α=0°の四角柱に構成するのがカットレート及び仕上げ面粗さに関して最適の結果が得られ、好ましいが、傾斜角度60°以上、特に80°以上、乃至αについては30°以下、特に10°以下であれば良好な結果が得られる。   In the polishing tool (pad dresser) according to the present invention, each cutting edge is preferably formed in a quadrangular prism or quadrangular pyramid shape, or a triangular prism or triangular frustum shape. The inclination angle of each side surface adjacent to the top surface 6 of the cutting edge 1 is configured such that at least a portion adjacent to the top surface is perpendicular to the top surface, that is, a rectangular column having an inclination α = 0 ° with respect to the cutting blade axis surface. However, optimum results are obtained with respect to the cut rate and the finished surface roughness, and preferable results are obtained when the inclination angle is 60 ° or more, particularly 80 ° or more, or α is 30 ° or less, particularly 10 ° or less. It is done.

本発明の研磨工具において、切れ刃1は、工具の円板面全体に一様に、例えば図2に示すように格子状に配設したり、或いは特定の部位に部分的に、例えば図3に示すように基板7の一円周上または複数段の同心円周上に均等な角度で、又は半径上に複数個配置し放射状に、或いはこれらを組み合わせた形状に配設したりする。
さらに図4のように、複数個の切れ刃1(個々の正方形で表わす)を形成したチップ8を基板7上に均等角度で放射状に固定する構成も利用でき、これは特に、細かい切れ刃を多数形成する場合に効果的である。この場合、切れ刃或いはチップの中心線は、半径に対して平行になるように配置される。
In the polishing tool of the present invention, the cutting edge 1 is arranged uniformly on the entire disk surface of the tool, for example, in a lattice shape as shown in FIG. 2, or partially at a specific portion, for example, FIG. As shown in FIG. 5, the substrate 7 is arranged at a uniform angle on one circumference or a plurality of concentric circumferences, or on a radius and arranged radially, or a combination thereof.
Further, as shown in FIG. 4, a configuration in which chips 8 formed with a plurality of cutting edges 1 (represented by individual squares) are radially fixed on the substrate 7 at an equal angle can be used. It is effective when forming a large number. In this case, the center line of the cutting edge or the tip is arranged so as to be parallel to the radius.

なお本発明においては図面を簡略化し明確にする目的で多数配設されている切れ刃の1個にだけ参照符号を付しているが、特記しない限り、形成された切れ刃群の他の切れ刃も機能及び構成において同等であり、説明が該当することは理解されるべきである。   In the present invention, only one of the many cutting edges provided for the purpose of simplifying and clarifying the drawings is provided with a reference symbol, but unless otherwise specified, other cutting edges of the formed cutting blade group are provided with reference numerals. It should be understood that the blades are equivalent in function and configuration, and that the description is applicable.

切れ刃の設置数は、目標とするカットレート、仕上げ面粗さ等に応じて変動するが、外径100mm程度の工具の場合、頂面総面積において220mm2以下とすることができる。また基板断面に対する面積比において10000分の1000〜0.5、特に160〜1において良好な性能が得られる。ただし本発明の基板断面は、円形の工具基板において、中心孔の有無に関わらず外周円で限定される断面積のことを言う。 The number of cutting blades varies depending on the target cut rate, finished surface roughness, etc., but in the case of a tool having an outer diameter of about 100 mm, the total area of the top surface can be 220 mm 2 or less. In addition, good performance can be obtained when the area ratio to the substrate cross section is 1000 to 0.5 / 10,000, particularly 160 to 1. However, the substrate cross-section of the present invention refers to a cross-sectional area limited by an outer peripheral circle in a circular tool substrate regardless of the presence or absence of the center hole.

本発明の研磨工具の製作にはいくつかの公知の手法が利用できる。例えば、切れ刃は、超硬合金で裏打ちされたダイヤモンド焼結体からなる単一円板、又は円板状に組み合わされた円板分割体(扇形)の、焼結ダイヤモンド層へワイヤカット等の放電加工やレーザーで切り込むことによって、或いはダイヤモンド焼結体から各1個の切れ刃を含むチップとして、或いは数個乃至数十個の切れ刃を含むブロックとして切り出し、基板上に配置・固定することによって形成することができる。   Several known techniques can be used to manufacture the polishing tool of the present invention. For example, the cutting edge is a single disk made of a diamond sintered body lined with cemented carbide, or a disk divided body (fan shape) combined in a disk shape, such as wire cutting into a sintered diamond layer. Cutting by electrical discharge machining or laser, or cutting from a diamond sintered body as a chip containing one cutting edge each, or as a block containing several to several tens of cutting edges, and placing and fixing on a substrate Can be formed.

基板は、SUS系ステンレス鋼が耐食性の点で好ましいが、使用環境によってはアルミニウム等他の金属材やベークライトのような合成樹脂、金属被覆の合成樹脂等も利用可能である。   As the substrate, SUS stainless steel is preferable in terms of corrosion resistance, but other metal materials such as aluminum, synthetic resins such as bakelite, and metal-coated synthetic resins can be used depending on the use environment.

前記の切れ刃チップやブロックは、工具基板の外周部分に、同心円状、放射状、或いはこれらを組み合わせた形状に配置される。基板への固定には材種に応じて各種の公知技術が利用できる。例えば、基板にチップやブロックに対応する形状・個数の穴や溝を形成してこれらを嵌め込んだり、ロウ付けやハンダ付け、或いは接着剤、超速硬性や急硬性セメントを用いて接着し、或いはさらにアクリルやフッ素樹脂等で被覆することにより、基板のスラリーとの接触による侵食、溶出材料による汚染を防止する。   The above-mentioned cutting edge chips and blocks are arranged in a concentric shape, a radial shape, or a combination of these on the outer peripheral portion of the tool substrate. Various known techniques can be used for fixing to the substrate depending on the material type. For example, holes and grooves of the shape and number corresponding to the chip or block are formed on the substrate and these are fitted, brazed or soldered, or bonded using an adhesive, super-hardness or quick-setting cement, or Furthermore, coating with acrylic or fluororesin prevents erosion due to contact with the slurry of the substrate and contamination by the eluted material.

前記切れ刃形成のための各手法において、ダイヤモンド焼結体円板の焼結ダイヤモンド層へワイヤカット等での切り込みにより、先端が平面の、整列された四角や三角の角柱乃至角錐台状の切れ刃を形成する手法については、各切れ刃の先端面のレベルが揃うので、良好な平坦度が得られるが、反面、工具(ドレッサー)のサイズが、利用可能なダイヤモンド焼結体のサイズに限定される。   In each of the methods for forming the cutting edge, by cutting the sintered diamond layer of the diamond sintered body disk with a wire cut or the like, a square or triangular prism or a truncated pyramid shaped piece having a flat tip is formed. As for the method of forming the blade, the level of the tip surface of each cutting blade is uniform, so good flatness can be obtained, but on the other hand, the size of the tool (dresser) is limited to the size of the diamond sintered body that can be used Is done.

前記のダイヤモンド焼結体から切れ刃素材を、焼結ダイヤモンド層を頂部として角柱乃至角錐台を単独のチップとして必要な個数、或いは一定区画に含まれる複数個を区画ごとにブロックとして切り出して作成する方法も利用できる。この場合、工具の寸法に制限は無いが、仕上げ加工としてチップ表面を揃えて平坦度を確保するための研磨加工が必要である。   A cutting blade material is produced from the diamond sintered body by cutting out a necessary number of prisms or pyramids as a single chip with a sintered diamond layer as a top, or a plurality of blocks included in a certain section as blocks for each section. A method is also available. In this case, although there is no restriction | limiting in the dimension of a tool, the grinding | polishing process for aligning a chip | tip surface and ensuring flatness as a finishing process is required.

上記において、焼結ダイヤモンドで作成された切れ刃は、刃の欠損を生じにくく、これに伴うトラブルが少ないという利点がある。さらに焼結ダイヤモンド層を構成するダイヤモンド粒子サイズの選択によって、表面粗さRaやカットレートの制御も可能になる。   In the above, the cutting blade made of sintered diamond has an advantage that the blade is less likely to be broken and there are few troubles associated therewith. Further, the surface roughness Ra and the cut rate can be controlled by selecting the size of the diamond particles constituting the sintered diamond layer.

既述のように、本発明の工具においては、パッドに対する加工工程は、工具切れ刃の側面によるものであって、パッドは平面状の刃によって削られる。従って、本発明の工具は既述の特徴に加え、従来の手法・工具に比較して次のような利点を有する。   As described above, in the tool of the present invention, the machining process for the pad is performed by the side surface of the tool cutting edge, and the pad is cut by the flat blade. Therefore, in addition to the above-described features, the tool of the present invention has the following advantages over the conventional method and tool.

(1) 切れ刃の面積が従来よりも大幅に増大しているため、工具の摩滅速度が小さく最初の切れ味が持続する、或いは工具寿命が長い。またより大きい加工速度が得られる。
(2) パッド面に対する切れ刃の接触は従来のピラミッド型におけるような点接触ではなく、稜線による線接触であることから、接触面圧が相対的に小さく食い込み深さが小さい。
(3) 仕上げ面粗さRaが切れ刃のサイズに依存しないことから、切れ刃として大寸法のサイズのチップや粒子の使用が可能である。次に本発明を実施例に即して説明する。
(1) Since the area of the cutting edge is greatly increased compared to the prior art, the wear rate of the tool is small and the initial sharpness is sustained or the tool life is long. Further, a higher processing speed can be obtained.
(2) Since the contact of the cutting edge with the pad surface is not a point contact as in the conventional pyramid type, but a line contact by a ridgeline, the contact surface pressure is relatively small and the biting depth is small.
(3) Since the finished surface roughness Ra does not depend on the size of the cutting edge, it is possible to use chips and particles having a large size as the cutting edge. Next, the present invention will be described with reference to examples.

図5に概略示すような、超高圧高温下で焼結されたダイヤモンド焼結体から成る4個の、半径50mm、内径60mm、中心角90°の扇形素材11〜14を用いた。厚さ1.0 mmのPCD(焼結ダイヤモンド)層は公称粒度8-12μmのダイヤモンド粒子で構成され、同時焼結によって超硬合金(WC−8%Co)基体と一体化されている。これらの扇形素材を直径108mmのSUS630ステンレス鋼製円形基板上にエポキシ系接着剤で固着し、ブランク材とした。   Four fan-shaped materials 11 to 14 having a radius of 50 mm, an inner diameter of 60 mm, and a central angle of 90 ° were used as shown in FIG. A 1.0 mm thick PCD (sintered diamond) layer is composed of diamond particles with a nominal particle size of 8-12 μm and is integrated with a cemented carbide (WC-8% Co) substrate by simultaneous sintering. These fan-shaped materials were fixed on a SUS630 stainless steel circular substrate having a diameter of 108 mm with an epoxy-based adhesive to obtain a blank material.


ブランク材は先ず焼結ダイヤモンド層の表面を型放電加工により平坦化した後、図6の軸方向部分(平行軸面)断面図で略示するように、超硬合金基体15と一体化された焼結ダイヤモンド層16へワイヤカット放電加工で垂直に切り込むことにより、一対の対向側面部分17、18及び平坦な頂面部分19をもつ線状突起20を、互いに平行に、ダイヤモンド層表面全域に形成した。

First, the surface of the sintered diamond layer was flattened by die-discharge machining, and then the blank material was integrated with the cemented carbide substrate 15 as schematically shown in the sectional view in the axial direction (parallel axis plane) of FIG. By cutting vertically into the sintered diamond layer 16 by wire-cut electric discharge machining, linear protrusions 20 having a pair of opposing side surface portions 17 and 18 and a flat top surface portion 19 are formed in parallel to each other over the entire surface of the diamond layer. did.

次にこのブランク材を中心軸の周りに90°回転して上記の操作を繰り返すことにより、合計4方向の側面を形成し、頂部平面の一辺が100μm、溝底に対する高さが150μmの四角錐台状の切れ刃群2000個を、中心間距離(ピッチ)1500μmの直交格子状に形成した。   Next, this blank is rotated by 90 ° around the central axis and the above operation is repeated to form a total of four side surfaces, a square pyramid with a side of the top plane of 100 μm and a height of 150 μm with respect to the groove bottom. 2000 trapezoidal cutting edge groups were formed in an orthogonal lattice shape with a center-to-center distance (pitch) of 1500 μm.

前記実施例の操作を繰り返した。ダイヤモンド焼結体からなる扇形素材は半径50mm、内径30mm、中心角度90°、これを4個同様の基板に貼り付け、ブランク材とした。このブランク材はさらに、前記実施例と同様の操作で、ワイヤカット放電加工により、頂部平面の一辺が200μm、溝底に対する高さが200μm、軸面に対して平行な(四角柱状の)部分を持つ四角錐台状の切れ刃群1500個を、中心間距離(ピッチ)2000μmの直交格子状に形成した。   The operation of the above example was repeated. A fan-shaped material made of a diamond sintered body had a radius of 50 mm, an inner diameter of 30 mm, a center angle of 90 °, and was affixed to four similar substrates to form a blank material. This blank material is further operated in the same manner as in the above-described embodiment, and by wire-cut electric discharge machining, one side of the top plane is 200 μm, the height with respect to the groove bottom is 200 μm, and a portion parallel to the axial surface (square column shape) is formed. A group of 1500 pieces of square frustum-shaped cutting edges having an orthogonal lattice shape with a center-to-center distance (pitch) of 2000 μm was formed.

各実施例で作成した工具の構成を下表で対比的に要約して示す。

Figure 2011020182
The composition of the tool created in each example is summarized and shown in the following table.
Figure 2011020182

比較例Comparative example

比較の目的で四角錐状の切れ刃をもつ研磨工具を作成した。前記各実施例と同一材質及び形状の扇形素材をSUS316製円形基板上にエポキシ系接着剤で固着し、ブランク材とし、前記例同様にワイヤカット放電加工によって、四角錐状の切れ刃群を直交格子状に形成した。四角錐の対向側面間の面角度は90°、切れ刃間底部に対する頂部の高さは500μm、切れ刃中心間間隔(ピッチ)は1500μmとした。   A polishing tool with a square pyramid-shaped cutting edge was made for comparison purposes. A fan-shaped material of the same material and shape as in each of the above examples is fixed to a SUS316 circular substrate with an epoxy adhesive to form a blank material, and a rectangular pyramid-shaped cutting blade group is orthogonally crossed by wire-cut electric discharge machining as in the above example. It was formed in a lattice shape. The surface angle between the opposing sides of the quadrangular pyramid was 90 °, the height of the top with respect to the bottom between the cutting edges was 500 μm, and the distance (pitch) between the cutting edges was 1500 μm.

前記実施例1、2及び比較例の各々で作成した研磨工具を、研磨パッドのコンディショニングを模した硬質ウレタンの研磨試験に供した。工具への加圧荷重は2kgfとし、試験は最長30時間継続した。途中で数回研磨を停止し、ワーク上の6定点における厚さを測定し変化量を求めた。時間当たりの減少量をカットレートとし、その経時変化を図7に示す。また仕上げ表面粗さを次表に示す。   The polishing tool prepared in each of Examples 1 and 2 and Comparative Example was subjected to a hard urethane polishing test simulating conditioning of a polishing pad. The pressure load on the tool was 2 kgf, and the test was continued for a maximum of 30 hours. The polishing was stopped several times along the way, and the thickness at six fixed points on the workpiece was measured to determine the amount of change. The amount of decrease per time is taken as the cut rate, and the change with time is shown in FIG. The finished surface roughness is shown in the following table.

Figure 2011020182
Figure 2011020182

図8に略示する切れ刃1配置を持つ工具22を作成した。厚さ2.5mmの超硬合金基板上に、厚さ0.5mmの焼結ダイヤモンド層(公称粒8-16μm)を有する、ダイヤモンド焼結体を切れ刃素材として用いた。このダイヤモンド焼結体は予め両面研磨によって、平行度を確保しておき、焼結ダイヤモンド面からワイヤカットによって800μm×800μmの焼結ダイヤモンドの頂部23を持つ、全体の長さが2mmの複合材チップ24を24個切り出した。   A tool 22 having a cutting edge 1 arrangement schematically shown in FIG. 8 was created. A diamond sintered body having a 0.5 mm thick sintered diamond layer (nominal grains: 8-16 μm) on a cemented carbide substrate having a thickness of 2.5 mm was used as a cutting blade material. This diamond sintered body is preliminarily secured by double-side polishing, and has a top part 23 of 800 μm × 800 μm sintered diamond by wire cutting from the sintered diamond surface. 24 24 were cut out.

これらのチップについて切断面を、ダイヤモンド砥石を用いて研磨仕上げを行い、超硬合金側を底部とし、銀ろうを介してSUS630基板25上の、半径95mmと90mmの二つの同心円周上に各16個ずつ配置、固定した。この際チップの配置にはテンプレートを用いて隣接粒子間に均等な間隔が保たれるようにし、全チップを上から軸方向に押し付けた状態で加熱した。   The cutting surfaces of these chips are polished with a diamond grindstone, and the cemented carbide side is the bottom, and each of the chips is placed on two concentric circles with a radius of 95 mm and 90 mm on a SUS630 substrate 25 via silver solder. Placed and fixed one by one. At this time, the tips were arranged using a template so that an equal interval was maintained between adjacent particles, and all the tips were heated in the axial direction from above.

仕上げ加工として#200のダイヤモンド砥石を用い、チップ間の段差が認められなくなるまで平面研削を行い、垂直四角柱状のダイヤモンド焼結体製切れ刃を持つドレッサーとした。同様の条件において研磨テストを行い、10時間後にカットレート及び仕上げ面粗さRaとして、それぞれ24μm/h及び3.0μmを得た。   As a finishing process, a # 200 diamond grindstone was used, and surface grinding was performed until the step between the chips was not recognized, so that a dresser having a cutting edge made of a sintered prism in the form of a vertical square pillar was obtained. A polishing test was carried out under the same conditions, and after 10 hours, 24 μm / h and 3.0 μm were obtained as the cut rate and the finished surface roughness Ra, respectively.

前記実施例1及び2のダイヤモンド焼結体から、下表に示す寸法の四角柱及び三角柱(傾斜角α=0°)形状の切れ刃をワイヤカットにより切り出した。一方前記各実施例と同種の基板に各種パターンで固定のための孔を彫り、個々のチップを配置、上から軸方向に圧入することにより、固定及び頂面位置の一定性を確保した。   From the diamond sintered bodies of Examples 1 and 2, square and triangular prisms (tilt angle α = 0 °) with the dimensions shown in the table below were cut out by wire cutting. On the other hand, holes for fixing were carved in various patterns on the same type of substrate as in each of the above examples, and individual chips were placed and pressed in the axial direction from above to secure the fixedness and the top surface position uniformity.

Figure 2011020182
Figure 2011020182

前記硬質ウレタンの研磨試験と同様の研磨条件において研磨試験を行い、次の結果を得た。   A polishing test was performed under the same polishing conditions as the hard urethane polishing test, and the following results were obtained.

Figure 2011020182
Figure 2011020182

前記実施例1のダイヤモンド焼結体から、10個の切れ刃を有する直方体形状のチップを作成した。焼結ダイヤモンド層には形成された切れ刃は各々一辺が200μm×200μmの頂部をもつ高さ200μm の四角柱状で、半径方向に1mmのピッチで5段、円周方向に1mmピッチで2列配置されている。同一構成のチップを24個用意した。   From the diamond sintered body of Example 1, a rectangular parallelepiped chip having 10 cutting edges was produced. The cutting edges formed on the sintered diamond layer are square columns with a height of 200 μm each having a top of 200 μm × 200 μm, arranged in 5 rows at a pitch of 1 mm in the radial direction and in 2 rows at a pitch of 1 mm in the circumferential direction. Has been. Twenty-four chips with the same configuration were prepared.

実施例3と同様の基板の外周に15°ごとに長方形断面の溝を24個彫り、各チップを配置し、表面の水平さを確保した上でプレスにより圧入し、固定して工具とした。   24 grooves having a rectangular cross section were carved every 15 ° on the outer periphery of the substrate similar to that in Example 3, and each chip was placed, and after ensuring the level of the surface, it was press-fitted and fixed to obtain a tool.

この工具を硬質ウレタンの研磨試験に供し、カットレートとして180μm/h、Ra表面粗さとして4.9μmを得た。   This tool was subjected to a hard urethane polishing test to obtain a cut rate of 180 μm / h and an Ra surface roughness of 4.9 μm.

上記において、本発明をダイヤモンド焼結体に関して説明したが、これに代えて硬質相チッ化ホウ素(c−BN、w−BN)焼結体を利用することも可能である。   In the above description, the present invention has been described with reference to a diamond sintered body. However, a hard phase boron nitride (c-BN, w-BN) sintered body may be used instead.

本発明の工具はパッドコンディショナーとしての利用に特に適しているが、その外に硬質材の精密仕上げにも利用可能である。   The tool of the present invention is particularly suitable for use as a pad conditioner, but it can also be used for precision finishing of hard materials.

1 切れ刃
2 側面
4 基準面 (切れ刃軸面)
6 頂面
7 基板
8 ブロックチップ
11〜14 扇形素材
15 超硬合金基体
16 焼結ダイヤモンド層
20 線状突起
22 工具
24 複合材チップ
25 基板

1 Cutting Edge 2 Side 4 Reference Surface (Cutting Blade Shaft Surface)
6 Top surface 7 Substrate 8 Block chip 11-14 Fan-shaped material 15 Cemented carbide base 16 Sintered diamond layer 20 Linear protrusion 22 Tool 24 Composite material chip 25 Substrate

Claims (13)

剛性基板が平面状の円形表面を有し、該基板に、該円形表面に関して一定レベル内に位置する平坦な頂面を持つ切れ刃を複数個固定配置した研磨工具であって、該頂面は複数個の直線状稜線に囲まれかつ該稜線を介して工具軸方向に延びた側面と隣接し、切れ刃の少なくとも頂部が焼結ダイヤモンドで構成されていることを特徴とする、パッドドレッシングに適した研磨工具。   A polishing tool in which a rigid substrate has a flat circular surface, and a plurality of cutting edges having a flat top surface located within a certain level with respect to the circular surface are fixedly arranged on the substrate, Suitable for pad dressing, characterized in that it is surrounded by a plurality of linear ridgelines and adjacent to the side surface extending in the tool axis direction through the ridgelines, and at least the top of the cutting edge is made of sintered diamond Polishing tool. 前記切れ刃が四角柱又は四角錐台状である、請求項1に記載の研磨工具。   The polishing tool according to claim 1, wherein the cutting edge has a quadrangular prism shape or a truncated pyramid shape. 前記切れ刃が三角柱又は三角錐台状である、請求項1に記載の研磨工具。   The polishing tool according to claim 1, wherein the cutting edge has a triangular prism shape or a triangular frustum shape. 前記切れ刃における側面の切れ刃軸面角度が30°以下である、請求項1乃至3の各項に記載の研磨工具。   The polishing tool according to any one of claims 1 to 3, wherein a side edge angle of the side surface of the cutting edge is 30 ° or less. 研磨工具全体における切れ刃の頂面総面積が、基板内面積の10%以下0.005%以上(10000分の1000以下0.5以上)である、請求項1に記載の研磨工具。   The polishing tool according to claim 1, wherein the total area of the top surface of the cutting edge in the entire polishing tool is 10% or less and 0.005% or more (1000 / 10,000 or less and 0.5 or more) of the area in the substrate. 前記切れ刃が直交格子状に一定の間隔で配設されている、請求項1に記載の研磨工具。   The polishing tool according to claim 1, wherein the cutting edges are arranged in a rectangular lattice at regular intervals. 前記切れ刃が同心円状に一定の間隔で配設されている、請求項1に記載の研磨工具。   The polishing tool according to claim 1, wherein the cutting edges are arranged concentrically at regular intervals. 前記切れ刃の複数個が同一半径上に配設されている、請求項1又は7に記載の研磨工具。   The polishing tool according to claim 1 or 7, wherein a plurality of the cutting edges are disposed on the same radius. 前記工具が直径110mm以下のパッド・ドレッサーである、請求項1乃至8の各項に記載の研磨工具。   The polishing tool according to claim 1, wherein the tool is a pad dresser having a diameter of 110 mm or less. 請求項1に記載の研磨工具を用いて被加工物材料を除去する研磨方法において、上記切れ刃を被加工物の表面へ押圧することにより被加工物表面に押圧方向へ変位した変位部分を生ぜしめ、さらに切れ刃頂部の直線状稜線を該変形部分に対して相対的に運動せしめることによって変形部分と残部との境界における被加工物材料を除去することを特徴とする、研磨方法。   2. A polishing method for removing a workpiece material using the polishing tool according to claim 1, wherein a pressing portion is pressed against the surface of the workpiece to generate a displacement portion displaced in the pressing direction on the surface of the workpiece. A polishing method comprising: removing a workpiece material at a boundary between a deformed portion and a remaining portion by further moving a linear ridge line of the top of the cutting edge relative to the deformed portion. 前記被加工物が硬質ウレタンである、請求項10に記載の研磨方法。   The polishing method according to claim 10, wherein the workpiece is hard urethane. 前記切れ刃が四角柱状又は四角錐台状である、請求項10に記載の研磨方法。   The polishing method according to claim 10, wherein the cutting edge has a quadrangular prism shape or a truncated pyramid shape. 前記切れ刃が三角柱状又は三角錐台状である、請求項10に記載の研磨方法。   The polishing method according to claim 10, wherein the cutting edge has a triangular prism shape or a triangular frustum shape.
JP2009164566A 2009-07-13 2009-07-13 Polishing tool suitable for pad conditioning, and polishing method using the same Pending JP2011020182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164566A JP2011020182A (en) 2009-07-13 2009-07-13 Polishing tool suitable for pad conditioning, and polishing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164566A JP2011020182A (en) 2009-07-13 2009-07-13 Polishing tool suitable for pad conditioning, and polishing method using the same

Publications (1)

Publication Number Publication Date
JP2011020182A true JP2011020182A (en) 2011-02-03

Family

ID=43630692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164566A Pending JP2011020182A (en) 2009-07-13 2009-07-13 Polishing tool suitable for pad conditioning, and polishing method using the same

Country Status (1)

Country Link
JP (1) JP2011020182A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534790A (en) * 2011-05-17 2014-01-22 二和钻石工业股份有限公司 Cmp pad conditioner, and method for producing the cmp pad conditioner
JP2016078158A (en) * 2014-10-15 2016-05-16 豊田バンモップス株式会社 Form rotary dresser and manufacturing method thereof
JP2022060241A (en) * 2020-05-07 2022-04-14 キオクシア株式会社 Manufacturing method of dresser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534790A (en) * 2011-05-17 2014-01-22 二和钻石工业股份有限公司 Cmp pad conditioner, and method for producing the cmp pad conditioner
JP2014514971A (en) * 2011-05-17 2014-06-26 イファ ダイヤモンド インダストリアル カンパニー,リミテッド CMP pad conditioner and method for manufacturing the CMP pad conditioner
US9314901B2 (en) 2011-05-17 2016-04-19 Ehwa Diamond Industrial Co., Ltd. CMP pad conditioner, and method for producing the CMP pad conditioner
JP2016172318A (en) * 2011-05-17 2016-09-29 イファ ダイヤモンド インダストリアル カンパニー,リミテッド Cmp pad conditioner and manufacturing method of cmp pad conditioner
TWI623383B (en) * 2011-05-17 2018-05-11 二和鑽石工業股份有限公司 Cmp pad conditioner
JP2016078158A (en) * 2014-10-15 2016-05-16 豊田バンモップス株式会社 Form rotary dresser and manufacturing method thereof
JP2022060241A (en) * 2020-05-07 2022-04-14 キオクシア株式会社 Manufacturing method of dresser

Similar Documents

Publication Publication Date Title
RU2430827C2 (en) Tool with polishing surface from sintered substance and method of its fabrication
JP3829092B2 (en) Conditioner for polishing pad and method for producing the same
JP5406890B2 (en) Method and trimming device for trimming two working layers
KR101091030B1 (en) Method for producing pad conditioner having reduced friction
US10293463B2 (en) Chemical mechanical planarization pad conditioner with elongated cutting edges
US20090123705A1 (en) CMP Pad Dressers
TW200821092A (en) Conditioning disk having uniform structures
US20190091832A1 (en) Composite conditioner and associated methods
JP2012232378A (en) Tip for precision polishing tool, its manufacturing method, and polishing tool using tip
KR101237740B1 (en) Method for Manufacturing a High-functional Pad Conditioner for Chemical Mechanical Planarization and High-functional Pad Conditioner produced thereby
US20160346901A1 (en) Chemical Mechanical Polishing Conditioner
JP2011161584A (en) Grinding tool
JP2011020182A (en) Polishing tool suitable for pad conditioning, and polishing method using the same
JP2012121129A (en) Polishing tool suitable for pad conditioning and polishing method using the same
JP2006055944A (en) Cmp pad conditioner
CN113199400A (en) Chemical mechanical grinding polishing pad dressing device and preparation method thereof
JP2012213833A (en) Sintered body for pad conditioning and its manufacturing method
JP2006218577A (en) Dresser for polishing cloth
TWI735795B (en) Polishing pad dresser and chemical mechanical planarization method
KR200175263Y1 (en) The structure of the conditioner for CMP(Chemical Mechanical Polishing) Pad in CMP process
JP2010125588A (en) Conditioner for semiconductor polishing cloth and method of manufacturing the same
JP2010125587A (en) Conditioner for semiconductor polishing cloth and method of manufacturing the same
JP2010125586A (en) Conditioner for semiconductor polishing cloth and method of manufacturing the same
JP2010125589A (en) Conditioner for semiconductor polishing cloth and method of manufacturing the same
JP2003170356A (en) Diamond coating cutting tool