JP2011019556A - Washing liquid sensor - Google Patents

Washing liquid sensor Download PDF

Info

Publication number
JP2011019556A
JP2011019556A JP2009164764A JP2009164764A JP2011019556A JP 2011019556 A JP2011019556 A JP 2011019556A JP 2009164764 A JP2009164764 A JP 2009164764A JP 2009164764 A JP2009164764 A JP 2009164764A JP 2011019556 A JP2011019556 A JP 2011019556A
Authority
JP
Japan
Prior art keywords
washing liquid
parallel resonance
electrode
parallel
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009164764A
Other languages
Japanese (ja)
Other versions
JP5397055B2 (en
Inventor
Taketoshi Sato
武年 佐藤
Makoto Oyama
眞 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009164764A priority Critical patent/JP5397055B2/en
Publication of JP2011019556A publication Critical patent/JP2011019556A/en
Application granted granted Critical
Publication of JP5397055B2 publication Critical patent/JP5397055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect the soil of washing liquid regardless of an atmospheric temperature. <P>SOLUTION: The washing liquid sensor includes temperature detection means 50 for measuring a temperature near an insulating transformer 46 and control means 11 for controlling the operation of a washing machine. When an electrode A12 and an electrode B13 on the secondary side of the insulating transformer 46 are immersed in the washing liquid while the primary side is resonated in parallel by high frequency generation means, the change of a parallel resonance impedance by parallel resonance impedance change means 42 connected to parallel resonance impedance measurement means 41 is detected, and a resistance value in the washing liquid is determined. Further, the control means performs correction to the change portion of the parallel resonance impedance by the temperature detected in the temperature detection means 50 and determines the resistance value in the washing liquid. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、洗濯機の洗濯液の汚れを検知する洗濯液センサに関するものである。   The present invention relates to a washing liquid sensor for detecting dirt of washing liquid in a washing machine.

従来、この種の洗濯液センサは、汚れを洗濯液の抵抗値で検知することが考えられており、その構成は、洗濯液中に浸漬される一対の検知用の電極を高周波絶縁トランスの二次側に接続し、高周波絶縁トランスの一次側に1〜30kHzの高周波電圧を印加する高周波発生回路とセンサ読込回路を接続し、センサ読込回路で読み取ったインピーダンス変化をマイクロコンピュータに取り込んで洗濯液の状態を検知するようにしていた(例えば、特許文献1参照)。   Conventionally, it has been considered that this type of washing liquid sensor detects dirt by the resistance value of the washing liquid, and the structure thereof includes a pair of detection electrodes immersed in the washing liquid and two high-frequency insulation transformers. Connected to the secondary side, connected to the primary side of the high frequency isolation transformer with a high frequency generating circuit for applying a high frequency voltage of 1 to 30 kHz and a sensor reading circuit, and the impedance change read by the sensor reading circuit was taken into the microcomputer to The state is detected (see, for example, Patent Document 1).

特開平4−187183号公報JP-A-4-187183

しかしながら、前記従来の構成では、洗濯液センサ制御手段の雰囲気温度が0℃から40℃まで変わると洗濯液センサの出力電圧が変化して、洗濯液の汚れを正確に検知することができないという課題があった。   However, in the conventional configuration, when the ambient temperature of the washing liquid sensor control means changes from 0 ° C. to 40 ° C., the output voltage of the washing liquid sensor changes, and the stain of the washing liquid cannot be accurately detected. was there.

本発明は、前記従来の課題を解決するもので、雰囲気温度に関係なく洗濯液の汚れを精度良く検知することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to accurately detect the stain of the washing liquid regardless of the ambient temperature.

前記従来の課題を解決するために、本発明の洗濯液センサは、洗濯液中に浸漬される一対の検知用の電極を絶縁トランスの二次側に接続し、前記絶縁トランスの一次側のコイルと並列にコンデンサを接続し、前記絶縁トランスの一次側のコイルと並列に接続されたコンデンサで30kHzを超える高周波で並列共振させる高周波発生手段と、前記高周波発生手段の出力に接続され並列共振時のインピーダンスを測定する並列共振インピーダンス測定手段と、前記並列共振インピーダンス測定手段に接続され並列共振インピーダンスが変化することを検知する並列共振インピーダンス変化手段と、前記絶縁トランス近傍の温度を測定する温度検知手段と、洗濯機の動作を制御する制御手段とを備え、前記高周波発生手段により一次側が並列共振している時に、前記絶縁トランスの二次側の電極に洗濯液が浸漬されると、前記並列共振インピーダンス測定手段に接続された並列共振インピーダンス変化手段により並列共振インピーダンスが変化することを検知し、洗濯液中の抵抗値を判定するとともに、前記制御手段は、前記温度検知手段で検知した温度により、並列共振インピーダンスの変化分に補正をかけて洗濯液中の抵抗値を判定するようにしたものである。   In order to solve the above-described conventional problems, a washing liquid sensor according to the present invention has a pair of detection electrodes immersed in the washing liquid connected to the secondary side of the insulation transformer, and a coil on the primary side of the insulation transformer. And a high-frequency generating means for parallel resonance at a high frequency exceeding 30 kHz with a capacitor connected in parallel with the coil on the primary side of the insulation transformer, and a high-frequency generating means connected to the output of the high-frequency generating means. Parallel resonance impedance measuring means for measuring impedance; parallel resonance impedance changing means connected to the parallel resonance impedance measuring means for detecting a change in parallel resonance impedance; and temperature detecting means for measuring the temperature in the vicinity of the insulation transformer. And a control means for controlling the operation of the washing machine, and the high frequency generating means causes the primary side to resonate in parallel. When the washing liquid is immersed in the secondary electrode of the insulating transformer, the parallel resonance impedance changing means connected to the parallel resonance impedance measuring means detects that the parallel resonance impedance changes, and the washing In addition to determining the resistance value in the liquid, the control means determines the resistance value in the washing liquid by correcting the change in parallel resonance impedance based on the temperature detected by the temperature detection means. is there.

これによって、洗濯機の洗濯液の汚れを、雰囲気温度に関係なく精度良く検知することができる。   As a result, it is possible to accurately detect the contamination of the washing liquid of the washing machine regardless of the ambient temperature.

本発明の洗濯液センサは、洗濯機の洗濯液の汚れを、雰囲気温度に関係なく精度良く検知することができる。   The washing liquid sensor of the present invention can accurately detect the stain of the washing liquid of the washing machine regardless of the ambient temperature.

本発明の実施の形態1における洗濯機の概略構成図1 is a schematic configuration diagram of a washing machine according to Embodiment 1 of the present invention. 同洗濯機の洗濯液センサの構成図Configuration diagram of washing liquid sensor of the washing machine 同洗濯機の制御手段のブロック構成図Block diagram of the control means of the washing machine 同洗濯機の洗濯液センサ制御手段の回路図Circuit diagram of washing liquid sensor control means of the washing machine 同洗濯機の洗濯液センサ制御手段の抵抗R1とコンデンサC2のピーク電位の関係図Relationship diagram between resistance R1 of washing liquid sensor control means and peak potential of capacitor C2 of the washing machine 同洗濯機の洗濯液の抵抗値と汚れの関係図Relationship between resistance value of washing liquid and dirt in the washing machine 同洗濯機の絶縁トランスの一次側インピーダンスと二次側インピーダンスの関係図Relationship diagram between primary side impedance and secondary side impedance of insulation transformer of the washing machine 同洗濯機の洗濯液センサ制御手段のダイオード38の波形図Waveform diagram of diode 38 of the washing liquid sensor control means of the washing machine 同洗濯機の洗濯液の電導度と汚れの関係図Relationship between conductivity and dirt of washing liquid of the washing machine 同洗濯機の洗濯液センサ制御手段の出力電圧と電導度の関係図Relationship diagram between output voltage and conductivity of washing liquid sensor control means of the washing machine 同洗濯機の洗濯液センサ制御手段の出力電圧と温度の関係図Relationship diagram between output voltage and temperature of washing liquid sensor control means of the washing machine 同洗濯機の洗濯液センサ制御手段の電極汚れの有無による出力電圧と電導度の関係図Relationship diagram of output voltage and conductivity depending on presence / absence of electrode contamination of washing liquid sensor control means of the washing machine

第1の発明は、洗濯液中に浸漬される一対の検知用の電極を絶縁トランスの二次側に接続し、前記絶縁トランスの一次側のコイルと並列にコンデンサを接続し、前記絶縁トランスの一次側のコイルと並列に接続されたコンデンサで30kHzを超える高周波で並列共振させる高周波発生手段と、前記高周波発生手段の出力に接続され並列共振時のインピーダンスを測定する並列共振インピーダンス測定手段と、前記並列共振インピーダンス測定手段に接続され並列共振インピーダンスが変化することを検知する並列共振インピーダンス変化手段と、前記絶縁トランス近傍の温度を測定する温度検知手段と、洗濯機の動作を制御する制御手段とを備え、前記高周波発生手段により一次側が並列共振している時に、前記絶縁トランスの二次側の電極に洗濯液が浸漬されると、前記並列共振インピーダンス測定手段に接続された並列共振インピーダンス変化手段により並列共振インピーダンスが変化することを検知し、洗濯液中の抵抗値を判定するとともに、前記制御手段は、前記温度検知手段で検知した温度により、並列共振インピーダンスの変化分に補正をかけて洗濯液中の抵抗値を判定するようにしたことにより、雰囲気温度(0〜40℃)に関係なく洗濯液の汚れを抵抗値(電導度)によって精度良く検知することができる。   According to a first aspect of the present invention, a pair of detection electrodes immersed in the washing liquid is connected to the secondary side of the insulation transformer, a capacitor is connected in parallel with the primary side coil of the insulation transformer, A high-frequency generating means for resonating in parallel at a high frequency exceeding 30 kHz with a capacitor connected in parallel with the coil on the primary side; a parallel resonant impedance measuring means connected to the output of the high-frequency generating means for measuring impedance at the time of parallel resonance; Parallel resonance impedance changing means connected to the parallel resonance impedance measuring means for detecting a change in parallel resonance impedance, temperature detecting means for measuring the temperature in the vicinity of the insulating transformer, and control means for controlling the operation of the washing machine. And when the primary side is resonating in parallel by the high-frequency generating means, When the washing liquid is immersed in the parallel resonance impedance, the parallel resonance impedance changing means connected to the parallel resonance impedance measuring means detects that the parallel resonance impedance changes, and determines the resistance value in the washing liquid, and the control means Since the resistance value in the washing liquid is determined by correcting the change in the parallel resonance impedance based on the temperature detected by the temperature detecting means, the washing is performed regardless of the ambient temperature (0 to 40 ° C.). Liquid contamination can be accurately detected by the resistance value (conductivity).

第2の発明は、特に、第1の発明の制御手段は、並列共振インピーダンスの変化分に、絶縁トランスの温度特性と同じ温度特性の補正をかけて洗濯液中の抵抗値を判定するようにしたことにより、洗濯液センサの構成要素で最も温度の影響を受けやすい絶縁トランスと同じ温度特性の補正をかけることで、雰囲気温度(0〜40℃)に関係なく洗濯液の抵抗値(電導度)を精度良く検知することができる。   In the second invention, in particular, the control means of the first invention determines the resistance value in the washing liquid by correcting the parallel resonance impedance by the same temperature characteristic as that of the insulation transformer. As a result, the resistance value of the washing liquid (conductivity) is applied regardless of the ambient temperature (0 to 40 ° C.) by applying the same temperature characteristic correction as that of the insulating transformer that is most susceptible to temperature among the components of the washing liquid sensor. ) Can be detected with high accuracy.

第3の発明は、特に、第1の発明の制御手段は、電極に洗剤を含まない水道水が接触した時の洗濯液センサの出力電圧から電極の汚れ具合を予測し、基準電圧を超えた場合に電極汚れ異常と判定するようにしたことにより、洗濯物が汚れているにもかかわらず、汚れが落ちたものとする誤判定により洗濯を終了する不具合をなくすことができ、所定の洗濯をおこなうことができる。   In the third aspect of the invention, in particular, the control means of the first aspect of the invention predicts the degree of contamination of the electrode from the output voltage of the washing liquid sensor when tap water not containing detergent comes in contact with the electrode, and exceeds the reference voltage. In this case, it is determined that the electrode is soiled abnormally. Can be done.

第4の発明は、特に、第1〜第3のいずれか1つの発明において、洗濯液をドラムに循環させる循環経路を設けるとともに、前記循環経路に洗濯液の状態を検知する洗濯液センサを配設し、前記循環経路に洗剤を含まない水道水を循環させて電極の汚れを除去するようにしたことにより、電極の表面に付着した汚れを循環する水道水によって除去することができ、精度良く洗濯液の電導度を計測することができる。   In a fourth aspect of the invention, in particular, in any one of the first to third aspects, a circulation path for circulating the washing liquid to the drum is provided, and a washing liquid sensor for detecting the state of the washing liquid is disposed in the circulation path. By installing and circulating tap water that does not contain detergent in the circulation path to remove dirt on the electrode, dirt adhering to the surface of the electrode can be removed by circulating tap water, with high accuracy. The conductivity of the washing liquid can be measured.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における洗濯機の概略構成図、図2は、同洗濯機の洗濯液センサの構成図、図3は、同洗濯機の制御手段のブロック構成図、図4は、同洗濯機の洗濯液センサ制御手段の回路図である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a washing machine according to a first embodiment of the present invention, FIG. 2 is a configuration diagram of a washing liquid sensor of the washing machine, and FIG. 3 is a block configuration diagram of control means of the washing machine. FIG. 4 is a circuit diagram of the washing liquid sensor control means of the washing machine.

図1〜図4において、洗濯機全体の外箱1の内部に外槽2が配設され、さらに外槽2の内側に洗濯槽としてのドラム3が水平方向から前上がりに傾斜した回転軸によって回転可能な状態で配設されている。ドラム3は、背面側に接続されたモータ4の回転によって回転するようになっている。また、ドラム3は外周面に複数の通水孔(図示せず)が設けられており、洗濯槽、脱水槽、乾燥槽としても機能するものである。   1 to 4, an outer tub 2 is disposed inside the outer box 1 of the entire washing machine, and a drum 3 as a washing tub is further inclined inside the outer tub 2 from the horizontal direction to the front upward. It is arranged in a rotatable state. The drum 3 is rotated by the rotation of the motor 4 connected to the back side. The drum 3 is provided with a plurality of water passage holes (not shown) on the outer peripheral surface, and functions as a washing tub, a dewatering tub, and a drying tub.

外槽2の最低部には、取水口5が設けられており、排水弁6を介して排水管7につながっている。取水口5と排水弁6の間からは、取水口5から取り込んだ洗濯液をドラム3に吐出する吐出口8につながった循環経路9が連通しており、外槽2の洗濯液やすすぎ液を循環できるようにしている。循環経路9には洗濯液の状態を検知する洗濯液センサ10が設置されている。   A water intake 5 is provided in the lowest part of the outer tub 2 and is connected to a drain pipe 7 via a drain valve 6. Between the intake port 5 and the drain valve 6, a circulation path 9 connected to the discharge port 8 for discharging the washing liquid taken in from the intake port 5 to the drum 3 is connected, and the washing liquid and the rinsing liquid in the outer tub 2 are communicated. Can be circulated. The circulation path 9 is provided with a washing liquid sensor 10 for detecting the state of the washing liquid.

洗濯液センサ10は、図2に示すように、電極A12と電極B13が循環経路9を挟んで対峙して設置され、洗濯液センサ10は制御手段11に接続されている。   As shown in FIG. 2, the washing liquid sensor 10 is installed such that the electrode A <b> 12 and the electrode B <b> 13 face each other across the circulation path 9, and the washing liquid sensor 10 is connected to the control means 11.

制御手段11は、図3に示すように、電源手段20が交流電源に接続され中央制御手段21の電源を供給する。中央制御手段21は、洗濯機の操作入力を受け付ける操作表示手段22、および洗濯機の状態を示す表示手段23、およびモータ4を制御するモータ制御手段24、および排水弁6を制御する排水弁制御手段25、および洗濯液センサ10を制御する洗濯液センサ制御手段26に接続されている。   As shown in FIG. 3, the control means 11 is connected to an AC power supply 20 and supplies power to the central control means 21. The central control means 21 is an operation display means 22 that receives an operation input of the washing machine, a display means 23 that indicates the state of the washing machine, a motor control means 24 that controls the motor 4, and a drain valve control that controls the drain valve 6. The means 25 and the washing liquid sensor control means 26 for controlling the washing liquid sensor 10 are connected.

洗濯液センサ制御手段26の詳細な構成を図4に示している。図4において、洗濯液中に浸漬される洗濯液センサ10は電極A12と電極B13を有し、絶縁トランス46は円形のフェライトコアに一次側コイル34と二次側コイル33を巻いて構成している。電極A12は絶縁トランス46の二次側のコイル33の一端に接続され、電極A12と対をなす電極B13は、絶縁トランス46の二次側のコイル33の他端に接続されている。   A detailed configuration of the washing liquid sensor control means 26 is shown in FIG. In FIG. 4, the washing liquid sensor 10 immersed in the washing liquid has an electrode A12 and an electrode B13, and the insulating transformer 46 is configured by winding a primary side coil 34 and a secondary side coil 33 around a circular ferrite core. Yes. The electrode A12 is connected to one end of the secondary coil 33 of the insulating transformer 46, and the electrode B13 that makes a pair with the electrode A12 is connected to the other end of the secondary coil 33 of the insulating transformer 46.

絶縁トランス46の一次側コイル34の一端は、一次側コイル34と並列に接続されるコンデンサ(C1)35の一端と増幅回路であるインバータ37の入力に接続され、絶縁トランス46の一次側コイル34の他端は、一次側コイル34と並列に接続されるコンデンサ(C2)36の一端と、インバータ37の出力に一端が接続された抵抗47の他端と、並列共振インピーダンス測定手段41の入力であるダイオード38のアノードに接続されている。   One end of the primary side coil 34 of the insulating transformer 46 is connected to one end of a capacitor (C1) 35 connected in parallel with the primary side coil 34 and the input of the inverter 37 which is an amplifier circuit. Are connected at one end of a capacitor (C2) 36 connected in parallel with the primary side coil 34, the other end of the resistor 47 connected at one end to the output of the inverter 37, and the input of the parallel resonance impedance measuring means 41. It is connected to the anode of a certain diode 38.

コンデンサ(C1)35とコンデンサ(C2)36の他端はグランドに接続され、並列共振インピーダンス測定手段41の出力であるダイオード38のカソードは、コンデンサ(C3)39の一端と抵抗(R2)40の一端と並列共振インピーダンス変化手段42の入力に接続され、コンデンサ(C3)39と抵抗(R2)40の他端はグランドに接続され、並列共振インピーダンス変化手段42の出力は中央制御手段21に接続されて洗濯液センサ制御手段26が構成されている。   The other ends of the capacitor (C1) 35 and the capacitor (C2) 36 are connected to the ground, and the cathode of the diode 38 which is the output of the parallel resonance impedance measuring means 41 is connected to one end of the capacitor (C3) 39 and the resistor (R2) 40. One end is connected to the input of the parallel resonance impedance changing means 42, the other end of the capacitor (C3) 39 and the resistor (R2) 40 is connected to the ground, and the output of the parallel resonance impedance changing means 42 is connected to the central control means 21. The washing liquid sensor control means 26 is configured.

上記構成において、発振動作を説明する。コンデンサ(C1)35の電位がインバータ37の基準電位より大きくなるとインバータ37の出力がロウつまりグランドになる。すると、インバータ37の出力の外につけられた抵抗(R1)47を介してコンデンサ(C2)36の電荷がグランドに流れるためコンデンサ(C2)36の電位は変化する。   In the above configuration, the oscillation operation will be described. When the potential of the capacitor (C1) 35 becomes higher than the reference potential of the inverter 37, the output of the inverter 37 becomes low, that is, the ground. Then, since the electric charge of the capacitor (C2) 36 flows to the ground via the resistor (R1) 47 attached outside the output of the inverter 37, the potential of the capacitor (C2) 36 changes.

一方、一次側コイル34で決まるインダクタンスLのエネルギーをコンデンサ(C1)35とコンデンサ(C2)36とでやりとりすることにより、発振が維持される。つまり、インバータ37の出力は、なるべくコンデンサ(C2)36の電荷を吸い込まないようにすることにより、インダクタンスLと、コンデンサ(C1)35と、コンデンサ(C2)36により決まる発振周波数が継続される。   On the other hand, oscillation is maintained by exchanging energy of the inductance L determined by the primary coil 34 between the capacitor (C1) 35 and the capacitor (C2) 36. That is, the output of the inverter 37 continues the oscillation frequency determined by the inductance L, the capacitor (C1) 35, and the capacitor (C2) 36 by preventing the charge of the capacitor (C2) 36 from being absorbed as much as possible.

また、インバータ37の吸い込み電流が大きく、かつ抵抗(R1)47が小さすぎると、インダクタンスLと、コンデンサ(C1)35と、コンデンサ(C2)36により決まる発振周波数の周期より早い時間でコンデンサ(C2)36の電荷をインバータ37の出力が吸い込んでしまい、インダクタンスLのエネルギーをコンデンサ(C1)35とコンデンサ(C2)36とでやりとりすることができず、インダクタンスLとコンデンサ(C1)35、コンデンサ(C2)36により決まる発振周波数が継続されなくなる。   If the sink current of the inverter 37 is large and the resistor (R1) 47 is too small, the capacitor (C2) can be obtained at a time earlier than the period of the oscillation frequency determined by the inductance L, the capacitor (C1) 35, and the capacitor (C2) 36. ) 36 is absorbed by the output of the inverter 37, and the energy of the inductance L cannot be exchanged between the capacitor (C1) 35 and the capacitor (C2) 36, and the inductance L, the capacitor (C1) 35, and the capacitor ( C2) The oscillation frequency determined by 36 is not continued.

そこで、インバータ37の出力の吸い込み電流を抵抗(R1)47で規制することにより、インダクタンスLのエネルギーをコンデンサ(C1)35とコンデンサ(C2)36とでやりとりすることができ、コンデンサ(C1)35、コンデンサ(C2)36により決まる発振周波を継続させることができる。   Therefore, by regulating the sink current of the output of the inverter 37 by the resistor (R1) 47, the energy of the inductance L can be exchanged between the capacitor (C1) 35 and the capacitor (C2) 36, and the capacitor (C1) 35 The oscillation frequency determined by the capacitor (C2) 36 can be continued.

インバータ37の吐出し電流についても、吸い込み電流と同様に、抵抗(R1)47で吐き出し電流を規制することにより、インダクタンスLとコンデンサ(C1)35、コンデンサ(C2)36により決まる発振周波を継続させることができる。   As for the discharge current of the inverter 37, the oscillation frequency determined by the inductance L, the capacitor (C1) 35, and the capacitor (C2) 36 is continued by restricting the discharge current by the resistor (R1) 47, similarly to the sink current. be able to.

また、インバータ37の出力の抵抗(R1)47の値を変えることにより、コンデンサ(C2)36の電荷を調整できるのでコンデンサ(C2)36の電位、つまりコルピッツ発振の出力振幅を変化させることができる。   Further, by changing the value of the output resistor (R1) 47 of the inverter 37, the charge of the capacitor (C2) 36 can be adjusted, so that the potential of the capacitor (C2) 36, that is, the output amplitude of Colpitts oscillation can be changed. .

図5は、洗濯液センサ制御手段26の抵抗(R1)47と、コンデンサC2)36のピーク電位の関係を示したもので、横軸に抵抗(R1)47の値、縦軸にコンデンサ(C2)36のピーク電位を示す。一次側コイル34で決まるインダクタンスLやコンデンサ(C1)35とコンデンサ(C2)36の部品定数バラツキにより、コンデンサ(C2)36のピーク電位、つまり、コルピッツ発振の出力振幅が変化しても、抵抗(R1)47の値を変えることにより出力振幅を一定に調整できる。   FIG. 5 shows the relationship between the resistance (R1) 47 of the washing liquid sensor control means 26 and the peak potential of the capacitor C2) 36. The horizontal axis represents the value of the resistance (R1) 47, and the vertical axis represents the capacitor (C2). ) Shows a peak potential of 36. Even if the peak potential of the capacitor (C2) 36, that is, the output amplitude of Colpitts oscillation, changes due to the inductance L determined by the primary coil 34 and the component constant variation of the capacitor (C1) 35 and the capacitor (C2) 36, the resistance ( By changing the value of (R1) 47, the output amplitude can be adjusted to be constant.

次に、本実施の形態の洗濯機の洗濯液の抵抗値を検知する動作について説明する。図3の操作表示手段22から洗濯やすすぎの指示が中央制御手段21に与えられる。そして、給水されモータ制御手段24によりモータ4が駆動し、ドラム3が回転することで、ドラム3や外槽2内の洗濯液が取水口5から循環経路9内に入り、この循環経路9に設けた洗濯液センサ10を通ってドラム3へと循環する。   Next, an operation for detecting the resistance value of the washing liquid in the washing machine of the present embodiment will be described. An instruction for washing and rinsing is given to the central control means 21 from the operation display means 22 of FIG. Then, when water is supplied and the motor 4 is driven by the motor control means 24 and the drum 3 rotates, the washing liquid in the drum 3 and the outer tub 2 enters the circulation path 9 from the water intake 5 and enters the circulation path 9. It circulates to the drum 3 through the provided washing liquid sensor 10.

これにより、循環経路9内の水は常にドラム3や外槽2内の洗濯液と同じ状態になる。洗濯液は、洗剤やドラム3の回転による攪拌によって洗濯物から汚れが溶け出して徐々に濁ってくる。一方、洗濯液の汗成分の量は、洗濯液の抵抗値の変化として捕らえることができる。   Thereby, the water in the circulation path 9 is always in the same state as the washing liquid in the drum 3 and the outer tub 2. The washing liquid gradually becomes cloudy due to the dissolution of dirt from the laundry by the detergent and the stirring by the rotation of the drum 3. On the other hand, the amount of the sweat component of the washing liquid can be captured as a change in the resistance value of the washing liquid.

図6に洗濯液の汗成分の量と洗濯液の抵抗値の関係を示す。洗濯液の抵抗値を測定する
と、洗濯物から溶け出した汗(主成分は塩化ナトリウム)を主とした汚れの量を判定でき、洗濯液センサ10と洗濯液センサ制御手段26で洗濯液の抵抗値の状態の変化を見ることができる。
FIG. 6 shows the relationship between the amount of the sweat component of the washing liquid and the resistance value of the washing liquid. When the resistance value of the washing liquid is measured, it is possible to determine the amount of dirt mainly composed of sweat (main component is sodium chloride) dissolved from the laundry, and the washing liquid sensor 10 and the washing liquid sensor control means 26 use the resistance of the washing liquid. You can see the change in value status.

洗濯液センサ10と洗濯液センサ制御手段26で洗濯液の抵抗値の状態の変化を見る方法について、図7で具体的に説明する。検知用の電極A12、電極B13は絶縁トランス46の二次側コイル33に接続されている。洗濯液中に浸漬される検知用の電極A12、電極B13間に洗濯液がなくなり空気が接触したときの二次側コイルの33の抵抗値が無限大の時の一次側の並列共振インピーダンスをZ1とする。   A method of checking the change in the resistance value of the washing liquid with the washing liquid sensor 10 and the washing liquid sensor control means 26 will be specifically described with reference to FIG. The detection electrodes A12 and B13 are connected to the secondary coil 33 of the insulation transformer 46. The parallel resonance impedance on the primary side when the resistance value of the secondary coil 33 is infinite when the washing liquid is lost between the electrodes A12 and B13 for detection immersed in the washing liquid and the air contacts is Z1. And

電極A12、電極B13間に洗濯液が接触したときの抵抗値をZ2とすると、1次側で周波数frで共振して発振している交流波形は、二次側にも同じ交流周波数frの電圧が発生する。   Assuming that the resistance value when the washing liquid is in contact between the electrode A12 and the electrode B13 is Z2, the AC waveform oscillating by resonating at the frequency fr on the primary side is also the voltage of the same AC frequency fr on the secondary side. Will occur.

その時の一次側の並列共振インピーダンスはZ12となり、Z1より小さくなる。つまり、二次側コイル33の洗濯液の抵抗値が小さくなると、一次側の並列共振インピーダンスZ1も小さくなる。   At that time, the parallel resonance impedance on the primary side is Z12, which is smaller than Z1. That is, when the resistance value of the washing liquid of the secondary coil 33 decreases, the parallel resonance impedance Z1 on the primary side also decreases.

そうなると、コルピッツ発振回路の正弦波の出力であるコンデンサ(C2)36の正弦波振幅も小さくなり、図8に示すように、並列共振インピーダンス測定手段41の入力であるダイオードのアノード38にインバータ37の基準電位を中心に正弦波が印加される。ダイオードのアノード38に接続された図4の並列共振インピーダンス測定手段41のコンデンサ(C3)39を、共振用コンデンサ(C1)35と(C2)36に影響を与えないように小さく設定し、コンデンサ(C3)39に並列に接続された抵抗(R2)40を大きくして放電時定数を大きくすれば、図8に示すように、並列共振インピーダンス測定手段41の出力であるダイオードのカソード38の波形は、正弦波のピーク電圧が保持される。この電圧が共振インピーダンス変化手段42の入力電圧となる。   As a result, the sine wave amplitude of the capacitor (C2) 36, which is the output of the sine wave of the Colpitts oscillation circuit, is also reduced, and as shown in FIG. 8, the diode 37, which is the input of the parallel resonance impedance measuring means 41, is connected to the anode 38 of the inverter 37. A sine wave is applied around the reference potential. The capacitor (C3) 39 of the parallel resonance impedance measuring means 41 of FIG. 4 connected to the anode 38 of the diode is set small so as not to affect the resonance capacitors (C1) 35 and (C2) 36, and the capacitor ( C3) If the resistance (R2) 40 connected in parallel to 39 is increased to increase the discharge time constant, the waveform of the diode cathode 38, which is the output of the parallel resonance impedance measuring means 41, is as shown in FIG. The peak voltage of the sine wave is maintained. This voltage becomes the input voltage of the resonance impedance changing means 42.

並列共振インピーダンス変化手段42は、この並列共振インピーダンス測定手段41の出力電圧の変化を見ることにより、図9に示すあらかじめ測定しておいた絶縁トランス46の一次側のインピーダンスZ1と、絶縁トランス46の二次側のインピーダンス(洗濯液中に浸漬される洗濯液の抵抗値)Z2の関係から、洗濯液中に浸漬される検知用の電極A12と電極B13間に接触する洗濯液の抵抗値Z2を判断することができる。   The parallel resonant impedance changing means 42 looks at the change in the output voltage of the parallel resonant impedance measuring means 41, thereby measuring the impedance Z1 on the primary side of the insulating transformer 46 shown in FIG. From the relationship of the impedance on the secondary side (resistance value of the washing liquid immersed in the washing liquid) Z2, the resistance value Z2 of the washing liquid contacting between the electrode A12 for detection immersed in the washing liquid and the electrode B13 is obtained. Judgment can be made.

なお、本実施の形態において、洗濯液センサ制御手段26の高周波発生手段43としてコルピッツ発振回路とし、これは絶縁トランス46の一次側コイル34のインダクタンスLとコンデンサ(C1)35、コンデンサ(C2)36が決まれば並列共振周波数で自動的に発振する自励発振である構成にしているので、絶縁トランス46やコンデンサの温度の変化により並列共振周波数が変化しても並列共振並列共振インピーダンスの変化は少ない。また、自励発振なので並列共振インピーダンスの最大値の状態で発振を継続するので、洗濯液の抵抗値を精度よく見る洗濯液センサに適している。   In the present embodiment, a Colpitts oscillation circuit is used as the high-frequency generating means 43 of the washing liquid sensor control means 26, which is an inductance L of the primary coil 34 of the insulating transformer 46, a capacitor (C 1) 35, and a capacitor (C 2) 36. Since the self-excited oscillation automatically oscillates at the parallel resonance frequency is determined, even if the parallel resonance frequency changes due to the temperature change of the insulation transformer 46 and the capacitor, the change in the parallel resonance parallel resonance impedance is small. . Further, since the oscillation is continued with the maximum value of the parallel resonance impedance because of self-excited oscillation, it is suitable for a washing liquid sensor for accurately checking the resistance value of the washing liquid.

また、本実施の形態によれば、検知用の電極A12、電極B13間に洗濯液がなくなり空気が接触したときの抵抗値が無限大の時の一次側の並列共振インピーダンスはZ1なので、Z1以上の洗濯液の大きな抵抗値は検知することができない。洗濯液の抵抗値は、洗濯液に含まれる塩化ナトリウムの濃度による抵抗値や、電極A12と電極B13間の距離および電極形状により変化するので、この一次側の並列共振インピーダンスはZ1が大きくなるほど二次側の抵抗値Z2である洗濯液の大きな抵抗値も検知できるので、検知範囲が広がり、精度も向上する。   In addition, according to the present embodiment, the parallel resonance impedance on the primary side when the washing liquid disappears between the detection electrode A12 and the electrode B13 and the air contacts is infinite when the resistance value is infinite. The large resistance value of the washing liquid cannot be detected. Since the resistance value of the washing liquid varies depending on the resistance value depending on the concentration of sodium chloride contained in the washing liquid, the distance between the electrode A12 and the electrode B13, and the electrode shape, the parallel resonance impedance on the primary side increases as Z1 increases. Since the large resistance value of the washing liquid, which is the resistance value Z2 on the next side, can be detected, the detection range is expanded and the accuracy is improved.

そこで、一次側の並列共振インピーダンスはZ1を大きくするには、一次側コイル33のインダクタンスLを大きくするとともにQ値を大きくする必要がある。Q値は数式1で示される。   Accordingly, in order to increase the primary side parallel resonance impedance Z1, it is necessary to increase the inductance L of the primary side coil 33 and increase the Q value. The Q value is expressed by Equation 1.

つまり、共振周波数frやインダクタンスLを大きくし、インダクタンスLと直列に接続される抵抗分rを小さくすれば、Q値は大きくなる。   That is, if the resonance frequency fr and the inductance L are increased and the resistance r connected in series with the inductance L is decreased, the Q value is increased.

従来の技術では、1から30kHZであったが、それでは十分大きなQ値が得られないので、本発明では30kHzを超える共振周波数でQ値を大きくすることにより共振インピーダンスZrを大きくし、図6に示す水道水の抵抗値である約4kΩを検知することができるようにしている。   In the conventional technique, the frequency is 1 to 30 kHz, but a sufficiently large Q value cannot be obtained. Therefore, in the present invention, the resonance impedance Zr is increased by increasing the Q value at a resonance frequency exceeding 30 kHz. About 4 kΩ, which is the resistance value of the tap water shown, can be detected.

その他にQ値を大きくする方法として、インダクタンスLと直列に接続される抵抗分rを小さくする方法として、一次側コイル34の直径を大きくする方法や、細いリード線を数多く拠って1本のコイルとするなどの方法がある。また、インダクタンスLを大きくする方法としては、巻数を増やすとか、トランスのコアの透磁率を大きくする方法もある。Q値を大きくすると一次側の並列共振インピーダンスを大きくできるので、洗濯液の抵抗値(二次側の抵抗値)の変化によるインピーダンスの変化範囲を拡大することができる。   In addition, as a method of increasing the Q value, a method of reducing the resistance r connected in series with the inductance L, a method of increasing the diameter of the primary side coil 34, or a single coil based on many thin lead wires. There are methods such as. As a method of increasing the inductance L, there are a method of increasing the number of turns and a method of increasing the permeability of the core of the transformer. If the Q value is increased, the parallel resonance impedance on the primary side can be increased, so that the range of impedance change due to the change in the resistance value (secondary resistance value) of the washing liquid can be expanded.

このように、制御手段11は洗濯液センサ制御手段26を制御して、例えば1分毎に洗濯液の抵抗値を測定し、洗濯液の状態を判断し洗濯工程やすすぎ工程の制御に用いることができる。例えば、制御手段11は抵抗値があらかじめ定めた値よりも高ければ、抵抗値が水道水と同等のレベルと判断し、すすぎ完了と判断してすすぎを終了するなどの制御に用いることができる。   Thus, the control means 11 controls the washing liquid sensor control means 26 to measure the resistance value of the washing liquid, for example, every minute, judge the state of the washing liquid, and use it for controlling the washing process and the rinsing process. Can do. For example, if the resistance value is higher than a predetermined value, the control means 11 determines that the resistance value is equivalent to tap water, determines that the rinsing is complete, and can be used for control such as ending the rinsing.

図6で汗成分量(汚れ程度)と二次側コイル33の抵抗値の関係を示したが、洗濯液の汚れ程度は、電導度で測定される。抵抗値と電導度には相関があり、抵抗値を測定することと電導度を測定することは洗濯液の汚れを測定する観点からは同じである。   FIG. 6 shows the relationship between the amount of the sweat component (degree of dirt) and the resistance value of the secondary coil 33. The degree of dirt of the washing liquid is measured by electrical conductivity. There is a correlation between the resistance value and the electrical conductivity, and measuring the resistance value and measuring the electrical conductivity are the same from the viewpoint of measuring the soiling of the washing liquid.

図9は、汗成分量(汚れ程度)と電導度の関係を示したものである。電導度の数値が大きいほど汚れが大きい。前述したように二次側コイル33の抵抗値が並列インピーダンスに変化を与え、その並列共振インピーダンスの変化分が洗濯液センサ制御手段26の出力電圧として現れる。   FIG. 9 shows the relationship between the amount of sweat components (contamination level) and electrical conductivity. The greater the conductivity value, the greater the contamination. As described above, the resistance value of the secondary coil 33 changes the parallel impedance, and the change in the parallel resonance impedance appears as the output voltage of the washing liquid sensor control means 26.

図10に、洗濯機使用時に最も多い雰囲気温度20℃の時の洗濯液センサ制御手段26の出力電圧と電導度の関係を示す。図10において、電極A12と電極B13間が完全に絶縁された状態での出力電圧がVa、水道水(約0.18ms/cmの電導度)の時の出力電圧がVwを示し、星印は電極汚れがないときの電導度と出力電圧の関係を示す。   FIG. 10 shows the relationship between the output voltage of the washing liquid sensor control means 26 and the electrical conductivity when the ambient temperature is 20 ° C., which is the highest when the washing machine is used. In FIG. 10, the output voltage when the electrode A12 and the electrode B13 are completely insulated is Va, the output voltage when tap water (conductivity of about 0.18 ms / cm) is Vw, The relationship between conductivity and output voltage when there is no electrode contamination is shown.

図11に、電極A12と電極B13間に水道水(約0.18ms/cmの電導度)が接触している状態で、横軸に洗濯液センサ制御手段26の雰囲気温度0℃、20℃、40℃、60℃、縦軸に洗濯液センサ制御手段26の出力電圧の関係を示す。   In FIG. 11, in the state where tap water (conductivity of about 0.18 ms / cm) is in contact between the electrode A12 and the electrode B13, the horizontal axis represents the ambient temperature of the washing liquid sensor control means 26 at 0 ° C., 20 ° C., The relationship of the output voltage of the washing liquid sensor control means 26 is shown on the vertical axis at 40 ° C. and 60 ° C.

これは、0℃で出力電圧が最小で、40℃で出力電圧が最大を示し、60℃でまた出力電圧が下がっている。これは、上凸の二次曲線の近似式で近似できる。理論的には、絶縁トランス46のコアの材質であるフェライトの温度特性が出力電圧に影響を与える。中央
制御手段21は、雰囲気温度20℃の時の洗濯液センサ制御手段26の出力電圧と電導度の関係を記憶しており、洗濯液センサ制御手段26の出力電圧を取り込み、記憶したデータと照合して洗濯液の電導度を算出する。
This is the minimum output voltage at 0 ° C., the maximum output voltage at 40 ° C., and the output voltage decreases again at 60 ° C. This can be approximated by an approximate expression of an upward convex quadratic curve. Theoretically, the temperature characteristics of ferrite, which is the material of the core of the insulating transformer 46, affects the output voltage. The central control means 21 stores the relationship between the output voltage of the washing liquid sensor control means 26 and the electrical conductivity when the ambient temperature is 20 ° C., takes in the output voltage of the washing liquid sensor control means 26, and compares it with the stored data. Then, the conductivity of the washing liquid is calculated.

出力電圧には、温度の影響と電導度の影響が混在しているので温度に対する補正が必要である。そこで、制御手段11の洗濯液センサ制御手段26の絶縁トランス46近傍の温度を測定する温度検知手段50を設け、中央制御手段21はその温度検知手段50で測定された温度により、並列共振インピーダンスの変化分の出力である洗濯液センサ制御手段26の出力電圧に、図11で得られた実験による上凸の二次曲線の近似式で測定した温度の電圧を換算して20℃の電圧になるように温度補正をかけ、図10に示すように、洗濯液センサ制御手段26の雰囲気温度が20℃の時の出力電圧と電導度の関係をデータとして記憶しておけば、20℃の出力電圧がわかれば、電導度がわかることになる。   In the output voltage, the influence of temperature and the influence of conductivity are mixed, so correction for temperature is necessary. Therefore, a temperature detection means 50 for measuring the temperature in the vicinity of the insulating transformer 46 of the washing liquid sensor control means 26 of the control means 11 is provided, and the central control means 21 determines the parallel resonance impedance based on the temperature measured by the temperature detection means 50. The voltage of the temperature measured by the approximate expression of the upward convex quadratic curve obtained by the experiment obtained in FIG. As shown in FIG. 10, if the relationship between the output voltage and the conductivity when the ambient temperature of the washing liquid sensor control means 26 is 20 ° C. is stored as data as shown in FIG. If you know, you will know the conductivity.

また、図11で実験による上凸の二次曲線の近似式で、温度補正をかけたが、理論的には、絶縁トランス46のコアの材質であるフェライトの温度特性が出ているので絶縁トランス46の温度特性と同じ温度特性の補正をかけても良い。洗濯液センサの構成要素で最も温度の影響を受けやすい絶縁トランスと同じ温度特性の補正をかけることで、雰囲気温度(0〜40℃)に関係なく洗濯液の抵抗値(電導度)を精度良く検知することができる。   In addition, although temperature correction was applied by an approximate expression of an upward convex quadratic curve in FIG. 11, theoretically, the temperature characteristics of ferrite, which is the material of the core of the insulating transformer 46, have been obtained. The same temperature characteristic correction as that of 46 may be applied. By applying the same temperature characteristic correction as the insulation transformer that is most susceptible to temperature among the components of the washing liquid sensor, the resistance value (conductivity) of the washing liquid can be accurately adjusted regardless of the ambient temperature (0 to 40 ° C). Can be detected.

次に、図12は、電極の表面に砂やプラスチックなどの絶縁性の汚物が付着した汚れ有りの状態を△印で、電極の表面に汚れが無い状態を星印で、横軸を電導度、縦軸を出力電圧で示す。   Next, FIG. 12 shows a state in which the insulating dirt such as sand or plastic adheres to the surface of the electrode as △, a state in which the electrode surface is not dirty as an asterisk, and the horizontal axis as conductivity. The vertical axis represents the output voltage.

電極の汚れがひどい場合、中央制御手段21は洗濯液センサ制御手段26の出力電圧しか見ないので、洗濯液の電導度の変化なのか電極汚れの変化なのか識別できない。出力電圧には、電極汚れの影響と電導度の影響が混在しているので電極汚れに対する補正が必要である。   When the electrode is severely contaminated, the central control means 21 sees only the output voltage of the washing liquid sensor control means 26, and therefore cannot identify whether the washing liquid conductivity changes or the electrode dirt changes. Since the influence of electrode contamination and the influence of conductivity are mixed in the output voltage, it is necessary to correct the electrode contamination.

そこで、電極汚れの補正の方法につい詳しく述べる。電導度がゼロの時は電極A12と電極B13間が絶縁された状態であり、出力電圧はVaを示す。電極A12と電極B13間にすすぎ工程で洗剤を含まない水道水(約0.18ms/cmの電導度)を接触させると、図13に示す出力電圧がVwを示す。今、電極汚れが有りのときの出力電圧がVmを示している。   Therefore, a method for correcting electrode contamination will be described in detail. When the conductivity is zero, the electrode A12 and the electrode B13 are insulated from each other, and the output voltage is Va. When tap water not containing a detergent (conductivity of about 0.18 ms / cm) is brought into contact between the electrode A12 and the electrode B13 in the rinsing step, the output voltage shown in FIG. 13 indicates Vw. Now, the output voltage when there is electrode contamination indicates Vm.

電極が汚れると、電極A12と電極B13間の抵抗値は大きくなり、出力電圧がVaの方に近づく。この電圧の変化により、電極の汚れ具合を予測できる。また、Vmが図13に示すVaより小さくVwより大きく設定された基準電圧Vrefを超えた場合、電極汚れ異常と見なす。基準電圧は、電極A12と電極B13間が絶縁された状態の出力電圧より小さく、洗剤を含まない水道水が接触したときの出力電圧より大きく設定している。   When the electrode becomes dirty, the resistance value between the electrode A12 and the electrode B13 increases, and the output voltage approaches Va. The change in voltage can predict the degree of electrode contamination. Further, when Vm exceeds the reference voltage Vref set smaller than Va and larger than Vw shown in FIG. 13, it is regarded as an electrode contamination abnormality. The reference voltage is set to be smaller than the output voltage in a state where the electrode A12 and the electrode B13 are insulated, and larger than the output voltage when tap water not containing detergent comes into contact.

電極の汚れがひどくなると、洗濯物が汚れているにもかかわらず、汚れが落ちたものとして誤った判定をして洗濯を終了する不具合が生じる。そのため、すすぎ工程で使用する水道水で電極の汚れ度合いを判定し、設定されている別のシーケンスで所定の洗濯をおこなうことができるようにしている。   If the electrode is heavily soiled, there is a problem that the laundry is erroneously determined as being soiled and the laundry is terminated, even though the laundry is soiled. Therefore, the degree of contamination of the electrode is determined with tap water used in the rinsing process, and predetermined washing can be performed in another set sequence.

つまり、中央制御手段21は、洗濯液センサ制御手段26の出力電圧Voutを測定することによりVoutがVreを超えた場合、電極汚れ異常と判断することができ、正常に洗濯できるようにする。   That is, the central control unit 21 can determine that the electrode contamination is abnormal when Vout exceeds Vre by measuring the output voltage Vout of the washing liquid sensor control unit 26, and can perform normal washing.

なお、本発明は電気的に電極の汚れ異常を検知するものであるが、汚れを検知することによって、循環経路9に洗剤を含まない水を循環させて電極表面の汚れを除去するほか、電極の表面を機械的に摩擦させて汚れを除去するなど、機械的に電極の汚れを除去し、電極の汚れによる異常を防止することもできる。   The present invention electrically detects an abnormal soiling of the electrode. In addition to removing dirt on the electrode surface by circulating water containing no detergent in the circulation path 9 by detecting the soiling, The surface of the electrode is mechanically rubbed to remove the dirt. For example, the dirt of the electrode can be mechanically removed to prevent abnormalities due to the dirt of the electrode.

本発明の洗濯液センサは、洗濯機の洗濯液の汚れを、雰囲気温度に関係なく精度良く検知することができるので、洗濯機の洗濯液の汚れを検知する洗濯液センサとして有用である。   The washing liquid sensor of the present invention is useful as a washing liquid sensor for detecting the stain of the washing liquid of the washing machine because the washing liquid of the washing machine can be accurately detected regardless of the ambient temperature.

2 外槽
3 ドラム
4 モータ
9 循環経路
10 洗濯液センサ
11 制御手段
12 電極A
13 電極B
26 洗濯液センサ制御手段
33 絶縁トランスの二次側コイル
34 絶縁トランスの一次側コイル
41 並列共振インピーダンス測定手段
42 並列共振インピーダンス変化手段
46 絶縁トランス
50 温度検知手段
2 Outer tub 3 Drum 4 Motor 9 Circulation path 10 Washing liquid sensor 11 Control means 12 Electrode A
13 Electrode B
26 Washing liquid sensor control means 33 Secondary coil of insulation transformer 34 Primary coil of insulation transformer 41 Parallel resonance impedance measurement means 42 Parallel resonance impedance change means 46 Insulation transformer 50 Temperature detection means

Claims (4)

洗濯液中に浸漬される一対の検知用の電極を絶縁トランスの二次側に接続し、前記絶縁トランスの一次側のコイルと並列にコンデンサを接続し、前記絶縁トランスの一次側のコイルと並列に接続されたコンデンサで30kHzを超える高周波で並列共振させる高周波発生手段と、前記高周波発生手段の出力に接続され並列共振時のインピーダンスを測定する並列共振インピーダンス測定手段と、前記並列共振インピーダンス測定手段に接続され並列共振インピーダンスが変化することを検知する並列共振インピーダンス変化手段と、前記絶縁トランス近傍の温度を測定する温度検知手段と、洗濯機の動作を制御する制御手段とを備え、前記高周波発生手段により一次側が並列共振している時に、前記絶縁トランスの二次側の電極に洗濯液が浸漬されると、前記並列共振インピーダンス測定手段に接続された並列共振インピーダンス変化手段により並列共振インピーダンスが変化することを検知し、洗濯液中の抵抗値を判定するとともに、前記制御手段は、前記温度検知手段で検知した温度により、並列共振インピーダンスの変化分に補正をかけて洗濯液中の抵抗値を判定するようにした洗濯液センサ。 A pair of detection electrodes immersed in the washing liquid is connected to the secondary side of the insulating transformer, a capacitor is connected in parallel to the primary side coil of the insulating transformer, and parallel to the primary side coil of the insulating transformer. A high frequency generating means for performing parallel resonance at a high frequency exceeding 30 kHz with a capacitor connected to the parallel resonance impedance measuring means connected to the output of the high frequency generating means for measuring impedance at the time of parallel resonance; and the parallel resonant impedance measuring means. The high frequency generating means comprising: parallel resonant impedance changing means connected to detect a change in parallel resonant impedance; temperature detecting means for measuring a temperature in the vicinity of the insulating transformer; and control means for controlling the operation of the washing machine. When the primary side resonates in parallel, the washing liquid is immersed in the secondary side electrode of the insulation transformer. Then, the parallel resonance impedance changing means connected to the parallel resonance impedance measuring means detects that the parallel resonance impedance is changed, and determines a resistance value in the washing liquid, and the control means is configured to detect the temperature. A washing liquid sensor that determines the resistance value in the washing liquid by correcting the change in the parallel resonance impedance based on the temperature detected by the means. 制御手段は、並列共振インピーダンスの変化分に、絶縁トランスの温度特性と同じ温度特性の補正をかけて洗濯液中の抵抗値を判定するようにした請求項1記載の洗濯液センサ。 2. The washing liquid sensor according to claim 1, wherein the control means determines the resistance value in the washing liquid by correcting the change in the parallel resonance impedance by the same temperature characteristic as the temperature characteristic of the insulating transformer. 制御手段は、電極に洗剤を含まない水道水が接触した時の洗濯液センサの出力電圧から電極の汚れ具合を予測し、基準電圧を超えた場合に電極汚れ異常と判定するようにした請求項1記載の洗濯液センサ。 The control means predicts the degree of contamination of the electrode from the output voltage of the washing liquid sensor when tap water not containing detergent comes into contact with the electrode, and determines that the electrode contamination is abnormal when the reference voltage is exceeded. The washing liquid sensor according to 1. 洗濯液をドラムに循環させる循環経路を設けるとともに、前記循環経路に洗濯液の状態を検知する洗濯液センサを配設し、前記循環経路に洗剤を含まない水道水を循環させて電極の汚れを除去するようにした請求項1〜3のいずれか1項に記載の洗濯液センサ。 A circulation path for circulating the washing liquid to the drum is provided, and a washing liquid sensor for detecting the state of the washing liquid is disposed in the circulation path, and tap water not containing detergent is circulated in the circulation path to clean the electrodes. The washing liquid sensor according to any one of claims 1 to 3, wherein the washing liquid sensor is removed.
JP2009164764A 2009-07-13 2009-07-13 Washing fluid sensor Expired - Fee Related JP5397055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164764A JP5397055B2 (en) 2009-07-13 2009-07-13 Washing fluid sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164764A JP5397055B2 (en) 2009-07-13 2009-07-13 Washing fluid sensor

Publications (2)

Publication Number Publication Date
JP2011019556A true JP2011019556A (en) 2011-02-03
JP5397055B2 JP5397055B2 (en) 2014-01-22

Family

ID=43630174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164764A Expired - Fee Related JP5397055B2 (en) 2009-07-13 2009-07-13 Washing fluid sensor

Country Status (1)

Country Link
JP (1) JP5397055B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000530A (en) * 2011-06-22 2013-01-07 Hitachi Appliances Inc Washing machine
JP2013099400A (en) * 2011-11-08 2013-05-23 Panasonic Corp Drum-type washer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300591A (en) * 1991-03-29 1992-10-23 Hitachi Ltd Conductivity sensor
JPH0515690A (en) * 1991-07-12 1993-01-26 Toshiba Corp Washing machine
JPH07144090A (en) * 1993-11-24 1995-06-06 Sharp Corp Washing controller for washing machine
JPH0975589A (en) * 1995-09-18 1997-03-25 Toshiba Corp Washing machine with storage tub
JP2001038089A (en) * 2000-01-01 2001-02-13 Hitachi Ltd Washing machine
JP2007110842A (en) * 2005-10-14 2007-04-26 Hitachi Plant Technologies Ltd Noncontact feeder system
JP2007252109A (en) * 2006-03-16 2007-09-27 Fuji Electric Device Technology Co Ltd Power electronics
JP2008113978A (en) * 2006-11-08 2008-05-22 Hitachi Appliances Inc Washing machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300591A (en) * 1991-03-29 1992-10-23 Hitachi Ltd Conductivity sensor
JPH0515690A (en) * 1991-07-12 1993-01-26 Toshiba Corp Washing machine
JPH07144090A (en) * 1993-11-24 1995-06-06 Sharp Corp Washing controller for washing machine
JPH0975589A (en) * 1995-09-18 1997-03-25 Toshiba Corp Washing machine with storage tub
JP2001038089A (en) * 2000-01-01 2001-02-13 Hitachi Ltd Washing machine
JP2007110842A (en) * 2005-10-14 2007-04-26 Hitachi Plant Technologies Ltd Noncontact feeder system
JP2007252109A (en) * 2006-03-16 2007-09-27 Fuji Electric Device Technology Co Ltd Power electronics
JP2008113978A (en) * 2006-11-08 2008-05-22 Hitachi Appliances Inc Washing machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000530A (en) * 2011-06-22 2013-01-07 Hitachi Appliances Inc Washing machine
JP2013099400A (en) * 2011-11-08 2013-05-23 Panasonic Corp Drum-type washer

Also Published As

Publication number Publication date
JP5397055B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
US6810732B2 (en) Water level sensor
US9349575B2 (en) Remote plasma system having self-management function and self management method of the same
TW200806091A (en) Method and apparatus to detect fault conditions of a plasma processing reactor
CN102535112B (en) The circuit of detection detergent and method
CN101469504B (en) Detection prompting method and system for washing machine
CN102634958A (en) Washing machine as well as control method and control device thereof
CN103334266B (en) The detection method of clothing material and washing machine and control method thereof
US9632047B2 (en) Method and device for the detection of properties of fluid media
JP5397055B2 (en) Washing fluid sensor
CN104652089A (en) Method for acquiring load of washing machine and washing machine
JP5707246B2 (en) Washing machine
JP4973679B2 (en) Washing fluid sensor
CN205012042U (en) A pickup assembly and washing machine for washing machine
JP2010060305A (en) Capacitor deterioration detector and household equipment
EP0582329B1 (en) Device for measuring the water resistivity in a washing machine
CN105177921A (en) Sensor assembly used for washing machine and washing machine
JP5321242B2 (en) Washing fluid sensor
JP2017127402A (en) Clothes dryer
JP2011206136A (en) Washing machine
CN106609436B (en) Control method of washing machine and washing machine
JP2011206137A (en) Washing machine
SE0004400D0 (en) Method for cleaning laundry / dishwashing in a washing / dishwasher and device for carrying out the method
KR100971018B1 (en) Conductive sensor sensing method of a washer
CN111501287A (en) Washing machine remote control system
JP2010240130A (en) Washing liquid sensor and washing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

LAPS Cancellation because of no payment of annual fees