JP2007110842A - Noncontact feeder system - Google Patents

Noncontact feeder system Download PDF

Info

Publication number
JP2007110842A
JP2007110842A JP2005299636A JP2005299636A JP2007110842A JP 2007110842 A JP2007110842 A JP 2007110842A JP 2005299636 A JP2005299636 A JP 2005299636A JP 2005299636 A JP2005299636 A JP 2005299636A JP 2007110842 A JP2007110842 A JP 2007110842A
Authority
JP
Japan
Prior art keywords
coil
saturable reactor
temperature
voltage
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005299636A
Other languages
Japanese (ja)
Inventor
Shohei Furukawa
正平 古川
Satoru Sugitani
悟 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2005299636A priority Critical patent/JP2007110842A/en
Publication of JP2007110842A publication Critical patent/JP2007110842A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact feeder system by a simple and inexpensive circuit which prevents an output voltage fluctuation from exceeding its allowable value even if an ambient temperature largely changes. <P>SOLUTION: This noncontact feeder system includes a pick-up coil 5 for supplying a magnetic fields generated in a feeder 4 to a load 8 as a feeding voltage by electromagnetic induction, a resonant capacitor 60 connected in parallel with the pick-up coil 5, and a saturable reactor 61 connected in parallel with the pick-up coil 5 for inhibiting a rise in feeding voltage at no load or under light-load conditions. The coil of the saturable reactor 61 is formed of a center tap 62 and a temperature switch circuit 63 for short-circuiting the center tap 62 when the saturable reactor 61 is at a predetermined temperature or lower. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非接触給電装置に関し、特に、可飽和リアクトルによってピーク電圧を抑制し、負荷に供給する電圧を負荷が許容できる上限以下の電圧で安定して給電するようにした非接触給電装置に関するものである。   The present invention relates to a non-contact power feeding device, and more particularly to a non-contact power feeding device that suppresses a peak voltage with a saturable reactor and stably feeds a voltage supplied to a load at a voltage equal to or lower than an upper limit allowable for the load. Is.

非接触給電装置は、例えば、電磁誘導作用を利用して非接触で移動体に電力を給電するものであり、火花が出ない、摩耗による発塵がない、給電線は絶縁ケーブルなので感電しない、メンテナンスフリーで使用できるなどの特長がある。
これを生かし、例えば、半導体工場等のクリーンルーム内の搬送装置や、高所、狭所でメンテナンスが困難なところ、水滴等があり感電のおそれがあるようなところなどで好適に使用することができる。
The non-contact power supply device, for example, is a device that supplies power to a moving body in a non-contact manner using electromagnetic induction action, does not generate sparks, does not generate dust due to wear, and does not receive an electric shock because the power supply line is an insulated cable. Features such as maintenance-free use.
Taking advantage of this, for example, it can be suitably used in a transport device in a clean room such as a semiconductor factory, a place where maintenance is difficult in high places and narrow places, and where there is a risk of electric shock due to water droplets etc. .

その一例として、特許文献1に示すように、一対の平行に敷設した往復導体を地上一次側の給電線とし、E型コアの中央脚部にコイルを巻いた受電コイルを二次側として、給電線に流す高周波電流により生ずる磁界との電磁誘導により受電コイルに電力を伝達する方式の非接触給電装置が提案されている。
この非接触給電装置において、受電コイルの二次回路は、共振コンデンサと可飽和リアクトルを受電コイルに並列に接続している。共振回路電圧が可飽和リアクトルのコアを磁気飽和する値まで上昇してコアが飽和すると、コアの比透磁率(μ/μ)がコアの磁性材料固有の値(概ね2000〜4000)からほぼ1まで急激に低下して可飽和リアクトルのインダクタンスも透磁率に比例して低下する。
可飽和リアクトルは、飽和しない領域では、巻線の抵抗(概ね1Ω以下)に対し、インダクタンスは数十mHあり、電圧位相に対し、電流位相はほぼ90度遅れている。
その結果、高周波の交流の1サイクル内で電圧がほぼゼロの近傍で可飽和リアクトルに飽和電流が流れ、共振回路を短絡する。これにより、共振回路の無負荷電圧抑制を行い、併せて無負荷の共振回路に流れる無効電流も制御するようにしている。
As an example, as shown in Patent Document 1, a pair of reciprocating conductors laid in parallel is used as a ground primary power supply line, and a receiving coil in which a coil is wound around the center leg of an E-type core is used as a secondary side. There has been proposed a non-contact power feeding device that transmits power to a power receiving coil by electromagnetic induction with a magnetic field generated by a high-frequency current flowing through an electric wire.
In this non-contact power feeding device, the secondary circuit of the power receiving coil has a resonant capacitor and a saturable reactor connected in parallel to the power receiving coil. When the resonant circuit voltage rises to a value at which the core of the saturable reactor is magnetically saturated and the core is saturated, the relative magnetic permeability (μ / μ 0 ) of the core is almost equal to the value inherent to the magnetic material of the core (approximately 2000 to 4000). The inductance of the saturable reactor also decreases in proportion to the magnetic permeability.
In a saturable reactor, in a region where it is not saturated, the inductance is several tens of mH with respect to the winding resistance (approximately 1Ω or less), and the current phase is delayed by approximately 90 degrees with respect to the voltage phase.
As a result, a saturation current flows through the saturable reactor when the voltage is near zero within one cycle of high-frequency alternating current, and the resonant circuit is short-circuited. Thereby, the no-load voltage of the resonance circuit is suppressed, and the reactive current flowing through the no-load resonance circuit is also controlled.

ところで、可飽和リアクトルの飽和磁束密度は、材料特性により決まる固有の値であり、一般にフェライト材料の場合、負の温度係数を持ち、0℃から100℃程度まで温度上昇した場合、飽和磁束密度が30%前後低下する。このため、可飽和リアクトルだけで電圧を安定化させる場合、温度特性を考慮した飽和電圧の設定が必要となる。
運転中の自己発熱によって温度が上昇する場合は、冷却ファンなどによる放熱手段によって温度上昇を制限することが可能であるが、長時間の停止状態から起動する場合は、周囲温度によって可飽和リアクトルの温度つまり飽和電圧が変動する。
温度上昇が飽和する上限温度を80℃〜90℃として定格電圧±10%で飽和電圧を設定すると、周囲温度0℃〜40℃を使用環境条件とした場合、0℃近傍で起動するときは飽和磁束密度が高くなり、回路素子の耐圧を超える過電圧が発生し素子を破壊するおそれがあり、高価な高耐圧の素子を使用するとともに、電圧の調整が必要になるという問題があった。
特許第3551304号
By the way, the saturation magnetic flux density of the saturable reactor is an inherent value determined by the material characteristics. Generally, in the case of a ferrite material, the saturation magnetic flux density has a negative temperature coefficient and the temperature rises from about 0 ° C. to about 100 ° C. Decrease by around 30%. For this reason, when the voltage is stabilized only by the saturable reactor, it is necessary to set the saturation voltage in consideration of the temperature characteristics.
When the temperature rises due to self-heating during operation, it is possible to limit the temperature rise by heat dissipation means such as a cooling fan, but when starting from a long-time stop state, the saturable reactor is affected by the ambient temperature. The temperature, that is, the saturation voltage varies.
If the upper limit temperature at which the temperature rise is saturated is set to 80 ° C to 90 ° C and the saturation voltage is set at the rated voltage ± 10%, if the ambient temperature is 0 ° C to 40 ° C and the operating environment is used, it is saturated when starting near 0 ° C. There is a problem that the magnetic flux density becomes high, an overvoltage exceeding the withstand voltage of the circuit element may be generated and the element may be destroyed, and an expensive high withstand voltage element is used and the voltage needs to be adjusted.
Japanese Patent No. 3551304

本発明は、上記従来の非接触給電装置が有する問題点に鑑み、簡単かつ安価な回路により、外気温度が大きく変動しても出力電圧変動が許容値を超えないようにした非接触給電装置を提供することを目的とする。   In view of the problems of the above-described conventional non-contact power feeding device, the present invention provides a non-contact power feeding device in which the output voltage fluctuation does not exceed an allowable value even if the outside air temperature fluctuates greatly by a simple and inexpensive circuit. The purpose is to provide.

上記目的を達成するため、本発明の非接触給電装置は、給電線に発生する磁界を電磁誘導により給電電圧として負荷に給電するピックアップコイルと、該ピックアップコイルと並列接続された共振コンデンサと、ピックアップコイルと並列接続され、無負荷又は軽負荷時の給電電圧の上昇を抑制する可飽和リアクトルとを備えた非接触給電装置において、可飽和リアクトルのコイルに中間タップを設けるとともに、可飽和リアクトルが所定温度以下のときに該中間タップを短絡する温度スイッチ回路を設けたことを特徴とする。   In order to achieve the above object, a contactless power feeding device of the present invention includes a pickup coil that feeds a load with a magnetic field generated in a feeder line as a feeding voltage by electromagnetic induction, a resonance capacitor connected in parallel with the pickup coil, and a pickup In a non-contact power feeding device that is connected in parallel with a coil and has a saturable reactor that suppresses an increase in the feeding voltage at no load or light load, an intermediate tap is provided on the coil of the saturable reactor, and the saturable reactor is predetermined. A temperature switch circuit for short-circuiting the intermediate tap when the temperature is lower than the temperature is provided.

この場合において、温度スイッチ回路をバイメタルを用いて構成することができる。   In this case, the temperature switch circuit can be configured using bimetal.

本発明の非接触給電装置によれば、給電線に発生する磁界を電磁誘導により給電電圧として負荷に給電するピックアップコイルと、該ピックアップコイルと並列接続された共振コンデンサと、ピックアップコイルと並列接続され、無負荷又は軽負荷時の給電電圧の上昇を抑制する可飽和リアクトルとを備えた非接触給電装置において、可飽和リアクトルのコイルに中間タップを設けるとともに、可飽和リアクトルが所定温度以下のときに該中間タップを短絡する温度スイッチ回路を設けることから、可飽和リアクトルがある温度以下になると中間タップを短絡することで透磁率の増加をキャンセルすることができ、これにより、外気温度が大きく変動しても出力電圧変動が許容値を超えないようにすることができる。
このように、本発明の非接触給電装置は、温度変化による出力電圧変動を許容値以内に抑える手段を備えたことにより、設置場所の温度が一定に保たれているクリーンルームのみならず、一般の工場や倉庫などで、特別な調整等をしなくても過電圧で故障させることなく安定して非接触給電装置を運転できる効果がある。
According to the contactless power feeding device of the present invention, a pickup coil that feeds a load with a magnetic field generated in a feeder line as a feeding voltage by electromagnetic induction, a resonant capacitor connected in parallel with the pickup coil, and a pickup coil connected in parallel. In a non-contact power feeding device having a saturable reactor that suppresses an increase in feeding voltage at no load or light load, an intermediate tap is provided on the coil of the saturable reactor, and the saturable reactor is below a predetermined temperature. Since the temperature switch circuit for short-circuiting the intermediate tap is provided, the increase in the magnetic permeability can be canceled by short-circuiting the intermediate tap when the saturable reactor falls below a certain temperature. However, the output voltage fluctuation can be prevented from exceeding the allowable value.
As described above, the non-contact power feeding device of the present invention includes means for suppressing output voltage fluctuation due to a temperature change within an allowable value, so that not only a clean room where the temperature of the installation site is kept constant, but also a general There is an effect that the non-contact power feeding apparatus can be stably operated without causing a failure due to overvoltage without special adjustment or the like in a factory or a warehouse.

また、電圧検出回路とFETなどの半導体素子を使用して定電圧を実現することは一般的に行われているが、温度スイッチ回路をバイメタルを用いて構成することにより、回路に電源がない状態でも簡単なスイッチと配線を従来装置に付加するだけで目的が安価に実現できる。   In addition, it is common practice to use a voltage detection circuit and a semiconductor element such as an FET to achieve a constant voltage, but the temperature switch circuit is made of bimetal so that there is no power supply in the circuit. However, the purpose can be realized at low cost simply by adding a simple switch and wiring to the conventional device.

以下、本発明の非接触給電装置の実施の形態を図面に基づいて説明する。
コアサイズと周波数が一定のとき、コイルの発生電圧は磁束とコイルの巻数に比例し、磁束はコイルの巻数と透磁率に比例し、インダクタンスは透磁率と巻数の2乗に比例することから、巻数を変えることで、発生電圧をその温度における飽和電圧に設定することができる。
そして、磁路断面積S、磁気回路の長さhの鉄心に巻線をN回巻き、コイルに流れる最大電流I、コイルに流れる電流i=21/2Isinωtとすると、鉄心内の磁束は時間とともに変化し、巻線に式(1)に示す誘起電圧eを誘起する。
e=−Ndφ/dt=(−μSNω/h)21/2Icosωt ・・・(1)
L=μSN/h ・・・(2)
ここで、e:誘起電圧、N:コイル巻数、φ:磁束、h:磁路長、S:磁路断面積、ω:2πf、L:インダクタンス、μ:透磁率である。
本発明の非接触給電装置は、このことを利用し、コイルに中間タップを設け、ある温度以下になると中間タップを短絡することで透磁率の増加をキャンセルすることができる。
短絡用のスイッチにバイメタルを使用すれば、電源のない停止中でも回路を形成することが可能である。
もちろん、温度センサで温度を検出し、起動時にタイマ等を用いてコイルの中間タップを短絡した後に負荷回路に接続することもできる。
Hereinafter, embodiments of the non-contact power feeding device of the present invention will be described with reference to the drawings.
When the core size and frequency are constant, the generated voltage of the coil is proportional to the magnetic flux and the number of turns of the coil, the magnetic flux is proportional to the number of turns of the coil and the magnetic permeability, and the inductance is proportional to the permeability and the square of the number of turns. By changing the number of turns, the generated voltage can be set to the saturation voltage at that temperature.
Then, if the winding is wound N times on the iron core having the magnetic path cross-sectional area S and the length h of the magnetic circuit, and the maximum current I flowing through the coil and the current i = 2 1/2 Isinωt flowing through the coil, the magnetic flux in the iron core is It changes with time, and induces an induced voltage e shown in Equation (1) in the winding.
e = −Ndφ / dt = (− μSN 2 ω / h) 2 1/2 Icos ωt (1)
L = μSN 2 / h (2)
Here, e: induced voltage, N: number of coil turns, φ: magnetic flux, h: magnetic path length, S: magnetic path cross-sectional area, ω: 2πf, L: inductance, μ: permeability.
The non-contact power feeding device of the present invention can use this fact to cancel the increase in magnetic permeability by providing an intermediate tap on the coil and short-circuiting the intermediate tap when the temperature falls below a certain temperature.
If bimetal is used for the short-circuit switch, a circuit can be formed even when the power supply is stopped.
Of course, it is also possible to detect the temperature with a temperature sensor and connect the load circuit after short-circuiting the intermediate tap of the coil using a timer or the like at the time of activation.

図1に、非接触給電装置の全体構成を示す。
1は商用電源受電用の絶縁トランスであり、二次側はスイッチを介して高周波インバータ2に接続されている。高周波インバータ2は定電流インバータであり、負荷の増減によらず設定した周波数と一定電流を給電線4に流す。
3は共振コンデンサであり、給電線路および負荷インピーダンスの同調用である。
給電線4は、ピックアップコイル5のE型コアの左右溝内に左右で一対の往復導体を形成するように、搬送路に沿って敷設されている。
5はE型コアの中央脚にコイルを巻いたピックアップコイルであり、給電線4を流れる高周波電流による磁束を受けて受電(電圧を誘起)する。
In FIG. 1, the whole structure of a non-contact electric power feeder is shown.
Reference numeral 1 denotes an insulation transformer for receiving commercial power, and the secondary side is connected to the high-frequency inverter 2 via a switch. The high-frequency inverter 2 is a constant current inverter, and causes a set frequency and a constant current to flow through the feeder line 4 regardless of the increase or decrease of the load.
A resonance capacitor 3 is used for tuning the feed line and the load impedance.
The feeder 4 is laid along the conveyance path so as to form a pair of reciprocating conductors on the left and right in the left and right grooves of the E-shaped core of the pickup coil 5.
Reference numeral 5 denotes a pickup coil in which a coil is wound around the center leg of the E-type core. The pickup coil 5 receives a magnetic flux (induced voltage) by receiving a magnetic flux generated by a high-frequency current flowing through the feeder line 4.

共振ユニット6は、図2に示すように、コンデンサ60と、可飽和リアクトル61とを備え、ピックアップコイル5とコンデンサ60は共振回路を形成している。この受電回路の出力を整流回路7で整流し、負荷8に出力する。
そして、本実施例の非接触給電装置では、可飽和リアクトル61のコイルに中間タップ62を設けるとともに、可飽和リアクトルが所定温度以下のときに該中間タップ62を短絡する温度スイッチ回路63を設けている。
温度スイッチ回路63は、バイメタルを用いて構成されている。
As shown in FIG. 2, the resonance unit 6 includes a capacitor 60 and a saturable reactor 61. The pickup coil 5 and the capacitor 60 form a resonance circuit. The output of this power reception circuit is rectified by the rectifier circuit 7 and output to the load 8.
And in the non-contact electric power feeder of a present Example, while providing the intermediate tap 62 in the coil of the saturable reactor 61, the temperature switch circuit 63 which short-circuits this intermediate tap 62 when a saturable reactor is below predetermined temperature is provided. Yes.
The temperature switch circuit 63 is configured using bimetal.

図4に示すように、可飽和リアクトルの飽和磁束密度が0℃で560mTから90℃で400mTまで直線的に変化する場合に、例えば、本実施例の非接触給電装置により、外気温が15℃のときリアクトル温度が55℃で飽和する条件で運転しているとき、比例計算すると飽和磁束密度は約462mTである。
外気温が約40℃に上昇すると、可飽和リアクトルのリアクトル温度は15℃→55℃と略同じだけの差、約40℃だけ上昇するので、約80〜81℃に上昇し飽和磁束密度は10%低下し約416mTになる。
(62×(90−81)÷(90−55)+400≒416)
その結果、飽和電圧も約10%低下する。逆に外気温が低下して可飽和リアクトルの温度が約29〜30℃になると55℃のときに比べて飽和電圧は約10%上昇する。
更に温度が低下し可飽和リアクトルのコア温度が約0℃になったとき、飽和電圧は30℃のときより約10%上昇し、0℃のとき運転開始すると、発生電圧は55℃のときより約21%高くなる(1.1×1.1=1.21)。
55℃のときの発生電圧を基準電圧とし、0℃のときの発生電圧を55℃のときの発生電圧の10%上昇に制限するには、可飽和リアクトルの温度が30℃のときの状態にすればよい。
そこで、前記した式(1)の関係(e∝N)により、コイル巻数を約5%減じた中間タップ62を設けると、約10%低い電圧を取り出すことができるので飽和電圧を10%低下したのと同じことになる(0.95×0.95≒0.9)。
そして、運転によってコアの温度が約30℃になるまで、バイメタル式の温度スイッチ回路(温度リレー)63などで短絡しておくことにより、出力電圧の大きな変動を抑えることが可能となる。
As shown in FIG. 4, when the saturation magnetic flux density of the saturable reactor changes linearly from 560 mT at 0 ° C. to 400 mT at 90 ° C., for example, the outside air temperature is 15 ° C. by the non-contact power feeding device of this embodiment. When operating under the condition that the reactor temperature is saturated at 55 ° C., the saturation magnetic flux density is about 462 mT by proportional calculation.
When the outside air temperature rises to about 40 ° C., the reactor temperature of the saturable reactor rises by about 40 ° C., which is about the same difference as 15 ° C. → 55 ° C., so it rises to about 80-81 ° C. and the saturation magnetic flux density is 10 % Decrease to about 416 mT.
(62 × (90−81) ÷ (90−55) + 400≈416)
As a result, the saturation voltage is also reduced by about 10%. Conversely, when the outside air temperature decreases and the temperature of the saturable reactor reaches about 29-30 ° C., the saturation voltage increases by about 10% compared to 55 ° C.
When the temperature further decreases and the core temperature of the saturable reactor reaches about 0 ° C., the saturation voltage rises by about 10% from that at 30 ° C. When the operation starts at 0 ° C., the generated voltage is higher than at 55 ° C. About 21% higher (1.1 × 1.1 = 1.21).
In order to limit the generated voltage at 0 ° C. to a 10% increase in the generated voltage at 55 ° C., the generated voltage at 55 ° C. is used as a reference voltage. do it.
Therefore, by providing the intermediate tap 62 with the number of coil turns reduced by about 5% according to the relationship (e∝N 2 ) of the above-described formula (1), a voltage about 10% lower can be taken out, so the saturation voltage is reduced by 10%. (0.95 × 0.95≈0.9).
Then, until the temperature of the core reaches about 30 ° C. by operation, it is possible to suppress a large fluctuation in the output voltage by short-circuiting with a bimetal temperature switch circuit (temperature relay) 63 or the like.

かくして、本実施例の非接触給電装置は、給電線4に発生する磁界を電磁誘導により給電電圧として負荷8に給電するピックアップコイル5と、該ピックアップコイル5と並列接続された共振コンデンサ60と、ピックアップコイル5と並列接続され、無負荷又は軽負荷時の給電電圧の上昇を抑制する可飽和リアクトル61とを備えた非接触給電装置において、可飽和リアクトル61のコイルに中間タップ62を設けるとともに、可飽和リアクトル61が所定温度以下のときに該中間タップ62を短絡する温度スイッチ回路63を設けることから、可飽和リアクトル61がある温度以下になると中間タップ62を短絡することで透磁率の増加をキャンセルすることができ、これにより、外気温度が大きく変動しても出力電圧変動が許容値を超えないようにすることができる。
このように、本発明の非接触給電装置は、温度変化による出力電圧変動を許容値以内に抑える手段を備えたことにより、設置場所の温度が一定に保たれているクリーンルームのみならず、一般の工場や倉庫などで、特別な調整等をしなくても過電圧で故障させることなく安定して非接触給電装置を運転できる効果がある。
また、電圧検出回路とFETなどの半導体素子を使用して定電圧を実現することは一般的に行われているが、温度スイッチ回路63をバイメタルを用いて構成することにより、回路に電源がない状態でも簡単なスイッチと配線を従来装置に付加するだけで目的が安価に実現できる。
Thus, the contactless power supply device of the present embodiment includes a pickup coil 5 that supplies a magnetic field generated in the power supply line 4 to the load 8 as a power supply voltage by electromagnetic induction, and a resonance capacitor 60 that is connected in parallel with the pickup coil 5. In a non-contact power feeding device including a saturable reactor 61 that is connected in parallel with the pickup coil 5 and suppresses an increase in power feeding voltage at no load or light load, an intermediate tap 62 is provided on the coil of the saturable reactor 61, Since the temperature switch circuit 63 for short-circuiting the intermediate tap 62 when the saturable reactor 61 is below a predetermined temperature is provided, the permeability can be increased by short-circuiting the intermediate tap 62 when the saturable reactor 61 falls below a certain temperature. The output voltage fluctuation exceeds the allowable value even if the outside air temperature fluctuates greatly. It can be so no.
As described above, the non-contact power feeding device of the present invention includes means for suppressing output voltage fluctuation due to temperature change within an allowable value, so that not only a clean room where the temperature of the installation site is kept constant but also a general There is an effect that the non-contact power feeding apparatus can be stably operated without causing a failure due to overvoltage without special adjustment or the like in a factory or a warehouse.
In addition, a constant voltage is generally realized by using a voltage detection circuit and a semiconductor element such as an FET, but the circuit has no power supply by forming the temperature switch circuit 63 using bimetal. The objective can be realized at low cost simply by adding a simple switch and wiring to the conventional device.

以上、本発明の非接触給電装置について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、上記実施例に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。   As mentioned above, although the non-contact electric power feeder of this invention was demonstrated based on the Example, this invention is not limited to the structure described in the said Example, The structure described in the said Example is combined suitably, etc. The configuration can be changed as appropriate without departing from the spirit of the invention.

本発明の非接触給電装置は、簡単かつ安価な回路により、外気温度が大きく変動しても出力電圧変動が許容値を超えないようにするという特性を有していることから、温度が一定に保たれているクリーンルームのみならず、例えば、一般の工場や倉庫などで使用する非接触給電装置の用途にも用いることができる。   The contactless power supply device of the present invention has a characteristic that the output voltage fluctuation does not exceed the allowable value even if the outside air temperature fluctuates greatly by a simple and inexpensive circuit. It can be used not only for a maintained clean room, but also for non-contact power supply devices used in general factories and warehouses, for example.

本発明の非接触給電装置の一実施例を示す全体の構成図である。It is the whole lineblock diagram showing one example of the non-contact electric supply device of the present invention. 同非接触給電装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the non-contact electric power feeder. 中間タップを設けた可飽和リアクトルを示す外形図である。It is an outline view showing a saturable reactor provided with an intermediate tap. 飽和磁束密度と温度の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a saturation magnetic flux density and temperature.

符号の説明Explanation of symbols

1 変圧器
2 高周波インバータ
3 同調コンデンサ
4 給電線
5 ピックアップコイル(受電コイル)
60 共振コンデンサ
61 可飽和リアクトル
62 可飽和リアクトルの中間タップ
63 温度スイッチ回路
7 整流ユニット
8 負荷
DESCRIPTION OF SYMBOLS 1 Transformer 2 High frequency inverter 3 Tuning capacitor 4 Feeding line 5 Pickup coil (receiving coil)
60 Resonant Capacitor 61 Saturable Reactor 62 Saturable Reactor Intermediate Tap 63 Temperature Switch Circuit 7 Rectifier Unit 8 Load

Claims (2)

給電線に発生する磁界を電磁誘導により給電電圧として負荷に給電するピックアップコイルと、該ピックアップコイルと並列接続された共振コンデンサと、ピックアップコイルと並列接続され、無負荷又は軽負荷時の給電電圧の上昇を抑制する可飽和リアクトルとを備えた非接触給電装置において、可飽和リアクトルのコイルに中間タップを設けるとともに、可飽和リアクトルが所定温度以下のときに該中間タップを短絡する温度スイッチ回路を設けたことを特徴とする非接触給電装置。   A pickup coil that feeds a load with a magnetic field generated in the feeder line as a feeding voltage by electromagnetic induction, a resonant capacitor connected in parallel with the pickup coil, a parallel connection with the pickup coil, In a non-contact power feeding device equipped with a saturable reactor that suppresses the rise, a temperature switch circuit is provided that short-circuits the intermediate tap when the saturable reactor is below a predetermined temperature, as well as providing an intermediate tap on the coil of the saturable reactor. A non-contact power feeding device characterized by that. 温度スイッチ回路をバイメタルを用いて構成したことを特徴とする請求項1記載の非接触給電装置。   2. The non-contact power feeding apparatus according to claim 1, wherein the temperature switch circuit is configured using bimetal.
JP2005299636A 2005-10-14 2005-10-14 Noncontact feeder system Pending JP2007110842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299636A JP2007110842A (en) 2005-10-14 2005-10-14 Noncontact feeder system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299636A JP2007110842A (en) 2005-10-14 2005-10-14 Noncontact feeder system

Publications (1)

Publication Number Publication Date
JP2007110842A true JP2007110842A (en) 2007-04-26

Family

ID=38036249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299636A Pending JP2007110842A (en) 2005-10-14 2005-10-14 Noncontact feeder system

Country Status (1)

Country Link
JP (1) JP2007110842A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011019556A (en) * 2009-07-13 2011-02-03 Panasonic Corp Washing liquid sensor
JP2014096981A (en) * 2007-08-09 2014-05-22 Qualcomm Incorporated System and method for wireless power supply and charging
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
JP2014096981A (en) * 2007-08-09 2014-05-22 Qualcomm Incorporated System and method for wireless power supply and charging
JP2011019556A (en) * 2009-07-13 2011-02-03 Panasonic Corp Washing liquid sensor

Similar Documents

Publication Publication Date Title
JP6371364B2 (en) Non-contact power supply device
JP5941046B2 (en) Inductive power receiver device
KR100511583B1 (en) Control of inductive power transfer pickups
JP4096873B2 (en) Inductive power receiving circuit for contactless power supply equipment
JP5455078B2 (en) Contactless power supply equipment
JP5707543B2 (en) Non-contact power supply device
JP2007110842A (en) Noncontact feeder system
KR101379747B1 (en) Protection Circuit for Wireless Power Transfer Apparatus
JP2015065724A (en) Contactless power supply system
JP2015136287A5 (en)
JP2001268823A (en) Non-contact feeder system
JP2013243890A (en) Contactless feeding apparatus
JP6284055B2 (en) Power transmission equipment
US11295885B2 (en) Current transformer, protection device and electrical circuit breaker including such a transformer
JP2007252151A (en) Secondary side receiving circuit for noncontact power supply facility
JP2006287987A (en) Secondary receiving circuit for non-contact power supply facility
JP5839000B2 (en) Wireless power receiving device and wireless power transmission device
JP2012138529A (en) Secondary side power reception circuit of non-contact power supply facility, and saturable reactor used in secondary side power reception circuit
JP2021103741A (en) Contactless power supply system
JP4046676B2 (en) Induction power receiving circuit
JP3953457B2 (en) Variable inductor and contactless power supply equipment using this variable inductor
JP7259467B2 (en) power transmission equipment
JP2007151299A (en) Non-contact type feeder system
JP7055723B2 (en) Power supply
JP2007149946A (en) Saturable reactor and non-contact power feeding apparatus utilizing the same