JP2011206137A - Washing machine - Google Patents

Washing machine Download PDF

Info

Publication number
JP2011206137A
JP2011206137A JP2010074706A JP2010074706A JP2011206137A JP 2011206137 A JP2011206137 A JP 2011206137A JP 2010074706 A JP2010074706 A JP 2010074706A JP 2010074706 A JP2010074706 A JP 2010074706A JP 2011206137 A JP2011206137 A JP 2011206137A
Authority
JP
Japan
Prior art keywords
washing liquid
electrode
washing
detecting
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010074706A
Other languages
Japanese (ja)
Inventor
Taketoshi Sato
武年 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010074706A priority Critical patent/JP2011206137A/en
Publication of JP2011206137A publication Critical patent/JP2011206137A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Washing Machine And Dryer (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the size of a substrate by coping with a plurality of electrodes having a plurality of functions by one detection means and reducing the number of components.SOLUTION: The washing machine includes: electrodes 8, 9 for bubble water detection; capacitors 35, 36 in which electrodes 17a, 17b for detecting the electric conductivity of washing liquid are connected to the secondary coil of magnetic coupling means 33, and which are connected in parallel with the primary coil of the magnetic coupling means 33; high frequency generation means for resonating the capacitor connected in parallel with the primary coil of the magnetic coupling means 33 in parallel at a high frequency which is twice or more the driving frequency of a motor 4; and a parallel resonance impedance measurement means connected to the output of the high frequency generation means, for measuring impedance during parallel resonance. Control means 11 includes bubble water detection sequence means 27 and a washing liquid electric conductivity detection sequence means 28, detects bubble water and the electric conductivity of the washing liquid by the respective electrodes and changes a washing control sequence.

Description

本発明は、洗濯物に最適な洗濯動作を制御する洗濯機に関するものである。   The present invention relates to a washing machine that controls a washing operation optimal for laundry.

従来、この種の洗濯機は、泡を検知して洗濯用モータを制御することが考えられている(例えば、特許文献1参照)。図11は、特許文献1に記載された従来の洗濯機の構成を示したものである。図11に示すように、洗濯機外枠51は、水受け槽52を弾性的に支持しており、水受け槽52の内部に洗濯兼脱水槽53を回転自在に設けている。水受け槽52の天面開口部54の上部に一対の電極55を設けている。モータ56は洗濯時または脱水時に洗濯兼脱水槽53を駆動する。   Conventionally, it has been considered that this type of washing machine controls bubbles by detecting foam (for example, see Patent Document 1). FIG. 11 shows a configuration of a conventional washing machine described in Patent Document 1. In FIG. As shown in FIG. 11, the washing machine outer frame 51 elastically supports a water receiving tank 52, and a washing and dehydrating tank 53 is rotatably provided inside the water receiving tank 52. A pair of electrodes 55 is provided above the top surface opening 54 of the water receiving tank 52. The motor 56 drives the washing / dehydrating tub 53 during washing or dehydration.

磁気結合回路57は、1次コイル57aに抵抗58を介して交流信号源59を接続するとともに、第1の整流平滑回路60を接続している。第1の整流平滑回路60は、ダイオード60aとコンデンサ60bを、1次コイル57aの両端に直列接続している。   In the magnetic coupling circuit 57, the AC signal source 59 is connected to the primary coil 57a via the resistor 58, and the first rectifying / smoothing circuit 60 is connected. In the first rectifying and smoothing circuit 60, a diode 60a and a capacitor 60b are connected in series to both ends of the primary coil 57a.

第2の整流平滑回路61は、磁気結合回路57の2次コイル57bに接続している。第2の整流平滑回路61は、ダイオード61aとコンデンサ61bを、2次コイル57bの両端に接続した構成としている。これにより1次コイル57aに発生している交流を直流電源に変換している。なお、信号源は矩形波としているが、その他交番信号であれば実施可能である。   The second rectifying / smoothing circuit 61 is connected to the secondary coil 57 b of the magnetic coupling circuit 57. The second rectifying / smoothing circuit 61 has a configuration in which a diode 61a and a capacitor 61b are connected to both ends of the secondary coil 57b. Thereby, the alternating current generated in the primary coil 57a is converted into a direct current power source. The signal source is a rectangular wave, but any other alternating signal can be implemented.

電流消費回路62は、トランジスタで構成し、コレクタおよびエミッタを直流電源を構成するコンデンサ61bの両端に接続している。コンパレータ63は、その非反転入力に第1の抵抗64と第2の抵抗65を接続し、反転入力に第3の抵抗66と第4の抵抗67を接続している。   The current consumption circuit 62 is constituted by a transistor, and a collector and an emitter are connected to both ends of a capacitor 61b constituting a DC power source. The comparator 63 has a first resistor 64 and a second resistor 65 connected to its non-inverting input, and a third resistor 66 and a fourth resistor 67 connected to its inverting input.

第1の抵抗64および第3の抵抗66の他端は、コンデンサ61bのプラス端子に接続し、第2の抵抗65および第4の抵抗67の他端は、コンデンサ61bのマイナス端子に接続している。また、一対の電極55は第4の抵抗67の両端に接続している。   The other ends of the first resistor 64 and the third resistor 66 are connected to the plus terminal of the capacitor 61b, and the other ends of the second resistor 65 and the fourth resistor 67 are connected to the minus terminal of the capacitor 61b. Yes. The pair of electrodes 55 are connected to both ends of the fourth resistor 67.

第1の抵抗64、第2の抵抗65、第3の抵抗66は同一抵抗値とし、第4の抵抗67はそれより大きい値とする。したがって、一対の電極55間に泡が触れていない状態では非反転入力電圧は反転入力電圧より低く、コンパレータ63の出力はロー電圧となっている。マイクロコンピュータ68は、第1の整流平滑回路60のコンデンサ60bより得られる直流電圧を入力し、その値によりマイクロコンピュータ68の出力よりモータ56の制御を行う。   The first resistor 64, the second resistor 65, and the third resistor 66 have the same resistance value, and the fourth resistor 67 has a larger value. Therefore, in a state where no bubbles touch between the pair of electrodes 55, the non-inverting input voltage is lower than the inverting input voltage, and the output of the comparator 63 is a low voltage. The microcomputer 68 inputs a DC voltage obtained from the capacitor 60 b of the first rectifying and smoothing circuit 60, and controls the motor 56 from the output of the microcomputer 68 according to the value.

上記構成において動作を説明する。マイクロコンピュータ68に内蔵された洗濯制御プログラムにしたがって、モータ56が一定の休止時間とともに正転、反転を繰り返し、洗濯を行っているときに、泡が徐々に増加して一対の電極55に触れると、コンパレータ63の反転入力には、コンデンサ61bの電圧を、第4の抵抗67と泡の等価抵抗の並列抵抗と第3の抵抗66との抵抗分割により分圧された電圧が印加される。一方、非反転入力にはコンデンサ61bの中間電圧が印加されている。   The operation in the above configuration will be described. According to the washing control program built in the microcomputer 68, when the motor 56 repeats normal rotation and reversal with a certain pause time and washing is performed, bubbles gradually increase and touch the pair of electrodes 55. The voltage obtained by dividing the voltage of the capacitor 61 b by the resistance division of the fourth resistor 67, the parallel resistance of the bubble equivalent resistance, and the third resistor 66 is applied to the inverting input of the comparator 63. On the other hand, the intermediate voltage of the capacitor 61b is applied to the non-inverting input.

一対の電極55に一定量の泡が触れると、反転入力の電圧が非反転入力電圧より低下して、コンパレータ63の出力はハイとなる。これにより、電流消費回路62はオンして直流電源であるコンデンサ61bから電流を消費する。これにより、1次コイル57aに接続した第1の整流平滑回路60の出力電圧であるコンデンサ60bの電圧が低下する。   When a certain amount of bubbles touch the pair of electrodes 55, the voltage of the inverting input is lowered from the non-inverting input voltage, and the output of the comparator 63 becomes high. As a result, the current consumption circuit 62 is turned on and consumes current from the capacitor 61b which is a DC power supply. As a result, the voltage of the capacitor 60b, which is the output voltage of the first rectifying / smoothing circuit 60 connected to the primary coil 57a, decreases.

マイクロコンピュータ68は、この低下した電圧を検知して泡の発生を認識し、モータ56の回転数、回転時間、休止時間等のファクタを段階的に泡立ちが低下する制御へと移行し、泡立ちがなくなると、それよりやや強くし、増減を繰り返して最適洗濯制御に移行していく。このことにより、泡が溢れる手前の最大の洗濯性能が得られる状態で、洗濯制御を行うことができるようにしたものである。   The microcomputer 68 detects the reduced voltage and recognizes the generation of bubbles, and shifts the control such as the number of rotations of the motor 56, the rotation time, and the rest time to the control that reduces the bubbles step by step. If it disappears, it will become a little stronger, and it will increase and decrease, and shift to optimal washing control. Thus, washing control can be performed in a state where the maximum washing performance before the foam overflows can be obtained.

特開2001−293287号公報JP 2001-293287 A

しかしながら、前記従来の構成では、泡や水を検知する泡水検知用電極があり、それに対応する泡水検知手段があり、洗濯液の電導度を検知する洗濯液電導度検知用電極と、それに対応する洗濯液電導度検知手段があった。このように複数の機能の電極に対応した複数の検知手段が設けられているため、部品点数が多く、これらの検知手段を搭載する基板のサイズが大きくなるという課題があった。   However, in the conventional configuration, there is a foam water detection electrode for detecting foam and water, and there is a foam water detection means corresponding thereto, a washing liquid conductivity detection electrode for detecting the conductivity of the washing liquid, and There was a corresponding washing liquid conductivity detection means. As described above, since a plurality of detection means corresponding to electrodes having a plurality of functions are provided, there is a problem that the number of parts is large and the size of the board on which these detection means are mounted is increased.

本発明は、前記従来の課題を解決するもので、洗濯液の電導度を検知する洗濯液電導度検知用の電極と、泡や水を検知する泡水検知用の電極の複数の電極に対して、1つの検知手段で対応することにより、部品点数が少なく、基板のサイズを小型化した洗濯機を提供することを目的としている。   The present invention solves the above-described conventional problems, and includes a plurality of electrodes for washing liquid conductivity detection for detecting the conductivity of the washing liquid, and a plurality of electrodes for foam water detection for detecting foam and water. Accordingly, it is an object of the present invention to provide a washing machine having a small number of parts and a reduced substrate size by using a single detection means.

前記従来の課題を解決するために、本発明の洗濯機は、洗濯物を収容するドラムと、前記ドラムを回転可能に内包した外槽と、前記ドラムを回転駆動するモータと、絶縁構造を持つ磁気結合手段と、前記外槽に配設した泡水を検知する一対の電極と、洗濯液の電導度を検知する一対の電極と、前記泡水検知用の電極と前記洗濯液の電導度検知用の電極を前記磁気結合手段の二次コイルに接続し、前記磁気結合手段の一次コイルと並列に接続されたコンデンサと、前記磁気結合手段の一次コイルと並列に接続されたコンデンサを、前記モータの駆動周波数の倍以上の高周波で並列共振させる高周波発生手段と、前記高周波発生手段の出力に接続され並列共振時のインピーダンスを測定する並列共振インピーダンス測定手段と、洗濯、すすぎ、脱水の各工程を逐次制御する制御手段とを備え、前記制御手段は、泡および水を検知する泡水検知シーケンス手段と、洗濯液の電導度を検知する洗濯液電導度検知シーケンス手段を有し、泡水と洗濯液の電導度を各々の電極により検知して洗濯制御シーケンスを変更するようにしたものである。   In order to solve the above-described conventional problems, a washing machine of the present invention has a drum that houses laundry, an outer tub that rotatably includes the drum, a motor that rotationally drives the drum, and an insulating structure. Magnetic coupling means, a pair of electrodes for detecting foam water disposed in the outer tub, a pair of electrodes for detecting the conductivity of the washing liquid, the electrode for detecting the foam water and the conductivity detection of the washing liquid And a capacitor connected in parallel with the primary coil of the magnetic coupling means, and a capacitor connected in parallel with the primary coil of the magnetic coupling means. A high-frequency generating means for parallel resonance at a high frequency that is at least twice the driving frequency, a parallel resonant impedance measuring means connected to the output of the high-frequency generating means for measuring impedance at the time of parallel resonance, washing, rinsing, removing Control means for sequentially controlling each of the steps, the control means has a foam water detection sequence means for detecting foam and water, and a washing liquid conductivity detection sequence means for detecting the conductivity of the washing liquid, The electric conductivity of the foam water and the washing liquid is detected by each electrode, and the washing control sequence is changed.

これによって、洗濯液の電導度を検知する洗濯液電導度検知用の電極と、泡や水を検知する泡水検知用の電極の複数の電極に対して、1つの検知手段で対応することができ、部品点数が少なく、基板のサイズを小型化することができる。また、制御手段は、泡および水を検知する泡水検知シーケンス手段を有し、泡か水を検知しているという事を認識した上で、磁気結合手段の一次コイルに生じる変化で並列共振インピーダンス測定手段の出力を見るので、明確に泡か水かを認識することができる。また、制御手段は、洗濯液の電導度を検知する洗濯液電導度検知シーケンス手段を有し、洗濯液の電導度を検知しているという事を認識した上で、磁気結合手段の一次コイルに生じる変化で並列共振インピーダンス測定手段の出力を見るので、明確に洗濯液の電導度を認識することができる。   Thus, it is possible to cope with a plurality of electrodes for detecting the conductivity of the washing liquid for detecting the conductivity of the washing liquid and the electrode for detecting the foamed water for detecting foam and water with one detection means. The number of components is small, and the size of the board can be reduced. Further, the control means has a foam water detection sequence means for detecting foam and water, and recognizes that the foam or water is detected, and then the parallel resonance impedance by the change generated in the primary coil of the magnetic coupling means. By looking at the output of the measuring means, it is possible to clearly recognize whether it is foam or water. In addition, the control means has a washing liquid conductivity detection sequence means for detecting the conductivity of the washing liquid, and recognizes that the electric conductivity of the washing liquid is detected. Since the output of the parallel resonance impedance measuring means is seen by the change that occurs, the conductivity of the washing liquid can be clearly recognized.

本発明の洗濯機は、洗濯液の電導度を検知する電極と、泡や水を検知する電極などの複数の機能を持つ複数の電極に対して、1つの検知手段で対応することができ、部品点数が少なく、基板のサイズを小型化することができる。   The washing machine of the present invention can correspond to a plurality of electrodes having a plurality of functions such as an electrode for detecting the conductivity of the washing liquid and an electrode for detecting foam and water with one detection means, The number of components is small, and the size of the board can be reduced.

本発明の実施の形態1における洗濯機の構成図Configuration diagram of washing machine according to Embodiment 1 of the present invention 同洗濯機の洗濯液センサーの断面図Cross-sectional view of washing liquid sensor of the washing machine 同洗濯機の制御手段の内部ブロック図Internal block diagram of control means of the washing machine 同洗濯機の泡水洗濯液電導度検知手段の回路図Circuit diagram of foam water washing liquid conductivity detection means of the washing machine 同洗濯機の電極間抵抗値と泡の量の関係図Relationship diagram between resistance value of electrode and amount of foam of the washing machine 同洗濯機の並列共振インピーダンスの周波数とインピーダンス特性図Frequency and impedance characteristic diagram of parallel resonance impedance of the washing machine 同洗濯機の泡水洗濯液電導度検知手段の出力電圧波形図Output voltage waveform chart of foam water washing liquid conductivity detection means of the washing machine 同洗濯機の泡の抵抗値と泡水洗濯液電導度検知手段の出力電圧の特性図Characteristic diagram of foam resistance of the washing machine and output voltage of foam water washing liquid conductivity detection means 同洗濯機の洗濯液に含まれる汗成分量と抵抗値の特性図Characteristic diagram of sweat component amount and resistance value contained in washing liquid of the washing machine 同洗濯機の絶縁トランスの巻数比によるZ1とZ2の特性図Characteristic diagram of Z1 and Z2 according to the turns ratio of the insulation transformer of the washing machine 従来の洗濯機の構成図Configuration diagram of a conventional washing machine

第1の発明は、洗濯物を収容するドラムと、前記ドラムを回転可能に内包した外槽と、前記ドラムを回転駆動するモータと、絶縁構造を持つ磁気結合手段と、前記外槽に配設した泡水を検知する一対の電極と、洗濯液の電導度を検知する一対の電極と、前記泡水検知用の電極と前記洗濯液の電導度検知用の電極を前記磁気結合手段の二次コイルに接続し、前記磁気結合手段の一次コイルと並列に接続されたコンデンサと、前記磁気結合手段の一次コイルと並列に接続されたコンデンサを、前記モータの駆動周波数の倍以上の高周波で並列共振させる高周波発生手段と、前記高周波発生手段の出力に接続され並列共振時のインピーダンスを測定する並列共振インピーダンス測定手段と、洗濯、すすぎ、脱水の各工程を逐次制御する制御手段とを備え、前記制御手段は、泡および水を検知する泡水検知シーケンス手段と、洗濯液の電導度を検知する洗濯液電導度検知シーケンス手段を有し、泡水と洗濯液の電導度を各々の電極により検知して洗濯制御シーケンスを変更するようにしたものである。   1st invention arrange | positions in the said outer tub with the drum which accommodates the laundry, the outer tub which included the said drum rotatably, the motor which rotationally drives the said drum, the magnetic coupling means with insulation structure A pair of electrodes for detecting the foamed water, a pair of electrodes for detecting the conductivity of the washing liquid, the electrode for detecting the foamed water, and the electrode for detecting the conductivity of the washing liquid. A capacitor connected to the coil and connected in parallel with the primary coil of the magnetic coupling means and a capacitor connected in parallel with the primary coil of the magnetic coupling means are parallel-resonated at a frequency higher than twice the driving frequency of the motor. High-frequency generating means, parallel resonant impedance measuring means connected to the output of the high-frequency generating means for measuring impedance at the time of parallel resonance, and control means for sequentially controlling each step of washing, rinsing and dehydration The control means includes foam water detection sequence means for detecting foam and water, and washing liquid conductivity detection sequence means for detecting the conductivity of the washing liquid. The washing control sequence is changed by detecting with an electrode.

磁気結合手段の二次コイルに、泡水検知用の電極と、洗濯液の電導度検知用の電極が接続されているので、そのまま磁気結合手段の一次コイルに生じる変化で並列共振インピーダンス測定手段の出力を見ても、泡や水が接触したのか、洗濯液の電導度が変化したのかわからない。そこで、制御手段は、洗濯シーケンスで、泡および水を検知する泡水検知シーケンス手段を設けていることにより、泡か水を検知しているという事を認識した上で、磁気結合手段の一次コイルに生じる変化で並列共振インピーダンス測定手段の出力を見るので、明確に泡か水かを認識することができる。   Since the electrode for detecting foamed water and the electrode for detecting the conductivity of the washing liquid are connected to the secondary coil of the magnetic coupling means, the change in the primary coil of the magnetic coupling means directly causes the change in the parallel resonance impedance measuring means. Looking at the output, I don't know if bubbles or water contacted, or if the conductivity of the washing liquid changed. Therefore, the control means recognizes that the foam or water is detected by providing the foam water detection sequence means for detecting foam and water in the washing sequence, and then the primary coil of the magnetic coupling means. Since the output of the parallel resonance impedance measuring means is seen by the change that occurs in this, it is possible to clearly recognize whether it is foam or water.

また、制御手段は、洗濯シーケンス上で、洗濯液の電導度を検知する洗濯液電導度検知シーケンス手段を設けていることにより、洗濯液の電導度を検知しているという事を認識した上で、磁気結合手段の一次コイルに生じる変化で並列共振インピーダンス測定手段の出力を見るので、明確に洗濯液の電導度を認識することができる。   In addition, the control means recognizes that the conductivity of the washing liquid is detected by providing the washing liquid conductivity detection sequence means for detecting the electric conductivity of the washing liquid in the washing sequence. Since the output of the parallel resonance impedance measuring means is seen by the change occurring in the primary coil of the magnetic coupling means, the conductivity of the washing liquid can be clearly recognized.

このようにして、制御手段は、泡や水を検知することにより、洗剤、水量、衣類の汚れ具合その他泡発生の諸要素の条件が変化しても、常に泡が溢れる前の最大の洗濯性能を得られる状態で、洗濯制御をすることができるようになる。また、洗濯物の様々な汚れに対応しているため、洗濯時間がかかっていたが、洗濯液の電導度を認識することができるので、洗濯物の軽い汚れに応じた洗濯シーケンスを制御できるようになり、洗濯時間の短縮が可能になる。   In this way, the control means detects the foam and water, so that the maximum washing performance before the foam always overflows even if the conditions of the detergent, the amount of water, the soiling condition of clothing and other factors of foam generation change. The laundry control can be performed in a state where In addition, since it takes a long time to wash laundry, it can recognize the electrical conductivity of the washing liquid, so that it can control the washing sequence according to the light dirt on the laundry. Thus, the washing time can be shortened.

第2の発明は、特に、第1の発明の絶縁トランスの二次コイルは、中間の巻数で1つ端子を出して巻数を増やすようにしたことにより、二次コイルを1つにすることができ、小型化することができる。   In the second aspect of the invention, in particular, the secondary coil of the insulation transformer of the first aspect of the invention can be made one secondary coil by increasing the number of turns by taking out one terminal with an intermediate number of turns. Can be reduced in size.

第3の発明は、特に、第1の発明の絶縁トランスの二次コイルは、洗濯液電導度検知シーケンス手段と泡水検知シーケンス手段により、洗濯液の電導度検知用の電極と、泡水検知用の電極に切換える切換手段を設けたことにより、二次コイルの巻数を変更するので、一次コイルに泡や水の検知および洗濯液の電導度を検知することができる。   According to a third aspect of the present invention, in particular, the secondary coil of the insulation transformer of the first aspect includes a washing liquid conductivity detection sequence means and a foam water detection sequence means, an electrode for detecting the conductivity of the washing liquid, and a foam water detection. Since the number of turns of the secondary coil is changed by providing the switching means for switching to the electrode for use, detection of bubbles and water and the conductivity of the washing liquid can be detected in the primary coil.

第4の発明は、特に、第1の発明の共振周波数を、30kHz以上に設定したことにより、モータの駆動周波数が15kHz付近の倍以上の周波数にすることができ、モータからのノイズによる誤動作を防ぐことができる。   In the fourth aspect of the invention, in particular, the resonance frequency of the first aspect of the invention is set to 30 kHz or more, so that the drive frequency of the motor can be doubled around 15 kHz, and malfunction due to noise from the motor is prevented. Can be prevented.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における洗濯機の概略構成図、図2は、同洗濯機の洗濯液センサーの断面図、図3は、同洗濯機の制御手段の内部ブロック図、図4は、同洗濯機の泡水洗濯液電導度検知手段の回路図である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a washing machine according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of a washing liquid sensor of the washing machine, and FIG. 3 is an internal block diagram of control means of the washing machine. FIG. 4 is a circuit diagram of the foam water washing liquid conductivity detecting means of the washing machine.

図1〜図4において、1は洗濯機本体の外箱で、その内部に外槽2が配設され、外槽2の内側に洗濯槽としてのドラム3が水平方向から前上がりに傾斜した回転軸によって回転可能な状態で配設されている。ドラム3は、背面側に接続されたモータ4の回転により回転するようになっている。また、ドラム3は外周面に複数の通水孔(図示せず)が設けられており、洗濯槽、脱水槽、乾燥槽としても機能するものである。   1 to 4, reference numeral 1 denotes an outer box of a washing machine main body, and an outer tub 2 is disposed therein, and a drum 3 serving as a washing tub is inclined inside the outer tub 2 so as to incline upward from the horizontal direction. It arrange | positions in the state which can be rotated by the axis | shaft. The drum 3 is rotated by rotation of a motor 4 connected to the back side. The drum 3 is provided with a plurality of water passage holes (not shown) on the outer peripheral surface, and functions as a washing tub, a dewatering tub, and a drying tub.

外槽2の最低部に取水口5が設けてあり、その下流側に排水弁6を設けて排水管7につながっており、排水弁6を開閉して外槽2内の洗濯水を排出する。8はドラム3と接触しないように外槽2の背面側の上方に取り付けられた泡水検知用の電極A、9はドラム3と接触しないように外槽2の背面側の下方に取り付けられた泡水検知用の電極Bで、この電極A8と電極B9で、外槽2およびドラム3内の泡水を検知する一対の電極を構成している。   A water intake 5 is provided at the lowest part of the outer tub 2, a drain valve 6 is provided downstream of the outer tub 2 and connected to a drain pipe 7. The drain valve 6 is opened and closed, and washing water in the outer tub 2 is discharged. . 8 is attached to the lower side on the back side of the outer tub 2 so as not to come into contact with the drum 3. With the electrode B for detecting foamed water, the electrode A8 and the electrode B9 constitute a pair of electrodes for detecting foamed water in the outer tub 2 and the drum 3.

電極A8と電極B9は、外槽2内の泡と水、および洗濯液の電導度を検知する泡水洗濯液電導度検知手段10に接続されている。11はドラム3を回転駆動するモータ4などを制御する制御手段で、泡水洗濯液電導度検知手段10の出力は、制御手段11の入力に接続されている。12は水、13は洗濯により発生した泡、Aは洗濯物である。   Electrode A8 and electrode B9 are connected to foam water washing liquid conductivity detecting means 10 for detecting the conductivity of foam and water in outer tub 2 and the washing liquid. Reference numeral 11 denotes a control means for controlling the motor 4 for rotating the drum 3. The output of the foamed water washing liquid conductivity detecting means 10 is connected to the input of the control means 11. 12 is water, 13 is foam generated by washing, and A is laundry.

取水口5と排水弁6の間には、取水口5から取り込んだ洗濯液をドラム3内に吐出する吐出口14につながった循環経路15の一端が接続してあり、外槽2内の洗濯液やすすぎ液は、循環経路15に設けた循環ポンプ16によって循環できるようにしている。循環経路15には洗濯液の状態を検知する洗濯液センサー17が設けられている。   Between the intake port 5 and the drain valve 6, one end of a circulation path 15 connected to the discharge port 14 for discharging the washing liquid taken in from the intake port 5 into the drum 3 is connected, and the washing in the outer tub 2 is performed. The liquid and the rinsing liquid can be circulated by a circulation pump 16 provided in the circulation path 15. The circulation path 15 is provided with a washing liquid sensor 17 for detecting the state of the washing liquid.

洗濯液センサー17は、図2に示すように、電極イ17aと電極ロ17bが循環経路15を挟んで対峙して設置され、先端部分が循環経路15を流れる洗濯液やすすぎ液と接触するように設けられている。洗濯液センサー17の電極イ17aと電極ロ17bは、泡水洗濯液電導度検知手段10に接続されている。洗濯液センサー17は、循環経路15の吐出口14に向かって延びる水平部15aに設置されている。   As shown in FIG. 2, the washing liquid sensor 17 is installed such that the electrode 17 a and the electrode b 17 b face each other with the circulation path 15 therebetween, and the tip portion comes into contact with the washing liquid and the rinsing liquid flowing through the circulation path 15. Is provided. The electrode 17a and the electrode 17b of the washing liquid sensor 17 are connected to the foamed washing liquid conductivity detecting means 10. The washing liquid sensor 17 is installed in a horizontal portion 15 a that extends toward the discharge port 14 of the circulation path 15.

次に、制御手段11の構成を図3に示す。電源手段20は、交流電源に接続され中央制御手段21に電源を供給する。中央制御手段21は、洗濯機の操作入力を受け付ける操作表示手段22に接続され、洗濯機の状態を示す表示基板23に接続されている。中央制御手段21は、モータ4を制御するモータ制御手段24および排水弁6を制御する排水弁制御手段25に接続されている。   Next, the configuration of the control means 11 is shown in FIG. The power supply means 20 is connected to an AC power supply and supplies power to the central control means 21. The central control means 21 is connected to an operation display means 22 that receives an operation input of the washing machine, and is connected to a display board 23 that indicates the state of the washing machine. The central control means 21 is connected to a motor control means 24 that controls the motor 4 and a drain valve control means 25 that controls the drain valve 6.

また、中央制御手段21は、洗濯液センサー17に接続され、泡や水の検知および洗濯液の電導度を検知する泡水洗濯液電導度判断手段26に接続されている。中央制御手段21は、泡や水を検知するためのシーケンスを発生する泡水検知シーケンス手段27と、洗濯液の電導度を検知するためのシーケンスを発生する洗濯液電導度検知シーケンス手段28に接続されている。   The central control means 21 is connected to the washing liquid sensor 17 and is connected to foam water washing liquid conductivity determining means 26 for detecting foam and water and detecting the electric conductivity of the washing liquid. The central control means 21 is connected to the foam water detection sequence means 27 for generating a sequence for detecting foam and water, and the washing liquid conductivity detection sequence means 28 for generating a sequence for detecting the conductivity of the washing liquid. Has been.

次に、泡水洗濯液電導度検知手段10の構成を図4に示す。8はドラム3と接触しないように外槽2の上方に取り付けられた泡水検知用の電極A、9は電極A8と対をなすドラム3と接触しないように外槽2の下方に取り付けられた泡水検知用の電極B、17aは洗濯液の電導度を検知する洗濯液中に浸漬された洗濯液センサー17の電極イ、17bは電極イと対をなす洗濯液の電導度を検知する洗濯液中に浸漬された洗濯液センサー17の電極ロである。   Next, the configuration of the foamed water washing liquid conductivity detecting means 10 is shown in FIG. 8 is attached to the upper part of the outer tub 2 so as not to come into contact with the drum 3, and the foam water detection electrode A is attached to the lower part of the outer tub 2 so as not to come into contact with the drum 3 paired with the electrode A8. Electrodes B and 17a for detecting foamed water are electrodes a of the washing liquid sensor 17 immersed in the washing liquid for detecting the electric conductivity of the washing liquid, and 17b is a washing for detecting the electric conductivity of the washing liquid paired with the electrode a. This is an electrode of the washing liquid sensor 17 immersed in the liquid.

33は磁気結合手段である絶縁トランスで、33cは絶縁トランス33の二次コイルの一端であり、33dは絶縁トランス33の二次側のコイルの中間端子であり、33eは絶縁トランス33の二次コイルの他端である。絶縁トランス33の二次コイルの一端33cは電極A8と電極イ17aに接続され、中間端子33dはリレー45の接点46の一端に接続され、接点46の他端は電極ロ17bに接続され、絶縁トランス33の二次コイルの他端33eはリレー42の接点43の一端に接続され、接点43の他端は電極B9に接続されている。   33 is an insulating transformer as magnetic coupling means, 33c is one end of a secondary coil of the insulating transformer 33, 33d is an intermediate terminal of a secondary coil of the insulating transformer 33, and 33e is a secondary terminal of the insulating transformer 33. The other end of the coil. One end 33c of the secondary coil of the insulating transformer 33 is connected to the electrode A8 and the electrode 17a, the intermediate terminal 33d is connected to one end of the contact 46 of the relay 45, and the other end of the contact 46 is connected to the electrode 17b. The other end 33e of the secondary coil of the transformer 33 is connected to one end of the contact 43 of the relay 42, and the other end of the contact 43 is connected to the electrode B9.

絶縁トランス33の一次コイルの一端33aは、絶縁トランス33の一次コイルと並列に接続されるコンデンサ(C1)35の一端と、増幅回路であるインバータ37の入力に接続されている。絶縁トランス33の一次コイルの他端33bは、一次コイルと並列に接続されるコンデンサ(C2)36の一端と、インバータ37の出力と、ダイオード(D1)38のアノードに接続されている。   One end 33a of the primary coil of the insulating transformer 33 is connected to one end of a capacitor (C1) 35 connected in parallel with the primary coil of the insulating transformer 33 and an input of an inverter 37 which is an amplifier circuit. The other end 33b of the primary coil of the insulating transformer 33 is connected to one end of a capacitor (C2) 36 connected in parallel with the primary coil, the output of the inverter 37, and the anode of the diode (D1) 38.

コンデンサ(C1)35とコンデンサ(C2)36の他端はグランドに接続され、ダイオード(D1)38のカソードは、コンデンサ(C3)39の一端と、抵抗(R1)40の一端と、制御手段11の入力に接続され、コンデンサ(C3)39と抵抗(R1)40の他端はグランドに接続されている。   The other ends of the capacitor (C1) 35 and the capacitor (C2) 36 are connected to the ground. The cathode of the diode (D1) 38 is connected to one end of the capacitor (C3) 39, one end of the resistor (R1) 40, and the control means 11. The other ends of the capacitor (C3) 39 and the resistor (R1) 40 are connected to the ground.

ダイオード(D1)38の電圧は、制御手段11の泡水洗濯液電導度判断手段26に入力され、泡水洗濯液電導度判断手段26の出力は中央制御手段21に接続されている。絶縁トランス33の一次コイルとコンデンサ(C1)35と増幅回路であるインバータ37とに接続されるコンデンサ(C2)36の構成により、コルピッツ発振回路で高周波発振手段を実現している。   The voltage of the diode (D1) 38 is input to the foamed water washing liquid conductivity determining means 26 of the control means 11, and the output of the foamed water washing liquid conductivity determining means 26 is connected to the central control means 21. The Colpitts oscillation circuit realizes a high-frequency oscillation means by the configuration of the primary coil of the insulating transformer 33, the capacitor (C1) 35, and the capacitor (C2) 36 connected to the inverter 37 that is an amplifier circuit.

制御手段11の出力である洗濯液電導度検知シーケンス手段28の出力は、リレー45の駆動回路44の入力に接続され、泡水検知シーケンス手段27の出力は、リレー42の駆動手段41の入力に接続されている。   The output of the washing liquid conductivity detection sequence means 28, which is the output of the control means 11, is connected to the input of the drive circuit 44 of the relay 45, and the output of the foamed water detection sequence means 27 is connected to the input of the drive means 41 of the relay 42. It is connected.

次に、本実施の形態の洗濯機の泡を検知する動作について説明する。まず、図3に示した制御手段11の操作表示手段22から、洗濯やすすぎの指示が中央制御手段21に与えられる。そして、所定量の洗濯水が給水された後、モータ制御手段24が働き図1に示すモータ4が駆動してドラム3を回転させる。   Next, the operation | movement which detects the foam of the washing machine of this Embodiment is demonstrated. First, from the operation display means 22 of the control means 11 shown in FIG. Then, after a predetermined amount of washing water is supplied, the motor control means 24 operates to drive the motor 4 shown in FIG. 1 to rotate the drum 3.

ドラム3内の洗濯物Aは、ドラム3の正逆反転動作による撹拌と洗剤の作用によって洗濯物から汚れが溶け出し、洗濯水12が徐々に濁ってくると同時に泡13が発生する。泡13はドラム3の周側壁面に設けた多数の小孔(図示せず)から出て外槽2の中に入り込む。外槽2に入り込んだ泡13は、まず外槽2の下方に取り付けられた電極B9に接触し、さらに泡13の量が多くなると、外槽2の上方に取り付けられた電極A8に接触し、電極A8と電極B9に泡13を介して電流が流れる。   In the laundry A in the drum 3, dirt is melted from the laundry due to the agitation by the forward / reverse inversion operation of the drum 3 and the action of the detergent, and the washing water 12 gradually becomes cloudy and foam 13 is generated at the same time. The foam 13 exits from a large number of small holes (not shown) provided on the peripheral side wall surface of the drum 3 and enters the outer tub 2. The foam 13 that has entered the outer tub 2 first comes into contact with the electrode B9 attached below the outer tub 2, and when the amount of the foam 13 is increased, it comes into contact with the electrode A8 attached above the outer tub 2. A current flows through the bubbles 13 to the electrodes A8 and B9.

一方、泡13の量は電極A8と電極B9間の抵抗値の変化として捕らえることができ、図5に泡の量と電極A8、電極B9間の抵抗値の関係を示す。電極A8、電極B9間の抵抗値を測定し、500kΩに抵抗の識別を設ければ、500kΩ以上であれば泡無し、500kΩ以下であれば泡有りの判定ができることがわかる。   On the other hand, the amount of the bubbles 13 can be captured as a change in resistance value between the electrode A8 and the electrode B9, and FIG. 5 shows the relationship between the amount of bubbles and the resistance value between the electrodes A8 and B9. If the resistance value between the electrode A8 and the electrode B9 is measured and the resistance is identified at 500 kΩ, it can be determined that there is no bubble if it is 500 kΩ or more and that there is a bubble if it is 500 kΩ or less.

次に、泡水洗濯液電導度検知手段10で電極A8と電極B9間の抵抗値を検知する方法について、図6で具体的に説明する。さて、制御手段11の泡水検知シーケンス手段27から電圧が出力され、泡水洗濯液電導度検知手段10のリレー42の駆動手段41がオンし、リレー42がオンして接点43がオンするので、泡水検知用の電極B9は絶縁トランス33の二次側のコイル33eに接続され、泡水検知用の電極A8は絶縁トランス33の二次側のコイル33cに接続されている。   Next, a method for detecting the resistance value between the electrode A8 and the electrode B9 by the foamed water washing liquid conductivity detecting means 10 will be specifically described with reference to FIG. Now, since the voltage is output from the foam water detection sequence means 27 of the control means 11, the drive means 41 of the relay 42 of the foam water washing liquid conductivity detection means 10 is turned on, the relay 42 is turned on and the contact 43 is turned on. The foam water detection electrode B9 is connected to the secondary coil 33e of the insulation transformer 33, and the foam water detection electrode A8 is connected to the secondary coil 33c of the insulation transformer 33.

このとき、泡水検知用の電極A8と電極B9間には泡13が無く、空気が接触したときの二次側コイルの33cと33e間の抵抗値が無限大の時の、一次側コイルの並列共振インピーダンスを図6に示すようにZ1とする。電極A8と電極B9間に泡13が接触したときの抵抗値をZ2とすると、一次側で周波数frで共振して発振している交流波形は、二次側にも同じ交流周波数frの電圧が発生する。その時の一次側コイルの並列共振インピーダンスはZ12となり、Z1より小さくなる。   At this time, there is no bubble 13 between the electrode A8 for detecting bubble water and the electrode B9, and when the resistance value between the secondary coil 33c and 33e when the air contacts is infinite, the primary coil The parallel resonance impedance is Z1 as shown in FIG. Assuming that the resistance value when the bubble 13 is in contact between the electrode A8 and the electrode B9 is Z2, the AC waveform oscillating by resonating at the frequency fr on the primary side has the same AC frequency fr voltage on the secondary side. appear. At that time, the parallel resonance impedance of the primary coil is Z12, which is smaller than Z1.

つまり、二次側コイルの電極に泡13が付着して抵抗値が小さくなると、一次コイルの並列共振インピーダンスZも小さくなる。そうなると、コルピッツ発振回路の正弦波の出力であるコンデンサ(C2)36の正弦波振幅も小さくなり、図7に示す破線のように、ダイオード(D1)38のアノードにインバータ37の基準電位を中心に正弦波が印加される。   That is, when the bubble 13 adheres to the electrode of the secondary coil and the resistance value decreases, the parallel resonance impedance Z of the primary coil also decreases. As a result, the amplitude of the sine wave of the capacitor (C2) 36, which is the output of the sine wave of the Colpitts oscillation circuit, also becomes small, and the reference potential of the inverter 37 is centered on the anode of the diode (D1) 38 as shown by the broken line in FIG. A sine wave is applied.

ダイオード(D1)38のアノードに接続されたコンデンサ(C3)39を、コンデンサ(C1)35とコンデンサ(C2)36に影響を与えないように小さく設定し、コンデンサ(C3)39に並列に接続された抵抗(R1)40を大きくして放電時定数を大きくすれば、図7の実線に示すように、ダイオード(D1)38のカソード波形は、正弦波のピーク電圧が保持される。この電圧が制御手段11の泡水洗濯液電導度判断手段26の入力電圧となる。   The capacitor (C3) 39 connected to the anode of the diode (D1) 38 is set small so as not to affect the capacitor (C1) 35 and the capacitor (C2) 36, and is connected in parallel to the capacitor (C3) 39. If the resistance (R1) 40 is increased to increase the discharge time constant, the peak waveform of the sine wave is maintained in the cathode waveform of the diode (D1) 38, as shown by the solid line in FIG. This voltage becomes the input voltage of the foam water washing liquid conductivity determining means 26 of the control means 11.

図8は、あらかじめ測定しておいた電極A8、電極B9間の抵抗値と並列共振インピーダンス測定手段41の出力電圧の関係を示したものである。泡無しの電極A8、電極B9間の抵抗値をRa、泡有りの電極A8、電極B9間の抵抗値をRbとすると、その抵抗値の差は、並列共振インピーダンス測定手段41の出力電圧の差として泡無しの時はVa、泡有りの時はVbとして現れ、識別抵抗値をRrefとすれば、識別電圧はVrefとなる。制御手段11の泡水洗濯液電導度判断手段26は、識別電圧Vrefより電圧が大きいときは泡無し、電圧が小さいときは泡有りと識別することができる。なお、洗濯液の抵抗値と洗濯液の電導度は相関関係があり、抵抗値と電導度は同じことを言っている。   FIG. 8 shows the relationship between the resistance value between the electrodes A8 and B9 measured in advance and the output voltage of the parallel resonance impedance measuring means 41. In FIG. When the resistance value between the electrode A8 and the electrode B9 without bubbles is Ra and the resistance value between the electrode A8 and the electrode B9 with bubbles is Rb, the difference between the resistance values is the difference between the output voltages of the parallel resonance impedance measuring means 41. When there is no bubble, Va appears. When there is a bubble, Vb appears. If the identification resistance value is Rref, the identification voltage is Vref. The foam water washing liquid conductivity determining means 26 of the control means 11 can identify that there is no foam when the voltage is higher than the identification voltage Vref, and that there is foam when the voltage is low. The resistance value of the washing liquid and the electric conductivity of the washing liquid have a correlation, and the resistance value and the electric conductivity are said to be the same.

なお、本実施の形態において、泡水洗濯液電導度検知手段10の高周波発生手段としてコルピッツ発振回路とし、これは絶縁トランス33の一次コイルのインダクタンスとコンデンサ(C1)35とコンデンサ(C2)36が決まれば、並列共振周波数で自動的に発振する自励発振の構成にしているので、絶縁トランス33やコンデンサ(C1)35やコンデンサ(C2)36の温度の変化により、部品の定数が変化しても、並列共振周波数に安定して発振する。   In the present embodiment, a Colpitts oscillation circuit is used as the high frequency generating means of the foamed water washing liquid conductivity detecting means 10, which includes the inductance of the primary coil of the insulating transformer 33, the capacitor (C 1) 35, and the capacitor (C 2) 36. Once determined, the self-excited oscillation configuration automatically oscillates at the parallel resonance frequency, so that the constants of the components change due to changes in the temperature of the insulating transformer 33, the capacitor (C1) 35, and the capacitor (C2) 36. Also oscillates stably at the parallel resonance frequency.

また、自励発振なので並列共振インピーダンスの最大値の状態で発振を継続するので、洗濯液の抵抗値を精度よく見る洗濯液センサーに適している。   Further, since the oscillation is continued with the maximum value of the parallel resonance impedance because it is self-excited, it is suitable for a washing liquid sensor for accurately checking the resistance value of the washing liquid.

次に、洗濯液の電導度を検知する動作について説明する。まず、図3に示した制御手段11の操作表示手段22から、洗濯やすすぎの指示が中央制御手段21に与えられると、所定量の洗濯水が給水された後、モータ制御手段24が働き図1に示すモータ4が駆動してドラム3を回転させる。   Next, an operation for detecting the conductivity of the washing liquid will be described. First, when an instruction for easy washing is given to the central control means 21 from the operation display means 22 of the control means 11 shown in FIG. 3, the motor control means 24 works after a predetermined amount of washing water is supplied. 1 is driven to rotate the drum 3.

循環ポンプ16の動作により、ドラム3や外槽2内の洗濯液が取水口5から循環経路15内に入り、洗濯液センサー17を通って吐出口14からドラム3内に循環する。これにより、循環経路15内の水は常にドラム3や外槽2内の洗濯液と等しくなる。そして洗濯液は、洗剤や攪拌によって洗濯物から汚れが溶け出して徐々に濁ってくる。   By the operation of the circulation pump 16, the washing liquid in the drum 3 and the outer tub 2 enters the circulation path 15 from the water intake port 5, and circulates from the discharge port 14 into the drum 3 through the washing liquid sensor 17. Thereby, the water in the circulation path 15 is always equal to the washing liquid in the drum 3 and the outer tub 2. Then, the washing liquid gradually becomes turbid as the dirt dissolves from the laundry by detergent or stirring.

一方、洗濯液の汗成分の量は洗濯液の抵抗値の変化として捕らえることができ、図9に洗濯液の汗成分の量と洗濯液の抵抗値の関係を示す。そこで、洗濯液の抵抗値を測定すると、洗濯物から溶け出した汗(主成分は塩化ナトリウム)を主とした汚れの量を判定でき、泡水洗濯液電導度検知手段10で洗濯液の電導度を見ることができる。   On the other hand, the amount of the sweat component of the laundry liquid can be captured as a change in the resistance value of the laundry liquid, and FIG. 9 shows the relationship between the amount of the sweat component of the laundry liquid and the resistance value of the laundry liquid. Therefore, by measuring the resistance value of the washing liquid, it is possible to determine the amount of dirt mainly composed of sweat (the main component is sodium chloride) that has melted from the laundry. You can see the degree.

次に、泡水洗濯液電導度検知手段10で洗濯液の抵抗値の変化を見る方法について、具体的に説明する。図6に示すように、絶縁トランス33の二次側のコイルに接続された洗濯液中に浸漬される洗濯液電導度検知用の電極イ17aと電極ロ17b間に洗濯液がなくなり、空気が接触したときの抵抗値Z∞の時の一次側の並列共振インピーダンスをZ1とし、電極イ17aと電極ロ17b間に洗濯液が接触したときの抵抗値をZ2とすると、その時の一次側の並列共振インピーダンスはZ12となり、Z1より小さくなる。   Next, a method of checking the change in the resistance value of the washing liquid by the foamed water washing liquid conductivity detecting means 10 will be specifically described. As shown in FIG. 6, the washing liquid disappears between the electrode 17a and the electrode 17b for washing liquid conductivity detection immersed in the washing liquid connected to the secondary coil of the insulating transformer 33, and the air is removed. When the parallel resonance impedance on the primary side when the resistance value Z∞ at the time of contact is Z1 and the resistance value when the washing liquid is in contact between the electrode 17a and the electrode 17b is Z2, the parallel on the primary side at that time The resonance impedance is Z12, which is smaller than Z1.

つまり、二次コイルの電極イ17aと電極ロ17b間の抵抗値が小さくなると、一次側の並列共振インピーダンスも小さくなる。そうなるとコルピッツ発振回路の正弦波の振幅も小さくなり、コンデンサ(C3)39と抵抗(R1)40で構成される平滑回路の出力に接続された制御手段11の泡水洗濯液電導度判断手段26の入力電圧も小さくなる。このように、泡水洗濯液電導度判断手段26は、泡水洗濯液電導度検知手段10の出力電圧の変化を見ることにより、絶縁トランス33の一次側のインピーダンスZ1を知ることができる。   That is, when the resistance value between the electrode 17a and the electrode 17b of the secondary coil decreases, the parallel resonance impedance on the primary side also decreases. As a result, the amplitude of the sine wave of the Colpitts oscillation circuit is also reduced, and the foam water washing liquid conductivity determination means 26 of the control means 11 connected to the output of the smoothing circuit constituted by the capacitor (C3) 39 and the resistor (R1) 40. The input voltage is also reduced. As described above, the foam water washing liquid conductivity determining means 26 can know the impedance Z1 on the primary side of the insulating transformer 33 by observing the change in the output voltage of the foam water washing liquid conductivity detecting means 10.

図9は、あらかじめ測定しておいた単位体積あたりの汗の成分量と、その時の洗濯液の抵抗値を示す。図10は、絶縁トランス33の一次側のインピーダンスZ1と、絶縁トランス33の二次側のインピーダンス(洗濯液中に浸漬される洗濯液の抵抗値)Z2の関係を示す。洗濯液中に浸漬される洗濯液の電導度は、検知用の電極イ17aと電極ロ17b間に接触する洗濯液の抵抗値(絶縁トランス33の二次側のインピーダンスをZ1)と相関があり判断することができる。したがって、図10から絶縁トランス33の二次側のインピーダンスZ2は、電極イ17aと電極ロ17b間の洗濯液の抵抗値であり、つまり電導度を識別できる。   FIG. 9 shows the component amount of sweat per unit volume measured in advance and the resistance value of the washing liquid at that time. FIG. 10 shows the relationship between the primary side impedance Z1 of the insulating transformer 33 and the secondary side impedance (resistance value of the washing liquid immersed in the washing liquid) Z2 of the insulating transformer 33. The electric conductivity of the washing liquid immersed in the washing liquid has a correlation with the resistance value of the washing liquid in contact between the electrode electrode 17a for detection and the electrode rod 17b (the impedance on the secondary side of the insulating transformer 33 is Z1). Judgment can be made. Therefore, from FIG. 10, the impedance Z2 on the secondary side of the insulating transformer 33 is the resistance value of the washing liquid between the electrode 17a and the electrode 17b, that is, the conductivity can be identified.

次に、絶縁トランス33の一次側コイルと二次側コイルの巻き数比を1:nに変えることにより、泡や水を見たり、洗濯液の電導度を見ることができることについて、図10を参考にして説明する。図10において、縦軸が絶縁トランス33の一次側のインピーダンスをZ1、横軸が絶縁トランス33の二次側のインピーダンス(洗濯液中に浸漬される洗濯液の抵抗値)をZ2とする。   Next, FIG. 10 shows that by changing the turns ratio of the primary side coil and the secondary side coil of the insulating transformer 33 to 1: n, bubbles and water can be seen and the conductivity of the washing liquid can be seen. This will be explained with reference. In FIG. 10, the vertical axis represents the primary impedance of the insulating transformer 33 as Z1, and the horizontal axis represents the secondary impedance (the resistance value of the washing liquid immersed in the washing liquid) of the insulating transformer 33 as Z2.

Z1とZ2は、Z1=(巻数比nの2乗)×Z2という関係がある。
例えば、Z1=20000Ωとし、n=0.5とすると、Z2=500Ω、
n=1とすると、Z2=20000Ωとなる。
つまり、絶縁トランス33の一次側の並列共振インピーダンスZ1は同じでも、巻き数比を変えることにより絶縁トランス33の二次側のインピーダンス(洗濯液中に浸漬される洗濯液の抵抗値)Z2を変えることができる。
Z1 and Z2 have a relationship of Z1 = (the square of the turns ratio n) × Z2.
For example, when Z1 = 20000Ω and n = 0.5, Z2 = 500Ω,
If n = 1, then Z2 = 20000Ω.
That is, even if the parallel resonance impedance Z1 on the primary side of the insulation transformer 33 is the same, the impedance (resistance value of the washing liquid immersed in the washing liquid) Z2 on the secondary side of the insulation transformer 33 is changed by changing the turn ratio. be able to.

このように巻き数比を1:nに変えることにより、洗濯液中に浸漬される洗濯液の抵抗値と泡や水を検知する抵抗値の範囲を変えることができる。例えば、Z1が20000Ωのとき、巻数比0.5にすれば、Z2が500Ωを中心に100から20000Ωの抵抗値である洗濯液の電導度を検知でき、巻数比4にすれば、Z2が500kΩを中心に100kから1000kΩの抵抗値である泡および水を検知することができる。   Thus, by changing the winding ratio to 1: n, it is possible to change the resistance value range of the washing liquid immersed in the washing liquid and the resistance value range for detecting bubbles and water. For example, when Z1 is 20000Ω, if the winding ratio is 0.5, the conductivity of the washing liquid having a resistance value of 100 to 20000Ω can be detected centering around 500Ω, and if the winding ratio is 4, Z2 is 500 kΩ. It is possible to detect bubbles and water having a resistance value of 100 k to 1000 kΩ around the center.

このように、制御手段11の泡水洗濯液電導度判断手段26は、泡水洗濯液電導度検知手段10の出力電圧により、泡や水、あるいは洗濯液の電導度を検知でき、例えば1分毎に洗濯液の電導度(抵抗値)を測定し、洗濯液の状態を判断して洗濯工程やすすぎ工程の制御に用いることができる。例えば、抵抗値があらかじめ定めた値よりも高ければ、抵抗値が水道水同等のレベルと判断し、すすぎ完了と判断してすすぎを終了するなどの制御に用いることができる。   In this way, the foam water washing liquid conductivity determining means 26 of the control means 11 can detect the conductivity of foam, water, or washing liquid based on the output voltage of the foam water washing liquid conductivity detecting means 10, for example, 1 minute. The electric conductivity (resistance value) of the washing liquid is measured every time, and the state of the washing liquid can be judged and used for controlling the washing process and the rinsing process. For example, if the resistance value is higher than a predetermined value, the resistance value can be determined to be equivalent to tap water, and it can be used for control such as determining that the rinsing is complete and ending the rinsing.

なお、泡水洗濯液電導度検知手段10は、電極A8、電極B9、電極イ17a、電極ロ17bと接続するとき、約1mのリード線で接続しなければならないこともあり、リード線が長いのでノイズの影響が心配されるが、泡水洗濯液電導度検知手段10の二次コイルの出力は、共振周波数の正弦波波形が印加して洗濯液の抵抗値を見ているので、共振周波数以外のノイズの影響を受けにくく、ノイズに強い。   In addition, when the foam washing water conductivity detecting means 10 is connected to the electrode A8, the electrode B9, the electrode 17a, and the electrode 17b, it may be necessary to connect with a lead wire of about 1 m, and the lead wire is long. Therefore, the influence of noise is a concern, but the output of the secondary coil of the foamed water washing liquid conductivity detecting means 10 is applied with a sinusoidal waveform of the resonance frequency to see the resistance value of the washing liquid. It is not easily affected by other noise and is resistant to noise.

さらに、一次コイルと二次コイルは絶縁されているので人体への影響がない。また、洗濯液中に浸漬される一対の検知用の電極には交流がかかるので、電極に直流が印加した場合にくらべて金属の腐食が少ない。さらに、一次側コイルと二次側コイルは絶縁されているので人体への影響がない。磁気結合手段の二次コイルには電極が直接接続されるため、電極にノイズがのってもスイッチングするものが無く誤動作しない。   Furthermore, since the primary coil and the secondary coil are insulated, there is no influence on the human body. Further, since an alternating current is applied to the pair of detection electrodes immersed in the washing liquid, there is less metal corrosion than when a direct current is applied to the electrodes. Furthermore, since the primary side coil and the secondary side coil are insulated, there is no influence on the human body. Since the electrode is directly connected to the secondary coil of the magnetic coupling means, there is nothing to switch even if noise is applied to the electrode, and no malfunction occurs.

また、洗濯用のモータ4等から発生するノイズは、主にモータ4を駆動する周波数fmを持つ電気ノイズが多いので、一次コイルのインダクタンスとコンデンサ(C1)35とコンデンサ(C2)36による共振周波数frを、fmの倍以上の周波数に設定することにより、ノイズの影響を防ぐことができる。具体的にはモータ4の駆動周波数が15kHz付近なので、その倍の30kHz以上を共振周波数にしている。   In addition, since the noise generated from the washing motor 4 and the like is mainly electric noise having a frequency fm for driving the motor 4, the resonance frequency of the primary coil inductance, the capacitor (C1) 35 and the capacitor (C2) 36 is obtained. By setting fr to a frequency equal to or higher than fm, the influence of noise can be prevented. Specifically, since the drive frequency of the motor 4 is around 15 kHz, the resonance frequency is set to 30 kHz or more.

以上のように、本発明にかかる洗濯機は、洗濯液の電導度を検知する電極と、泡や水を検知する電極などの複数の機能を持つ複数の電極に対して、1つの検知手段で対応することができ、部品点数が少なく、基板のサイズを小型化することができるので、洗濯機として有用である。   As described above, the washing machine according to the present invention uses one detection means for a plurality of electrodes having a plurality of functions such as an electrode for detecting the conductivity of the washing liquid and an electrode for detecting foam and water. This is useful as a washing machine because the number of parts can be reduced and the size of the board can be reduced.

2 外槽
3 ドラム
4 モータ
8 電極A(泡水検知用の電極)
9 電極B(泡水検知用の電極)
10 泡水洗濯液電導度検知手段
11 制御手段
17 洗濯液センサー
17a 電極イ(洗濯液電導度検知用の電極)
17b 電極ロ(洗濯液電導度検知用の電極)
27 泡水検知シーケンス手段
28 洗濯液電導度検知シーケンス手段
33 絶縁トランス(磁気結合手段)
35 コンデンサ(C1)
36 コンデンサ(C2)
2 Outer tank 3 Drum 4 Motor 8 Electrode A (electrode for detecting foam water)
9 Electrode B (Electrode for detecting foam water)
DESCRIPTION OF SYMBOLS 10 Foam water washing liquid electric conductivity detection means 11 Control means 17 Laundry liquid sensor 17a Electrode A (electrode for washing liquid electric conductivity detection)
17b Electrode B (Electrode for detecting conductivity of washing liquid)
27 Foam water detection sequence means 28 Washing liquid conductivity detection sequence means 33 Insulation transformer (magnetic coupling means)
35 Capacitor (C1)
36 Capacitor (C2)

Claims (4)

洗濯物を収容するドラムと、前記ドラムを回転可能に内包した外槽と、前記ドラムを回転駆動するモータと、絶縁構造を持つ磁気結合手段と、前記外槽に配設した泡水を検知する一対の電極と、洗濯液の電導度を検知する一対の電極と、前記泡水検知用の電極と前記洗濯液の電導度検知用の電極を前記磁気結合手段の二次コイルに接続し、前記磁気結合手段の一次コイルと並列に接続されたコンデンサと、前記磁気結合手段の一次コイルと並列に接続されたコンデンサを、前記モータの駆動周波数の倍以上の高周波で並列共振させる高周波発生手段と、前記高周波発生手段の出力に接続され並列共振時のインピーダンスを測定する並列共振インピーダンス測定手段と、洗濯、すすぎ、脱水の各工程を逐次制御する制御手段とを備え、前記制御手段は、泡および水を検知する泡水検知シーケンス手段と、洗濯液の電導度を検知する洗濯液電導度検知シーケンス手段を有し、泡水と洗濯液の電導度を各々の電極により検知して洗濯制御シーケンスを変更するようにした洗濯機。 A drum for storing laundry, an outer tub in which the drum is rotatably included, a motor for rotationally driving the drum, a magnetic coupling means having an insulating structure, and foam water disposed in the outer tub are detected. A pair of electrodes, a pair of electrodes for detecting the electric conductivity of the washing liquid, the electrode for detecting foam water and the electrode for detecting the electric conductivity of the washing liquid are connected to a secondary coil of the magnetic coupling means, A capacitor connected in parallel with the primary coil of the magnetic coupling means, and a high frequency generating means for causing the capacitor connected in parallel with the primary coil of the magnetic coupling means to resonate in parallel at a frequency higher than twice the driving frequency of the motor; A parallel resonance impedance measuring means connected to the output of the high frequency generating means for measuring the impedance at the time of parallel resonance; and a control means for sequentially controlling each step of washing, rinsing and dehydration, the control The stage has foam water detection sequence means for detecting foam and water, and washing liquid conductivity detection sequence means for detecting the conductivity of the washing liquid, and the conductivity of the foam water and the washing liquid is detected by each electrode. Washing machine that changes the washing control sequence. 絶縁トランスの二次コイルは、中間の巻数で1つ端子を出して巻数を増やすようにした請求項1記載の洗濯機。 2. The washing machine according to claim 1, wherein the secondary coil of the insulating transformer has one terminal with an intermediate number of turns to increase the number of turns. 絶縁トランスの二次コイルは、洗濯液電導度検知シーケンス手段と泡水検知シーケンス手段により、洗濯液の電導度検知用の電極と、泡水検知用の電極に切換える切換手段を設けた請求項1記載の洗濯機。 The secondary coil of the insulation transformer is provided with a switching means for switching between an electrode for detecting the conductivity of the washing liquid and an electrode for detecting the foam water by the washing liquid conductivity detection sequence means and the foam water detection sequence means. The washing machine described. 共振周波数を、30kHz以上に設定した請求項1記載の洗濯機。 The washing machine according to claim 1, wherein the resonance frequency is set to 30 kHz or more.
JP2010074706A 2010-03-29 2010-03-29 Washing machine Pending JP2011206137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010074706A JP2011206137A (en) 2010-03-29 2010-03-29 Washing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010074706A JP2011206137A (en) 2010-03-29 2010-03-29 Washing machine

Publications (1)

Publication Number Publication Date
JP2011206137A true JP2011206137A (en) 2011-10-20

Family

ID=44937944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010074706A Pending JP2011206137A (en) 2010-03-29 2010-03-29 Washing machine

Country Status (1)

Country Link
JP (1) JP2011206137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111882A (en) * 2020-09-17 2020-12-22 新建特阔漂整(南通)有限公司 Intelligent digital control water washing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111882A (en) * 2020-09-17 2020-12-22 新建特阔漂整(南通)有限公司 Intelligent digital control water washing method

Similar Documents

Publication Publication Date Title
CN110846851A (en) Control method of washing machine and washing machine
JP2753387B2 (en) Washing liquid detection sensor of washing machine
JP2009077748A (en) Laundry machine
JP4973679B2 (en) Washing fluid sensor
JP2022164790A (en) Washing machine management device
JP5025599B2 (en) Capacitor deterioration detection device and home appliance
JP2011206137A (en) Washing machine
CN205012042U (en) A pickup assembly and washing machine for washing machine
JP2013000530A (en) Washing machine
JP2011206136A (en) Washing machine
JP2004041683A (en) Washing machine and its control method
JP2013135778A (en) Washing and drying machine
JP2013081685A (en) Dishwasher
JP5397055B2 (en) Washing fluid sensor
CN105177921A (en) Sensor assembly used for washing machine and washing machine
JP5321242B2 (en) Washing fluid sensor
KR100600716B1 (en) Washing method of a washer
JP4999779B2 (en) Capacitor deterioration detection device and home appliance
JP2008099981A (en) Washing/drying machine
JP4457857B2 (en) Washing and drying machine
KR100971018B1 (en) Conductive sensor sensing method of a washer
JP2003000982A (en) Washing machine
KR101037149B1 (en) Washing method of a washer
JP5316094B2 (en) Washing machine
KR20040110774A (en) Conductive sensor sensing method of a washer