JP2011014761A - Method of manufacturing thin film transistor of bottom gate structure - Google Patents

Method of manufacturing thin film transistor of bottom gate structure Download PDF

Info

Publication number
JP2011014761A
JP2011014761A JP2009158500A JP2009158500A JP2011014761A JP 2011014761 A JP2011014761 A JP 2011014761A JP 2009158500 A JP2009158500 A JP 2009158500A JP 2009158500 A JP2009158500 A JP 2009158500A JP 2011014761 A JP2011014761 A JP 2011014761A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
film
heat treatment
tft
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009158500A
Other languages
Japanese (ja)
Other versions
JP5507133B2 (en
Inventor
Masaya Nakayama
昌哉 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2009158500A priority Critical patent/JP5507133B2/en
Publication of JP2011014761A publication Critical patent/JP2011014761A/en
Application granted granted Critical
Publication of JP5507133B2 publication Critical patent/JP5507133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a thin film transistor which has an active layer formed of an amorphous metal oxide semiconductor as a principal component, an improved TFT characteristic feature even if a TFT is applied with heat treatment at a relatively low temperature of 200°C or lower, a small shift in a threshold value for driving, and high reliability.SOLUTION: The method for manufacturing a thin film transistor 20 of a bottom gate structure having an active layer 16 formed of an amorphous metal oxide semiconductor as the principal component comprises a step for forming a film formed of an amorphous metal oxide semiconductor as the principal component as the active layer so as to have a specific resistance value of not lower than 1.5 Ω cm and not higher than 1,500 Ω cm by a sputtering in an atmosphere containing oxygen; and a step for performing heat treatment at a temperature of not lower than 100°C and not higher than 200°C in the atmosphere containing oxygen after forming the film formed of an amorphous metal oxide semiconductor as the principal component.

Description

本発明は、ボトムゲート構造の薄膜トランジスタの製造方法に関する。   The present invention relates to a method for manufacturing a bottom gate thin film transistor.

近年、液晶やエレクトロルミネッセンス(ElectroLuminescence:EL)技術等の進歩により、平面薄型画像表示装置(Flat Panel Display:FPD)が実用化されている。例えば、電流を通じることによって励起されて発光する材料を用いた有機電界発光素子(有機EL素子)は、低電圧で高輝度の発光が得られるために、一般照明のほか、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター等の広い分野で開発が進んでいる。   2. Description of the Related Art In recent years, flat and thin image display devices (Flat Panel Displays: FPD) have been put into practical use due to advances in liquid crystal and electroluminescence (EL) technologies. For example, organic electroluminescent devices (organic EL devices) that use materials that emit light when excited by passing current can emit light with high brightness at low voltage. Development is progressing in a wide range of fields such as digital assistants (PDAs), computer displays, automobile information displays, and TV monitors.

電界効果型薄膜トランジスタ(TFT:Thin Film Transistor)によって画素の駆動を制御するアクティブマトリクス型の有機ELディスプレイを製造する場合、一般的にはガラス基板上に、TFTと、TFTに接続する配線(ゲート配線、データ配線など)、画素電極、共通電極などを形成する。TFTの半導体層(活性層)を構成する材料としては、一般的には、非晶質シリコンや多結晶シリコンが用いられる。   When manufacturing an active matrix type organic EL display that controls driving of a pixel by a field effect thin film transistor (TFT), generally, a TFT and a wiring (gate wiring) connected to the TFT on a glass substrate. , Data wiring, etc.), pixel electrodes, common electrodes, and the like are formed. As a material constituting the semiconductor layer (active layer) of the TFT, amorphous silicon or polycrystalline silicon is generally used.

一方、FPDの可撓性、薄型化、軽量化、耐破損性等の向上を求めて、ガラス基板の替わりに軽量で可撓性のある樹脂基板を用いる試みも行われている。しかし、TFTの活性層として非晶質シリコンや多結晶シリコンを用いる場合、300℃以上の高温工程を要するため、ガラス基板に比べて耐熱性が低い樹脂基板上に形成することは困難である。   On the other hand, attempts have been made to use a lightweight and flexible resin substrate instead of a glass substrate in order to improve the flexibility, thinning, weight reduction, and breakage resistance of the FPD. However, when amorphous silicon or polycrystalline silicon is used as the active layer of the TFT, a high-temperature process of 300 ° C. or higher is required, so that it is difficult to form it on a resin substrate having lower heat resistance than a glass substrate.

低温での作製が可能なTFTとして、活性層に酸化物半導体を用いたTFTが開発されている。例えば、In、Ga、及びZnを含むアモルファス酸化物半導体(適宜、「IGZO」という。)はスパッタリングによって室温成膜が可能であり、樹脂基板上に形成することができるので、フレキシブルデイスプレイ用のTFTの活性層を構成する材料として期待が高まっている。   As a TFT that can be manufactured at a low temperature, a TFT using an oxide semiconductor as an active layer has been developed. For example, an amorphous oxide semiconductor containing In, Ga, and Zn (referred to as “IGZO” as appropriate) can be formed at room temperature by sputtering and can be formed over a resin substrate. Therefore, a TFT for flexible display Expectations are growing as a material constituting the active layer.

酸化物半導体により活性層を形成すれば、樹脂基板上にTFTを比較的低温で作製することが可能であるが、オン/オフ比が小さい、閾値電圧の変化(閾値シフト)が生じ易いなどのTFT特性に改善すべき点がある。
そこで、酸化物半導体により活性層を形成した後、熱処理を施すことによってTFT特性が改善されることが開示されている。例えば、活性層として比抵抗値が1Ωcm未満となる条件で酸化インジウム膜を形成した後、該酸化インジウム膜を酸化雰囲気中で150℃以上450℃以下で熱処理することが提案されている(特許文献1参照)。
If an active layer is formed of an oxide semiconductor, a TFT can be formed on a resin substrate at a relatively low temperature. However, the on / off ratio is small, threshold voltage change (threshold shift) is likely to occur, etc. There is a point to be improved in TFT characteristics.
Therefore, it is disclosed that TFT characteristics are improved by forming an active layer with an oxide semiconductor and then performing heat treatment. For example, it has been proposed to form an indium oxide film as an active layer under a condition that the specific resistance value is less than 1 Ωcm, and then heat-treat the indium oxide film at 150 ° C. to 450 ° C. in an oxidizing atmosphere (Patent Literature). 1).

また、ボトムゲート型のTFTにおいて、スパッタリング法によりIn、Ga、及びZnを含む酸化物からなる活性層を形成した後、窒素雰囲気中で、350℃、1時間の熱処理を行うことで、オフ電流が小さく、かつ、オン/オフ比が10を超えるほどデバイス特性が改善したことが報告されている(非特許文献1参照)。 Further, in a bottom gate TFT, after an active layer made of an oxide containing In, Ga, and Zn is formed by a sputtering method, heat treatment is performed at 350 ° C. for 1 hour in a nitrogen atmosphere, whereby off current It has been reported that the device characteristics are improved as the N is smaller and the on / off ratio exceeds 10 8 (see Non-Patent Document 1).

特開2008−130814号公報JP 2008-130814 A

IDW’07 予稿集 AMD9−1、1775頁−1778頁IDW'07 Proceedings AMD9-1, pp. 1775-1778

IGZOなどのアモルファス酸化物半導体からなる活性層を形成すれば、樹脂基板上に比較的低温でTFTを作製することができるが、その後、TFT特性を改善するために熱処理を行うとなると、樹脂基板の耐熱性は、高いものでも200℃以下であるため、200℃以下で熱処理を行う必要がある。しかし、熱処理温度を低くすると、TFTの駆動時の閾値シフト量が増大し、信頼性が低下してしまうといった問題がある。   If an active layer made of an amorphous oxide semiconductor such as IGZO is formed, a TFT can be fabricated on the resin substrate at a relatively low temperature. However, if heat treatment is performed to improve TFT characteristics, the resin substrate Even if the heat resistance is high, it is 200 ° C. or lower, so it is necessary to perform heat treatment at 200 ° C. or lower. However, when the heat treatment temperature is lowered, there is a problem that the threshold shift amount at the time of driving the TFT is increased and the reliability is lowered.

本発明は、アモルファス酸化物半導体を主成分とする活性層を有し、200℃以下の比較的低温の熱処理でもTFT特性が効果的に向上し、駆動時の閾値シフトが小さく、信頼性の高い薄膜トランジスタを製造することができる方法を提供することを目的とする。   The present invention has an active layer mainly composed of an amorphous oxide semiconductor, effectively improves TFT characteristics even at a relatively low temperature of 200 ° C. or lower, has a small threshold shift during driving, and has high reliability. It is an object to provide a method capable of manufacturing a thin film transistor.

上記目的を達成するため、以下の発明が提供される。
<1> アモルファス酸化物半導体を主成分とする活性層を有するボトムゲート構造の薄膜トランジスタを製造する方法であって、
前記活性層として、酸素含有雰囲気下で、スパッタリング法によって比抵抗値が1.5Ωcm以上1500Ωcm以下になるように前記アモルファス酸化物半導体を主成分とする膜を形成する工程と、
前記アモルファス酸化物半導体を主成分とする膜を形成した後、酸素含有雰囲気下で温度が100℃以上200℃以下の熱処理を行う工程と、
を含むボトムゲート構造の薄膜トランジスタの製造方法。
<2> 前記アモルファス酸化物半導体が、In、Ga、及びZnを含むアモルファス酸化物半導体である<1>に記載のボトムゲート構造の薄膜トランジスタの製造方法。
<3> 前記熱処理の温度が、150℃以下である<1>又は<2>に記載のボトムゲート構造の薄膜トランジスタの製造方法。
In order to achieve the above object, the following invention is provided.
<1> A method for producing a bottom gate thin film transistor having an active layer mainly composed of an amorphous oxide semiconductor,
Forming, as the active layer, a film mainly composed of the amorphous oxide semiconductor so that the specific resistance value is 1.5 Ωcm or more and 1500 Ωcm or less by a sputtering method in an oxygen-containing atmosphere;
A step of performing a heat treatment at a temperature of 100 ° C. or higher and 200 ° C. or lower in an oxygen-containing atmosphere after forming a film containing the amorphous oxide semiconductor as a main component;
A method of manufacturing a thin film transistor having a bottom gate structure including:
<2> The method for producing a bottom-gate thin film transistor according to <1>, wherein the amorphous oxide semiconductor is an amorphous oxide semiconductor containing In, Ga, and Zn.
<3> The method for producing a bottom-gate thin film transistor according to <1> or <2>, wherein the temperature of the heat treatment is 150 ° C. or lower.

本発明によれば、アモルファス酸化物半導体を主成分とする活性層を有し、200℃以下の比較的低温の熱処理でもTFT特性が効果的に向上し、駆動時の閾値シフトが小さく、信頼性の高い薄膜トランジスタを製造することができる方法が提供される。   The present invention has an active layer mainly composed of an amorphous oxide semiconductor, effectively improves TFT characteristics even at a relatively low temperature of 200 ° C. or lower, has a small threshold shift during driving, and is reliable. A method capable of manufacturing a thin film transistor having a high thickness is provided.

活性層(IGZO層)の比抵抗値と閾値シフトの関係を示す図である。It is a figure which shows the relationship between the specific resistance value of an active layer (IGZO layer), and a threshold value shift. 熱処理前後の閾値電圧の変化の一例を示す図である。It is a figure which shows an example of the change of the threshold voltage before and behind heat processing. 本発明に係るボトムゲート構造の薄膜トランジスタを製造する工程の一例を示す図である。It is a figure which shows an example of the process of manufacturing the thin-film transistor of the bottom gate structure concerning this invention. 熱処理前後の活性層(IGZO層)の比抵抗値と閾値電圧の変化を示す図である。It is a figure which shows the change of the specific resistance value and threshold voltage of the active layer (IGZO layer) before and behind heat processing. 本発明に係るボトムゲート構造の薄膜トランジスタの他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the thin film transistor of the bottom gate structure concerning this invention.

以下、添付の図面を参照しながら、本発明に係るボトムゲート構造のTFTの製造方法について具体的に説明する。
ボトムゲート構造のTFTを製造する場合、活性層としてゲート絶縁膜上に酸素含有雰囲気中でスパッタリングによってアモルファス酸化物半導体膜を形成すると、スパッタ成膜時の酸素イオンが下地のゲート絶縁膜に当たってダメージを与え、このゲート絶縁膜のダメージが閾値シフトの悪化の原因の一つになると考えられる。そこで、本発明者は、成膜時の酸素濃度をコントロールすること、具体的には酸素濃度を低減することによって活性層のスパッタ成膜時におけるゲート絶縁膜に対するダメージを低減させることにより、また、活性層のスパッタ成膜後に熱処理によってゲート絶縁膜のダメージを回復させることにより、閾値シフトを改善することができると考えた。
Hereinafter, a method for manufacturing a TFT having a bottom gate structure according to the present invention will be described in detail with reference to the accompanying drawings.
When manufacturing a TFT having a bottom gate structure, if an amorphous oxide semiconductor film is formed on the gate insulating film as an active layer by sputtering in an oxygen-containing atmosphere, oxygen ions at the time of sputtering deposition hit the underlying gate insulating film and cause damage. In addition, the damage of the gate insulating film is considered to be one of the causes of the deterioration of the threshold shift. Therefore, the present inventor controls the oxygen concentration during film formation, specifically, reduces the damage to the gate insulating film during sputter film formation of the active layer by reducing the oxygen concentration, It was considered that the threshold shift can be improved by recovering the damage of the gate insulating film by heat treatment after the sputter deposition of the active layer.

例えば、スパッタリングによってアモルファス酸化物半導体膜を形成する際、酸素濃度を低く抑えることで比抵抗値が低くなり、閾値シフトが改善される。しかし、酸素濃度を低くすると閾値電圧(Von)がマイナスとなり、ノーマリオンとなってしまう。
そこで、本発明者は、In、Ga、Znを含む酸化物半導体からなり、比抵抗値の異なる活性層をスパッタリングによって形成し、比抵抗値と閾値シフトの関係を調べたところ、図1に示すように、比抵抗値によって閾値シフト量(ΔVth)が異なることがわかった。
さらに、本発明者は、比抵抗値が特定の範囲内となるようにアモルファス酸化物半導体膜を形成した後、酸素含有雰囲気下で樹脂基板も耐え得る比較的低温で熱処理を施すことにより、図2に示すように、閾値電圧がプラスに回復し、ノーマリオフのTFTとなることを見出した。
本発明はこれらの知見に基づいて完成したものである。
For example, when an amorphous oxide semiconductor film is formed by sputtering, the specific resistance value is reduced by suppressing the oxygen concentration low, and the threshold shift is improved. However, if the oxygen concentration is lowered, the threshold voltage (Von) becomes negative and normally on.
Accordingly, the present inventor formed active layers made of an oxide semiconductor containing In, Ga, and Zn and having different specific resistance values by sputtering, and investigated the relationship between the specific resistance value and the threshold shift, and as shown in FIG. Thus, it was found that the threshold shift amount (ΔVth) differs depending on the specific resistance value.
Further, the inventor forms an amorphous oxide semiconductor film so that the specific resistance value falls within a specific range, and then performs heat treatment at a relatively low temperature that can withstand a resin substrate in an oxygen-containing atmosphere. As shown in FIG. 2, the inventors have found that the threshold voltage recovers to a positive value, resulting in a normally-off TFT.
The present invention has been completed based on these findings.

図3は、本発明に係るボトムゲート構造のTFTの製造方法の工程の一例を概略的に示している。   FIG. 3 schematically shows an example of the steps of a method for manufacturing a TFT having a bottom gate structure according to the present invention.

<ゲート電極の形成>
まず、基板10上にゲート電極12を形成する(図3(A))。
薄膜トランジスタ20を形成するための基板(支持体)10としては、少なくともTFT20を形成する面が絶縁性を有し、寸法安定性、耐溶剤性、加工性などを有するものを用いる。本発明では、活性層16となるアモルファス酸化物膜を形成した後、熱処理を行うが、アモルファス酸化物膜は低温で形成することができ、成膜後の熱処理も比較的低温(100℃以上200℃以下)で行うため、樹脂基板を好適に用いることができる。
<Formation of gate electrode>
First, the gate electrode 12 is formed over the substrate 10 (FIG. 3A).
As the substrate (support) 10 for forming the thin film transistor 20, a substrate (support) having at least the surface on which the TFT 20 is formed has insulating properties, and has dimensional stability, solvent resistance, workability, and the like. In the present invention, the amorphous oxide film to be the active layer 16 is formed and then heat treatment is performed. However, the amorphous oxide film can be formed at a low temperature, and the heat treatment after the film formation is also performed at a relatively low temperature (100 ° C. to 200 ° C. The resin substrate can be used preferably.

樹脂基板としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエ−テルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の合成樹脂等の有機材料などが挙げられる。   Examples of the resin substrate include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, allyl diglycol carbonate, polyimide, polycycloolefin, norbornene resin, and poly (chlorotriethylene). And organic materials such as synthetic resins (fluoroethylene).

これらの有機材料からなる樹脂基板を用いる場合、水分や酸素の透過を抑制するため、基板の片面又は両面に透湿防止層又はガスバリア層を設けることが好ましい。透湿防止層又はガスバリア層の材料としては、窒化珪素、酸化珪素、酸窒化珪素、酸化アルミニウムなどの無機物、これら無機物とアクリル系樹脂などの有機物との積層体を好適に用いることができる。透湿防止層又はガスバリア層は、例えば、高周波スパッタリング法などにより形成することができる。
また、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
When a resin substrate made of these organic materials is used, it is preferable to provide a moisture permeation preventing layer or a gas barrier layer on one or both sides of the substrate in order to suppress moisture and oxygen permeation. As a material for the moisture permeation preventive layer or the gas barrier layer, inorganic materials such as silicon nitride, silicon oxide, silicon oxynitride, and aluminum oxide, and laminates of these inorganic materials and organic materials such as acrylic resins can be preferably used. The moisture permeation preventing layer or the gas barrier layer can be formed by, for example, a high frequency sputtering method.
Further, if necessary, a hard coat layer, an undercoat layer or the like may be provided.

基板10の形状、構造、大きさ等については特に制限はなく、最終的に製造するデバイスの用途、目的等に応じて適宜選択すればよい。一般的には、基板10の形状としては、軽量化、薄型化、取り扱い性、TFT20の形成容易性等の観点から、板状であることが好ましい。基板10の構造は、単層構造であってもよいし、積層構造であってもよい。また、基板は、単一部材で構成されていてもよいし、2つ以上の部材で構成されていてもよい。   The shape, structure, size, etc. of the substrate 10 are not particularly limited, and may be appropriately selected according to the application, purpose, etc. of the device to be finally produced. In general, the shape of the substrate 10 is preferably a plate shape from the viewpoints of weight reduction, thickness reduction, handleability, ease of formation of the TFT 20, and the like. The structure of the substrate 10 may be a single layer structure or a laminated structure. Moreover, the board | substrate may be comprised by the single member and may be comprised by two or more members.

なお、可撓性が要求されない場合は、樹脂基板以外の基板を用いてもよい。例えば、ガラス、ジルコニア安定化酸化イットリウム(YSZ)等の無機材料からなる基板を用いるこができる。また、例えば、有機ELディスプレイを製造する場合、基板側から光を取り出す必要がなければ、例えば、ステンレス、Fe、Al、Ni、Co、Cuやこれらの合金等の金属基板やSiなどの半導体基板を用い、基板10上に電気絶縁性を確保するための絶縁膜を設けてもよい。   If flexibility is not required, a substrate other than a resin substrate may be used. For example, a substrate made of an inorganic material such as glass or zirconia stabilized yttrium oxide (YSZ) can be used. Also, for example, when manufacturing an organic EL display, if it is not necessary to extract light from the substrate side, for example, a metal substrate such as stainless steel, Fe, Al, Ni, Co, Cu, or an alloy thereof, or a semiconductor substrate such as Si And an insulating film for ensuring electrical insulation may be provided on the substrate 10.

ゲート電極12は、例えば、Al、Mo、Cr、Ta、Ti、Au、Ag等の金属、Al−Nd、APC等の合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜等を用いて形成することができる。   The gate electrode 12 is made of, for example, a metal such as Al, Mo, Cr, Ta, Ti, Au, or Ag, an alloy such as Al—Nd, APC, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), or oxide. A metal oxide conductive film such as zinc indium (IZO) can be used.

例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式、などの中から使用する材料との適性を考慮して適宜選択した方法に従って基板10上に成膜する。ゲート電極12の厚みは、例えば10nm以上1000nm以下とする。
成膜後、フォトリソグラフィ法によって所定の形状にパターニングを行う。このとき、ゲート電極12及びゲート配線(不図示)を同時にパターニングすることが好ましい。
また、形成すべきゲート電極12のパターンに応じた開口部を有するメタルマスク(シャドウマスク)を介して成膜とともにパターニングを行ってもよい。
For example, suitability for materials used from wet methods such as printing methods, coating methods, physical methods such as vacuum deposition methods, sputtering methods, ion plating methods, chemical methods such as CVD and plasma CVD methods, etc. The film is formed on the substrate 10 according to a method appropriately selected in consideration of the above. The thickness of the gate electrode 12 is, for example, not less than 10 nm and not more than 1000 nm.
After film formation, patterning is performed into a predetermined shape by photolithography. At this time, it is preferable to pattern the gate electrode 12 and the gate wiring (not shown) at the same time.
Further, patterning may be performed together with film formation through a metal mask (shadow mask) having an opening corresponding to the pattern of the gate electrode 12 to be formed.

<ゲート絶縁膜の形成>
基板10上にゲート電極12を形成した後、ゲート電極12を覆うゲート絶縁膜14を形成する(図3(B))。
ゲート絶縁膜14としては、SiO、SiN、SiON、Al、Y、Ta、HfO等の絶縁体、又はそれらの化合物を2種以上含む絶縁膜としてもよい。また、ポリイミド、アクリル樹脂のような高分子絶縁体もゲート絶縁膜として用いることができる。
<Formation of gate insulating film>
After the gate electrode 12 is formed over the substrate 10, a gate insulating film 14 that covers the gate electrode 12 is formed (FIG. 3B).
The gate insulating film 14 may be an insulating film containing two or more kinds of insulators such as SiO 2 , SiN x , SiON, Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 , and HfO 2. Good. A polymer insulator such as polyimide or acrylic resin can also be used as the gate insulating film.

ゲート絶縁膜14は、リーク電流の抑制及び電圧耐性の向上のための厚みを有する必要がある一方、ゲート絶縁膜14の厚みが大き過ぎると駆動電圧の上昇を招いてしまう。ゲート絶縁膜14の材質にもよるが、ゲート絶縁膜14の膜厚は、例えば無機絶縁体であれば50nm以上1000nm以下とし、高分子絶縁体であれば0.5μm以上5μm以下とする。   The gate insulating film 14 needs to have a thickness for suppressing leakage current and improving voltage resistance. On the other hand, if the thickness of the gate insulating film 14 is too large, the driving voltage is increased. Although depending on the material of the gate insulating film 14, the thickness of the gate insulating film 14 is, for example, 50 nm to 1000 nm for an inorganic insulator, and 0.5 μm to 5 μm for a polymer insulator.

ゲート絶縁膜14は、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から使用する材料との適性を考慮して適宜選択した方法に従って成膜し、必要に応じてフォトリソグラフィ法によって所定の形状にパターニングを行う。   The gate insulating film 14 is a material used from a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, and a chemical method such as a CVD method and a plasma CVD method. The film is formed in accordance with a method selected in consideration of the suitability of the film and patterned into a predetermined shape by a photolithography method as necessary.

<活性層の形成>
次に、ゲート絶縁膜14上にアモルファス酸化物半導体を主成分とする活性層16を形成する(図3(C))。
<Formation of active layer>
Next, an active layer 16 containing an amorphous oxide semiconductor as a main component is formed over the gate insulating film 14 (FIG. 3C).

−成膜工程−
まず、活性層16として、酸素含有雰囲気下で、スパッタリング法によって比抵抗値が1.5Ωcm以上1500Ωcm以下になるようにアモルファス酸化物半導体を主成分とする膜(適宜、「アモルファス酸化物半導体膜」という。)を形成する。ここで「主成分」とは、活性層16を構成する成分のうち最も含有量(質量比)が多い成分であり、50質量%以上であることが好ましく、90質量%以上であることがより好ましく、不可避的な不純物を除き、アモルファス酸化物半導体からなる活性層16を形成することが最も好ましい。
-Film formation process-
First, as the active layer 16, a film containing an amorphous oxide semiconductor as a main component so as to have a specific resistance value of 1.5 Ωcm or more and 1500 Ωcm or less by sputtering in an oxygen-containing atmosphere (appropriately, an “amorphous oxide semiconductor film” Form). Here, the “main component” is a component having the largest content (mass ratio) among the components constituting the active layer 16, and is preferably 50% by mass or more, more preferably 90% by mass or more. Preferably, it is most preferable to form the active layer 16 made of an amorphous oxide semiconductor excluding inevitable impurities.

活性層16を構成するアモルファス酸化物半導体としては、In、Ga、及びZnのうち少なくとも1種を含むアモルファス酸化物半導体が好ましく、特にIn、Ga、及びZnを含むアモルファス酸化物半導体が好ましい。組成構造としては、InGaO(ZnO)(mは6未満の自然数)のものが好ましく、これらは、キャリアが電子のn型半導体である。なお、ZnO・Rh、CuGaO、SrCuのようなp型酸化物半導体を活性層に用いてもよいし、特開2006−165529号公報に開示されている酸化物半導体を用いてもよい。 As the amorphous oxide semiconductor constituting the active layer 16, an amorphous oxide semiconductor containing at least one of In, Ga, and Zn is preferable, and an amorphous oxide semiconductor containing In, Ga, and Zn is particularly preferable. As the composition structure, those of InGaO 3 (ZnO) m (m is a natural number of less than 6) are preferable, and these are n-type semiconductors whose carriers are electrons. Note that a p-type oxide semiconductor such as ZnO.Rh 2 O 3 , CuGaO 2 , or SrCu 2 O 2 may be used for the active layer, or an oxide semiconductor disclosed in Japanese Patent Application Laid-Open No. 2006-165529. It may be used.

アモルファス酸化物半導体膜の比抵抗値は、スパッタ成膜時の成膜条件、例えば、酸素濃度、成膜室内の圧力、パワーなどによって制御することができる。アモルファス酸化物半導体膜の比抵抗値が1.5Ωcm以上1500Ωcm以下になるような成膜条件でスパッタ成膜を行えばよい。ここで、アモルファス酸化物半導体膜の比抵抗値は、シート抵抗と膜厚から計算して求めた値である。すなわち、シート抵抗をρ(Ω/□)、膜厚をd(cm)とすると、比抵抗値A(Ωcm)は、A=ρ×dとして算出される。なお、シート抵抗の測定には、シート抵抗10Ω/□未満の領域ではロレスタ−GP(三菱化学社製)、シート抵抗10Ω/□以上の領域ではハイテスタ−UP(三菱化学社製)をそれぞれ用いて20℃の環境下で行った。膜厚測定には触針式表面形状測定器DekTak−6M(ULVAC社製)を用いた。 The specific resistance value of the amorphous oxide semiconductor film can be controlled by film formation conditions during sputtering film formation, such as oxygen concentration, pressure in the film formation chamber, and power. Sputter deposition may be performed under deposition conditions such that the specific resistance value of the amorphous oxide semiconductor film is 1.5 Ωcm or more and 1500 Ωcm or less. Here, the specific resistance value of the amorphous oxide semiconductor film is a value obtained by calculating from the sheet resistance and the film thickness. That is, when the sheet resistance is ρ (Ω / □) and the film thickness is d (cm), the specific resistance value A (Ωcm) is calculated as A = ρ × d. Incidentally, the measurement of the sheet resistance, the sheet resistance 10 7 Ω / □ of less than the area Loresta -GP (manufactured by Mitsubishi Chemical Corporation), sheet resistance 10 7 Ω / □ or more in an area HiTESTER -UP (manufactured by Mitsubishi Chemical Corp.) Each was used in an environment of 20 ° C. A stylus type surface shape measuring device DekTak-6M (manufactured by ULVAC) was used for the film thickness measurement.

例えば、アルゴンと酸素との混合雰囲気でスパッタ成膜を行う際、酸素濃度が低いほど膜中の酸素含有量が低くなり、比抵抗値も低くなる。スパッタ雰囲気中の酸素濃度は、温度、パワー等の他の条件にもよるが、アモルファス酸化物半導体膜の比抵抗値をより確実に1.5Ωcm以上1500Ωcm以下にする観点から、0.3容量%以上5容量%以下が好ましく、4容量%以上4.5容量%以下がより好ましい。   For example, when performing sputter deposition in a mixed atmosphere of argon and oxygen, the lower the oxygen concentration, the lower the oxygen content in the film and the lower the specific resistance value. The oxygen concentration in the sputtering atmosphere depends on other conditions such as temperature and power, but is 0.3% by volume from the viewpoint of more reliably setting the specific resistance value of the amorphous oxide semiconductor film to 1.5Ωcm to 1500Ωcm. It is preferably 5% by volume or less and more preferably 4% by volume or more and 4.5% by volume or less.

また、活性層16のパターニング方法は特に限定されず、形成すべきパターンに応じた開口部を有するシャドウマスクを介して、スパッタリングによる成膜とともにパターニングする方法、スパッタリングによる成膜後、フォトリソグラフィ法及びエッチング法によりパターンニングする方法、リフトオフ法によりパターニングする方法などが挙げられる。
なお、成膜後、フォトリソグラフィ法等によってパターニングする場合は、成膜後、以下の熱処理工程の前にパターニングを行ってもよいし、熱処理を行った後、パターニングを行ってもよい。
The patterning method of the active layer 16 is not particularly limited, and a method of patterning together with film formation by sputtering through a shadow mask having an opening corresponding to the pattern to be formed, a film formation method by sputtering, a photolithography method, and Examples include a patterning method using an etching method and a patterning method using a lift-off method.
Note that in the case where patterning is performed by a photolithography method or the like after film formation, patterning may be performed after film formation and before the following heat treatment step, or may be performed after heat treatment.

−熱処理工程−
活性層16としてアモルファス酸化物半導体を主成分とする膜を形成した後、酸素含有雰囲気下で温度が100℃以上200℃以下の熱処理を行う。
-Heat treatment process-
After a film containing an amorphous oxide semiconductor as a main component is formed as the active layer 16, heat treatment is performed at a temperature of 100 ° C. or higher and 200 ° C. or lower in an oxygen-containing atmosphere.

図4は、活性層としてIGZO膜を形成した後の比抵抗値と、成膜後、180℃で1時間の熱処理を行う前後の閾値電圧(Von)の変化を示している。図4に示されるように、スパッタ成膜後のIGZO膜の比抵抗値が1.5Ωcm以上1500Ωcm以下であれば、熱処理によってVonはプラス側にシフトし、Vonの回復効果が得られる。一方、スパッタ成膜後のIGZO膜の比抵抗値が1.5Ωcm未満である場合は、熱処理を施しても比抵抗はほとんど変化せず、有効なVonの回復効果が得られず、ノーマリオンのままとなる。また、スパッタ成膜後のIGZO膜の比抵抗値が1500Ωcmを超えている場合は、閾値シフトが大きく(図1参照)、しかも、熱処理によって閾値電圧(Von)がマイナス側にシフトし、Von回復効果が得られない。
なお、スパッタ成膜後のIGZO膜の比抵抗値は、閾値シフトの抑制、Vonの回復によるノーマリオフの実現などの観点から、好ましくは2.0Ωcm以上1200Ωcm以下であり、特に好ましくは3.0Ωcm以上500Ωcm以下である。
FIG. 4 shows the specific resistance value after forming the IGZO film as the active layer, and the change in the threshold voltage (Von) before and after performing heat treatment at 180 ° C. for 1 hour after the film formation. As shown in FIG. 4, if the specific resistance value of the IGZO film after sputter deposition is 1.5 Ωcm or more and 1500 Ωcm or less, Von is shifted to the plus side by the heat treatment, and the recovery effect of Von is obtained. On the other hand, when the specific resistance value of the IGZO film after sputter deposition is less than 1.5 Ωcm, the specific resistance hardly changes even when heat treatment is performed, and an effective Von recovery effect cannot be obtained. Will remain. Further, when the specific resistance value of the IGZO film after sputter deposition exceeds 1500 Ωcm, the threshold shift is large (see FIG. 1), and the threshold voltage (Von) is shifted to the negative side by the heat treatment, and Von recovery is performed. The effect is not obtained.
Note that the specific resistance value of the IGZO film after the sputter deposition is preferably 2.0 Ωcm or more and 1200 Ωcm or less, particularly preferably 3.0 Ωcm or more, from the viewpoint of suppression of threshold shift and realization of normally-off by recovery of Von. 500 Ωcm or less.

活性層16としてアモルファス酸化物半導体膜を形成した後、酸素含有雰囲気下での熱処理温度は、熱処理前の比抵抗値、酸素濃度などの他の条件等にもよるが、熱処理によってVonを回復させること、閾値シフトを抑制すること、樹脂基板を用いた場合の耐熱性などの観点から、120℃以上200℃以下が好ましく、特に樹脂基板を用いた場合は120℃以上150℃以下が好ましい。なお、熱処理時の温度は、基板10の表面温度をアモルファス酸化物半導体膜の温度とみなして制御すればよい。   After the amorphous oxide semiconductor film is formed as the active layer 16, the heat treatment temperature in the oxygen-containing atmosphere recovers Von by the heat treatment, although it depends on other conditions such as the specific resistance value and the oxygen concentration before the heat treatment. In view of suppressing the threshold shift and heat resistance when using a resin substrate, it is preferably 120 ° C. or higher and 200 ° C. or lower, and particularly when using a resin substrate, 120 ° C. or higher and 150 ° C. or lower is preferable. Note that the temperature at the time of heat treatment may be controlled by regarding the surface temperature of the substrate 10 as the temperature of the amorphous oxide semiconductor film.

熱処理時間は、熱処理前の比抵抗値、酸素濃度、熱処理温度等の他の条件等にもよるが、熱処理によってVonを回復させること、閾値シフトを抑制すること、生産性などの観点から、15分以上12時間以下が好ましく、30分以上2時間以下が特に好ましい。
熱処理雰囲気中の酸素濃度は、熱処理前の比抵抗値、温度、パワー等の他の条件にもよるが、3容量%以上95容量%以下が好ましく、5容量%以上80容量%以下がより好ましい。
The heat treatment time depends on other conditions such as the specific resistance value, the oxygen concentration, the heat treatment temperature, etc. before the heat treatment, but from the viewpoint of recovering Von by the heat treatment, suppressing the threshold shift, productivity and the like. The time is preferably from 12 minutes to 12 hours, particularly preferably from 30 minutes to 2 hours.
The oxygen concentration in the heat treatment atmosphere is preferably 3% by volume or more and 95% by volume or less, more preferably 5% by volume or more and 80% by volume or less, although it depends on other conditions such as specific resistance value, temperature and power before the heat treatment. .

−ソース・ドレイン電極−
アモルファス酸化物半導体を主成分とする活性層16を形成した後、ソース・ドレイン電極18A,18Bを形成する(図3(D))。
ソース・ドレイン電極18A,18Bを構成する材料としては、電極としての導電性を有する材料、具体的には、Al、Mo、Cr、Ta、Ti、Au、Ag等の金属、Al−Nd、APC等の合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性化合物、またはこれらの混合物などの導電性材料によって形成することができる。
−Source / drain electrode−
After the active layer 16 mainly composed of an amorphous oxide semiconductor is formed, source / drain electrodes 18A and 18B are formed (FIG. 3D).
The material constituting the source / drain electrodes 18A, 18B is a material having conductivity as an electrode, specifically, a metal such as Al, Mo, Cr, Ta, Ti, Au, Ag, Al-Nd, APC. Alloys such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), metal oxides such as indium zinc oxide (IZO), organic conductive compounds such as polyaniline, polythiophene, polypyrrole, or mixtures thereof It can be formed of a conductive material.

ソース・ドレイン電極18A,18Bは、間に隙間を有し、活性層16を介して導通可能となるように形成すればよい。ソース・ドレイン電極18A,18Bの形成方法は特に限定されず、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から材料との適性を考慮して選択した方法に従って成膜すればよい。例えば、ITOを選択する場合には、直流あるいは高周波スパッタリング法、真空蒸着法、イオンプレーティング法等に従って成膜することができる。またソース電極18A及びドレイン電極18Bの材料として有機導電性化合物を選択する場合には湿式成膜法に従って行うことができる。   The source / drain electrodes 18 </ b> A and 18 </ b> B may be formed so as to be conductive through the active layer 16 with a gap therebetween. The formation method of the source / drain electrodes 18A and 18B is not particularly limited, and may be a printing method, a wet method such as a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, a CVD method, a plasma CVD method, or the like. A film may be formed according to a method selected from chemical methods and the like in consideration of suitability for the material. For example, when ITO is selected, the film can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like. Further, when an organic conductive compound is selected as a material for the source electrode 18A and the drain electrode 18B, it can be performed according to a wet film forming method.

また、ソース・ドレイン電極18A,18Bのパターニング方法としては、例えば、形成すべきパターンに応じた開口部を有するメタルマスク(シャドウマスク)を介して成膜とともにパターニングする方法、成膜後、フォトリソグラフィ法及びエッチング法によりパターンニングする方法、リフトオフ法によりパターニングする方法などが挙げられる。   As a patterning method for the source / drain electrodes 18A and 18B, for example, a method of patterning together with a film through a metal mask (shadow mask) having an opening corresponding to a pattern to be formed, a photolithography after film formation Examples thereof include a patterning method by a method and an etching method, and a patterning method by a lift-off method.

ソース・ドレイン電極18A,18Bの厚みは、材料、要求される導電性などによって異なるが、成膜性、導電性(低抵抗化)などを考慮すると、ソース・ドレイン電極18A,18B及びそれに接続する配線となる導電膜の総厚は、例えば10nm以上1000nm以下とする。   The thickness of the source / drain electrodes 18A and 18B varies depending on the material, required conductivity, etc., but considering the film formability, conductivity (reduction in resistance), etc., the source / drain electrodes 18A and 18B and the source / drain electrodes 18A and 18B are connected thereto. The total thickness of the conductive film serving as the wiring is, for example, not less than 10 nm and not more than 1000 nm.

以上のような工程を経て、閾値シフトが小さく、移動度が高く、ノーマリオフの実現も可能な信頼性の高いボトムゲート構造のTFT20を製造することができる。
TFTを製造した後は、最終製品(表示装置、撮像装置など)に応じてさらに層間絶縁膜、画素電極等を形成すればよい。例えば、有機ELディスプレイを製造する場合は、層間絶縁膜及び画素電極を順次形成した後、少なくとも発光層を含む有機エレクトロルミネッセンス層及びITO、Al等により上部電極(共通電極)を順次形成した後、封止用の樹脂フィルムを貼り付ける。これにより、フレキシブルな有機ELディスプレイを製造することができる。
Through the above-described steps, a highly reliable bottom gate TFT 20 with a small threshold shift, high mobility, and normally off can be manufactured.
After the TFT is manufactured, an interlayer insulating film, a pixel electrode, or the like may be further formed according to the final product (display device, imaging device, etc.). For example, when manufacturing an organic EL display, after sequentially forming an interlayer insulating film and a pixel electrode, after forming an upper electrode (common electrode) sequentially with an organic electroluminescence layer including at least a light emitting layer and ITO, Al, etc. A sealing resin film is attached. Thereby, a flexible organic EL display can be manufactured.

以下、実施例及び比較例について説明する。
<実施例1>
−Si基板の表面に形成した熱酸化SiO(厚さ100nm)膜上に、芝浦エレクトロニクス社 マグネトロンスパッタ装置:CFS−8EP−55を用いて、DCスパッタリングによってIGZO膜を50nmの厚さで形成した。IGZO膜の成膜条件は以下の通りである。
ターゲット:InGaZnO(純度:4N、ターゲットサイズ:3インチΦ)
DCパワー=200W
ガス流量Ar/O=100/4.2(sccm)
成膜室内圧力:0.37Pa
Hereinafter, examples and comparative examples will be described.
<Example 1>
On the thermally oxidized SiO 2 (thickness 100 nm) film formed on the surface of the n + -Si substrate, an IGZO film having a thickness of 50 nm is formed by DC sputtering using a Shibaura Electronics Co., Ltd. magnetron sputtering apparatus: CFS-8EP-55. Formed. The conditions for forming the IGZO film are as follows.
Target: In 2 Ga 2 ZnO 7 (purity: 4N, target size: 3 inches Φ)
DC power = 200W
Gas flow rate Ar / O 2 = 100 / 4.2 (sccm)
Deposition chamber pressure: 0.37 Pa

次いで、ソース・ドレイン電極として、IGZO膜上にシャドウマスクを用いて熱抵抗加熱によりAl(厚さ200nm)を蒸着した。
ソース・ドレイン電極を形成した後、酸素含有雰囲気下(酸素濃度8%)で180℃の熱処理を1時間実施した。
Next, Al (thickness: 200 nm) was deposited on the IGZO film as a source / drain electrode by thermal resistance heating using a shadow mask.
After forming the source / drain electrodes, a heat treatment at 180 ° C. was performed for 1 hour in an oxygen-containing atmosphere (oxygen concentration: 8%).

成膜後のIGZO膜のシート抵抗をロレスタ−GP(三菱化学社製)およびハイテスタ−UP(三菱化学社製)を用いて測定し、膜厚を触針式表面形状測定器DekTak−6M(ULVAC社製)を用いて測定した。これらの測定値から計算すると、比抵抗値は4.1Ωcmであった。
また、熱処理後のTFT特性をVd=10Vで評価した結果、Von=−1V、移動度=5.3cm/Vsであった。尚、酸素含有雰囲気下で180℃の熱処理を実施しなかったTFTでは、Von=−4.8Vであった。
Vg=25V、Vd=0.01Vのストレス条件で1000秒間のストレスを加えた。ストレス印加後の閾値シフト量は、1.59Vであった。
After the film formation, the sheet resistance of the IGZO film was measured using Loresta GP (Mitsubishi Chemical Co., Ltd.) and Hitester UP (Mitsubishi Chemical Co., Ltd.), and the film thickness was measured using a stylus type surface shape measuring instrument DekTak-6M (ULVAC). The measurement was performed using When calculated from these measured values, the specific resistance value was 4.1 Ωcm.
Moreover, as a result of evaluating TFT characteristics after the heat treatment at Vd = 10 V, Von = −1V and mobility = 5.3 cm 2 / Vs. Note that Von = −4.8 V in the TFT that was not heat-treated at 180 ° C. in an oxygen-containing atmosphere.
A stress of 1000 seconds was applied under stress conditions of Vg = 25V and Vd = 0.01V. The threshold shift amount after the stress application was 1.59V.

<比較例1>
IGZO成膜条件を以下のように設定した以外は実施例1と同様にしてTFTを作製した。
DCパワー=200W
ガス流量Ar/O=100/6.0(sccm)
成膜室内圧力:0.37Pa
<Comparative Example 1>
A TFT was produced in the same manner as in Example 1 except that the IGZO film forming conditions were set as follows.
DC power = 200W
Gas flow rate Ar / O 2 = 100 / 6.0 (sccm)
Deposition chamber pressure: 0.37 Pa

成膜後のIGZO膜の比抵抗値は40000Ωcmであった。
熱処理後のTFT特性をVd=10Vで評価した結果、Von=−0.8V、移動度=5.2cm/Vsであった。尚、酸素含有雰囲気下で180℃の熱処理を実施しなかったTFTでは、Von=−0.2Vであった。
Vg=25V、Vd=0.01Vのストレス条件で1000秒間のストレスを加えた。ストレス印加後の閾値シフト量は、3.20Vであった。
The specific resistance value of the IGZO film after film formation was 40000 Ωcm.
As a result of evaluating the TFT characteristics after the heat treatment at Vd = 10 V, Von = −0.8 V and mobility = 5.2 cm 2 / Vs. Note that Von = −0.2 V in a TFT that was not heat-treated at 180 ° C. in an oxygen-containing atmosphere.
A stress of 1000 seconds was applied under stress conditions of Vg = 25V and Vd = 0.01V. The threshold shift amount after the stress application was 3.20V.

<実施例2>
IGZO成膜条件をDCパワー=200W、ガス流量Ar/O=100/4.5(sccm)、成膜室内圧力=0.37Paと設定した以外は実施例1と同様にTFTを作製した。
成膜後のIGZO膜の比抵抗値は410Ωcmであった。
熱処理後のTFT特性をVd=10Vで評価した結果、Von=−0.8V、移動度=5.6cm/Vsであった。尚、酸素含有雰囲気下で180℃の熱処理を実施しなかったTFTでは、Von=−1.4Vであった。
Vg=25V、Vd=0.01Vのストレス条件で1000秒間のストレスを加えた。ストレス印加後の閾値シフト量は、1.97Vであった。
<Example 2>
A TFT was fabricated in the same manner as in Example 1 except that the IGZO film formation conditions were set such that DC power = 200 W, gas flow rate Ar / O 2 = 100 / 4.5 (sccm), and film formation chamber pressure = 0.37 Pa.
The specific resistance value of the IGZO film after film formation was 410 Ωcm.
As a result of evaluating the TFT characteristics after the heat treatment at Vd = 10 V, Von = −0.8 V and mobility = 5.6 cm 2 / Vs. Note that Von = −1.4 V for TFTs that were not heat-treated at 180 ° C. in an oxygen-containing atmosphere.
A stress of 1000 seconds was applied under stress conditions of Vg = 25V and Vd = 0.01V. The threshold shift amount after the stress application was 1.97V.

<比較例2>
IGZO成膜条件を、DCパワー=200W、ガス流量Ar/O=100/3.5(sccm)、成膜室内圧力=0.37Paと設定した以外は実施例1と同様にTFTを作製した。
成膜後のIGZO膜の比抵抗値は0.5Ωcmであった。
熱処理後のTFT特性をVd=10Vで評価した結果、Von=−6V、移動度=10.4cm/Vsであった。尚、酸素含有雰囲気下で180℃の熱処理を実施しなかったTFTでは、Von=−6.2Vであった。
Vg=25V、Vd=0.01Vのストレス条件で1000秒間のストレスを加えた。ストレス印加後の閾値シフト量は、1.95Vであった。
<Comparative Example 2>
A TFT was fabricated in the same manner as in Example 1 except that the IGZO film deposition conditions were set such that DC power = 200 W, gas flow rate Ar / O 2 = 100 / 3.5 (sccm), and deposition chamber pressure = 0.37 Pa. .
The specific resistance value of the IGZO film after film formation was 0.5 Ωcm.
As a result of evaluating the TFT characteristics after the heat treatment at Vd = 10 V, Von = −6 V and mobility = 10.4 cm 2 / Vs. Note that Von = −6.2 V for TFTs that were not heat-treated at 180 ° C. in an oxygen-containing atmosphere.
A stress of 1000 seconds was applied under stress conditions of Vg = 25V and Vd = 0.01V. The threshold shift amount after the stress application was 1.95V.

<比較例3>
IGZO成膜条件を、DCパワー=200W、ガス流量Ar/O=100/4.9(sccm)、成膜室内圧力=0.37Paとした以外は実施例1と同様にTFTを作製した。
成膜後のIGZO膜の比抵抗値は、16000Ωcmであった。
熱処理後のTFT特性をVd=10Vで評価した結果、Von=−0.8V、移動度=5.3cm/Vsであった。尚、180℃の熱処理を実施しなかったTFTでは、Von=−0.4Vであった。
Vg=25V、Vd=0.01Vのストレス条件で1000秒間のストレスを加えた。ストレス印加後の閾値シフト量は、2.94Vであった。
<Comparative Example 3>
A TFT was fabricated in the same manner as in Example 1 except that the IGZO film deposition conditions were DC power = 200 W, gas flow rate Ar / O 2 = 100 / 4.9 (sccm), and deposition chamber pressure = 0.37 Pa.
The specific resistance value of the IGZO film after film formation was 16000 Ωcm.
As a result of evaluating the TFT characteristics after the heat treatment at Vd = 10 V, Von = −0.8 V and mobility = 5.3 cm 2 / Vs. Note that Von = −0.4 V in the TFT that was not subjected to the heat treatment at 180 ° C.
A stress of 1000 seconds was applied under stress conditions of Vg = 25V and Vd = 0.01V. The threshold shift amount after the stress application was 2.94V.

<比較例4>
酸素含有雰囲気下(酸素濃度8%)での熱処理の温度を80℃とした以外は、実施例1と同様にTFTを作製した。
成膜後のIGZO膜の比抵抗値は、4.3Ωcmであった。
熱処理後のTFT特性をVd=10Vで評価した結果、Von=−4.0V、移動度=7.8cm/Vsであった。尚、酸素含有雰囲気下で80℃の熱処理を実施しなかったTFTでは、Von=−4.2Vであった。
Vg=25V、Vd=0.01Vのストレス条件で1000秒間のストレスを加えた。ストレス印加後の閾値シフト量は、3.06Vであった。
<Comparative example 4>
A TFT was fabricated in the same manner as in Example 1 except that the temperature of the heat treatment in an oxygen-containing atmosphere (oxygen concentration 8%) was set to 80 ° C.
The specific resistance value of the IGZO film after film formation was 4.3 Ωcm.
As a result of evaluating TFT characteristics after the heat treatment at Vd = 10 V, Von = −4.0 V and mobility = 7.8 cm 2 / Vs. Note that Von = −4.2V in the TFT that was not subjected to the heat treatment at 80 ° C. in an oxygen-containing atmosphere.
A stress of 1000 seconds was applied under stress conditions of Vg = 25V and Vd = 0.01V. The threshold shift amount after the stress application was 3.06V.

<実施例3>
酸素含有雰囲気下(酸素濃度8%)での熱処理の温度を120℃とした以外は、実施例1と同様にTFTを作製した。
成膜後のIGZO膜の比抵抗値は、4.1Ωcmであった。
熱処理後のTFT特性をVd=10Vで評価した結果、Von=−1.0V、移動度=5.6cm/Vsであった。尚、120℃の熱処理を実施しなかったTFTでは、Von=−4.8Vであった。
Vg=25V、Vd=0.01Vのストレス条件で1000秒間のストレスを加えた。ストレス印加後の閾値シフト量は、1.98Vであった。
<Example 3>
A TFT was produced in the same manner as in Example 1 except that the temperature of the heat treatment in an oxygen-containing atmosphere (oxygen concentration: 8%) was 120 ° C.
The specific resistance value of the IGZO film after film formation was 4.1 Ωcm.
As a result of evaluating the TFT characteristics after the heat treatment at Vd = 10 V, Von = −1.0 V and mobility = 5.6 cm 2 / Vs. Note that Von = −4.8 V in the TFT that was not subjected to the heat treatment at 120 ° C.
A stress of 1000 seconds was applied under stress conditions of Vg = 25V and Vd = 0.01V. The threshold shift amount after the stress application was 1.98V.

<実施例4>
酸素含有雰囲気下(酸素濃度8%)での熱処理の温度を200℃とした以外は、実施例1と同様にTFTを作製した。
この時の成膜後のIGZO膜の比抵抗値は、4.1Ωcmであった。
熱処理後のTFT特性をVd=10Vで評価した結果、Von=−0.8V、移動度=4.6cm/Vsであった。尚、200℃の熱処理を実施しなかったTFTでは、Von=−4.8Vであった。
Vg=25V、Vd=0.01Vのストレス条件で1000秒間のストレスを加えた。ストレス印加後の閾値シフト量は、1.67Vであった。
<Example 4>
A TFT was produced in the same manner as in Example 1 except that the temperature of the heat treatment in an oxygen-containing atmosphere (oxygen concentration: 8%) was 200 ° C.
The specific resistance value of the IGZO film after film formation at this time was 4.1 Ωcm.
As a result of evaluating TFT characteristics after the heat treatment at Vd = 10 V, Von = −0.8 V and mobility = 4.6 cm 2 / Vs. Note that Von = −4.8 V in the TFT that was not subjected to the heat treatment at 200 ° C.
A stress of 1000 seconds was applied under stress conditions of Vg = 25V and Vd = 0.01V. The threshold shift amount after the stress application was 1.67V.

<実施例5>
IGZO成膜条件を、DCパワー=50W、ガス流量Ar/O=100/2.5(sccm)、成膜室内圧力=0.37Paとした以外は実施例1と同様にTFTを作製した。
成膜後のIGZO膜の比抵抗値は、1200Ωcmであった。
熱処理後のTFT特性をVd=10Vで評価した結果、Von=−0.6V、移動度=6.7cm/Vsであった。尚、180℃の熱処理を実施しなかったTFTでは、Von=−0.8Vであった。
Vg=25V、Vd=0.01Vのストレス条件で1000秒間のストレスを加えた。ストレス印加後の閾値シフト量は、2.23Vであった。
<Example 5>
A TFT was fabricated in the same manner as in Example 1 except that the IGZO film formation conditions were DC power = 50 W, gas flow rate Ar / O 2 = 100 / 2.5 (sccm), and film formation chamber pressure = 0.37 Pa.
The specific resistance value of the IGZO film after film formation was 1200 Ωcm.
As a result of evaluating the TFT characteristics after the heat treatment at Vd = 10 V, Von = −0.6 V and mobility = 6.7 cm 2 / Vs. Note that Von = −0.8 V in the TFT that was not subjected to the heat treatment at 180 ° C.
A stress of 1000 seconds was applied under stress conditions of Vg = 25V and Vd = 0.01V. The threshold shift amount after the stress application was 2.23V.

<比較例5>
IGZO成膜条件をDCパワー=250W、ガス流量Ar/O=100/5.0(sccm)、成膜室内圧力=0.37Paとした以外は実施例1と同様にTFTを作製した。
成膜後のIGZO膜の比抵抗値は、2300Ωcmであった。
熱処理後のTFT特性をVd=10Vで評価した結果、Von=−0.8V、移動度=6.9cm/Vsであった。尚、180℃の熱処理を実施しなかったTFTでは、Von=−0.6Vであった。
Vg=25V、Vd=0.01Vのストレス条件で1000秒間のストレスを加えた。ストレス印加後の閾値シフト量は、2.68Vであった。
<Comparative Example 5>
A TFT was produced in the same manner as in Example 1 except that the IGZO film formation conditions were DC power = 250 W, gas flow rate Ar / O 2 = 100 / 5.0 (sccm), and film formation chamber pressure = 0.37 Pa.
The specific resistance value of the IGZO film after film formation was 2300 Ωcm.
As a result of evaluating TFT characteristics after heat treatment at Vd = 10 V, Von = −0.8 V and mobility = 6.9 cm 2 / Vs. Note that Von = −0.6 V in the TFT that was not subjected to the heat treatment at 180 ° C.
A stress of 1000 seconds was applied under stress conditions of Vg = 25V and Vd = 0.01V. The threshold shift amount after the stress application was 2.68V.

<結果>
実施例及び比較例の結果を表1にまとめて示す。
<Result>
The results of Examples and Comparative Examples are summarized in Table 1.

実施例1、実施例2、及び実施例5において、成膜時にIGZOを低抵抗にすることにより、180℃アニール後の閾値電圧(Von)及び移動度のTFT特性は比較例1とほぼ同じであるが、ストレス試験による閾値シフトは大きく改善している。
比較例2は、実施例2よりもさらに低抵抗となる条件で成膜を行った。ストレス試験による閾値シフトは比較例1より改善するが、アニール後もVonが戻らずノーマリオンのままである。
In Example 1, Example 2, and Example 5, the TFT characteristics of the threshold voltage (Von) and mobility after 180 ° C. annealing were almost the same as in Comparative Example 1 by making IGZO low resistance during film formation. There is a significant improvement in threshold shifts due to stress tests.
In Comparative Example 2, the film was formed under the condition of lower resistance than Example 2. The threshold shift by the stress test is improved as compared with Comparative Example 1, but Von does not return after annealing and remains normally on.

比較例3および比較例5では、IGZOの比抵抗値が1500Ωcmより大きく、アニール後のVonはアニール前のVonに対してマイナス側に動いた。成膜時の比抵抗値を比較例3のIGZOの比抵抗値より高くするとアニールによるVon回復効果(プラスシフト)は無くなる。   In Comparative Example 3 and Comparative Example 5, the specific resistance value of IGZO was larger than 1500 Ωcm, and Von after annealing moved to the negative side with respect to Von before annealing. If the specific resistance value during film formation is higher than the specific resistance value of IGZO of Comparative Example 3, the Von recovery effect (plus shift) due to annealing is lost.

比較例4は、熱処理の温度を80℃としたが、アニールによるVon回復効果も閾値シフト改善の効果は無いことを示している。
実施例3、実施例4においては、それぞれアニ−ル温度を120℃、200℃にて実施した。この温度範囲においては、アニールによるVon回復効果および閾値シフト改善の効果があることを示している。
Comparative Example 4 shows that the temperature of the heat treatment is 80 ° C., but the Von recovery effect by annealing does not have the effect of improving the threshold shift.
In Examples 3 and 4, the annealing temperatures were 120 ° C. and 200 ° C., respectively. In this temperature range, the Von recovery effect and the threshold shift improvement effect by annealing are shown.

本発明は上記実施形態及び実施例に限定されるものではない。本実施例においては、すべてSi基板上に素子を作製したが、例えば、ガラス基板上にゲート電極、ゲート絶縁膜を順次形成して素子を作製しても良い。もちろん、ガラス基板ではなく、樹脂基板を用いた可撓性基板でも良い。特に本発明では、熱処理の温度が200℃以下と低温にできる為に、基板に樹脂基板を用いることが好ましい。
また、例えば、図5に示すように、ゲート絶縁膜14上にソース・ドレイン電極18A,18Bを形成した後、ソース・ドレイン電極18A,18B間に活性層16を形成したボトムゲート構造のTFT22としてもよい。
また、各TFT20,22には他の層を設けることもできる。例えば活性層16上に保護層を設けたり、活性層16とソース・ドレイン電極18A,18Bとの間などにオーミックコンタクトを実現する接触層などを設けてもよい。
また、製造する電子デバイスは目的に応じて選択すればよく、例えば、液晶ディスプレイ、X線検出器などの製造にも本発明を好適に適用することができる。
The present invention is not limited to the above embodiment and examples. In this embodiment, the elements are all fabricated on the Si substrate. However, for example, the elements may be fabricated by sequentially forming a gate electrode and a gate insulating film on a glass substrate. Of course, a flexible substrate using a resin substrate may be used instead of the glass substrate. In particular, in the present invention, a resin substrate is preferably used as the substrate because the temperature of the heat treatment can be as low as 200 ° C. or lower.
Further, for example, as shown in FIG. 5, a bottom gate TFT 22 in which source / drain electrodes 18A and 18B are formed on a gate insulating film 14 and then an active layer 16 is formed between the source / drain electrodes 18A and 18B. Also good.
In addition, other layers can be provided on the TFTs 20 and 22. For example, a protective layer may be provided on the active layer 16, or a contact layer for realizing ohmic contact may be provided between the active layer 16 and the source / drain electrodes 18 A and 18 B.
Moreover, what is necessary is just to select the electronic device to manufacture according to the objective, For example, this invention can be applied suitably also to manufacture of a liquid crystal display, an X-ray detector, etc.

10 基板
12 ゲート電極
14 ゲート絶縁膜
16 活性層
18A ソース電極
18B ドレイン電極
20,22 薄膜トランジスタ(ボトムゲート型)
DESCRIPTION OF SYMBOLS 10 Substrate 12 Gate electrode 14 Gate insulating film 16 Active layer 18A Source electrode 18B Drain electrodes 20 and 22 Thin film transistor (bottom gate type)

Claims (3)

アモルファス酸化物半導体を主成分とする活性層を有するボトムゲート構造の薄膜トランジスタを製造する方法であって、
前記活性層として、酸素含有雰囲気下で、スパッタリング法によって比抵抗値が1.5Ωcm以上1500Ωcm以下になるように前記アモルファス酸化物半導体を主成分とする膜を形成する工程と、
前記アモルファス酸化物半導体を主成分とする膜を形成した後、酸素含有雰囲気下で温度が100℃以上200℃以下の熱処理を行う工程と、
を含むボトムゲート構造の薄膜トランジスタの製造方法。
A method of manufacturing a bottom gate thin film transistor having an active layer mainly composed of an amorphous oxide semiconductor,
Forming, as the active layer, a film mainly composed of the amorphous oxide semiconductor so that the specific resistance value is 1.5 Ωcm or more and 1500 Ωcm or less by a sputtering method in an oxygen-containing atmosphere;
A step of performing a heat treatment at a temperature of 100 ° C. or higher and 200 ° C. or lower in an oxygen-containing atmosphere after forming a film containing the amorphous oxide semiconductor as a main component;
A method of manufacturing a thin film transistor having a bottom gate structure including:
前記アモルファス酸化物半導体が、In、Ga、及びZnを含むアモルファス酸化物半導体である請求項1に記載のボトムゲート構造の薄膜トランジスタの製造方法。   The method for manufacturing a thin film transistor having a bottom gate structure according to claim 1, wherein the amorphous oxide semiconductor is an amorphous oxide semiconductor containing In, Ga, and Zn. 前記熱処理の温度が、150℃以下である請求項1又は請求項2に記載のボトムゲート構造の薄膜トランジスタの製造方法。   3. The method of manufacturing a thin film transistor having a bottom gate structure according to claim 1, wherein a temperature of the heat treatment is 150 ° C. or less.
JP2009158500A 2009-07-03 2009-07-03 Manufacturing method of bottom gate thin film transistor Active JP5507133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158500A JP5507133B2 (en) 2009-07-03 2009-07-03 Manufacturing method of bottom gate thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158500A JP5507133B2 (en) 2009-07-03 2009-07-03 Manufacturing method of bottom gate thin film transistor

Publications (2)

Publication Number Publication Date
JP2011014761A true JP2011014761A (en) 2011-01-20
JP5507133B2 JP5507133B2 (en) 2014-05-28

Family

ID=43593362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158500A Active JP5507133B2 (en) 2009-07-03 2009-07-03 Manufacturing method of bottom gate thin film transistor

Country Status (1)

Country Link
JP (1) JP5507133B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077978A1 (en) * 2009-12-25 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
WO2012102314A1 (en) * 2011-01-28 2012-08-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and semiconductor device
WO2012124444A1 (en) * 2011-03-11 2012-09-20 富士フイルム株式会社 Method of manufacturing thin-film transistor, thin-film transistor, display apparatus, sensor, and digital x-ray image-capturing apparatus
JP2013138197A (en) * 2011-12-02 2013-07-11 Kobe Steel Ltd Oxide thin film for semiconductor layer of thin film transistor, thin film transistor, and display device
JP2013179141A (en) * 2012-02-28 2013-09-09 Sony Corp Transistor, manufacturing method of the same, display device and electronic apparatus
JP2014207319A (en) * 2013-04-12 2014-10-30 三井造船株式会社 Semiconductor element manufacturing method
JP2016015390A (en) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 Oxide semiconductor thin film evaluation method, oxide semiconductor thin film quality control method, and evaluation element and evaluation device used for evaluation method
KR101624695B1 (en) * 2014-10-14 2016-05-26 서종현 Manufacturing method of thin film transistor and thin film transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165527A (en) * 2004-11-10 2006-06-22 Canon Inc Field effect transistor
JP2008053356A (en) * 2006-08-23 2008-03-06 Canon Inc Method for manufacturing thin film transistor using amorphous oxide semiconductor film
JP2008130814A (en) * 2006-11-21 2008-06-05 Canon Inc Method for manufacturing thin film transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165527A (en) * 2004-11-10 2006-06-22 Canon Inc Field effect transistor
JP2008053356A (en) * 2006-08-23 2008-03-06 Canon Inc Method for manufacturing thin film transistor using amorphous oxide semiconductor film
JP2008130814A (en) * 2006-11-21 2008-06-05 Canon Inc Method for manufacturing thin film transistor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372664B2 (en) 2009-12-25 2013-02-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
WO2011077978A1 (en) * 2009-12-25 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US8790942B2 (en) 2009-12-25 2014-07-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
WO2012102314A1 (en) * 2011-01-28 2012-08-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and semiconductor device
US9299815B2 (en) 2011-01-28 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and semiconductor device
US8987727B2 (en) 2011-01-28 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and semiconductor device
US9236454B2 (en) 2011-03-11 2016-01-12 Fujifilm Corporation Method of manufacturing thin-film transistor, thin-film transistor, display apparatus, sensor, and digital X-ray image-capturing apparatus
WO2012124444A1 (en) * 2011-03-11 2012-09-20 富士フイルム株式会社 Method of manufacturing thin-film transistor, thin-film transistor, display apparatus, sensor, and digital x-ray image-capturing apparatus
JP2012191072A (en) * 2011-03-11 2012-10-04 Fujifilm Corp Method of manufacturing thin-film transistor, thin-film transistor, display device, sensor, and x-ray digital photographing device
KR101634101B1 (en) * 2011-03-11 2016-06-28 후지필름 가부시키가이샤 Method of manufacturing thin-film transistor, thin-film transistor, display apparatus, sensor, and digital x-ray image-capturing apparatus
KR20140006901A (en) * 2011-03-11 2014-01-16 후지필름 가부시키가이샤 Method of manufacturing thin-film transistor, thin-film transistor, display apparatus, sensor, and digital x-ray image-capturing apparatus
TWI511202B (en) * 2011-03-11 2015-12-01 Fujifilm Corp Method of fabricating thin film transistor, thin film transistor, display device, sensor, and radiographic digital imaging device
JP2013138197A (en) * 2011-12-02 2013-07-11 Kobe Steel Ltd Oxide thin film for semiconductor layer of thin film transistor, thin film transistor, and display device
JP2013179141A (en) * 2012-02-28 2013-09-09 Sony Corp Transistor, manufacturing method of the same, display device and electronic apparatus
JP2014207319A (en) * 2013-04-12 2014-10-30 三井造船株式会社 Semiconductor element manufacturing method
JP2016015390A (en) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 Oxide semiconductor thin film evaluation method, oxide semiconductor thin film quality control method, and evaluation element and evaluation device used for evaluation method
KR20170013932A (en) * 2014-07-01 2017-02-07 가부시키가이샤 고베 세이코쇼 Quality evaluation method for laminate having protective layer on surface of oxide semiconductor thin film and quality control method for oxide semiconductor thin film
KR101923798B1 (en) * 2014-07-01 2018-11-29 가부시키가이샤 고베 세이코쇼 Quality evaluation method for laminate having protective layer on surface of oxide semiconductor thin film and quality control method for oxide semiconductor thin film
US10203367B2 (en) 2014-07-01 2019-02-12 Kobe Steel, Ltd. Quality evaluation method for laminate having protective layer on surface of oxide semiconductor thin film and quality control method for oxide semiconductor thin film
KR101624695B1 (en) * 2014-10-14 2016-05-26 서종현 Manufacturing method of thin film transistor and thin film transistor
WO2016060455A3 (en) * 2014-10-14 2017-04-27 한국항공대학교산학협력단 Method for manufacturing thin film transistor, and thin film transistor
US10340294B2 (en) 2014-10-14 2019-07-02 Industry-University Cooperation Foundation Korea Aerospace University Method for manufacturing thin film transistor, and thin film transistor

Also Published As

Publication number Publication date
JP5507133B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5507133B2 (en) Manufacturing method of bottom gate thin film transistor
JP5322530B2 (en) Thin film field effect transistor manufacturing method and thin film field effect transistor manufactured by the manufacturing method
JP5467728B2 (en) Thin film field effect transistor and method of manufacturing the same
US8884272B2 (en) Amorphous oxide semiconductor material, field-effect transistor, and display device
JP6142331B2 (en) Thin film semiconductor device, organic EL display device, and manufacturing method thereof
US10644165B2 (en) Thin-film transistor, method of fabricating thin-film transistor, and display device
JP4982619B1 (en) Manufacturing method of semiconductor element and manufacturing method of field effect transistor
JP5328414B2 (en) Top gate type field effect transistor, method of manufacturing the same, and display device including the same
JP5339792B2 (en) Thin film field effect transistor, method of manufacturing the same, and display device using the same
JP5371467B2 (en) FIELD EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING FIELD EFFECT TRANSISTOR
JP6358596B2 (en) Method for manufacturing thin film transistor substrate
JP2010103451A (en) Thin film field-effect type transistor and field light-emitting device using it
JP6134230B2 (en) Thin film transistor and display device
JP2010028021A (en) Thin film field-effect transistor
JP5512144B2 (en) Thin film transistor and manufacturing method thereof
CN103208526A (en) Semiconductor device and manufacture method thereof
JP5274165B2 (en) Thin film field effect transistor and method of manufacturing the same
US9893193B2 (en) Thin-film transistor including a gate electrode with a side wall insulating layer and display device
JP2012238763A (en) Semiconductor device and method of manufacturing semiconductor device
TW201803130A (en) Semiconductor device and manufacturing method of semiconductor device
JP6550514B2 (en) Oxide semiconductor thin film for display, thin film transistor for display and sputtering target for display
JP2010205932A (en) Field effect transistor
KR20170025248A (en) Thin Film Transistor comprising double layer gate insulator and fabricating method thereof
WO2019107043A1 (en) Oxide semiconductor thin film, thin film transistor, and sputtering target
JP2016111092A (en) Thin film transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5507133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250