JP2011009302A - Method of forming back electrode for thin film solar cell - Google Patents

Method of forming back electrode for thin film solar cell Download PDF

Info

Publication number
JP2011009302A
JP2011009302A JP2009149079A JP2009149079A JP2011009302A JP 2011009302 A JP2011009302 A JP 2011009302A JP 2009149079 A JP2009149079 A JP 2009149079A JP 2009149079 A JP2009149079 A JP 2009149079A JP 2011009302 A JP2011009302 A JP 2011009302A
Authority
JP
Japan
Prior art keywords
back electrode
solar cell
film solar
thin film
conductive ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009149079A
Other languages
Japanese (ja)
Inventor
Yukihiro Fukushima
幸裕 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOMURATEKKU KK
Original Assignee
KOMURATEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOMURATEKKU KK filed Critical KOMURATEKKU KK
Priority to JP2009149079A priority Critical patent/JP2011009302A/en
Priority to KR1020100058038A priority patent/KR20100138771A/en
Priority to TW099119955A priority patent/TW201119048A/en
Priority to CN2010102061603A priority patent/CN101931028A/en
Publication of JP2011009302A publication Critical patent/JP2011009302A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of forming a back electrode for a thin film solar cell, the method efficiently and inexpensively forming a uniform back electrode layer even on a substrate having any size and any shape without wasting an expensive metal and resource.SOLUTION: Conductive ink containing metal particles is held on a flexographic printing plate 11 on the surface of which an ink holding part having a predetermined pattern is formed, the conductive ink held in the ink holding part is transferred on an insulating translucent substrate 1 on which a photoelectric conversion layer 3 is formed by being laminated on the backside of a transparent electrode layer 2, and then the transferred conductive ink is heated. Thus, a back electrode layer 4 having a predetermined pattern can be effectively formed at high speed on the backside surface of a substrate even when the substrate has any size and any shape.

Description

本発明は、透光性基板上に半導体接合からなる光電変換層を積層した薄膜太陽電池の裏面に裏面電極を形成する方法に関するものである。   The present invention relates to a method for forming a back electrode on the back surface of a thin film solar cell in which a photoelectric conversion layer made of a semiconductor junction is laminated on a light-transmitting substrate.

近年、単結晶または多結晶シリコンを用いた従来型の太陽電池に代わり、アモルファス(非晶質)シリコンや、CdS,CuInSe2などの化合物半導体を用いて、低コストで製造することのできる薄膜半導体太陽電池(以下、薄膜太陽電池)が研究、開発されている。この薄膜太陽電池は、例えば、ガラス等の絶縁透光性基板の裏面に、SnO2,ITO,ZnO等の透明導電膜(透明電極層)が形成され、その裏面側表面に、非晶質半導体のp層,i層,n層が順次積層された薄膜半導体膜(光電変換層)が積層形成され、さらにその裏面側表面に、Ag(銀),Al(アルミニウム),Cu(銅)等の反射率の高い金属を用いた導電膜(裏面電極層)が積層形成された構造をとる(例えば、特許文献1,2等を参照。)。 In recent years, thin film semiconductors that can be manufactured at low cost using amorphous (amorphous) silicon or compound semiconductors such as CdS and CuInSe 2 instead of conventional solar cells using single crystal or polycrystalline silicon. Solar cells (hereinafter, thin film solar cells) are being researched and developed. In this thin film solar cell, for example, a transparent conductive film (transparent electrode layer) such as SnO 2 , ITO, or ZnO is formed on the back surface of an insulating translucent substrate such as glass, and an amorphous semiconductor is formed on the back surface thereof. A thin film semiconductor film (photoelectric conversion layer) in which p layers, i layers, and n layers are sequentially stacked is formed, and Ag (silver), Al (aluminum), Cu (copper), etc. A structure in which conductive films (back electrode layers) using a metal with high reflectance are stacked is formed (see, for example, Patent Documents 1 and 2).

この裏面電極(裏面電極層)に反射率の高い金属を用いるのは、結晶シリコン太陽電池に比べて低い変換効率(光電変換効率)を補うための工夫であり、透光性基板側から入射した太陽光を反射させることにより、「光の閉じ込め効果」によって、太陽電池の発電効率を高めることができる。   The use of a metal with high reflectivity for the back electrode (back electrode layer) is a device for supplementing low conversion efficiency (photoelectric conversion efficiency) compared to a crystalline silicon solar cell, and the light enters from the translucent substrate side. By reflecting sunlight, the power generation efficiency of the solar cell can be increased by the “light confinement effect”.

特開平8−37317号公報JP-A-8-37317 特開2005−175449号公報JP 2005-175449 A

ところで、上記構成の薄膜太陽電池を製造する場合、絶縁透光性基板上への透明電極層の形成、透明電極層上への光電変換層の形成および光電変換層上への裏面電極層の形成には、いずれもスパッタ法(スパッタリング),蒸着法,CVD法等が用いられており、なかでも裏面電極層の形成には、金属インゴットをターゲットとして真空チャンバー内で成膜するスパッタリングが多用されている。   By the way, when manufacturing the thin film solar cell of the said structure, formation of the transparent electrode layer on an insulating translucent board | substrate, formation of the photoelectric converting layer on a transparent electrode layer, and formation of the back surface electrode layer on a photoelectric converting layer In these methods, sputtering (sputtering), vapor deposition, CVD, etc. are used. In particular, sputtering for forming a back electrode layer using a metal ingot as a target in a vacuum chamber is often used. Yes.

しかしながら、上記のようなスパッタリングを用いた裏面電極層の形成は、必要な部分以外も成膜されるため、高価な金属インゴットが無駄になる部分もある。また、スパッタリングは、バッチ処理であるためサイクルタイム(アイドルタイム)が長く、使用するスパッタ装置のチャンバーサイズが制限となり、処理する基板のサイズを大型化することが難しいという問題もある。   However, since the formation of the back electrode layer using sputtering as described above is performed except for the necessary portions, there are also portions where expensive metal ingots are wasted. Further, since sputtering is a batch process, the cycle time (idle time) is long, the chamber size of the sputtering apparatus to be used is limited, and it is difficult to increase the size of the substrate to be processed.

さらに、スパッタ装置は、真空装置や付帯設備等が多いため、装置を設置するのに広いスペースが必要で、ターゲットに衝突させるための不活性ガスや電力等、連続して処理するために供給し続けなければならない資源も多く、ランニングコストも高い。なお、これらの問題は、蒸着法やCVD法等、従来の裏面電極層の形成方法に共通の問題である。   Furthermore, since sputtering equipment has many vacuum equipment and incidental facilities, a large space is required to install the equipment, and it is supplied for continuous processing such as inert gas and electric power to collide with the target. There are many resources to continue and running costs are high. These problems are common to conventional methods for forming the back electrode layer, such as vapor deposition and CVD.

本発明は、このような事情に鑑みてなされたもので、高価な金属や資源を無駄にすることなく、どのような大きさや形状の基板上にも、均一な裏面電極層を効率的にかつ低コストで形成することのできる薄膜太陽電池用裏面電極の形成方法を提供することをその目的とする。   The present invention has been made in view of such circumstances, and it is possible to efficiently form a uniform back electrode layer on a substrate of any size and shape without wasting expensive metal and resources. It is an object of the present invention to provide a method for forming a back electrode for a thin film solar cell that can be formed at low cost.

上記の目的を達成するため、本発明は、絶縁透光性基板の裏面に順次形成された透明電極層,光電変換層および裏面電極層を備えた薄膜太陽電池において、その裏面電極を形成する方法であって、金属粒子を含有する導電性インクを、その表面に所定のパターンのインク保持部が形成されたフレキソ印刷版に保持させる工程と、このフレキソ印刷版に、光電変換層が透明電極層上に積層形成された絶縁透光性基板を密着させ、上記インク保持部に保持された導電性インクを光電変換層の上に転写する工程と、この転写後に上記転写された導電性インクを加熱して、上記光電変換層上に、所定パターンの裏面電極層を形成する工程と、を備える薄膜太陽電池用裏面電極の形成(製造)方法を要旨とする。   In order to achieve the above object, the present invention provides a method for forming a back electrode in a thin film solar cell including a transparent electrode layer, a photoelectric conversion layer, and a back electrode layer sequentially formed on the back surface of an insulating translucent substrate. A step of holding a conductive ink containing metal particles on a flexographic printing plate having an ink holding portion of a predetermined pattern formed on the surface thereof, and a photoelectric conversion layer on the flexographic printing plate, a transparent electrode layer A process of transferring the conductive ink held on the ink holding portion onto the photoelectric conversion layer, and heating the transferred conductive ink after the transfer Then, a gist is a method for forming (manufacturing) a back electrode for a thin-film solar cell, comprising: forming a back electrode layer having a predetermined pattern on the photoelectric conversion layer.

すなわち、本発明者は、前記大がかりな装置を必要とする方法に代えて、手軽な方法で前記課題を解決することができないかと思考を重ね、印刷によりそれを実現できないかと着想した。そして、印刷について工夫に工夫を重ね、その結果、反射率に優れる金属粒子を含有する導電性インクを用いて、フレキソ印刷手法により、基板の表面上に薄膜状の所定電極パターンの導電膜(導電性被膜)を形成することによって、薄膜太陽電池に適した特性の裏面電極を構成(製造)できることを見出し、本発明に到達した。   That is, the present inventor has pondered whether the problem can be solved by an easy method instead of the method requiring the large-scale device, and has come up with an idea whether it can be realized by printing. As a result, the printing is devised, and as a result, a conductive film containing a predetermined electrode pattern in the form of a thin film is formed on the surface of the substrate by a flexographic printing method using a conductive ink containing metal particles having excellent reflectance. It has been found that a back electrode having characteristics suitable for a thin-film solar cell can be constructed (manufactured) by forming a conductive film.

本発明の薄膜太陽電池用裏面電極の形成方法は、金属粒子を含有する導電性インクを、その表面に所定のパターンのインク保持部が形成されたフレキソ印刷版に保持させ、このインク保持部に保持された導電性インクを、光電変換層が透明電極層上に積層形成された絶縁透光性基板に転写した後、上記転写された導電性インクを加熱することにより、どのような大きさや形状の基板でも、その表面に所定パターンの裏面電極を高速かつ効率的に形成することができる。   In the method for forming a back electrode for a thin film solar cell of the present invention, a conductive ink containing metal particles is held on a flexographic printing plate having an ink holding portion of a predetermined pattern formed on the surface thereof. After the transferred conductive ink is transferred to an insulating translucent substrate having a photoelectric conversion layer laminated on the transparent electrode layer, the transferred conductive ink is heated to obtain any size and shape. Even in this substrate, a back electrode having a predetermined pattern can be formed on the surface thereof at high speed and efficiently.

そして、本発明の薄膜太陽電池用裏面電極の形成方法は、スパッタリングのような大がかりな真空装置等を必要とせず、所要外の領域に不必要な導電性インクが転写されることがないことから、高価な金属や産業資源を無駄にすることなく、低コストで薄膜太陽電池に適した裏面電極を形成することができる。   The method for forming a back electrode for a thin film solar cell of the present invention does not require a large vacuum device such as sputtering, and unnecessary conductive ink is not transferred to an unneeded region. Thus, a back electrode suitable for a thin film solar cell can be formed at low cost without wasting expensive metal and industrial resources.

さらに、本発明の形成方法において、そのなかでも、上記金属粒子が平均粒径0.5〜300nmの銀粒子であるものは、上記フレキソ印刷法で導電膜(裏面電極層)を形成した場合、薄膜でありながら表面荒れが少なく、その表面から銀粒子が突出することのない、フラットで均一な裏面電極を形成できるという利点を有する。   Furthermore, in the formation method of the present invention, among them, the metal particles are silver particles having an average particle size of 0.5 to 300 nm, when the conductive film (back electrode layer) is formed by the flexographic printing method, Although it is a thin film, it has an advantage that a flat and uniform back surface electrode can be formed in which surface roughness is small and silver particles do not protrude from the surface.

なお、上記導電性インクに含有される銀粒子の平均粒径が0.5nm未満の場合、あるいは、銀粒子の平均粒径が300nmを超える場合は、ときには、均一で平滑な裏面電極を形成できないおそれがある。   When the average particle size of silver particles contained in the conductive ink is less than 0.5 nm, or when the average particle size of silver particles exceeds 300 nm, sometimes a uniform and smooth back electrode cannot be formed. There is a fear.

また、上記銀粒子の平均粒径は、各粒子の形状が比較的きれいに揃った球状の銀粒子を想定したものであるが、銀粒子は、フレーク状,鱗(りん)片状等の不定形のものでもよい。これらフレーク状,鱗(りん)片状等の不定形の銀粒子の場合は、その測定の向きによって、平均粒径が上記範囲を大きく逸脱するミクロンオーダーサイズの粒子が混在する場合もある。しかしながら、このような大きな粒子でも、例えばその粒子が扁平形状であれば、その厚さ(扁平状の厚み方向)が上記0.5〜300nmの範囲内であれば、本発明の薄膜太陽電池用裏面電極の形成方法においては、特に大きな問題とはならない。   Further, the average particle diameter of the silver particles is assumed to be spherical silver particles in which the shape of each particle is relatively neat, but the silver particles are indefinite shapes such as flakes and scales. It may be. In the case of these irregularly shaped silver particles such as flakes and scales, particles having a micron order size whose average particle size greatly deviates from the above range may be mixed depending on the measurement direction. However, even for such large particles, for example, if the particles are flat, if the thickness (flat thickness direction) is within the range of 0.5 to 300 nm, the thin film solar cell of the present invention. In the method of forming the back electrode, there is no particular problem.

そして、本発明の形成方法において、そのなかでも特に、上記導電性インクの粘度が0.5〜1000mPa・sに調整されている場合は、薄膜でありながら表面荒れが少なく、フラットで均一な表面の裏面電極を、効率よく製造することができる。しかも、この導電性インクの粘度は、上記フレキソ印刷法に適したものであることから、この導電性インクの使用量、ひいてはこのインクに含まれる高価な銀(銀粒子)の使用量が削減され、この薄膜太陽電池用裏面電極のコストを低減することができる。なお、上記導電性インクの粘度が0.5mPa・s未満の場合、または、1000mPa・sを超える場合は、ときには、均一な裏面電極を塗工できないおそれがある。   In the formation method of the present invention, in particular, when the viscosity of the conductive ink is adjusted to 0.5 to 1000 mPa · s, the surface is flat and uniform even though the surface is thin. The back electrode can be efficiently manufactured. Moreover, since the viscosity of the conductive ink is suitable for the flexographic printing method, the amount of the conductive ink used, and hence the amount of expensive silver (silver particles) contained in the ink, is reduced. The cost of the back electrode for a thin film solar cell can be reduced. In addition, when the viscosity of the conductive ink is less than 0.5 mPa · s or more than 1000 mPa · s, there is a possibility that a uniform back electrode cannot be applied.

本発明の実施形態における薄膜太陽電池を裏面側から見た平面図である。It is the top view which looked at the thin film solar cell in the embodiment of the present invention from the back side. 本発明の実施形態における薄膜太陽電池の側面図である。It is a side view of the thin film solar cell in embodiment of this invention. 本発明の実施形態における薄膜太陽電池用裏面電極を製造するフレキソ印刷機の概略構成図である。It is a schematic block diagram of the flexographic printing machine which manufactures the back surface electrode for thin film solar cells in embodiment of this invention.

つぎに、本発明の実施の形態を、図面にもとづいて詳しく説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態における薄膜太陽電池を裏面側から見た平面図であり、図2は、この薄膜太陽電池を横から見た側面図である。なお、これらの図は厚みを強調して描いている。   FIG. 1 is a plan view of a thin film solar cell according to an embodiment of the present invention as viewed from the back side, and FIG. 2 is a side view of the thin film solar cell as viewed from the side. These drawings are drawn with emphasis on thickness.

本実施形態における薄膜太陽電池は、絶縁透光性基板1と、その裏面側にスパッタ法により形成された透明電極層2と、さらにその裏面側に同様のスパッタ法により形成された光電変換層3、および、この光電変換層3を覆うように形成された裏面電極層4とから構成されている。なお、この薄膜太陽電池が実際に使用に供される場合は、太陽電池の各セルが電気的に接続され、樹脂等からなる封止剤で保護されたうえでパネル化され、ユニット化された太陽電池パネル群として使用される。   The thin film solar cell in this embodiment includes an insulating translucent substrate 1, a transparent electrode layer 2 formed on the back side thereof by a sputtering method, and a photoelectric conversion layer 3 formed on the back side thereof by a similar sputtering method. And a back electrode layer 4 formed so as to cover the photoelectric conversion layer 3. When this thin-film solar cell is actually used, each cell of the solar cell is electrically connected and protected with a sealing agent made of resin or the like, and then paneled and unitized. Used as a solar cell panel group.

絶縁透光性基板1は、例えば代表的な例として、厚さ0.5〜10mm程度の板ガラスをあげることができる。なお、この絶縁透光性基板1の裏面(被膜形成面側)には、後の処理で形成される被膜の密着性を向上させるプラズマ処理やUV処理,研磨処理等の表面処理を予め施しておいてもよい。   As a typical example, the insulating translucent substrate 1 may be a plate glass having a thickness of about 0.5 to 10 mm. In addition, the back surface (film formation surface side) of the insulating translucent substrate 1 is subjected in advance to a surface treatment such as plasma treatment, UV treatment, or polishing treatment for improving adhesion of a film formed in a later treatment. It may be left.

透明電極層2は、例えば、SnO2,ITO,ZnO等からなり、スパッタ法等を用いて、膜厚500〜1500nm程度の透明な導電性被膜として形成されている。 The transparent electrode layer 2 is made of, for example, SnO 2 , ITO, ZnO or the like, and is formed as a transparent conductive film having a thickness of about 500 to 1500 nm using a sputtering method or the like.

光電変換層3は、単結晶シリコン,多結晶シリコン,単結晶ゲルマニウム,微結晶シリコン等の結晶系、あるいは、アモルファス(非結晶)シリコン等のアモルファス系、GaAs,InP,CdS,CdTe,CuInSe2等の化合物半導体を用いて積層形成されており、その内部は、pn接合,pin接合,ヘテロ接合,ショットキー型,多重接合型等を構成する多層構造(図示省略)となっている。なお、層厚(膜厚)としては、例えば、pn接合の場合は200〜400μm、pin接合の場合は100nm〜5μmがあげられる。 The photoelectric conversion layer 3 is made of a crystalline system such as single crystal silicon, polycrystalline silicon, single crystal germanium, or microcrystalline silicon, or an amorphous system such as amorphous (non-crystalline) silicon, GaAs, InP, CdS, CdTe, CuInSe 2 or the like. The inside is a multilayer structure (not shown) constituting a pn junction, a pin junction, a heterojunction, a Schottky type, a multiple junction type, and the like. The layer thickness (film thickness) is, for example, 200 to 400 μm for a pn junction and 100 nm to 5 μm for a pin junction.

そして、裏面電極層4は、Ag(銀),Al(アルミニウム),Cu(銅)等の金属粒子を含有する導電性インクを用いて、フレキソ印刷手法により、膜厚50〜1500nmの導電性被膜として形成されている。なお、上記金属として、Ag(銀),Al(アルミニウム),Cu(銅)が使用されているのは、上記絶縁透光性基板1側から入射した光を反射し、薄膜太陽電池の短絡電流値を上げるためであり、本実施形態においては、なかでもAg(銀)が好適に使用される。   And the back electrode layer 4 is a conductive film having a film thickness of 50 to 1500 nm by a flexographic printing method using a conductive ink containing metal particles such as Ag (silver), Al (aluminum), Cu (copper). It is formed as. Note that Ag (silver), Al (aluminum), and Cu (copper) are used as the metal because the light incident from the insulating translucent substrate 1 side is reflected and the short-circuit current of the thin-film solar cell is used. This is to increase the value, and in the present embodiment, among these, Ag (silver) is preferably used.

また、使用される導電性インクとしては、上記金属粒子として、平均粒径0.5〜300nmの銀粒子を含有する「ナノ銀導電性インク」が好適に用いられる。このナノ銀導電性インクは、上記平均粒径の銀粒子のほかに、バインダとしての樹脂と、これらの分散溶媒となる炭化水素系溶剤とから構成されており、このインクを構成するバインダ樹脂としては、例えばアクリル系樹脂,エポキシ系樹脂等が用いられ、炭化水素系溶剤としては、テトラデカン,トリデカン,デカノール,ターピネオール等が使用される。さらに、上記導電性インクは、その固形分が3〜80wt%で、その粘度が0.5〜1000mPa・sとなるように調整されている。   Moreover, as the conductive ink used, “nanosilver conductive ink” containing silver particles having an average particle diameter of 0.5 to 300 nm is suitably used as the metal particles. This nano silver conductive ink is composed of a resin as a binder and a hydrocarbon solvent as a dispersion solvent in addition to the silver particles having the above average particle diameter, and the binder resin constituting this ink. For example, acrylic resins, epoxy resins, and the like are used, and tetradecane, tridecane, decanol, terpineol, and the like are used as the hydrocarbon solvent. Furthermore, the conductive ink is adjusted so that its solid content is 3 to 80 wt% and its viscosity is 0.5 to 1000 mPa · s.

なお、上記「ナノ銀導電性インク」は、銀粒子とバインダと溶剤とを主成分とするもの(低温焼成銀導電性インク)である。ここで、主成分とは、全体の過半を占める成分のことをいい、全体が主成分のみからなる場合も含める趣旨である。   The above-mentioned “nanosilver conductive ink” is a ink containing silver particles, a binder and a solvent as main components (low temperature fired silver conductive ink). Here, the main component means a component that occupies a majority of the whole, and includes the case where the whole consists of only the main component.

また、上記銀粒子は、その粒子形状が球状,フレーク状,鱗(りん)片状等の銀粉末であり、加熱(焼成)前の平均粒径(または平均円相当径)が0.5〜300nmの範囲内にあるものである。さらに、上記銀粒子の平均粒径は、動的光散乱粒子解析装置を用いて光子相関分光法により測定されたものであり、銀粒子の平均粒径が300nmを超える場合は、導電性が低下するか、あるいは、インクの流動性を阻害して、この導電性インクの安定性が低下してしまうおそれがある。   The silver particles are silver powder having a spherical shape, a flake shape, a scale (phosphorus) shape, etc., and an average particle size (or average equivalent circle diameter) before heating (firing) is 0.5 to 0.5. It is in the range of 300 nm. Furthermore, the average particle diameter of the silver particles is measured by photon correlation spectroscopy using a dynamic light scattering particle analyzer, and the conductivity decreases when the average particle diameter of the silver particles exceeds 300 nm. Otherwise, the fluidity of the ink may be hindered and the stability of the conductive ink may be reduced.

そして、本実施形態における導電性インクには、必要に応じて可塑剤,滑剤,分散剤(海面活性剤),レベリング剤,消泡剤,酸化防止剤等の各種添加剤を添加してもよい。さらには、有機・無機系の充填剤を適宜添加してもよい。   In addition, various additives such as a plasticizer, a lubricant, a dispersant (a sea surface active agent), a leveling agent, an antifoaming agent, and an antioxidant may be added to the conductive ink in the present embodiment as necessary. . Furthermore, an organic / inorganic filler may be added as appropriate.

つぎに、上記薄膜太陽電池の裏面側に裏面電極(裏面電極層4)をフレキソ印刷機を用いて形成する方法について説明する。
図3は、本発明の実施形態における薄膜太陽電池用裏面電極を製造するフレキソ印刷機の概略構成図であり、図中の符号11は印刷版、12は版胴、13はアニロックスロール、14はステージ、15はスキージ、16はインクタンクを示す。
Next, a method for forming a back electrode (back electrode layer 4) on the back side of the thin film solar cell using a flexographic printing machine will be described.
FIG. 3 is a schematic configuration diagram of a flexographic printing machine for manufacturing a back electrode for a thin film solar cell according to an embodiment of the present invention, in which reference numeral 11 denotes a printing plate, 12 denotes a plate cylinder, 13 denotes an anilox roll, and 14 denotes A stage, 15 is a squeegee, and 16 is an ink tank.

まず、本実施形態における薄膜太陽電池用裏面電極の形成に用いるフレキソ印刷版について述べる。この印刷版11は、ウレタン系アクリレートのプレポリマーと、アクリレートオリゴマーと、アクリレートモノマー,光重合禁止剤,光重合開始剤等の混合物を、ネガフィルムを通した紫外線照射により硬化させ、成形した凸印刷版である。   First, a flexographic printing plate used for forming a back electrode for a thin film solar cell in this embodiment will be described. This printing plate 11 is a convex printing formed by curing a mixture of a urethane acrylate prepolymer, an acrylate oligomer, an acrylate monomer, a photopolymerization inhibitor, a photopolymerization initiator, and the like by ultraviolet irradiation through a negative film. It is a version.

上記印刷版11の表面(インク保持面)には、所定形状の裏面電極パターンに沿った微細な凹凸が形成されており、これらの間に形成された凹部(インク保持部)に、上記導電性インクが保持される。なお、このインク保持部に保持される、単位面積あたりのインク保持量は約1〜50ml/m2に設定されている。 On the surface (ink holding surface) of the printing plate 11, fine irregularities are formed along a predetermined shape of the back electrode pattern, and the conductive property is formed in a recess (ink holding portion) formed therebetween. Ink is retained. Note that the ink holding amount per unit area held in the ink holding unit is set to about 1 to 50 ml / m 2 .

上記のような構造のフレキソ印刷版11を用いた薄膜太陽電池用裏面電極の形成方法は、基本的には、通常のフレキソ印刷と同様の手順である。まず、インクタンク16から供給されたインク(ナノ銀導電性インク)を、アニロックスロール13を介して印刷版11に供給し、この印刷版11の表面に形成された所定電極パターンのインク保持部に、所定量のナノ銀導電性インクを保持させる。   The method for forming a back electrode for a thin-film solar cell using the flexographic printing plate 11 having the above structure is basically the same procedure as in normal flexographic printing. First, the ink (nano silver conductive ink) supplied from the ink tank 16 is supplied to the printing plate 11 through the anilox roll 13 and is applied to the ink holding portion of the predetermined electrode pattern formed on the surface of the printing plate 11. A predetermined amount of nanosilver conductive ink is retained.

つぎに、この印刷版11を版胴12とともに回転させつつ、ステージ14上に載置された基板(透明電極層2および光電変換層3が積層済みの絶縁透光性基板1)を同期して移動させ、この基板1を上記印刷版11に密着(キスタッチ)させることにより、上記インク保持部保持されたナノ銀導電性インクが、この基板1上の光電変換層3の表面(印刷面)に転写される。   Next, while rotating the printing plate 11 together with the plate cylinder 12, the substrate placed on the stage 14 (the insulating translucent substrate 1 on which the transparent electrode layer 2 and the photoelectric conversion layer 3 are laminated) is synchronized. The nano silver conductive ink held by the ink holding part is applied to the surface (printing surface) of the photoelectric conversion layer 3 on the substrate 1 by moving and bringing the substrate 1 into close contact (kiss touch) with the printing plate 11. Transcribed.

その後、上記ナノ銀導電性インクが転写された後の基板1を、オーブン等の乾燥機に投入してインクを加熱焼成(200〜300℃,30〜60分間)することにより、このインク中の溶剤等が蒸発するとともに、上記インク中の銀粒子が焼成されて、裏面電極層4となる導電性被膜が成膜される。   Thereafter, the substrate 1 after the nano silver conductive ink has been transferred is put into a dryer such as an oven, and the ink is heated and baked (200 to 300 ° C., 30 to 60 minutes). As the solvent and the like evaporate, the silver particles in the ink are baked to form a conductive film to be the back electrode layer 4.

上記の方法により、膜厚100〜1500nm(表面粗さRa:10〜150nm)で、この裏面電極層4の体積抵抗値が1.0×10-4Ω・cm以下の、薄膜太陽電池に適する裏面電極を製造することができた。 By the above method, it is suitable for a thin film solar cell having a film thickness of 100 to 1500 nm (surface roughness Ra: 10 to 150 nm) and a volume resistance value of the back electrode layer 4 of 1.0 × 10 −4 Ω · cm or less. A back electrode could be manufactured.

また、本実施形態における薄膜太陽電池用裏面電極の形成方法は、各種印刷条件が最適に設定されていることから、一回の工程通過(ワンパス)で上記構成の薄膜太陽電池用裏面電極を製造することが可能で、フレキソ印刷工程の高速性(印刷速度:20m/分以上)と相俟って、この薄膜太陽電池を、低コストでかつ高速・効率的に生産することができる。   Moreover, since the various printing conditions are set optimally, the formation method of the back surface electrode for thin film solar cells in this embodiment manufactures the back surface electrode for thin film solar cells of the said structure by one process passage (one pass). In combination with the high speed of the flexographic printing process (printing speed: 20 m / min or more), this thin-film solar cell can be produced at low cost and at high speed and efficiency.

つぎに、実施例について比較例と併せて説明する。ただし、本発明は、以下の実施例に限定されるものではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to the following examples.

この実施例においては、ナノ銀導電性インクを用いてフレキソ印刷により作製した薄膜太陽電池用裏面電極[実施例1]と、従来のスパッタリングにより作製した薄膜太陽電池用裏面電極[比較例1]とを用いて、これらの裏面電極層の体積抵抗値(比抵抗:Ω・cm),反射率(%:400nm時)等を比較した。   In this example, a back electrode for a thin film solar cell produced by flexographic printing using nano silver conductive ink [Example 1] and a back electrode for a thin film solar cell produced by conventional sputtering [Comparative Example 1] The volume resistance value (specific resistance: Ω · cm), reflectance (%: at 400 nm), etc. of these back electrode layers were compared.

実施例1の薄膜太陽電池用裏面電極には、以下の導電性インク(低温焼成ナノ銀導電性インク)と基材を使用した。
〔ナノ銀導電性インク〕
ハリマ化成株式会社製 NPS−J−HTB
成分:銀粒子−粒径3〜7nm(平均粒径:5nm)
銀含有率:53〜58wt%
バインダ樹脂
溶剤・希釈剤−テトラデカン
固形分:55〜60wt%
粘度:8〜12mPa・s
〔基材〕
素ガラス 倉本製作所製 厚さ−0.7mm
The following conductive ink (low-temperature baked nanosilver conductive ink) and a substrate were used for the back electrode for the thin-film solar cell of Example 1.
[Nanosilver conductive ink]
NPS-J-HTB manufactured by Harima Chemicals Co., Ltd.
Component: Silver particles-particle size 3 to 7 nm (average particle size: 5 nm)
Silver content: 53-58wt%
Binder resin
Solvent / Diluent-Tetradecane Solid Content: 55-60wt%
Viscosity: 8-12 mPa · s
〔Base material〕
Base glass Kuramoto Seisakusho thickness -0.7mm

また、実施例1の作製に用いたフレキソ印刷機は、以下の加工条件で使用した。(フレキソ印刷の概略構成は図3を参照。)
〔フレキソ印刷機〕
MTテック社製 FC−33S
〔フレキソ印刷版〕
コムラテック社製−上記実施形態で詳細を記載したフレキソ印刷版を使用。
版厚み−2.25mm 600線/inch 開口率5〜10%
硬度:40〜70度(ショアA硬度)
インク溶剤(テトラデカン)に対する膨潤率:0.5〜15%(重量変化率)
印刷用インク保持部のインク保持量:4ml/m2(調整幅:1〜5ml/m2
〔アニロックスロール〕
200線/inch(100〜600線/inch)
セル容量(セル容積):8ml/m2(調整幅:1.5〜50ml/m2
Moreover, the flexographic printing machine used for the production of Example 1 was used under the following processing conditions. (See Fig. 3 for the schematic configuration of flexographic printing.)
[Flexo printing machine]
FC-33S manufactured by MT Tech
[Flexographic printing plate]
Made by Komuratec-Uses flexographic printing plate as detailed in the above embodiment.
Plate thickness-2.25mm 600 lines / inch Opening ratio 5 to 10%
Hardness: 40-70 degrees (Shore A hardness)
Swelling ratio with respect to ink solvent (tetradecane): 0.5 to 15% (weight change rate)
Ink holding amount of printing ink holding part: 4 ml / m 2 (adjustment range: 1 to 5 ml / m 2 )
[Anilox Roll]
200 lines / inch (100-600 lines / inch)
Cell capacity (cell volume): 8 ml / m 2 (adjustment range: 1.5 to 50 ml / m 2 )

〔フレキソ印刷条件〕
・印刷速度(印刷ステージ移動量):25m/分
・アニロックスロール速度:200rpm
・アニロックスロール−印刷版間 ニップ幅:8mm(調整幅:4〜8mm)
・印刷版−基材間 ニップ幅:10mm(調整幅:8〜12mm)
・印刷チャンバーの環境(雰囲気)
温度:15〜30℃ 湿度:40〜70%RH
・印刷後の乾燥条件
予備乾燥:温度:80〜150℃ 時間:30秒〜5分
本焼成:温度:150〜300℃ 時間:20分〜180分
[Flexo printing conditions]
・ Printing speed (moving amount of printing stage): 25m / min ・ Anilox roll speed: 200rpm
-Between anilox roll and printing plate Nip width: 8mm (adjustment width: 4-8mm)
-Between printing plate and substrate Nip width: 10 mm (adjustment width: 8-12 mm)
・ Environment (atmosphere) of printing chamber
Temperature: 15-30 ° C Humidity: 40-70% RH
-Drying conditions after printing Predrying: Temperature: 80 to 150 ° C Time: 30 seconds to 5 minutes Main baking: Temperature: 150 to 300 ° C Time: 20 minutes to 180 minutes

[実施例1]
上記の加工条件にて、フレキソ印刷機により、ナノ銀導電性インクを、ガラス基材上に透明電極層2および光電変換層3が予め形成された基板1の裏面に印刷転写し、80℃×5分予備乾燥させた後、本焼成(70℃→300℃へ30分で昇温)を行って、膜厚0.4μmの薄膜太陽電池用裏面電極を得た。
[Example 1]
Under the above processing conditions, the nano silver conductive ink was printed and transferred to the back surface of the substrate 1 on which the transparent electrode layer 2 and the photoelectric conversion layer 3 were previously formed on the glass substrate by a flexographic printing machine, After pre-drying for 5 minutes, main baking (heating from 70 ° C. to 300 ° C. in 30 minutes) was performed to obtain a back electrode for a thin film solar cell having a thickness of 0.4 μm.

[比較例1]
一般的なスパッタ装置を用いて、ガラス基材上に透明電極層2および光電変換層3が予め形成された基板1の上に、従来品と同様の銀の薄膜層(膜厚0.3μm)を形成した。
[Comparative Example 1]
Using a general sputtering apparatus, a silver thin film layer (film thickness: 0.3 μm) similar to the conventional product is formed on a substrate 1 on which a transparent electrode layer 2 and a photoelectric conversion layer 3 are formed in advance on a glass substrate. Formed.

以上の実施例1および比較例1のサンプルを用いて、薄膜太陽電池用裏面電極の物性比較を行なった。   Using the samples of Example 1 and Comparative Example 1 described above, the physical properties of the back electrode for a thin film solar cell were compared.

〔体積抵抗値(比抵抗)〕
デジタルマルチメーター(アドバンテスト社製 R6551)を用いて、四端子法にて抵抗値を測定した。また、電子顕微鏡(日本電子社製 JSM−5500)を用いて断面を観察し、銀粒子により形成された層の厚みを測定して、これらの測定値から体積抵抗値(比抵抗)を算出した。
[Volume resistance value (specific resistance)]
The resistance value was measured by a four-terminal method using a digital multimeter (R6551 manufactured by Advantest). Moreover, the cross section was observed using an electron microscope (JSM-5500 manufactured by JEOL Ltd.), the thickness of the layer formed of silver particles was measured, and the volume resistance value (specific resistance) was calculated from these measured values. .

〔密着性〕
JIS K5400−8.5(JIS D0202)碁盤目試験に準じて評価した。カットの間隔は1mmで、導電膜をカット後、粘着テープを付着させてから1分後に、テープの端を持って塗膜面に直角に、瞬間的にひきはがし、その剥離状態を目視にて評価した。なお、粘着テープは、セロハンテープCT−12(ニチバン社製)を用いた。
評価基準:
基材からの剥離が全く認められない。 − ○
基材からの剥離が部分的に認められる。 − △
基材からの剥離が全体的に認められる。 − ×
[Adhesion]
Evaluation was performed according to a JIS K5400-8.5 (JIS D0202) cross cut test. The interval between the cuts is 1 mm. After cutting the conductive film, 1 minute after attaching the adhesive tape, hold the edge of the tape and peel it off at right angles to the coating surface, and visually check the peeled state. evaluated. Cellophane tape CT-12 (manufactured by Nichiban Co., Ltd.) was used as the adhesive tape.
Evaluation criteria:
No peeling from the substrate is observed. − ○
Partial peeling from the substrate is observed. − △
Peeling from the substrate is generally observed. − ×

〔反射率〕
島津製作所製紫外可視近赤外分光光度計 UV−3600を用いて、400nmの光照射時の45°反射率を測定した。
[Reflectance]
Using a UV-visible near-infrared spectrophotometer UV-3600 manufactured by Shimadzu Corporation, the 45 ° reflectance during light irradiation at 400 nm was measured.

以上の試験結果を「表1」に示す。

Figure 2011009302
The above test results are shown in “Table 1”.
Figure 2011009302

上記形成方法により、従来のスパッタ法により形成された裏面電極と同等の性能を有する薄膜太陽電池用裏面電極を、低コストで作製することができた。   By the said formation method, the back surface electrode for thin film solar cells which has a performance equivalent to the back surface electrode formed by the conventional sputtering method was able to be produced at low cost.

本発明の形成方法は、透光性基板の裏面に半導体接合からなる光電変換層を積層した薄膜太陽電池に用いられる裏面電極を製造するのに適する。特に、本発明の形成方法は、この裏面電極、ひいては薄膜太陽電池を低コストでかつ効率的に生産することができ、好適である。   The formation method of this invention is suitable for manufacturing the back surface electrode used for the thin film solar cell which laminated | stacked the photoelectric converting layer which consists of semiconductor junctions on the back surface of a translucent board | substrate. In particular, the formation method of the present invention is suitable because it can efficiently produce the back electrode, and thus the thin film solar cell, at low cost.

1 絶縁透光性基板
2 透明電極層
3 光電変換層
4 裏面電極層
11 印刷板
DESCRIPTION OF SYMBOLS 1 Insulating translucent board | substrate 2 Transparent electrode layer 3 Photoelectric converting layer 4 Back surface electrode layer 11 Printing board

Claims (3)

絶縁透光性基板の裏面に順次形成された透明電極層,光電変換層および裏面電極層を備えた薄膜太陽電池において、その裏面電極を形成する方法であって、
金属粒子を含有する導電性インクを、その表面に所定のパターンのインク保持部が形成されたフレキソ印刷版に保持させる工程と、このフレキソ印刷版に、光電変換層が透明電極層上に積層形成された絶縁透光性基板を密着させ、上記インク保持部に保持された導電性インクを光電変換層の上に転写する工程と、この転写後に上記転写された導電性インクを加熱して、上記光電変換層上に、所定パターンの裏面電極層を形成する工程と、を備えることを特徴とする薄膜太陽電池用裏面電極の形成方法。
In a thin film solar cell comprising a transparent electrode layer, a photoelectric conversion layer and a back electrode layer sequentially formed on the back surface of an insulating translucent substrate, a method for forming the back electrode,
A step of holding a conductive ink containing metal particles on a flexographic printing plate having an ink holding portion of a predetermined pattern formed on the surface thereof, and a photoelectric conversion layer formed on the transparent electrode layer on the flexographic printing plate A step of transferring the conductive ink held on the ink holding portion onto the photoelectric conversion layer, and heating the transferred conductive ink after the transfer, Forming a back electrode layer having a predetermined pattern on the photoelectric conversion layer, and forming a back electrode for a thin film solar cell.
上記金属粒子が平均粒径0.5〜300nmの銀粒子である請求項1記載の薄膜太陽電池用裏面電極の形成方法。   The method for forming a back electrode for a thin film solar cell according to claim 1, wherein the metal particles are silver particles having an average particle size of 0.5 to 300 nm. 上記導電性インクの粘度が0.5〜1000mPa・sに調整されている請求項1または2記載の薄膜太陽電池用裏面電極の形成方法。   The method of forming a back electrode for a thin-film solar cell according to claim 1 or 2, wherein the viscosity of the conductive ink is adjusted to 0.5 to 1000 mPa · s.
JP2009149079A 2009-06-23 2009-06-23 Method of forming back electrode for thin film solar cell Pending JP2011009302A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009149079A JP2011009302A (en) 2009-06-23 2009-06-23 Method of forming back electrode for thin film solar cell
KR1020100058038A KR20100138771A (en) 2009-06-23 2010-06-18 Method of forming a backside electrode for use in a thin film solar cell
TW099119955A TW201119048A (en) 2009-06-23 2010-06-18 Method for forming a back electrode used in a thin-film solar cell
CN2010102061603A CN101931028A (en) 2009-06-23 2010-06-21 The thin-film solar cells formation method of backplate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149079A JP2011009302A (en) 2009-06-23 2009-06-23 Method of forming back electrode for thin film solar cell

Publications (1)

Publication Number Publication Date
JP2011009302A true JP2011009302A (en) 2011-01-13

Family

ID=43370082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149079A Pending JP2011009302A (en) 2009-06-23 2009-06-23 Method of forming back electrode for thin film solar cell

Country Status (4)

Country Link
JP (1) JP2011009302A (en)
KR (1) KR20100138771A (en)
CN (1) CN101931028A (en)
TW (1) TW201119048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133336A (en) * 2013-01-09 2014-07-24 Sumitomo Rubber Ind Ltd Flexographic printing plate and method for manufacturing the same, and method for manufacturing substrate for liquid crystal panel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451580B (en) 2011-09-26 2014-09-01 Ind Tech Res Inst Manufacturing process of thin film solar energy batteries
JP5563607B2 (en) * 2012-01-20 2014-07-30 東洋アルミニウム株式会社 Flaky conductive filler
KR101780528B1 (en) * 2014-03-19 2017-09-21 제일모직주식회사 Transparent conductor, method for preparing the same and optical display apparatus comprising the same
CN109050029A (en) * 2018-06-04 2018-12-21 刘丙炎 A kind of vial rapid-curing cutback character printing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053333A (en) * 1991-06-25 1993-01-08 Canon Inc Method for repairing solar battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277688A (en) * 2003-01-23 2004-10-07 Sumitomo Chem Co Ltd Ink and electromagnetic wave-shielding material
JP2008078699A (en) * 2006-09-19 2008-04-03 Matsushita Electric Ind Co Ltd Power amplifier
EP2567995B1 (en) * 2006-12-26 2014-02-19 Asahi Kasei E-materials Corporation Resin composition for printing plate
CN101150148B (en) * 2007-11-02 2011-09-07 宁波杉杉尤利卡太阳能科技发展有限公司 Novel aluminum emitter junction N type single crystal silicon solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053333A (en) * 1991-06-25 1993-01-08 Canon Inc Method for repairing solar battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133336A (en) * 2013-01-09 2014-07-24 Sumitomo Rubber Ind Ltd Flexographic printing plate and method for manufacturing the same, and method for manufacturing substrate for liquid crystal panel

Also Published As

Publication number Publication date
CN101931028A (en) 2010-12-29
TW201119048A (en) 2011-06-01
KR20100138771A (en) 2010-12-31

Similar Documents

Publication Publication Date Title
Wang et al. Growth of ZnO: Al films by RF sputtering at room temperature for solar cell applications
Yu et al. Tungsten doped indium oxide film: Ready for bifacial copper metallization of silicon heterojunction solar cell
Jung et al. Properties of AZO/Ag/AZO multilayer thin film deposited on polyethersulfone substrate
JP2011009302A (en) Method of forming back electrode for thin film solar cell
CN102712999B (en) Method of coating a substrate
WO2011143404A2 (en) Photovotaic device conducting layer
JP2015192077A (en) Plasma cvd device, and method of manufacturing solar battery using the same
WO2018021089A1 (en) Gas barrier film, solar cell, and method for manufacturing gas barrier film
Huang et al. Novel hybrid electrode using transparent conductive oxide and silver nanoparticle mesh for silicon solar cell applications
CN103843149B (en) Method of making a structure comprising coating steps and corresponding structure and devices
CN106816494A (en) A kind of method of heterojunction solar battery reduction series resistance
Jiang et al. Texture surfaces and etching mechanism of ZnO: Al films by a neutral agent for solar cells
Tutsch et al. Influence of the transparent electrode sputtering process on the interface passivation quality of silicon heterojunction solar cells
CN103154301B (en) Flexible ti-in-zn-o transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
KR20090128984A (en) Thin film type solar cell and method for manufacturing the same
CN106253829A (en) Block frame and the manufacture method of ultra-thin substrate film solaode
CN103187481A (en) Conductive substrate, method for manufacturing same, and solar cell
CN207009459U (en) The silicon based hetero-junction solar cell that a kind of tow sides can generate electricity
Jung et al. Effects of intermediate metal layer on the properties of Ga–Al doped ZnO/metal/Ga–Al doped ZnO multilayers deposited on polymer substrate
CN101807612B (en) Thin film solar cell and method for manufacturing same
JP2012124076A (en) Method for forming transparent conductive film
JP6549854B2 (en) Method of manufacturing solar cell
KR101306529B1 (en) Solar cell and method of fabricating the same
KR101196350B1 (en) Thin Film Type Solar Cell, Method for Manufacturing the same and Sputtering Apparatus for Manufacturing the same
CN213708464U (en) Magnetron sputtering coating machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101025

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917