TW201119048A - Method for forming a back electrode used in a thin-film solar cell - Google Patents

Method for forming a back electrode used in a thin-film solar cell Download PDF

Info

Publication number
TW201119048A
TW201119048A TW099119955A TW99119955A TW201119048A TW 201119048 A TW201119048 A TW 201119048A TW 099119955 A TW099119955 A TW 099119955A TW 99119955 A TW99119955 A TW 99119955A TW 201119048 A TW201119048 A TW 201119048A
Authority
TW
Taiwan
Prior art keywords
solar cell
ink
substrate
electrode layer
film solar
Prior art date
Application number
TW099119955A
Other languages
Chinese (zh)
Inventor
Yukihiro Fukushima
Original Assignee
Yukihiro Fukushima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yukihiro Fukushima filed Critical Yukihiro Fukushima
Publication of TW201119048A publication Critical patent/TW201119048A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention provides a method for forming a back electrode used in a thin-film solar cell that can form, by an efficient and inexpensive way, a homogeneous back electrode layer on a substrate of whatever size or shape without wasting expensive metal or resource. Electrically conductive ink containing metal particles is held on a flexographic printing plates 11 on the surface of which is formed with ink holding sections of predetermined pattern. The electrically conductive ink held by the ink holding sections is first transferred onto an insulating translucent substrate 1 in which a photoelectric conversion layer 3 is laminated on the backside of a transparent electrode layer 2, and then, by heating the transferred electrically conductive ink, a backside electrode layer 4 of predetermined pattern can be formed rapidly and efficiently oh the backside surface of the substrate of whatever size or shape.

Description

201119048 六、發明說明: 【發明所屬之技術領域】 本發明關於一種在薄膜太陽能電池的背面形成背面電極的方 去’该薄膜太陽能電池是在透光性基板上疊層由半導體接合構成 的光電轉換層而成的。 σ 【先前技術】 近年來’研究開發出一種使用非晶(非晶質)石夕、Cds、 等化合物並能以低成本製造的薄膜半導體太陽能電池(以下稱為2 薄膜太陽能電池),來替代採用單晶或多晶矽的習知型太陽妒電 陽能電池例如採用下述構造,即,在玻璃等絕^透 先性基板的为面形成有…Sn〇2、IT0、Zn0等透明 導ΐ膜的表面疊層形成有依次疊層有非晶質 的金树的導電膜(背面電極層;“ 償低極層)採用反射率較高的金屬是為了補 透先性基板側入射的太陽光反射,能夠利「 conf咖伽咖)」提高太陽能電池的發電效率Γ限制效應(optlcal 專利文獻1 :日本特開平8 —37317號公報 專利文獻2 :日本特開2〇〇5—175449號公 在製造上述構造的薄膜太陽能電池時, 形成透明電極層、在诱明恭在、、、巴緣透光性基板上 換声上#二ΐ+ίί 層上形成光電轉換層以及在光電韓 CVD法等’其中,為了形成背面電極声,鍵法、 革巴材而在真空室内成膜的賤鑛法。曰夕採用將金屬錠作為 但是,對於採用上述贿法形成背面電極層,在必要部分之 4 201119048 外也會成膜’因此’昂貴的金屬键也有部分被浪費了。另外,由 於藏鍛法是批次處理,因此週期(閒置時間)較長,存在受到使 用的濺鍍裝置的腔室尺寸的限制而難以使處理的基板的尺寸大型 化之問題。 ^且’濺鍍裝置的真空裝置、附帶設備等較多,因此,設置 置舄,廣闊的空間,用於衝撞把材的惰性氣體、電力等為了連 =進彳:處理而必須持續供給的資源也較多,運行成本也較高。 法中卜共蒸鍍法、CVD法等習知背面電極層的形成方 【發明内容】 (發明所欲解決之問題) 貴的ir月ίΐϊίίΐ情況,其目的在於提供—種不會浪費昂 面:層===== (解決問題之方式) j池用背’(旨3提供:種薄膜太關 背面的透明電』声太欠形成於絕緣透光性基核 步驟:將含層及$面電極層,該方法包含ί j:印刷版的表面形成有既_該 t版、將簡於糾墨雜部的㈣合於該可撓性 及在該轉印之後對該被轉印的導印於光電轉換. 先7換層上形成既定圖案㈣岭^讀岭進行加熱而在: P ’本發明人反復考廣是 g 而利用簡單的方法;決上』課J代述大規模的裝: 〜的。然後,針對印刷反復進行研☆ f 4成否利用印刷實3! 九,、、吉果發現,採用含有』 201119048 射率優良的金屬粒子的導電性油墨,利用可撓性印刷方法在 的表面上形成既定電極圖案的薄膜狀的導電膜(導電性被膜 ,能夠構成(製造)適合薄膜太陽能電池的特性的背面電極^ 完成本發明。 (發明之效果) 本^_社電池时面餘的形成方法將含有金 遗子的¥電性油墨保持於在其表面形成有既定瞧的油黑保 刷版’將保持於該油墨保持部的導電性油墨ί印: =轉印的,㈣墨進行加熱’從而,無論是任意大小 <形= 、土二ϋ其表面南速且高效地形成既定圖案的背面電極。 而且,本發明的薄膜太陽能電池用背面電極的 能夠以低成本形成^薄“曰電屬、工業資源, 印刷法形成導電膜(背面電極層)的情況下,於夠^4侦性 *粗:其表面突出的平; 法形成均勻平滑的背面電極。 i兄下’有&可能無BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a back surface electrode on a back surface of a thin film solar cell. The thin film solar cell is a photoelectric conversion in which a semiconductor junction is laminated on a light-transmitting substrate. Layered. σ [Prior Art] In recent years, research has been conducted to develop a thin film semiconductor solar cell (hereinafter referred to as 2 thin film solar cell) which uses amorphous (amorphous) shi, Cds, etc. and can be manufactured at low cost. A conventional solar ray solar cell using a single crystal or a polycrystalline iridium has a structure in which a transparent conductive film such as Sn 〇 2, IT 0, Zn 0 or the like is formed on the surface of a transparent substrate such as glass. The surface layer is laminated with a conductive film in which an amorphous gold tree is laminated in this order (back electrode layer; "lower layer"). A metal having a high reflectance is used to fill the solar light incident on the side of the precursor substrate. It is possible to improve the power generation efficiency of the solar cell, and to limit the effect of the "conf ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga ga In the above-structured thin film solar cell, a transparent electrode layer is formed, and a photoelectric conversion layer is formed on the layer of the light-sensitive substrate on the light-transmissive substrate, and the photoelectric conversion layer is formed on the layer of the light-emitting layer and the photo-electric CVD method. among them, The antimony method of forming the back electrode sound, the bond method, and the leather material to form a film in the vacuum chamber. The metal ingot is used as the butt, but the back electrode layer is formed by the above bribe method, and the necessary part is also 4 201119048 Some of the expensive metal bonds are also wasted. Therefore, since the forging method is batch processing, the cycle (idle time) is long and there is a limitation on the size of the chamber of the sputtering device to be used. It is difficult to increase the size of the substrate to be processed. ^There are many vacuum devices and attached equipment in the sputtering device. Therefore, the space is wide, and the inert gas and electric power for colliding with the material are provided. Even if it is processed, there are many resources that must be continuously supplied, and the running cost is also high. The formation of the conventional back electrode layer such as the vapor deposition method and the CVD method in the method of the invention [invention] The problem) The ir month ίΐϊ ί ΐ , , , , , , , , , , ir ir ir 不会 不会 不会 不会 : : : : : : : : : : : : : : : : : : : : 层 层 层 层 层 层 层 层 层 层The transparent electro-acoustic sound is too low to form in the insulating translucent base layer: the layer and the surface electrode layer are included, and the method comprises: ί j: the surface of the printing plate is formed with both the t-version and the simple correction (4) in combination with the flexibility and the transfer of the transferred guide to the photoelectric conversion after the transfer. The 7th layer is formed on the first layer to form a predetermined pattern (4) ridge ^ reading ridge for heating: P 'the present inventor repeats Kao Guang is a g and uses a simple method; on the semester of the class J to describe the large-scale installation: ~. Then, repeat the research for printing ☆ f 4 into the use of printing real 3! Nine,,,,,,,,,, A conductive film containing a metal particle having an excellent rate of incidence in 201119048, a film-shaped conductive film (conductive film) having a predetermined electrode pattern formed on the surface of the flexible printing method, and capable of forming (manufacturing) characteristics suitable for a thin film solar cell The back electrode ^ completed the present invention. (Effect of the Invention) The method for forming the surface of the battery is to hold the electric ink containing the gold scorpion in the oil black proofing plate in which the predetermined enthalpy is formed on the surface of the battery. Conductive ink ί: = transferred, (4) The ink is heated' thus, regardless of the size of the shape, the shape of the surface, the surface of the surface of the surface of the surface of the surface of the surface of the surface. Further, in the case of the back surface electrode for a thin film solar cell of the present invention, when a conductive film (back electrode layer) is formed by a low-cost method, and a conductive film (back electrode layer) is formed by a printing method at a low cost, it is sufficient to detect the thickness: The surface is flat and flat; the method forms a uniform and smooth back electrode. i brothers under 'has & may not

的:卜粒較規則 =些的銀粒子的情況下,振:S 扁平形狀h ===較大的粒子’例如該粒手只要為 的範圍内,在本厚度方向)只要在上述〇.5〜3_-也不會有特別大專膜太陽能電池用背面電極的形成方法中 6 201119048 邦产s整成方法中,特別是在上述導電性油墨的 4度被調,為0.5〜1。。_^的情況下,能夠高效 表面粗糙較少的、平坦均勻的背面電極。而且,由於^雷生 墨的黏度適合上述可撓性印刷法,因此,該導電性油黑U = 及:亥油墨所含有的昂貴的銀(銀粒子)的使用量減少,:二 該薄膜太陽能電池用背面電極的成本。另外,在上述導^性黑 的黏度小於0.5mPa.s、或者大於loooj^pa的产 太 ^ 法塗敷出均勾的背面電極 μ的障況下’有時可能無 【實施方式】 (實施發明之最佳形態) 接著,根據圖式詳細說明本發明的實施方式。 Η = 本發明纽方式的_太陽能電池的俯視 薄膜太陽能電池的侧視圖。另外,這些圖 士只她方式的薄膜太陽能電池由絕緣透光性基板卜利 於絕緣透光性基板1的背面側的透明電極層2、姻同^ 層的$面侧的光電轉換層3、及以 J際:用,,陽能電,J成念單連在 從而以面板、做成元件, 絕緣透光性基板.1以代表性的例子而言,舉例如有厚 面右醉板玻璃。另外,也可以在該絕緣透光性基板^的背 Ξ i被膜形成面側)予員先實施·處理、uv處理、研磨處理= 处理,用於提尚後述處理所形成的被膜之密合性。 义 法算S Σϊΐ2例如由Sn〇2、IT0、Zn0等構成,其利用錢錢 ’ #开:成域厚500〜l5GGnm左右的透明的導電性被膜。 換層3採用單晶石夕、多晶石夕、單晶錯、微晶石夕等结曰 Ί或者非晶(非結晶)石夕等非晶系、GaAs、InJp、⑽、如=、 201119048 的情況下為咖〜彻哗,在pin接合情況下為 而且,背面電極層4採用含有卸(銀)、 專金屬粒子的導電性油墨,利用挽 #、u (銅) 的導電性被膜。另外’作為上述吏开用成a=7:i ,提高_太陽能電池驗路電流值 射的光反 優選使用Ag (銀)。 仕尽貝靶方式中,.其中 人右’作為使用的導電性油墨,優選採用作為上述全屬μ 32粒徑α5〜施m的銀粒子的“納米銀導電性。it ^'、.電性油墨除上述平均粒徑的銀粒子之 = 其=1的碳化氮系溶劑構成,作為 ,可使用十四烧、十三炫、癸醇、結品醇等。2 ==墨調整為’其固體成分為3〜叫其黏度為。.5 3述“納米銀導電性油墨’’將銀粒子、結合劑和溶劑作 成低溫燒結銀導電性油墨) 1 過是也&含紐❹线齡縣 料ί二 是其粒子形狀為球狀、片狀、鱗片狀等的 =η ς’,、加熱(燒結)前的平均粒徑(或者平均畴效直徑) 〜300nm的範圍内。纽’上述銀粒子的平均粒徑是二 =光政射粒子解析裝置利用光子相關光譜來 子的平均粒徑大於30—的情況下,有可能導銀^ 者)¾礙油墨的流動性而導致料電性油墨的穩定性降低,-5 胸月^且’根據需要,也可以向本實施方式的導紐油墨中添加 曰訓、濁滑劑、分散劑(表面活性劑)、流平劑、消泡劑、抗氧 201119048 化劑=種^口劑。並且,也可以適當添加有機 。 可撓以方ί=:?,用背面電極的 元件符號!4表示載物台,元35t:=親(杨XR⑹, 示油墨盒。 卞竹琥15表不刮板、元件符號16表 用的3性電,用背面電極所採 =體、光阻聚劑, 在上述印刷版η的表面(油墨保持 ======於r_ 的二= 單位面_油墨簡量被設油墨保持部的每 採用上述構造的可撓性印刷版㈣ 基/上是與通常的可撓::同 == 輥Ϊ的油4 (納米銀導電性油墨)藉由驗 案的油ί保持部保持既定量的納米銀導^In the case of the grain of the grain = some of the silver particles, the vibration: S flat shape h == = larger particles 'for example, the grain hand as long as the range, in the thickness direction) as long as the above 〇.5 ~3_- There is no special method for forming the back electrode of a solar cell for a solar cell. In the method of the singularity of the state of the art, the 4% of the above-mentioned conductive ink is adjusted to 0.5 to 1. . In the case of _^, a flat and uniform back surface electrode with less surface roughness can be efficiently used. Further, since the viscosity of the ray ink is suitable for the above-described flexible printing method, the conductive oil black U = and the amount of expensive silver (silver particles) contained in the ink are reduced, and the film solar energy is used. The cost of the back electrode for the battery. In addition, in the case where the viscosity of the conductive black is less than 0.5 mPa·s or greater than the production of the back surface electrode μ of the loooj^pa, there may be no [embodiment] (implementation) BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described in detail based on the drawings. Η = The side view of the thin-film solar cell of the solar cell of the present invention. In addition, these thin-film solar cells of the same type are made of an insulating and translucent substrate, and the transparent electrode layer 2 on the back side of the insulating translucent substrate 1, the photoelectric conversion layer 3 on the $ side of the same layer, and In the case of J: use, yang, and singularity, it is connected to the panel to form an element, and the insulating translucent substrate is used. For a representative example, for example, there is a thick-faced right dripping glass. In addition, it is also possible to perform the treatment, the uv treatment, and the polishing treatment = treatment on the side of the film formation surface of the insulating light-transmitting substrate, and to improve the adhesion of the film formed by the treatment described later. . The calculation method S Σϊΐ 2 is composed of, for example, Sn 〇 2, IT0, Zn 0 or the like, and the use of money and money ' #开: a transparent conductive film having a thickness of about 500 to 15 GGnm. The layer 3 is made of a single crystal, a polycrystalline stone, a single crystal, a microcrystalline or the like, or an amorphous (amorphous) stone, etc., GaAs, InJp, (10), such as =, 201119048 In the case of the pin-bonding, in the case of pin bonding, the back electrode layer 4 is made of a conductive ink containing unloaded (silver) or specific metal particles, and a conductive film of pull # and u (copper). Further, as the above-described cleavage for a = 7: i, it is preferable to use Ag (silver) for the light of the _ solar cell circuit current value. In the singular target method, the "right-side" is preferably used as the conductive ink to be used. "Nano-silver conductivity. It ^', electrical properties are used as the silver particles of the entire μ 32 particle diameter α5 to Schm. The ink is composed of a silver carbide solvent having the above average particle diameter = a carbonized nitrogen-based solvent of =1, and fourteen calcined, thirteenth, decyl alcohol, decyl alcohol, etc. can be used. 2 == ink is adjusted to 'the solid The composition is 3~called its viscosity. .5 3 "Nano-silver conductive ink"'s silver particles, binder and solvent as low-temperature sintered silver conductive ink) 1 Further, the particle shape is η ς ' of a spherical shape, a sheet shape, a scale shape, or the like, and an average particle diameter (or an average domain effect diameter) before heating (sintering) is in the range of 300 nm. The average particle size of the above-mentioned silver particles is two. If the average particle diameter of the photoreceptor spectrum is greater than 30 by the photon correlation spectrometer, there is a possibility that the silver is impeded by the flowability of the ink. The stability of the electrical ink is lowered, and -5 sternum and ^ can be added to the guide ink of the present embodiment as needed, such as training, a slip agent, a dispersing agent (surfactant), a leveling agent, and a cleaning agent. Foaming agent, anti-oxidation 201119048 chemical agent = seeding agent. Further, organic may be added as appropriate. Can be flexed with square ί=:?, with the component symbol of the back electrode! 4 indicates the stage, element 35t: = pro (Yang XR (6), showing the ink box. 卞 琥 15 15 表 表 表 表 表 表 表 表 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 元件 元件 元件 元件 元件 元件 元件 元件On the surface of the above-mentioned printing plate η (ink holding ====== two in the r_ unit surface _ ink simple amount is set to the ink holding portion of each of the above-configured flexible printing plates (four) base / upper is and usually Twist:: Same as == Roller oil 4 (nano-silver conductive ink) by the oil 保持 retention section to maintain a quantitative nano silver guide ^

Hi =亥印刷版11與印刷滾筒12 一同旋轉的同時、使 畢的轉透的 1$板(翻電極層2及光轉換層3疊層完 11 基板)步移動’使該基板1密合於上述印刷版 轉印^觸Γι 接上述油墨倾部的納祕導躲油墨被 轉印到雜板1上的光電轉換層3的表面(印刷面)。 轉!7有上述納米銀導電性油墨後的基板1投入到烘 相寻火、乾枝中,將油墨加熱燒結(200〜300t:、30〜60分鐘 而’该油墨中的溶劑等蒸發’並且,上述油墨中的銀粒子被燒結, 201119048 形成成為背面電極層4的導電性被膜。 利用上述方法,能夠製造膜厚為l〇〇〜15〇〇nm (表面粗度 Ra:10〜150mn)、該背面電極層4的體積電阻率為1〇χ1〇-4Ωχιη 以下的、適合薄膜太陽能電池的背面電極。 、,=,由於本實施方式的薄膜太陽能電池用背面電極的形成 ^法設定了最麵各種印刷條件’因此,能夠彻—次製程通過 (onepass)製造上述構造的薄膜太陽能電池用背面電極,與可於 性印刷步,的高速性(印刷速度:2〇m/分鐘卩上)相結合,能g 低成本亡尚速高效地生產該薄膜太陽能電池。 接著,將實施例與比較例-同進行說明。但是,本發明並 限定於以下實施例。 [實施例] 剔制f ’使用採用納米銀導電性油墨而利用可撓性印 法偏的m : 面電極(貫施例1)和利用習知濺鍍 電極層的體積電阻;,極)(比】〜例υ ’對它們的背面 等進行比較。 咖)、反射率(% :400腿時) 性、由太陽能電池料面電極中使用以下的導電 ! 生油墨(低^燒結納米銀導概 [納米銀導電性油墨] 土何 哈利瑪化成株式會社制NPS — =有=:5=r職(平均粒徑 結合劑樹脂 浴劑·稀釋劑—1~四燒 固體成分:55〜 黏度:8〜12mPa.s [基材] 所製厚度-0.7醜 貝〇白勺製作所採用的可撓性印職在以下的加工 201119048 條件下使用(可撓性印刷的概略結構參照圖3 )。 [可撓性印刷機] MT-TECH (MT 于 V 夕)公司製 fc —33S [可撓性印刷版] KOMURA-TECH公司製一使用上述實施方式中詳細記載的 可撓性印刷版。 版厚度一2.25mm 600線/inch開口率5〜10% 硬度:40〜70度(宵氏A級硬度) 對油墨溶劑(十四烷)的溶脹率:0.5〜15% (重量變化率) 印刷用油墨保持部的油墨保持量:4ml/m2 (調整範圍:1〜 5ml/m2) [網紋輥] 200 線/inch ( 100 〜600 線/inch) 單元容量(單元容積):8ml/m2 (調整範圍:1.5〜50ml/m2) [可撓性印刷條件] •印刷速度(印刷載物台移動量):25m/分鐘 •網紋輥速度:200rpm .網紋輥一印刷版之間間隙寬度:8inm (調整範圍:4〜8mm) •印刷版一基材之間間隙寬度:1〇mm (調整範圍:8〜12_ •印刷室的環境(環境氣體) 溫度:15〜30°C濕度:40〜70%RH •印刷後的烘乾條件 預備烘乾:溫度:80〜150°C時間:30秒〜5分鐘 正式燒結:溫度:150〜3〇(TC時間:20分鐘〜180分鐘 [實施例1] f 以上加工條件下,利用可撓性印刷機將納米銀導電性油墨 ρ =印於在_基材上預先軸树明電極層2及光電轉換層 f 匕的背面,以8〇°C><5分鐘的條件將其預備烘乾之後進不 3G分鐘内從7(rc升溫至3(xrc),獲得膜厚0.恤 的溥膜太1%能電池用背面電極。 201119048 [比較例l] “使用通常的濺鍍裝置,在玻璃基材上預先形成有透明電極層2 及光電轉換層3的基板1上形成與以往品相同的銀的薄膜層(膜 厚 0.3μιη)。 、θ ' 使用以上實施例1及比較例i的樣品進行薄膜太陽能電池用 背面電極的物性比較。 [體積電阻值(電阻率)] 、使用數位式萬用表(Advantest公司製R6551),利用四掇針 法測,電随。另外’制電子顯纖(日本電子公皿— 由銀粒子形成的層的厚度,由這些測定值 a十#出體積電阻值(電ρ且率)。 [密合性] inun 5 ° 完全沒有自基材剝離。—o 局部自基材剝離。_△ 整體自基材剝離。 [反射率] 外分織計uv— 表1表不以上試.驗結果。 [表1] 背面電極層Hi = lithographic printing plate 11 rotates together with the printing cylinder 12, and moves the 1$ plate (the electrode layer 2 and the light conversion layer 3 are laminated 11 substrates) in a stepwise manner to make the substrate 1 adhere to The above-mentioned printing plate transfer printing is transferred to the surface (printing surface) of the photoelectric conversion layer 3 on the miscellaneous sheet 1 by the inkjet ink of the above-mentioned ink pouring portion. Turning! 7 The substrate 1 having the above-mentioned nano silver conductive ink is put into a baking phase to search for fire and dry branches, and the ink is heated and sintered (200 to 300 t:, 30 to 60 minutes to evaporate the solvent or the like in the ink). The silver particles in the ink are sintered, and the conductive film to be the back electrode layer 4 is formed in 201119048. By the above method, the film thickness can be made l〇〇~15〇〇nm (surface roughness Ra: 10 to 150mn), The back surface electrode layer 4 has a volume resistivity of 1 〇χ 1 〇 - 4 Ω χ η or less, and is suitable for the back surface electrode of a thin film solar cell. The = surface of the thin film solar cell of the present embodiment is set to the outermost surface. Various printing conditions 'Therefore, the back electrode for a thin film solar cell of the above-described structure can be manufactured by one pass, and the high speed (printing speed: 2 〇 m/min 卩) in combination with the printable step can be combined. The thin film solar cell can be produced at a low cost and at a low cost. Next, the embodiment will be described in the same manner as the comparative example. However, the present invention is not limited to the following examples. f 'Use m: surface electrode (comparative example 1) using a nano-silver conductive ink and a volume resistance using a conventional sputtering electrode layer; pole) (ratio) ~ example υ ' Compare their backs, etc. Coffee), reflectance (%: 400 legs), use the following conductive materials from the solar cell surface electrode! Raw ink (low-sintered nano-silver guide [nano-silver conductive ink] ] N Ho Harima Chemical Co., Ltd. NPS — = Yes =: 5 = r position (average particle size binder resin bath · thinner - 1 ~ four burning solid content: 55 ~ viscosity: 8~12mPa.s [ Substrate] The thickness of -0.7 ugly 〇 〇 〇 制作 制作 可 可 可 可 可 2011 2011 2011 2011 可 2011 2011 2011 2011 2011 可 可 可 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 -TECH (MT V ) 公司 ) company fc - 33S [Flexible Printing Plate] KOMURA-TECH Co., Ltd. uses a flexible printing plate as described in detail in the above embodiment. The thickness of the plate is 2.25mm 600 lines / inch Rate 5~10% Hardness: 40~70 degrees (A grade hardness) For ink solvent (tetradecane) Expansion ratio: 0.5 to 15% (weight change rate) Ink retention amount of ink for printing: 4 ml/m2 (Adjustment range: 1 to 5 ml/m2) [Anilox roll] 200 lines/inch (100 to 600 lines/ Inch) Unit capacity (unit volume): 8ml/m2 (Adjustment range: 1.5~50ml/m2) [Flexible printing conditions] • Printing speed (printing stage movement amount): 25m/min • Anilox roller speed: 200 rpm. Interstitial width between anilox roller and printing plate: 8 inm (adjustment range: 4 to 8 mm) • Width between gaps of printing plate and substrate: 1 〇 mm (Adjustment range: 8 to 12_ • Environment of printing room (environment Gas) Temperature: 15~30°C Humidity: 40~70%RH • Drying conditions after printing Prepare for drying: Temperature: 80~150°C Time: 30 seconds~5 minutes Formal sintering: Temperature: 150~3〇 (TC time: 20 minutes to 180 minutes [Example 1] f Under the above processing conditions, the nano silver conductive ink ρ = printed on the substrate - pre-axis tree electrode layer 2 and photoelectric The back side of the conversion layer f , is pre-dried at 8 ° ° C >< 5 minutes, and then heated from 7 (rc to 3 in 3 G minutes) (xrc), obtained a film thickness of 0. The enamel film is too 1% energy battery back electrode. 201119048 [Comparative Example 1] A film layer of silver having the same thickness as that of the conventional product is formed on the substrate 1 on which the transparent electrode layer 2 and the photoelectric conversion layer 3 are formed in advance on a glass substrate by using a usual sputtering apparatus (film thickness: 0.3 μm) And θ ' The physical properties of the back surface electrode for thin film solar cells were compared using the samples of the above Example 1 and Comparative Example i. [Volume resistance value (resistivity)], using a digital multimeter (R6551 manufactured by Advantest Co., Ltd.), using four掇 法 法 测 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Properties] inun 5 ° No peeling from the substrate at all.—o Partially peeled from the substrate. _△ Overall peeling from the substrate [Reflectance] External weave uv—Table 1 shows the above test results. 1] back electrode layer

可撓性印刷 濺鍍法 12 201119048 , n!!由以上形成方法’能_低成本製作與綱習知麟法形 、月面電極具有相同性能的薄膜太陽能電池面極。 (產業上利用性) 道的形成方法適合製造在透光性基板的背面疊層有由半 & &ut冓成的光電轉換層的薄膜太陽能電池所採用的背面電 二& f疋,本發明的形成方法能夠低成本且高效地生產該背面 電極、甚至是薄臈太陽能電池,較為理想。 【團式簡單說明】 圖1是從背面側看本發明實施方式的薄膜太陽能電池的俯視 圖。 圖21本發明實施方式的薄膜太陽能電池的側視圖。 囷3疋用於製造本發明實施方式的薄膜太陽能電池用背面電 極的可撓性印刷機(flex0graphicpress)的概略結構圖。 【主要元件符號說明】 1〜絕緣透光性基板 2〜透明電極層 3〜光電轉換層 4〜背面電極層 I1〜印刷版 12〜印刷滾筒 13〜網紋輥 14〜载物台 15〜刮板 16〜油墨盒 13Flexible printing Sputtering method 12 201119048 , n!! From the above formation method, it is possible to produce a thin film solar cell surface electrode having the same performance as the moon-shaped electrode. (Industrial Applicability) The method of forming a track is suitable for manufacturing a back surface electric second & f疋 used for a thin film solar cell in which a photoelectric conversion layer composed of a semi- & amp is laminated on the back surface of a light-transmitting substrate. The formation method of the present invention can produce the back electrode or even a thin tantalum solar cell at low cost and high efficiency. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view of a thin film solar cell according to an embodiment of the present invention as seen from the back side. Figure 21 is a side view of a thin film solar cell according to an embodiment of the present invention.概略3疋 A schematic configuration diagram of a flexible printing machine (flex0graphicpress) for producing a back electrode for a thin film solar cell according to an embodiment of the present invention. [Description of Main Element Symbols] 1 to Insulating Translucent Substrate 2 to Transparent Electrode Layer 3 to Photoelectric Conversion Layer 4 to Back Electrode Layer I1 to Printing Plate 12 to Printing Roller 13 to Anilox Roller 14 to Stage 15 to Scraper 16~ink box 13

Claims (1)

201119048 七、申+請專利範圍: 中形成背面電的形成方法,在薄膜太陽能電池 基板的背面的透明電極層、次形成於絕緣透光性 含以下步驟: 轉換層及月面電極層,該方法包 密合光電轉換層的絕緣透光性基板 印於光電轉^上^保持於該油墨保持部的導電性油墨轉 麵層刪物喷而在該光 t如u專彳m第1項之薄膜太陽能電池用#面電極的形成方 法,八中,該金屬粒子是平均粒經0·5〜300ηιη的銀粒子。 方利tH1或2,之薄膜太陽能電池用背面電極的形成 方法”中’ 5亥導電性油墨的黏度被調整為0 5〜1000她以。 八、圖式: 14201119048 VII, Shen + Please Patent Range: The method of forming the back surface electricity, the transparent electrode layer on the back side of the thin film solar cell substrate, and the second step in the insulating light transmission include the following steps: conversion layer and moon electrode layer, the method The insulating translucent substrate encapsulating the photoelectric conversion layer is printed on the photoelectric conversion surface, and the conductive ink is transferred to the ink holding portion, and the film is ejected. In the method for forming a surface electrode for a solar cell, in the eighth embodiment, the metal particles are silver particles having an average particle size of from 0.5 to 300 nm. Fangli tH1 or 2, the method for forming the back electrode of a thin film solar cell, "the viscosity of the 5 hai conductive ink is adjusted to 0 5 to 1000." 8. Pattern: 14
TW099119955A 2009-06-23 2010-06-18 Method for forming a back electrode used in a thin-film solar cell TW201119048A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149079A JP2011009302A (en) 2009-06-23 2009-06-23 Method of forming back electrode for thin film solar cell

Publications (1)

Publication Number Publication Date
TW201119048A true TW201119048A (en) 2011-06-01

Family

ID=43370082

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099119955A TW201119048A (en) 2009-06-23 2010-06-18 Method for forming a back electrode used in a thin-film solar cell

Country Status (4)

Country Link
JP (1) JP2011009302A (en)
KR (1) KR20100138771A (en)
CN (1) CN101931028A (en)
TW (1) TW201119048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772071B2 (en) 2011-09-26 2014-07-08 Industrial Technology Research Institute Method of manufacturing thin film solar cells

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563607B2 (en) * 2012-01-20 2014-07-30 東洋アルミニウム株式会社 Flaky conductive filler
JP2014133336A (en) * 2013-01-09 2014-07-24 Sumitomo Rubber Ind Ltd Flexographic printing plate and method for manufacturing the same, and method for manufacturing substrate for liquid crystal panel
KR101780528B1 (en) * 2014-03-19 2017-09-21 제일모직주식회사 Transparent conductor, method for preparing the same and optical display apparatus comprising the same
CN109050029A (en) * 2018-06-04 2018-12-21 刘丙炎 A kind of vial rapid-curing cutback character printing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053333A (en) * 1991-06-25 1993-01-08 Canon Inc Method for repairing solar battery
JP2004277688A (en) * 2003-01-23 2004-10-07 Sumitomo Chem Co Ltd Ink and electromagnetic wave-shielding material
JP2008078699A (en) * 2006-09-19 2008-04-03 Matsushita Electric Ind Co Ltd Power amplifier
JP5214467B2 (en) * 2006-12-26 2013-06-19 旭化成イーマテリアルズ株式会社 Resin composition for printing plate
CN101150148B (en) * 2007-11-02 2011-09-07 宁波杉杉尤利卡太阳能科技发展有限公司 Novel aluminum emitter junction N type single crystal silicon solar battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772071B2 (en) 2011-09-26 2014-07-08 Industrial Technology Research Institute Method of manufacturing thin film solar cells

Also Published As

Publication number Publication date
CN101931028A (en) 2010-12-29
JP2011009302A (en) 2011-01-13
KR20100138771A (en) 2010-12-31

Similar Documents

Publication Publication Date Title
Lee et al. Peel-and-stick: Fabricating thin film solar cell on universal substrates
Park et al. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells
Lin et al. High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility
Ke et al. Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices
Sutter-Fella et al. Sodium assisted sintering of chalcogenides and its application to solution processed Cu2ZnSn (S, Se) 4 thin film solar cells
JP6398144B2 (en) Method for improving electroless conductivity of solar cell metallization
CN102386274B (en) The method forming the anisotropic conductive layer as back contacts in film photovoltaic device
JP2012502503A5 (en)
JP2011096748A5 (en)
JP2008135740A5 (en)
ATE533165T1 (en) CONDUCTIVE PASTE AND GRID ELECTRODE FOR SILICON SOLAR CELLS
CN103038835A (en) Transparent electrodes based on graphene and grid hybrid structures
TW201119048A (en) Method for forming a back electrode used in a thin-film solar cell
CN105226123B (en) Titanium foil solar cell with back protection layer and preparation method thereof
WO2015188646A1 (en) Solar cell superfine electrode transfer thin film, manufacturing method and application method thereof
US20200259063A1 (en) Method for manufacturing flexible thermoelectric structure
CN103828063A (en) Multilayer thin-film back contact system for flexible photovoltaic devices on polymer substrates
Sutherland et al. Vacuum‐free and solvent‐free deposition of electrodes for roll‐to‐roll fabricated perovskite solar cells
Tang et al. Preparation of silver nanowire/AZO composite film as a transparent conductive material
Nguyen et al. based ZnO nanogenerator using contact electrification and piezoelectric effects
CN104576820A (en) Method for producing a backside contact in a solar cell device and solar cell device
JP2010524223A (en) Ceramic tiles with surfaces functionalized with solar cells
Grilli et al. Ultrathin and stable Nickel films as transparent conductive electrodes
Park et al. Hybrid Ag nanowire–ITO as transparent conductive electrode for pure sulfide kesterite Cu2ZnSnS4 solar cells
JP2011124494A5 (en)