JP2011007339A - Eccentric oscillating-type planetary gear device - Google Patents

Eccentric oscillating-type planetary gear device Download PDF

Info

Publication number
JP2011007339A
JP2011007339A JP2010232228A JP2010232228A JP2011007339A JP 2011007339 A JP2011007339 A JP 2011007339A JP 2010232228 A JP2010232228 A JP 2010232228A JP 2010232228 A JP2010232228 A JP 2010232228A JP 2011007339 A JP2011007339 A JP 2011007339A
Authority
JP
Japan
Prior art keywords
teeth
internal
external
tooth
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010232228A
Other languages
Japanese (ja)
Other versions
JP4969680B2 (en
Inventor
Kenichi Fujimoto
憲一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2010232228A priority Critical patent/JP4969680B2/en
Publication of JP2011007339A publication Critical patent/JP2011007339A/en
Application granted granted Critical
Publication of JP4969680B2 publication Critical patent/JP4969680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To extend the life of a tooth surface of an external tooth 19 by suppressing the elastic deformation of a bridge section 30 in an externally toothed gear 18 and the external tooth 19, and to improve vibration characteristics.SOLUTION: Since a ratio obtained by dividing the diameter (D) of a pin constructing an internal tooth 14 by the pitch P of the internal tooth 14 is made smaller to an extent where the tooth top 19a of the external tooth 19 exceeds radially outside the inner periphery 15a of an internally toothed gear 15, the diameter D of the internal tooth (the pin) 14 becomes smaller than before. Therefore, the tooth bottom 19b of the external tooth 19 of the externally toothed gear 18 is moved radially outward. As a result, the thickness (the minimum thickness) J of the bridge section 30 becomes thicker than before, and the bending rigidity is enhanced. Thus, the elastic deformation of the bridge section 30 and the external tooth 19 due to the reaction force of a driving component force is suppressed.

Description

この発明は、内歯歯車に噛み合う外歯歯車をクランク軸によって偏心揺動させるようにした偏心揺動型遊星歯車装置に関する。     The present invention relates to an eccentric oscillating planetary gear device in which an external gear meshing with an internal gear is eccentrically oscillated by a crankshaft.

従来の偏心揺動型遊星歯車装置としては、例えば以下の特許文献1に記載されているようなものが知られている。     As a conventional eccentric oscillating planetary gear device, for example, one described in Patent Document 1 below is known.

特開平7−299791号公報JP-A-7-299791

このものは、内周に多数の円柱状ピンで構成された内歯が一定ピッチで設けられた内歯歯車と、複数のクランク軸孔および貫通孔が形成され、外周にトロコイド歯形からなり前記内歯に噛み合うとともに、該内歯より1個だけ歯数が少ない外歯を有する外歯歯車と、各クランク軸孔に挿入され、回転することで外歯歯車を偏心揺動させるクランク軸と、前記クランク軸を回転可能に支持するとともに、各貫通孔に遊嵌された複数の柱部を有する支持体とを備えたものである。   This has an internal gear composed of a large number of cylindrical pins on the inner circumference and a plurality of crankshaft holes and through holes formed on the outer circumference, and has a trochoidal tooth profile on the outer circumference. An external gear that meshes with the teeth and has external teeth that have only one fewer teeth than the internal teeth, a crankshaft that is inserted into each crankshaft hole and rotates to eccentrically swing the external gear, The crankshaft is rotatably supported, and includes a support body having a plurality of pillar portions loosely fitted in the respective through holes.

そして、このものにおいては、図9に示すように、互いに接触している外歯歯車01の外歯02から内歯歯車03の内歯(ピン)04に対して、その接触点における歯面に垂直な方向の駆動分力がそれぞれ付与されるとともに、その反作用として内歯(ピン)04から外歯02に対して前記駆動分力の反力Kが付与される。   In this case, as shown in FIG. 9, the external teeth 02 of the external gear 01 that are in contact with each other to the internal teeth (pins) 04 of the internal gear 03 on the tooth surface at the contact point. A driving force in the vertical direction is applied, and a reaction force K of the driving force is applied from the inner teeth (pins) 04 to the outer teeth 02 as a reaction.

しかしながら、前述した遊星歯車装置にあっては、外歯歯車01のうち、貫通孔05の半径方向外側に位置するブリッジ部06は、肉厚(貫通孔05の半径方向外端から外歯02の歯底07までの半径方向距離が最小肉厚となる)Jが他の部位における肉厚よりかなり小さく曲げ剛性が低いため、前述のような反力Kがこのブリッジ部06に対してほぼ半径方向に作用すると、ブリッジ部06および該ブリッジ部06近傍の外歯02が弾性変形をして外歯02と内歯(ピン)04とが片当たりし、外歯02の歯面寿命が短くなってしまうという課題があった。     However, in the planetary gear device described above, of the external gear 01, the bridge portion 06 located on the radially outer side of the through hole 05 has a thickness (from the radial outer end of the through hole 05 to the external tooth 02. (The radial distance to the root 07 is the minimum wall thickness.) Since J is considerably smaller than the wall thickness in other parts and the bending rigidity is low, the reaction force K as described above is almost radial with respect to the bridge portion 06. , The external teeth 02 in the vicinity of the bridge portion 06 and the bridge portion 06 are elastically deformed so that the external teeth 02 and the internal teeth (pins) 04 come into contact with each other, and the tooth surface life of the external teeth 02 is shortened. There was a problem of ending up.

しかも、前述のようにブリッジ部06の曲げ剛性が低いと、前記遊星歯車装置をロボット、工作機械等に適用したときで、トルク負荷が存在している場合には、固有振動数が低くなって振動特性が悪化し、制御性が低下するという課題もあった。   In addition, if the bending rigidity of the bridge portion 06 is low as described above, the natural frequency becomes low when a torque load exists when the planetary gear device is applied to a robot, a machine tool, or the like. There was also a problem that the vibration characteristics deteriorated and the controllability deteriorated.

この発明は、外歯歯車のブリッジ部、外歯の弾性変形を抑制することで外歯の歯面寿命を延ばすとともに、振動特性を向上させることができる偏心揺動型遊星歯車装置を提供することを目的とする。   The present invention provides an eccentric oscillating planetary gear device capable of extending the tooth surface life of the external teeth by suppressing elastic deformation of the bridge portion of the external gear and the external teeth and improving the vibration characteristics. With the goal.

このような目的は、内周に多数の円柱状ピンで構成された内歯が一定ピッチPで設けられた内歯歯車と、少なくとも1個のクランク軸孔および複数の貫通孔が形成され、外周にトロコイド歯形からなり前記内歯に噛み合うとともに、該内歯より1個だけ歯数が少ない外歯を有する外歯歯車と、各クランク軸孔に挿入され、回転することで外歯歯車を偏心揺動させるクランク軸と、前記クランク軸を回転可能に支持するとともに、各貫通孔に挿入された複数の柱部を有する支持体とを備えた偏心揺動型遊星歯車装置において、内歯を構成するピンの直径Dを内歯の一定ピッチPで除した比率を、外歯の歯先が内歯歯車の内周を半径方向外側に越えるまで小さくするとともに、隣接する内歯間の内歯歯車の内周を前記外歯が内周を超えた量以上の深さだけ切除し、外歯と内歯歯車の内周との干渉を回避するようにした偏心揺動型遊星歯車装置により達成することができる。     The purpose of this is to form an internal gear in which inner teeth composed of a large number of cylindrical pins are provided at a constant pitch P on the inner periphery, at least one crankshaft hole and a plurality of through holes. The external gear has a trochoidal tooth shape and meshes with the internal teeth, and has only one external tooth with a smaller number of teeth than the internal teeth, and is inserted into each crankshaft hole and rotated to rotate the external gear eccentrically. In an eccentric oscillating planetary gear device comprising a crankshaft to be moved and a support body having a plurality of column portions inserted into each through hole while rotatably supporting the crankshaft, internal teeth are configured. The ratio obtained by dividing the diameter D of the pin by the constant pitch P of the internal teeth is reduced until the tooth tips of the external teeth exceed the inner circumference of the internal gear radially outward, and the internal gear between adjacent internal teeth The inner circumference is more than the amount that the outer teeth exceed the inner circumference. Only excised can be achieved by an eccentric oscillating-type planetary gear device which is adapted to avoid interference with the inner periphery of the outer teeth and the internal gear is.

前記発明においては、内歯を構成するピンの直径Dを内歯の一定ピッチPで除した比率を、外歯の歯先が内歯歯車の内周を半径方向外側に越えるまで小さくしたので、前記内歯(ピン)の直径Dが従来より小径となり、これにより、外歯歯車の外歯の歯底が半径方向外側に移動し、この結果、貫通孔の半径方向外側に位置するブリッジ部の肉厚(最小肉厚)が従来より厚くなって曲げ剛性が高くなる。これにより、駆動分力の反力がほぼ半径方向に作用したときのブリッジ部、外歯における弾性変形が抑制され、外歯の歯面寿命を延ばすことができるとともに、固有振動数が高くなって、振動特性、制御性を向上させることができる。   In the above invention, the ratio of the diameter D of the pins constituting the internal teeth divided by the constant pitch P of the internal teeth is reduced until the tooth tips of the external teeth exceed the inner periphery of the internal gear radially outward. The diameter D of the internal teeth (pins) is smaller than that of the conventional one, which causes the roots of the external teeth of the external gear to move outward in the radial direction. As a result, the bridge portion positioned radially outward of the through hole The wall thickness (minimum wall thickness) becomes thicker than before, and the bending rigidity increases. As a result, the elastic deformation of the bridge portion and the external teeth when the reaction force of the driving component force acts in the radial direction is suppressed, the tooth surface life of the external teeth can be extended, and the natural frequency is increased. In addition, vibration characteristics and controllability can be improved.

ここで、前述のように構成すると、外歯が内歯歯車の内周に干渉するが、この発明においては、隣接する内歯間の内歯歯車の内周を前記外歯が内周を超えた量以上の深さだけ切除することで、このような外歯と内歯歯車の内周との干渉を回避するようにしている。   Here, when configured as described above, the external teeth interfere with the inner periphery of the internal gear, but in the present invention, the external teeth exceed the inner periphery of the internal gear between adjacent internal teeth. By cutting away by a depth more than that amount, interference between the external teeth and the internal circumference of the internal gear is avoided.

また、請求項2に記載のように構成すれば、内歯と外歯との接触点でのヘルツ応力を低い値に維持することができ、外歯の歯面寿命をさらに延ばすことができる。
さらに、請求項3に記載のように構成すれば、歯面に尖った部位が生じるのを防止しながら、出力トルクを増大させることができる。
Moreover, if comprised as described in Claim 2, the Hertzian stress in the contact point of an internal tooth and an external tooth can be maintained at a low value, and the tooth surface life of an external tooth can further be extended.
Furthermore, if comprised as claimed in claim 3, it is possible to increase the output torque while preventing the occurrence of a pointed portion on the tooth surface.

偏心揺動型遊星歯車装置の一例を示す側面断面図である。It is side surface sectional drawing which shows an example of an eccentric rocking | swiveling planetary gear apparatus. 図1のI−I矢視断面図である。It is II sectional view taken on the line of FIG. 外歯に付与される反力Kおよびその作用線Sを示す説明図である。It is explanatory drawing which shows the reaction force K given to an external tooth, and its action line S. FIG. 図3のU部の拡大図である。It is an enlarged view of the U section of FIG. この発明の実施形態1を示す図1と同様の側面断面図である。It is side surface sectional drawing similar to FIG. 1 which shows Embodiment 1 of this invention. この発明の実施形態1を示す図2と同様の断面図である。It is sectional drawing similar to FIG. 2 which shows Embodiment 1 of this invention. 内歯(ピン)の直径Dとヘルツ応力比との関係を示すグラフである。It is a graph which shows the relationship between the diameter D of an internal tooth (pin), and Hertzian stress ratio. L/Rの値と荷重比率との関係を示すグラフである。It is a graph which shows the relationship between the value of L / R, and a load ratio. 背景技術の一例を示す図2と同様の断面図である。It is sectional drawing similar to FIG. 2 which shows an example of background art.

以下、前述のような干渉を回避することができる偏心揺動型遊星歯車装置の一例を図面に基づいて説明する。
図1、2において、11はロボット等に使用される偏心揺動型遊星歯車装置であり、この遊星歯車装置11は、例えば図示していないロボットのアーム、ハンド等に取り付けられた略円筒状の回転ケース12を有する。この回転ケース12の内周でその軸方向中央部には断面が半円形をした多数のピン溝13が形成され、これらのピン溝13は軸方向に延びるとともに、周方向に等距離離れて、ここでは一定ピッチPだけ離れて配置されている。14は多数(ピン溝13と同数)の円柱状をしたピンからなる内歯であり、これらの内歯(ピン)14はそのほぼ半分がピン溝13内に挿入されることで回転ケース12の内周に周方向に等距離(一定ピッチPだけ)離れて設けられている。
Hereinafter, an example of an eccentric oscillating planetary gear device capable of avoiding the above-described interference will be described with reference to the drawings.
1 and 2, reference numeral 11 denotes an eccentric oscillating planetary gear unit used for a robot or the like. The planetary gear unit 11 has a substantially cylindrical shape attached to, for example, a robot arm or hand not shown. A rotating case 12 is provided. A large number of pin grooves 13 having a semicircular cross section are formed in the central portion in the axial direction at the inner periphery of the rotating case 12, and these pin grooves 13 extend in the axial direction and are equidistant from each other in the circumferential direction. Here, they are spaced apart by a fixed pitch P. 14 is an internal tooth composed of a number of cylindrical pins (the same number as the pin groove 13), and almost half of these internal teeth (pins) 14 are inserted into the pin groove 13 so that the rotating case 12 The inner circumference is provided at equal distances (by a constant pitch P) in the circumferential direction.

ここで、前述の一定ピッチPとは、全ての内歯14を構成するピンの中心を通過するピン円Vの円周長を内歯(ピン)14の本数で除した値であり、換言すれば、任意の隣接する2つの内歯(ピン)14の中心間を円弧線分で結んだときの円弧長である。前述した回転ケース12、内歯(ピン)14は全体として、内周15aに複数の円柱状ピンで構成された内歯14が設けられた内歯歯車15を構成する。この結果、内歯歯車15(固定ケース12)の内周15aは、前記ピン円V上、または、少なくとも内歯(ピン)14を保持することができる程度のピン円Vの近傍に位置している。   Here, the above-described constant pitch P is a value obtained by dividing the circumferential length of the pin circle V passing through the centers of the pins constituting all the internal teeth 14 by the number of internal teeth (pins) 14. For example, it is the arc length when the centers of any two adjacent internal teeth (pins) 14 are connected by an arc segment. The rotary case 12 and the internal teeth (pins) 14 described above constitute an internal gear 15 in which internal teeth 14 formed of a plurality of cylindrical pins are provided on an inner periphery 15a. As a result, the inner periphery 15a of the internal gear 15 (fixed case 12) is located on the pin circle V or in the vicinity of the pin circle V that can hold at least the internal teeth (pins) 14. Yes.

ここで、前記内歯(ピン)14は25〜 100本程度配置されるが、30〜80本の範囲内が好ましい。その理由は、内歯(ピン)14の本数を前述の範囲内とし、後述する外歯歯車18と内歯歯車15との噛み合いの前段に、後述する外歯車40、42からなる減速比が1/1〜1/7の平歯車減速機を設けて、前段と後段の減速比を組み合わせるようにすれば、高減速比を容易に得ることができるとともに、固有振動数の高い高減速比の遊星歯車装置を構成することができるからである。   Here, about 25 to 100 inner teeth (pins) 14 are arranged, but preferably in the range of 30 to 80. The reason is that the number of the internal teeth (pins) 14 is within the above-mentioned range, and the reduction ratio of the external gears 40 and 42 described later is 1 before the meshing of the external gear 18 and the internal gear 15 described later. If a reduction gear ratio of 1/1 to 1/7 is provided and the reduction ratio of the front and rear stages is combined, a high reduction ratio can be easily obtained, and a planetary with a high reduction ratio and a high natural frequency can be obtained. This is because a gear device can be configured.

前記内歯歯車15内にはリング状をした複数(ここでは2個)の外歯歯車18が軸方向に並べられて収納され、これら外歯歯車18の外周にはトロコイド歯形、詳しくはペリトロコイド歯形からなる多数の外歯19がそれぞれ形成されている。そして、前記外歯歯車18の外歯19の歯数Zは前記内歯(ピン)14の歯数より1だけ少ない(歯数差が1である)。このように内歯(ピン)14と外歯19との歯数差を1としたのは、これらの歯数差が2以上の値Gである場合に比較し、高減速比とすることができるとともに、加工コストを低減させることができるからである。   A plurality of (in this case, two) external gears 18 in the form of a ring are accommodated in the axial direction in the internal gear 15, and a trochoidal tooth profile, more specifically a peritrochoid, is provided on the outer periphery of these external gears 18. A large number of external teeth 19 each having a tooth shape are formed. The number of teeth Z of the external teeth 19 of the external gear 18 is one less than the number of teeth of the internal teeth (pins) 14 (the difference in the number of teeth is 1). In this way, the difference in the number of teeth between the internal teeth (pins) 14 and the external teeth 19 is set to 1, compared to the case where the difference in the number of teeth is a value G of 2 or more, a high reduction ratio can be obtained. This is because the processing cost can be reduced.

ここで、歯数差が2以上の値Gである外歯歯車とは、トロコイド外歯歯車の外形輪郭を、外歯19間ピッチを該Gの値で除した距離だけ周方向にずらすとともに、これら周方向にずれたG個の外形輪郭が重なり合った部分を歯形として取り出した外歯歯車のことである(特開平3−181641号公報参照)。そして、これら外歯歯車18と内歯歯車15とは内接した状態で外歯19と内歯(ピン)14とが噛み合っているが、2つの外歯歯車18の最大噛み合い部(噛み合いの最も深い部位)は 180度だけ位相がずれている。   Here, the external gear whose tooth number difference is a value G of 2 or more means that the outer contour of the trochoid external gear is shifted in the circumferential direction by a distance obtained by dividing the pitch between the external teeth 19 by the value of G, This is an external gear obtained by taking out a portion where G outlines deviated in the circumferential direction overlap each other as a tooth profile (see Japanese Patent Laid-Open No. 3-181641). The external teeth 19 and the internal teeth (pins) 14 are meshed with each other while the external gear 18 and the internal gear 15 are inscribed, but the maximum meshing portion (the most meshed portion of the two external gears 18). The deep part) is 180 degrees out of phase.

各外歯歯車18には少なくとも1個、ここでは3個の軸方向に貫通したクランク軸孔21が形成され、これらの複数のクランク軸孔21は外歯歯車18の中心軸から半径方向に等距離離れるとともに、周方向に等距離離れている。22は各外歯歯車18に形成された複数(クランク軸孔21と同数である3個)の貫通孔であり、これらの貫通孔22はクランク軸孔21と周方向に交互に配置されるとともに、周方向に等距離離れて配置されている。そして、前記貫通孔22は半径方向外側に向かって周方向幅が広くなった略ベース形を呈している。   Each external gear 18 is formed with at least one, in this case, three crankshaft holes 21 penetrating in the axial direction, and the plurality of crankshaft holes 21 are arranged in the radial direction from the central axis of the external gear 18. Along with the distance, they are equidistant in the circumferential direction. Reference numeral 22 denotes a plurality of (three as many as the crankshaft holes 21) through-holes formed in each external gear 18. These through-holes 22 are alternately arranged in the circumferential direction with the crankshaft holes 21. , Are arranged equidistantly in the circumferential direction. The through-hole 22 has a substantially base shape with a circumferential width increasing toward the outside in the radial direction.

25は回転ケース12内に遊嵌され図示していない固定ロボット部材に取り付けられた支持体(キャリア)であり、この支持体25は外歯歯車18の軸方向両外側に配置された一対の略リング状を呈する端板部26、27と、一端が端板部26に一体的に連結され、他端が複数のボルト28により端板部27に着脱可能に連結された複数(貫通孔22と同数である3本)の柱部29とから構成されている。そして、前記端板部26、27同士を連結する柱部29は軸方向に延びるとともに、外歯歯車18の貫通孔22内に若干の間隙を保持しながら挿入(遊嵌)されている。   Reference numeral 25 denotes a support body (carrier) that is loosely fitted in the rotary case 12 and is attached to a fixed robot member (not shown). The support body 25 is a pair of substantially arranged externally in the axial direction of the external gear 18. Ring-shaped end plate portions 26, 27, and a plurality of (through-hole 22 and through-hole 22), one end of which is integrally connected to end plate portion 26 and the other end is detachably connected to end plate portion 27 by a plurality of bolts 28. 3) which is the same number). The column portion 29 that connects the end plate portions 26 and 27 extends in the axial direction, and is inserted (freely fitted) into the through hole 22 of the external gear 18 while maintaining a slight gap.

このように貫通孔22内には柱部29が遊嵌されているので、該貫通孔22の半径方向外側に位置している部位の外歯歯車18は、内側から支持されていないブリッジ部30を構成するが、このブリッジ部30はその肉厚(貫通孔22の半径方向外端から外歯歯車15の外歯19の歯底19bまでの半径方向距離が最小肉厚となる)Jが他の部位における肉厚よりかなり小さく曲げ剛性は低い。   Since the pillar portion 29 is loosely fitted in the through hole 22 in this way, the external gear 18 located at the radially outer side of the through hole 22 is not supported from the inside. The bridge portion 30 has a thickness J (the radial distance from the radial outer end of the through hole 22 to the root 19b of the external tooth 19 of the external gear 15 is the minimum thickness). It is much smaller than the wall thickness at the part, and the bending rigidity is low.

31は前記支持体25、詳しくは端板部26、27の外周と回転ケース12の軸方向両端部内周との間に介装された一対の軸受であり、これらの軸受31により内歯歯車15は支持体25に回転可能に支持される。35は周方向に等角度離れて配置された少なくとも1本(クランク軸孔21と同数である3本)のクランク軸であり、これら複数のクランク軸35は、その軸方向一端部に外嵌された円錐ころ軸受36およびその軸方向他端部に外嵌された円錐ころ軸受37によって支持体25、詳しくは端板部26、27に回転可能に支持されている。   31 is a pair of bearings interposed between the support body 25, specifically, the outer periphery of the end plate portions 26 and 27 and the inner periphery of both end portions in the axial direction of the rotary case 12, and the internal gear 15 is supported by these bearings 31. Is rotatably supported by the support 25. Reference numeral 35 denotes at least one (three as many as the crankshaft holes 21) crankshafts arranged at an equal angle in the circumferential direction. The plurality of crankshafts 35 are externally fitted to one axial end portion thereof. A tapered roller bearing 36 and a tapered roller bearing 37 fitted on the other end in the axial direction thereof are rotatably supported by the support body 25, specifically the end plate portions 26 and 27.

前記クランク軸35はその軸方向中央部にクランク軸35の中心軸から等距離だけ偏心した2個の偏心カム38を有し、これら偏心カム38は互いに 180度だけ位相がずれている。ここで、前記クランク軸35の偏心カム38は外歯歯車18のクランク軸孔21内にそれぞれ遊嵌されるとともに、これらの間には針状ころ軸受39が介装され、この結果、前記外歯歯車18とクランク軸35との相対回転が許容される。また、各クランク軸35の軸方向一端には外歯車40が固定され、これらの外歯車40には図示していない駆動モータの出力軸41の一端部に設けられた外歯車42が噛み合っている。   The crankshaft 35 has two eccentric cams 38 that are eccentric by an equal distance from the central axis of the crankshaft 35 at the center in the axial direction, and these eccentric cams 38 are out of phase with each other by 180 degrees. Here, the eccentric cam 38 of the crankshaft 35 is loosely fitted in the crankshaft hole 21 of the external gear 18, and a needle roller bearing 39 is interposed between them, and as a result, the outer cam 38 is inserted. Relative rotation between the toothed gear 18 and the crankshaft 35 is allowed. An external gear 40 is fixed to one end of each crankshaft 35 in the axial direction, and an external gear 42 provided at one end of an output shaft 41 of a drive motor (not shown) meshes with these external gears 40. .

そして、駆動モータが作動して外歯車40が回転すると、クランク軸35が自身の中心軸回りに回転し、この結果、クランク軸35の偏心カム38が外歯歯車18のクランク軸孔21内において偏心回転し、外歯歯車18が矢印方向に偏心揺動回転をする。このとき、互いに噛み合っている内歯(ピン)14と外歯19との接触点には、図2、3、4に示すように、外歯19から対応する内歯(ピン)14に対して作用線S方向の駆動分力がそれぞれ付与されるとともに、その反作用として内歯(ピン)14から外歯19に作用線S方向の駆動分力の反力Kがそれぞれ付与される。   When the drive motor operates and the external gear 40 rotates, the crankshaft 35 rotates around its own central axis, and as a result, the eccentric cam 38 of the crankshaft 35 is moved into the crankshaft hole 21 of the external gear 18. As a result, the external gear 18 rotates eccentrically in the direction of the arrow. At this time, as shown in FIGS. 2, 3, and 4, contact points between the internal teeth (pins) 14 and the external teeth 19 that are meshed with each other are connected to the corresponding internal teeth (pins) 14 from the external teeth 19. A driving component force in the direction of action S is applied, and a reaction force K of driving force in the direction of action S is applied from the internal teeth (pins) 14 to the external teeth 19 as a reaction.

ここで、前述した各反力Kの作用線Sは前記接触点における歯面に垂直な線上に位置するが、これら複数の作用線Sは、前述のように内歯(ピン)14が円柱状を呈し、外歯19がトロコイド歯形から構成されているので、外歯歯車18上の一点、即ち集合点Cで集合(交差)する。そして、前記駆動分力の接線方向成分の合計が内歯歯車15に回転駆動力として付与される。   Here, the action line S of each reaction force K described above is located on a line perpendicular to the tooth surface at the contact point, but the plurality of action lines S have the inner teeth (pins) 14 in a cylindrical shape as described above. Since the external teeth 19 are formed of a trochoidal tooth profile, they are set (intersected) at one point on the external gear 18, that is, at the set point C. Then, the sum of the tangential direction components of the driving component force is applied to the internal gear 15 as a rotational driving force.

また、前記駆動分力の反力Kのうちの一部が前述した曲げ剛性の低いブリッジ部30に対して作用するが、このような反力Kによりブリッジ部30および該ブリッジ部30近傍の外歯19は弾性変形をして外歯19と内歯(ピン)14とが片当たりし、外歯19の歯面寿命が短くなってしまったり、固有振動数が低くなって振動特性、制御性が低下してしまうことがある。   Further, a part of the reaction force K of the driving component force acts on the bridge portion 30 having the low bending rigidity described above, and the reaction portion K causes the bridge portion 30 and the vicinity of the bridge portion 30 to be external. The teeth 19 are elastically deformed so that the outer teeth 19 and the inner teeth (pins) 14 come into contact with each other, and the tooth surface life of the outer teeth 19 is shortened, or the natural frequency is lowered and the vibration characteristics and controllability are reduced. May fall.

このため、この例においては、内歯14を構成するピンの直径Dを内歯14の一定ピッチPで除した比率Bを、外歯19の仮想線で示す歯先19aが内歯歯車15の内周15aを半径方向外側に越えるまで小さく、例えば、内歯(ピン)14の歯数が40のとき、従来では0.55程度であったのを0.32程度まで小さくし、これにより、前記内歯(ピン)14の直径Dを従来より小径として、外歯歯車18の外歯19の歯底19bを半径方向外側に移動させたのである。   For this reason, in this example, the tooth tip 19a indicated by the phantom line of the external tooth 19 is a ratio B obtained by dividing the diameter D of the pin constituting the internal tooth 14 by the constant pitch P of the internal tooth 14. For example, when the number of teeth of the inner teeth (pins) 14 is 40, the inner teeth 15a are reduced from about 0.55 to about 0.32, so that the inner teeth ( The diameter D of the pin 14 is made smaller than before, and the root 19b of the external tooth 19 of the external gear 18 is moved outward in the radial direction.

そして、前述のように外歯19の歯底19bが半径方向外側に移動すると、貫通孔22の半径方向外端から外歯19の歯底19bまでの半径方向距離、即ち、前記ブリッジ部30の肉厚Jが従来より厚くなって曲げ剛性が高くなり、この結果、前記反力Kが作用したときのブリッジ部30、外歯19における弾性変形が抑制され、該外歯19の歯面寿命を延ばすことができるとともに、トルク負荷が存在している場合にも、固有振動数が高くなって振動特性、制御性を向上させることができる。   As described above, when the root 19b of the external tooth 19 moves radially outward, the radial distance from the radial outer end of the through hole 22 to the root 19b of the external tooth 19, that is, the bridge portion 30 As a result, the thickness J becomes thicker and the bending rigidity becomes higher. As a result, the elastic deformation of the bridge portion 30 and the external teeth 19 when the reaction force K is applied is suppressed, and the tooth surface life of the external teeth 19 is reduced. In addition to being able to extend, even when a torque load is present, the natural frequency is increased and the vibration characteristics and controllability can be improved.

ここで、前述のように内歯(ピン)14の直径Dが小径となると、隣接する内歯(ピン)14に両歯面(回転方向前側歯面および後側歯面)がそれぞれ接触する外歯19の歯厚、歯丈が大となるが、前述のように比率Bを歯先19aが内周15aを半径方向外側に越えるまで小さくすると、歯丈の大きくなった外歯19が内周15aに干渉する。このため、少なくとも内歯歯車15の内周15aを超えた部位の外歯19を切除することで、外歯19と内歯歯車15の内周15aとの干渉を回避するようにしている。   Here, when the diameter D of the internal teeth (pins) 14 becomes small as described above, both the tooth surfaces (the front tooth surfaces and the rear tooth surfaces in the rotation direction) contact the adjacent internal teeth (pins) 14 respectively. The tooth thickness and height of the tooth 19 increase, but if the ratio B is decreased until the tooth tip 19a exceeds the inner periphery 15a radially outward as described above, the outer tooth 19 having an increased tooth height is formed on the inner periphery. Interfering with 15a. For this reason, at least a portion of the external tooth 19 beyond the internal circumference 15a of the internal gear 15 is cut away so that interference between the external teeth 19 and the internal circumference 15a of the internal gear 15 is avoided.

この例では、内歯歯車15と外歯歯車18との最大噛み合い部において、切除後の外歯19の先端と、内歯歯車15の内周15aとの間に僅かな間隙が生じる程度だけ切除することで、外歯19と内歯歯車15の内周15aとの干渉を回避するようにしている。そして、このように切除した後の外歯19の回転方向前側エッジ44aと回転方向後側エッジ44bとの間の距離をAとしたとき、前記内歯14を構成するピンの直径Dを距離Aより小とすることが好ましい。   In this example, in the maximum meshing portion between the internal gear 15 and the external gear 18, the excision is made to such an extent that a slight gap is generated between the distal end of the external tooth 19 after the excision and the inner periphery 15a of the internal gear 15. By doing so, interference between the external teeth 19 and the inner periphery 15a of the internal gear 15 is avoided. Then, when the distance between the rotation direction front edge 44a and the rotation direction rear edge 44b of the external tooth 19 after cutting in this way is A, the diameter D of the pin constituting the internal tooth 14 is the distance A. It is preferable to make it smaller.

ここで、前記外歯歯車18の外歯19における切除位置を、外歯19の両歯面(回転方向前側歯面および後側歯面)における変曲点H同士を結ぶ線Mより半径方向外側とし、これにより、前記内歯14を構成するピンの直径Dを、内歯14を構成している隣接する2本のピンの中心間直線距離Yから、線Mで切除した後の外歯19の回転方向前側エッジ45aと回転方向後側エッジ45bとの間の距離Fを減じた値以上とすることが好ましい。その理由は、前述のようにすれば、トルク伝達に最も大きな役割を果たしている(内歯14との接圧が最大値である)変曲点Hを切除せずに残すことができ、伝達トルクの低減を抑制することができるからである。ここで、前記線Mは外歯歯車18の中心軸を曲率中心とし、両変曲点Hを通過する円弧の線のことである。   Here, the cutting position of the external gear 18 on the external teeth 19 is radially outward from the line M connecting the inflection points H of both tooth surfaces of the external teeth 19 (the front tooth surface and the rear tooth surface in the rotational direction). Thus, the diameter D of the pin constituting the inner tooth 14 is changed from the linear distance Y between the centers of two adjacent pins constituting the inner tooth 14 to the outer tooth 19 after being cut along the line M. It is preferable that the distance F between the rotation direction front edge 45a and the rotation direction rear edge 45b is not less than a value obtained by subtracting the distance F. The reason for this is that, as described above, the inflection point H that plays the largest role in torque transmission (the contact pressure with the internal teeth 14 is the maximum value) can be left without being cut, and the transmission torque This is because it is possible to suppress the reduction of the above. Here, the line M is an arc line passing through both inflection points H with the central axis of the external gear 18 as the center of curvature.

また、前記外歯歯車18の外歯19における切除位置を、外歯19の歯末部と歯元部との境界N(歯丈の 1/2の高さ位置)より半径方向内側とし、これにより、前記内歯14を構成するピンの直径Dを、前記中心間直線距離Yから、前記境界Nで切除した後の外歯19の回転方向前側エッジ46aと回転方向後側エッジ46bとの間の距離Eを減じた値以下とすることが好ましい。その理由は、前記境界Nより半径方向外側の外歯19と内歯(ピン)14とは噛み合い時に大きな滑りが発生するが、前述のようにすると、外歯19と内歯(ピン)14との滑りが少ない部位を残すことができ、これにより、騒音、発熱を低減させることができるからである。   In addition, the cutting position of the external gear 18 on the external teeth 19 is set radially inward from the boundary N (the height position of 1/2 of the tooth height) between the end portion and the root portion of the external teeth 19. Accordingly, the diameter D of the pin constituting the inner tooth 14 is determined from the rotational distance front edge 46a and the rotational rear edge 46b of the external tooth 19 after being cut at the boundary N from the linear distance Y between the centers. It is preferable that the distance E be equal to or less than the value obtained by subtracting the distance E. The reason is that a large slip occurs when the outer teeth 19 and the inner teeth (pins) 14 radially outward from the boundary N are engaged with each other. However, as described above, the outer teeth 19 and the inner teeth (pins) 14 This is because it is possible to leave a portion where there is little slippage, thereby reducing noise and heat generation.

このようなことから、前記外歯19を両歯面の変曲点H同士を結ぶ線Mで切除した後の外歯19の回転方向前側エッジ45aと回転方向後側エッジ45bとの間の距離をFとするとともに、前記外歯19を歯末部と歯元部との境界Nで切除した後の外歯19の回転方向前側エッジ46aと回転方向後側エッジ46bとの間の距離をEとしたとき、前記外歯19を線Mより半径方向外側で、かつ、境界Nより半径方向内側において切除することにより、前記内歯14を構成するピンの直径Dを、前記中心間直線距離Yから距離Fを減じた値以上で、前記中心間直線距離Yから距離Eを減じた値以下とすることが好ましい。   For this reason, the distance between the rotation direction front edge 45a and the rotation direction rear edge 45b of the external tooth 19 after the external tooth 19 is excised by a line M connecting the inflection points H of both tooth surfaces. F, and the distance between the rotational direction front edge 46a and the rotational direction rear edge 46b of the external tooth 19 after the external tooth 19 has been excised at the boundary N between the end of the tooth and the base of the tooth. Then, by cutting the outer teeth 19 radially outward from the line M and radially inward from the boundary N, the diameter D of the pins constituting the inner teeth 14 is changed to the linear distance Y between the centers. It is preferable that the distance be equal to or greater than the value obtained by subtracting the distance F from the distance, and not greater than the value obtained by subtracting the distance E from the center-to-center linear distance Y.

そして、前述のように各外歯19を歯先19aから所定量だけ切除すると、内歯(ピン)14と外歯19とはその一部でのみ噛み合うようになるため、残りの内歯(ピン)14は外歯19に接触せずピン溝13から抜け出ようとする。このため、この例では、図1に示すように、軸受31と外歯歯車18との間に、内歯(ピン)14の両端部が挿入される挿入穴49が形成された規制手段としての2個のピン押さえリング50を介装するとともに、これら2個のピン押さえリング50を内歯歯車15に回転不要に固定し、前述した内歯(ピン)14の移動を規制するようにしている。   Then, as described above, when each external tooth 19 is excised from the tooth tip 19a by a predetermined amount, the internal teeth (pins) 14 and the external teeth 19 mesh with each other only, so that the remaining internal teeth (pins) ) 14 tries to come out of the pin groove 13 without contacting the external teeth 19. Therefore, in this example, as shown in FIG. 1, as a restricting means in which insertion holes 49 into which both end portions of the internal teeth (pins) 14 are inserted are formed between the bearing 31 and the external gear 18. Two pin presser rings 50 are interposed, and these two pin presser rings 50 are fixed to the internal gear 15 so as not to rotate, thereby restricting the movement of the internal teeth (pins) 14 described above. .

なお、前述の規制手段として、軸受31のアウターレースの内端面に形成され、前記内歯(ピン)14の両端部が挿入される挿入穴を用いたり、あるいは、軸受31のアウターレースの内端面に形成され、幅が内歯(ピン)14の直径と同一である円周溝を用いるようにしてもよい。   As the aforementioned restricting means, an insertion hole formed on the inner end surface of the outer race of the bearing 31 and into which both end portions of the inner teeth (pins) 14 are inserted, or the inner end surface of the outer race of the bearing 31 is used. A circumferential groove having the same width as the diameter of the inner teeth (pins) 14 may be used.

次に、前記一例の作用について説明する。
今、駆動モータが作動し、クランク軸35が回転する。このとき、クランク軸35の偏心カム38が外歯歯車18のクランク軸孔21内において偏心回転して外歯歯車18を偏心揺動回転させるが、前記外歯歯車18の外歯19の歯数が内歯(ピン)14の数より1個だけ少ないので、回転ケース12およびロボットのアーム等は外歯歯車18の偏心揺動回転により低速で回転する。
Next, the operation of the example will be described.
Now, the drive motor operates and the crankshaft 35 rotates. At this time, the eccentric cam 38 of the crankshaft 35 rotates eccentrically in the crankshaft hole 21 of the external gear 18 to rotate the external gear 18 eccentrically, and the number of teeth of the external teeth 19 of the external gear 18 is increased. Is one less than the number of internal teeth (pins) 14, the rotating case 12, the robot arm, and the like rotate at a low speed due to the eccentric oscillation rotation of the external gear 18.

ここで、前述のように内歯(ピン)14の直径Dを一定ピッチPで除した比率Bを、外歯19の歯先19aが内歯歯車15の内周15aを半径方向外側に越えるまで小さくしたので、前記内歯(ピン)14の直径Dが従来より小径となり、これにより、外歯歯車18の外歯19の歯底19bが半径方向外側に移動し、この結果、ブリッジ部30の肉厚J(最小肉厚)が従来より厚くなって曲げ剛性が高くなる。   Here, as described above, the ratio B obtained by dividing the diameter D of the internal teeth (pins) 14 by a constant pitch P is used until the tooth tip 19a of the external tooth 19 exceeds the inner periphery 15a of the internal gear 15 outward in the radial direction. Since the diameter D of the internal teeth (pins) 14 is smaller than before, the bottom 19b of the external teeth 19 of the external gear 18 moves outward in the radial direction. The wall thickness J (minimum wall thickness) becomes thicker than before, and the bending rigidity increases.

これにより、駆動分力の反力Kが作用したときのブリッジ部30、外歯19における弾性変形が抑制されて、外歯19の歯面寿命を延ばすことができるとともに、固有振動数が高くなって、振動特性、制御性を向上させることができる。ここで、前述のように構成すると、外歯19が内歯歯車15の内周15aに干渉するが、少なくとも内歯歯車15の内周15aを超えた部位の外歯19を切除することで、このような外歯19と内歯歯車15の内周15aとの干渉を回避するようにしている。   As a result, the elastic deformation of the bridge portion 30 and the external teeth 19 when the reaction force K of the driving component force acts is suppressed, and the tooth surface life of the external teeth 19 can be extended, and the natural frequency is increased. Thus, vibration characteristics and controllability can be improved. Here, when configured as described above, the external teeth 19 interfere with the inner periphery 15a of the internal gear 15, but at least by cutting out the external teeth 19 at a portion beyond the inner periphery 15a of the internal gear 15, Such interference between the external teeth 19 and the inner periphery 15a of the internal gear 15 is avoided.

図5、6は、この発明の実施形態1を示す図である。この実施形態においては、前記一例のように外歯19の切除を行わず、隣接する内歯(ピン)14間の内歯歯車15(回転ケース12)の内周および各内歯(ピン)14の周囲の内周を、前記外歯19が内周を超えた量以上の深さだけ、ここでは内歯(ピン)14の直径Dのほぼ半分に等しい深さだけ切除して、外歯19と切除後の内歯歯車15(回転ケース12)の内周15aとの干渉を回避するようにしている。     5 and 6 are views showing Embodiment 1 of the present invention. In this embodiment, the external teeth 19 are not removed as in the above example, and the internal circumference of the internal gear 15 (rotary case 12) between the adjacent internal teeth (pins) 14 and the internal teeth (pins) 14 The outer circumference of the outer teeth 19 is cut by a depth equal to or greater than the amount of the outer teeth 19 exceeding the inner circumference, here a depth equal to approximately half the diameter D of the inner teeth (pins) 14. And the inner periphery 15a of the internal gear 15 (rotating case 12) after cutting are avoided.

この結果、各内歯(ピン)14の半径方向外端は切除後の内歯歯車15の内周15aに線接触し、これにより、各内歯(ピン)14に付与される駆動分力の半径方向成分は回転ケース12が受ける。このとき、ピン溝13が存在しなくなるため、各内歯(ピン)14は自由に移動することができるようになるが、前述と同様のピン押さえリング50によって、該内歯(ピン)14の移動を規制するようにしている。なお、他の構成、作用は前記一例と同様である。   As a result, the radially outer end of each internal tooth (pin) 14 is in line contact with the inner periphery 15a of the internal gear 15 after resection, and thereby the driving force applied to each internal tooth (pin) 14 is reduced. The rotating case 12 receives the radial component. At this time, since the pin groove 13 does not exist, each internal tooth (pin) 14 can freely move. However, the pin pressing ring 50 similar to that described above allows the internal teeth (pin) 14 to move. The movement is restricted. Other configurations and operations are the same as in the above example.

ここで、前述した内歯14を構成するピンの直径Dは、ピン円Vの半径をR、外歯歯車18の外歯19の歯数をZとしたとき、2R/Z± 1.5mmの範囲内とすることが好ましい。その理由は、直径Dが前述の範囲内であると、図7に示すグラフから明らかなように、内歯(ピン)14と外歯19との接触点でのヘルツ応力が、急激に増大を開始する点より内側の低い値に維持され、外歯19の歯面寿命を延ばすことができるからである。   Here, the diameter D of the pins constituting the internal teeth 14 described above is in the range of 2R / Z ± 1.5 mm, where R is the radius of the pin circle V and Z is the number of external teeth 19 of the external gear 18. It is preferable to be inside. The reason for this is that when the diameter D is within the above-mentioned range, the Hertz stress at the contact point between the inner teeth (pins) 14 and the outer teeth 19 rapidly increases as is apparent from the graph shown in FIG. This is because it is maintained at a lower value inside the starting point, and the tooth surface life of the external teeth 19 can be extended.

なお、この図7に示すグラフは、前記一例の遊星歯車装置を用いて、以下の諸元においてシミュレーションを行い求めたものであるが、この実施形態のものでも同様の効果を奏する。即ち、各遊星歯車装置の内歯(ピン)の歯数(本数)を40、ピン円Vの半径Rを 120mm、外歯の歯数を39、内歯歯車15に対する外歯歯車18の偏心量Qを 2.7mmの一定値とする一方、内歯(ピン)14の直径Dを変化させながら、外歯19と内歯(ピン)14との接触点におけるヘルツ応力を求めた。ここで、図7には直径Dが2R/Zに等しいときのヘルツ応力値を指数1として表示している。   The graph shown in FIG. 7 is obtained by performing a simulation in the following specifications using the planetary gear device of the above example, but the same effect can be obtained with this embodiment. That is, the number of teeth (number) of the internal teeth (pins) of each planetary gear device is 40, the radius R of the pin circle V is 120 mm, the number of external teeth is 39, and the eccentric amount of the external gear 18 with respect to the internal gear 15 While making Q a constant value of 2.7 mm, the Hertz stress at the contact point between the external tooth 19 and the internal tooth (pin) 14 was determined while changing the diameter D of the internal tooth (pin) 14. Here, FIG. 7 shows the Hertzian stress value when the diameter D is equal to 2R / Z as an index 1.

そして、前述のように直径Dの小径化に伴って外歯19の歯底19bを半径方向外側に移動させる方式として、内歯歯車15に対する外歯歯車18の偏心量Qを変化させず一定としながら、外歯歯車18の全歯底19bを通過する歯底円を大径とする方式、前記歯底円を変化させず一定としながら、偏心量Qを増大させる方式、および、歯底円および偏心量Qの双方を大とする方式があるが、この例では、歯底円を一定としながら偏心量Qを増大させている。   As described above, as the method of moving the root 19b of the external tooth 19 outward in the radial direction as the diameter D decreases, the eccentric amount Q of the external gear 18 with respect to the internal gear 15 is kept constant without being changed. However, a method of increasing the diameter of the root circle passing through the entire tooth bottom 19b of the external gear 18, a method of increasing the eccentric amount Q while keeping the root circle unchanged, and a root circle and There is a method of increasing both of the eccentric amounts Q. In this example, the eccentric amount Q is increased while keeping the root circle constant.

このように偏心量Qを大とすると、内歯歯車15の中心Oから集合点Cまでの距離L(偏心量Qに内歯14の歯数を乗じることで求められる)を従来より大と、即ち、集合点Cの位置を半径方向外側に移動させることができるが、このとき、前記距離Lとピン円Vの半径Rとの比、即ちL/Rの値を0.86〜1.00の範囲内とすることが好ましい。   When the amount of eccentricity Q is increased in this way, the distance L from the center O of the internal gear 15 to the set point C (obtained by multiplying the amount of eccentricity Q by the number of teeth of the inner teeth 14) is larger than before. That is, the position of the set point C can be moved radially outward. At this time, the ratio between the distance L and the radius R of the pin circle V, that is, the value of L / R is within the range of 0.86 to 1.00. It is preferable to do.

その理由は、L/Rの値を0.86以上とすると、作用線Sが外歯歯車18に対して接線方向に傾斜し、この結果、前記反力Kを受けるブリッジ部30の肉厚が厚くなって該ブリッジ部30における弾性変形を効果的に抑制することができるとともに、図8から明らかなように、荷重比率がほぼ一定となって、同一トルクを得るために、外歯19にかかるトルク伝達に関する荷重をほぼ一定で最小とすることができるからである。但し、前記比L/Rの値が1.00を超えると、外歯19の創成時に歯面に尖った部位が生じてしまうことがあるため、L/Rの値は1.00以下であることが好ましい。   The reason is that if the value of L / R is 0.86 or more, the action line S is inclined in the tangential direction with respect to the external gear 18, and as a result, the thickness of the bridge portion 30 receiving the reaction force K is increased. Thus, the elastic deformation in the bridge portion 30 can be effectively suppressed, and as is apparent from FIG. 8, the torque ratio applied to the external teeth 19 is obtained so that the load ratio is substantially constant and the same torque is obtained. This is because the load regarding can be substantially constant and minimized. However, when the value of the ratio L / R exceeds 1.00, a sharp point may be generated on the tooth surface when the external tooth 19 is created. Therefore, the value of L / R is preferably 1.00 or less.

ここで、前述のグラフは前記一例の遊星歯車装置を用いて、以下の諸元においてシミュレーションを行い求めたものであるが、この実施形態のものでも同様の結果を奏する。即ち、各遊星歯車装置の内歯(ピン)の歯数(本数)を40、内歯(ピン)の直径Dを10mm、ピン円Vの半径Rを 120mm、外歯の歯数を39の一定値とする一方、L/Rの値を 0.5から 1.0の範囲で変化させ、集合点Cに作用する駆動分力を合成した合力の接線方向成分を求めた。ここで、図8にはL/Rの値が0.75のときの前記接線方向成分を、荷重比率が指数1であるとしてグラフ表示している。   Here, the above-mentioned graph is obtained by performing a simulation in the following specifications using the planetary gear device of the above example, but the same result is obtained even in this embodiment. That is, the number of teeth (pins) of the inner teeth (pins) of each planetary gear device is 40, the diameter D of the inner teeth (pins) is 10 mm, the radius R of the pin circle V is 120 mm, and the number of teeth of the outer teeth is 39. On the other hand, the value of L / R was changed in the range of 0.5 to 1.0, and the tangential direction component of the resultant force obtained by synthesizing the drive component acting on the gathering point C was obtained. Here, in FIG. 8, the tangential direction component when the value of L / R is 0.75 is displayed as a graph with the load ratio being index 1.

なお、前述のものでは、外歯歯車18に複数(3個)のクランク軸孔21を形成するとともに、各クランク軸孔21に同一方向に等速回転するクランク軸35をそれぞれ挿入して外歯歯車18を偏心揺動回転させるようにしたが、この発明においては、外歯歯車18の中心軸上に形成された1個のクランク軸孔に1本のクランク軸の偏心カムを挿入し、このクランク軸の回転により外歯歯車を偏心揺動回転させるようにしてもよい。この場合には、支持体の柱部は貫通孔の内周に線接触する必要がある。また、前述のものでは、支持体25を固定し、内歯歯車15を低速回転させるようにしたが、この発明においては、内歯歯車を固定し、支持体を低速回転させるようにしてもよい。     In the above, a plurality (three) of the crankshaft holes 21 are formed in the external gear 18, and the crankshafts 35 that rotate at the same speed in the same direction are inserted into the respective crankshaft holes 21. The gear 18 is rotated in an eccentric manner. In the present invention, an eccentric cam of one crankshaft is inserted into one crankshaft hole formed on the central shaft of the external gear 18, The external gear may be rotated eccentrically by rotating the crankshaft. In this case, the pillar portion of the support needs to be in line contact with the inner periphery of the through hole. Further, in the above, the support 25 is fixed and the internal gear 15 is rotated at a low speed. However, in the present invention, the internal gear may be fixed and the support may be rotated at a low speed. .

この発明は、内歯歯車に噛み合う外歯歯車をクランク軸によって偏心揺動させるようにした偏心揺動型遊星歯車装置に適用できる。   The present invention can be applied to an eccentric oscillating planetary gear device in which an external gear meshing with an internal gear is eccentrically oscillated by a crankshaft.

11…遊星歯車装置 14…内歯(ピン)
15…内歯歯車 15a…内周
18…外歯歯車 19…外歯
21…クランク軸孔 22…貫通孔
25…支持体 29…柱部
35…クランク軸 45a…回転方向前側エッジ
45b…回転方向後側エッジ 46a…回転方向前側エッジ
46b…回転方向後側エッジ
11 ... Planetary gear unit 14 ... Internal teeth (pin)
15 ... Internal gear 15a ... Inner circumference
18 ... External gear 19 ... External gear
21 ... Crankshaft hole 22 ... Through hole
25 ... Support 29 ... Column
35 ... Crankshaft 45a ... Front edge in the rotation direction
45b ... Rotational direction rear edge 46a ... Rotational direction front edge
46b ... Rear edge in rotation direction

Claims (3)

内周に多数の円柱状ピンで構成された内歯が一定ピッチPで設けられた内歯歯車と、少なくとも1個のクランク軸孔および複数の貫通孔が形成され、外周にトロコイド歯形からなり前記内歯に噛み合うとともに、該内歯より1個だけ歯数が少ない外歯を有する外歯歯車と、各クランク軸孔に挿入され、回転することで外歯歯車を偏心揺動させるクランク軸と、前記クランク軸を回転可能に支持するとともに、各貫通孔に挿入された複数の柱部を有する支持体とを備えた偏心揺動型遊星歯車装置において、内歯を構成するピンの直径Dを内歯の一定ピッチPで除した比率を、外歯の歯先が内歯歯車の内周を半径方向外側に越えるまで小さくするとともに、隣接する内歯間の内歯歯車の内周を前記外歯が内周を超えた量以上の深さだけ切除し、外歯と内歯歯車の内周との干渉を回避するようにしたことを特徴とする偏心揺動型遊星歯車装置。     An internal gear formed of a large number of cylindrical pins on the inner periphery and provided with a constant pitch P, at least one crankshaft hole and a plurality of through holes are formed, and has a trochoidal tooth profile on the outer periphery. An external gear that meshes with the internal teeth and has only one external tooth having a smaller number of teeth than the internal teeth, a crankshaft that is inserted into each crankshaft hole and rotates to eccentrically swing the external gear; In an eccentric oscillating planetary gear device including a support body having a plurality of pillar portions inserted into the through holes and rotatably supporting the crankshaft, a diameter D of a pin constituting an internal tooth is set to an inner diameter. The ratio of the teeth divided by the constant pitch P is reduced until the tooth tips of the external teeth exceed the inner periphery of the internal gear in the radial direction, and the inner periphery of the internal gear between adjacent internal teeth is the outer teeth. Excluded by a depth greater than the amount exceeding the inner circumference That the the to avoid interference with the inner circumference of the internal gear and the eccentric oscillating-type planetary gear device according to claim. 前記内歯を構成する全てのピンの中心を通過するピン円Vの半径をRとし、外歯歯車の外歯の歯数をZとしたとき、前記内歯を構成するピンの直径Dを2R/Z± 1.5mmの範囲内とした請求項1記載の偏心揺動型遊星歯車装置。     When the radius of the pin circle V passing through the center of all the pins constituting the internal teeth is R and the number of external teeth of the external gear is Z, the diameter D of the pins constituting the internal teeth is 2R. The eccentric oscillating planetary gear device according to claim 1, wherein the eccentric slewing planetary gear device is in a range of /Z±1.5 mm. 前記内歯を構成する全てのピンの中心を通過するピン円Vの半径をRとし、前記内歯歯車の中心Oから、外歯から対応する内歯に対して付与される駆動分力の反力Kの作用線Sが重なり合う集合点Cまでの半径方向距離をLとしたとき、前記半径方向距離Lを前記半径Rの0.86〜1.00倍の範囲内とした請求項1記載の偏心揺動型遊星歯車装置。     The radius of the pin circle V passing through the centers of all the pins constituting the internal teeth is R, and the reaction of the drive component force applied from the external teeth to the corresponding internal teeth from the center O of the internal gears. The eccentric oscillating type according to claim 1, wherein the radial distance L is set within a range of 0.86 to 1.00 times the radius R, where L is a radial distance to the set point C where the action lines S of the force K overlap. Planetary gear device.
JP2010232228A 2004-01-30 2010-10-15 Eccentric oscillation type planetary gear unit Active JP4969680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010232228A JP4969680B2 (en) 2004-01-30 2010-10-15 Eccentric oscillation type planetary gear unit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004024887 2004-01-30
JP2004024887 2004-01-30
JP2010232228A JP4969680B2 (en) 2004-01-30 2010-10-15 Eccentric oscillation type planetary gear unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004217946A Division JP4626948B2 (en) 2004-01-30 2004-07-26 Eccentric oscillation type planetary gear unit

Publications (2)

Publication Number Publication Date
JP2011007339A true JP2011007339A (en) 2011-01-13
JP4969680B2 JP4969680B2 (en) 2012-07-04

Family

ID=37722610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010232228A Active JP4969680B2 (en) 2004-01-30 2010-10-15 Eccentric oscillation type planetary gear unit

Country Status (2)

Country Link
JP (1) JP4969680B2 (en)
CN (3) CN101368612B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113446361A (en) * 2020-03-25 2021-09-28 住友重机械工业株式会社 Eccentric oscillating gear device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041625A (en) * 2007-08-07 2009-02-26 Sumitomo Heavy Ind Ltd Oscillation inscribed planetary gear structure
JP5202985B2 (en) * 2008-02-19 2013-06-05 住友重機械工業株式会社 Decelerator
CN101960172B (en) * 2008-03-03 2013-11-06 纳博特斯克株式会社 Eccentric speed reducer
WO2012100103A1 (en) * 2011-01-19 2012-07-26 Vandyne Superturbo, Inc. High torque traction drive
JP2012251595A (en) * 2011-06-02 2012-12-20 Sumitomo Heavy Ind Ltd Reduction gear device of wind power generating facility
CN102242795B (en) * 2011-07-21 2013-09-25 浙江恒丰泰减速机制造有限公司 Precision cycloid decelerator
JP5701724B2 (en) * 2011-09-14 2015-04-15 ナブテスコ株式会社 Gear device
JP5779120B2 (en) * 2012-02-24 2015-09-16 住友重機械工業株式会社 Eccentric oscillation type speed reducer
JP2014077453A (en) * 2012-10-09 2014-05-01 Nabtesco Corp Eccentric oscillation type gear device
CN103334416B (en) * 2013-07-16 2015-01-28 四川宏华石油设备有限公司 Lifting device
DE102013018775A1 (en) * 2013-11-08 2015-05-13 Iwis Motorsysteme Gmbh & Co. Kg Lantern-transmission device
CN105020345A (en) * 2014-04-21 2015-11-04 天津职业技术师范大学 Hollow shaft type precision 2K-V transmission device
CN105299148B (en) * 2015-05-07 2018-08-03 昆山光腾智能机械有限公司 Needle tooth cycloidal reducer
CN206036135U (en) * 2015-10-13 2017-03-22 范正富 Inner gearing drive mechanism and interior wheel thereof
JP6624938B2 (en) * 2016-01-13 2019-12-25 ナブテスコ株式会社 Gear device and output gear plate
CN106051069A (en) * 2016-08-12 2016-10-26 上海交通大学 RV reducer for robot
CN106438864A (en) * 2016-11-16 2017-02-22 马桂骅 Eccentric swing type planetary gear device capable of increasing output torque
CN106402285B (en) * 2016-11-16 2020-09-04 李宗翰 Eccentric swinging type planetary gear speed reducer capable of increasing output torque
TWI609143B (en) 2016-12-29 2017-12-21 財團法人工業技術研究院 Eccentric oscillating speed reducer
CN108730423A (en) * 2017-04-17 2018-11-02 昆山光腾智能机械有限公司 Needle tooth cycloidal reducer with elastic compensating
CN107044511A (en) * 2017-04-26 2017-08-15 珠海飞马传动机械有限公司 A kind of robot poor tooth reductor of cycloid
TWI679358B (en) * 2017-06-23 2019-12-11 台達電子工業股份有限公司 Speed reducing device having power source
JP7273782B2 (en) * 2020-08-31 2023-05-15 美的集団股▲フン▼有限公司 Internal meshing planetary gear system, wheel system and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261943A (en) * 1989-03-30 1990-10-24 Teijin Seiki Co Ltd Planetary gearing speed reduction machine
JPH08189548A (en) * 1995-01-06 1996-07-23 Teijin Seiki Co Ltd Inscribed meshing type planetary gear device
JP2000329200A (en) * 1999-03-16 2000-11-28 Sumitomo Heavy Ind Ltd Driving device and transmission gear with swinging inner gearing planetary gear structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487091A (en) * 1982-02-01 1984-12-11 Pierrat Michel A Speed reducer and method for reducing blacklash
US4846018A (en) * 1985-03-18 1989-07-11 Teijin Seiki Co., Ltd. Articulation drive apparatus of industrial robot
CN87204842U (en) * 1987-03-26 1988-07-27 郑州工学院 Planet speed reducing device with hole and pin and low gear difference
JP2639847B2 (en) * 1989-12-08 1997-08-13 住友重機械工業株式会社 Planetary gearbox
CN1024585C (en) * 1990-12-15 1994-05-18 湖南省机械研究所 Internally engaged planetary driving machanism with new structure
CN2085446U (en) * 1990-12-28 1991-09-25 湖南省机械研究所 Internal intermeshing planet transmission
JP2561227B2 (en) * 1994-12-02 1996-12-04 帝人製機株式会社 Decelerator for joint drive of industrial robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261943A (en) * 1989-03-30 1990-10-24 Teijin Seiki Co Ltd Planetary gearing speed reduction machine
JPH08189548A (en) * 1995-01-06 1996-07-23 Teijin Seiki Co Ltd Inscribed meshing type planetary gear device
JP2000329200A (en) * 1999-03-16 2000-11-28 Sumitomo Heavy Ind Ltd Driving device and transmission gear with swinging inner gearing planetary gear structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113446361A (en) * 2020-03-25 2021-09-28 住友重机械工业株式会社 Eccentric oscillating gear device

Also Published As

Publication number Publication date
CN100451384C (en) 2009-01-14
CN1914438A (en) 2007-02-14
CN101328953A (en) 2008-12-24
CN101328953B (en) 2011-03-30
JP4969680B2 (en) 2012-07-04
CN101368612A (en) 2009-02-18
CN101368612B (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4969680B2 (en) Eccentric oscillation type planetary gear unit
KR101140794B1 (en) Eccentric oscillating-type planetary gear device
JP4726185B2 (en) Eccentric oscillating gear unit
CN106402285B (en) Eccentric swinging type planetary gear speed reducer capable of increasing output torque
CN106090134B (en) External gear, eccentric oscillating gear device, robot, and method for using eccentric oscillating gear device
CN108331886B (en) Speed reducer and heat treatment method for rotating body
CN105008763B (en) Flexible engagement gear device
TW201804099A (en) Gear transmission device characterized in that the sliding bearing is applied to the bearing of gear transmission device to stably drive thereof
TW201730453A (en) Speed reducer for improving configuration precision and suppressing abrasion and damage of components
JP2019019944A (en) Deflection engagement type gear device
JP5069612B2 (en) Eccentric oscillating gear unit
JP7340908B2 (en) Laser hardening method
JP4626948B2 (en) Eccentric oscillation type planetary gear unit
CN110259890B (en) Axial shock wave oscillating tooth speed reducer
JP4498816B2 (en) Eccentric oscillation type planetary gear unit
JP4498823B2 (en) Eccentric oscillation type planetary gear unit
JP5798882B2 (en) Gear transmission
JP4939185B2 (en) Oscillating gear unit
JP2005201308A (en) Eccentric oscillation type planetary gear device
JP2001232516A (en) External pin support member and method of manufacturing the same
JP2006009616A (en) Internal gear pump
JP5290787B2 (en) Oscillating gear unit
JP2018091414A (en) Flexible meshing-type gear unit
CN116428316A (en) Eccentric swing type gear device
JP2022186256A (en) Speed reducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250