JP2011007031A - Structure and construction method for countermeasure against liquefaction - Google Patents

Structure and construction method for countermeasure against liquefaction Download PDF

Info

Publication number
JP2011007031A
JP2011007031A JP2009260226A JP2009260226A JP2011007031A JP 2011007031 A JP2011007031 A JP 2011007031A JP 2009260226 A JP2009260226 A JP 2009260226A JP 2009260226 A JP2009260226 A JP 2009260226A JP 2011007031 A JP2011007031 A JP 2011007031A
Authority
JP
Japan
Prior art keywords
ground
liquefaction
improvement
liquefaction countermeasure
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009260226A
Other languages
Japanese (ja)
Other versions
JP5413665B2 (en
Inventor
Akira Ishikawa
明 石川
Yoichi Taji
陽一 田地
Yasuhiro Shamoto
康広 社本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2009260226A priority Critical patent/JP5413665B2/en
Publication of JP2011007031A publication Critical patent/JP2011007031A/en
Application granted granted Critical
Publication of JP5413665B2 publication Critical patent/JP5413665B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce damage to an existing structure by liquefaction.SOLUTION: This structure for a countermeasure against liquefaction includes a plurality of buttresses (underground walls) 3 built on the ground G under the outer peripheral part 2a of an existing tank 2 and the ground G therearound and an inner ground-improved body 4 formed by completely improving the ground G under the center 2b of the existing tank 2. The buttresses 3 are plate-like ground-improved bodies formed by a cement-based deep layer mixing method, and disposed radially around the center axis of the tank 2 at predetermined intervals between adjacent buttresses 3. The inner ground-improved body 4 is improved by the cement-based deep layer mixing method. The buttresses 3 are built starting at the inside of the tank 2 by removing a foundation slab 11 in the tank 2. While a solidification material is supplied, a stirrer for stirring the solidification material with the soil at the original position is inserted into the ground, and the stirrer is moved vertically and horizontally in a level attitude for building the buttresses.

Description

本発明は、既存構造物を支持する地盤の液状化対策構造、液状化対策工法に関する。   The present invention relates to a ground liquefaction countermeasure structure and a liquefaction countermeasure construction method for supporting an existing structure.

近年、過去の耐震基準で構築され現存しているタンクを新基準に適合させるための改修が行われている。
例えば、既存タンクに対する液状化対策工法として、既存タンクの基礎直下の地盤に薬液を注入する薬液注入工法などの浸透固化工法が行われている。この工法では、地盤に薬剤を注入した後にボーリング調査を行い、所定の地盤強度が確保できているかを確認している。
また、地盤を機械的に攪拌しながらセメント系スラリーや粉体などの固化材を噴射するセメント系の深層混合処理工法が行われている。深層混合処理工法では、所定範囲の地盤を確実に改良できるメリットがある。しかし、タンクの直下の地盤に改良を行うことは難しいという欠点があった。
そこで、特許文献1によれば、地盤中に挿入されて固化材を供給しつつ地盤の原位置土を攪拌する攪拌混合機を水平姿勢で上下方向および水平方向に移動可能に保持した構成で、攪拌混合機をタンクの周囲に挿入してタンクの下方地盤に進入させる地盤改良装置と、この地盤改良装置を使用する液状化防止工法とが提案されている。
In recent years, refurbishment has been carried out to adapt existing tanks that have been built with past earthquake resistance standards to the new standards.
For example, as a liquefaction countermeasure method for an existing tank, a permeation solidification method such as a chemical solution injection method for injecting a chemical solution into the ground directly below the foundation of the existing tank is performed. In this construction method, a boring survey is performed after injecting a drug into the ground, and it is confirmed whether a predetermined ground strength is secured.
In addition, a cement-based deep mixing treatment method is being performed in which a solidified material such as cement-based slurry or powder is sprayed while mechanically stirring the ground. The deep mixing treatment method has an advantage that the ground within a predetermined range can be improved reliably. However, there is a drawback that it is difficult to improve the ground directly under the tank.
Therefore, according to Patent Document 1, in a configuration in which the stirring mixer that is inserted into the ground and stirs the original soil of the ground while supplying the solidified material is held in a horizontal posture so as to be movable in the vertical and horizontal directions, There have been proposed a ground improvement device for inserting a stirring mixer around the tank and entering the lower ground of the tank, and a liquefaction prevention method using this ground improvement device.

特開2007−162337号公報JP 2007-162337 A

しかしながら、従来の液状化対策工法では以下のような問題があった。
薬液注入工法などの浸透固化工法による液状化対策工法では、薬液を地盤内部に均一に浸透させることが難しく、地盤全体に、どの程度浸透しているか確認することが難しいという問題があった。
また、地盤の原位置土と固化材とを攪拌混合させる深層混合処理工法による液状化対策工法では、タンク下の地盤を全面改良するため、改良のコストが高くなり、手間もかかっていた。
However, the conventional liquefaction countermeasure method has the following problems.
In the liquefaction countermeasure method using the infiltration solidification method such as the chemical solution injection method, there is a problem that it is difficult to uniformly infiltrate the chemical solution into the ground, and it is difficult to confirm how much the whole solution has penetrated.
In addition, in the liquefaction countermeasure method using the deep mixing method in which the in-situ soil of the ground and the solidified material are mixed by stirring, the ground under the tank is completely improved, which increases the cost of the improvement and takes time.

本発明は、上述する問題点に鑑みてなされたもので、既存の構造物が構築されている地盤を部分的に改良して液状化による構造物の被害を低減させる液状化対策構造および液状対策工法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and a liquefaction countermeasure structure and a liquid countermeasure that partially improve the ground on which an existing structure is constructed to reduce damage to the structure due to liquefaction. The purpose is to provide a method of construction.

上記目的を達成するため、本発明に係る液状化対策構造では、液状化による既存構造物の被害を低減させる液状化対策構造であって、既存構造物の外周部の下方および周囲の地盤に、地盤の原位置土と固化材とを攪拌して形成されていて、既存構造物の外周に直交する向きもしくは直交に近い向きの地中壁が、既存構造物の外周に平行な方向に所定の間隔をあけて複数配設されていることを特徴とする。
また、本発明に係る液状化対策構造では、既存構造物は平面視円形の構造物で、地中壁は既存構造物に対して放射状に配設されていてもよい。
In order to achieve the above object, the liquefaction countermeasure structure according to the present invention is a liquefaction countermeasure structure that reduces the damage to the existing structure due to liquefaction, on the ground below and around the outer periphery of the existing structure, The ground wall in the ground is formed by stirring the soil and the solidified material, and the underground wall in the direction perpendicular to or close to the outer periphery of the existing structure has a predetermined direction in the direction parallel to the outer periphery of the existing structure. It is characterized in that a plurality are arranged at intervals.
Moreover, in the liquefaction countermeasure structure according to the present invention, the existing structure may be a circular structure in plan view, and the underground wall may be arranged radially with respect to the existing structure.

本発明では、既存構造物の外周部の下方および周囲の地盤に、地盤の原位置土と固化材とを攪拌して形成されていて、既存構造物の外周に直交する向きもしくは直交に近い向きの地中壁が、既存構造物の外周に平行な方向に所定の間隔をあけて複数配設されていることにより、地中壁間の地盤を地中壁が拘束し、地震時のせん断変形を抑えることができるので、液状化による既存構造物の被害を低減させることができる。
そして、複数の地中壁を所定の間隔をあけて配設することにより、地盤を全面改良する液状化対策構造と比べて、地盤改良の量を少なくすることができ、労力やコストを軽減できて、工期を短縮することができる。
In the present invention, it is formed by stirring the in-situ soil and solidified material in the lower part of the outer periphery of the existing structure and in the surrounding ground, and the direction orthogonal to or near the orthogonal to the outer periphery of the existing structure. The multiple underground walls are arranged at predetermined intervals in a direction parallel to the outer periphery of the existing structure, so that the underground walls constrain the ground between the underground walls and shear deformation during an earthquake Therefore, damage to existing structures due to liquefaction can be reduced.
And by arranging a plurality of underground walls at predetermined intervals, the amount of ground improvement can be reduced and labor and cost can be reduced compared to the liquefaction countermeasure structure that improves the entire ground. The construction period can be shortened.

また、本発明に係る液状化対策構造では、既存構造物の中心部の下方地盤は改良されていることを特徴とする。
また、本発明に係る液状化対策構造では、既存構造物の中心部の下方の地盤には、前記地盤の原位置土と固化材とを攪拌して形成された地盤改良体が部分的に配設されていてもよい。
また、本発明による液状化防止構造では、既存構造物の中心部の下方地盤は、薬液を注入し浸透固化させることにより改良されていてもよい。
本発明では、既存構造物の中心部の下方地盤を改良することにより、既存構造物を支持する地盤の強度を高くすることができる。
The liquefaction countermeasure structure according to the present invention is characterized in that the lower ground in the center of the existing structure is improved.
In the liquefaction countermeasure structure according to the present invention, a ground improvement body formed by stirring the original soil of the ground and the solidified material is partially disposed on the ground below the center of the existing structure. It may be provided.
Moreover, in the liquefaction prevention structure according to the present invention, the lower ground in the center of the existing structure may be improved by injecting and solidifying the chemical.
In this invention, the intensity | strength of the ground which supports the existing structure can be made high by improving the lower ground of the center part of the existing structure.

また、本発明に係る液状化対策構造では、前記地中壁は下端部が前記地盤の非液状化層に根入れされていて、前記既存構造物の中心部の下方の地盤の改良は非液状化層に達していない構成としてもよい。
本発明では、地中壁は下端部が地盤の非液状化層に根入れされていることにより、地震時の地中壁の変位が抑えられて、隣り合う地中壁間の地盤がせん断変形することを抑制でき既存構造物の不同沈下を防ぐことができる。
また、既存構造物の中心部の下方の地盤の改良は非液状化層に達していないことにより、非液状化層と既存構造物の中心部の下方の地盤改良体との間には液状化層が介在し、地震時に非液状化層から既存構造物の中心部の下方の地盤改良体に伝達する振動の一部がこの液状化層によって吸収されるので、既存構造物に伝達する振動を減少させることができる。
また、既存構造物の中心部の下方の地盤を非液状化層に達するように改良する場合と比べて、地盤改良の量が少なくコスト削減と工期短縮を図ることができる。
Further, in the liquefaction countermeasure structure according to the present invention, the underground wall has a lower end part embedded in the non-liquefied layer of the ground, and the improvement of the ground below the central part of the existing structure is non-liquid. It is good also as a structure which has not reached the formation layer.
In the present invention, since the bottom of the underground wall is embedded in the non-liquefaction layer of the ground, the displacement of the underground wall during an earthquake is suppressed, and the ground between adjacent underground walls is shear-deformed. It is possible to suppress this, and the uneven settlement of existing structures can be prevented.
In addition, since the improvement of the ground below the center of the existing structure has not reached the non-liquefied layer, there is no liquefaction between the non-liquefied layer and the ground improvement body below the center of the existing structure. Because the layer is interposed and part of the vibration transmitted from the non-liquefied layer to the ground improvement body below the center of the existing structure during the earthquake is absorbed by this liquefied layer, the vibration transmitted to the existing structure is absorbed. Can be reduced.
Moreover, compared with the case where the ground below the center part of the existing structure is improved so as to reach the non-liquefiable layer, the amount of ground improvement is small, and the cost and construction period can be shortened.

また、本発明に係る液状化対策構造では、固化材はセメントまたはセメント系固化材であることが好ましい。
本発明では、固化材をセメントまたはセメント系固化材とすることにより、地中壁の強度を高めることができ、既存構造物を支持する地盤の強度を高めることができる。
In the liquefaction countermeasure structure according to the present invention, the solidifying material is preferably cement or a cement-based solidifying material.
In the present invention, the strength of the underground wall can be increased and the strength of the ground supporting the existing structure can be increased by using the cement or cement-based solidified material as the solidified material.

また、本発明による液状化対策構造では、地中壁が配設された部分改良地盤の液状化強度は、改良前の地盤に地震時に生じるせん断応力(τ )を算出し、せん断応力(τ)に基づいて改良前の地盤のせん断ひずみ(γ )を算出し、改良後の地盤の等価せん断剛性(Geq)を算出し、改良後の地盤における地中壁間の未改良地盤に生じるせん断ひずみ(γ )を求め、せん断ひずみ(γ )に応じた等価せん断剛性(Geq)を再決定し、再決定した等価せん断剛性(Geq)を用いてせん断ひずみ(γ )が一定の値に収束するまで計算を行ってせん断ひずみ(γ )を決定し、決定したせん断ひずみ(γ )に基づいて未改良地盤に生じる過剰間隙水圧比(Δu/σν’)を求め、過剰間隙水圧比(Δu/σν’)に基づいて評価されていることを特徴とする。
本発明では、部分改良地盤の液状化強度を事前に評価することにより、地中壁の形状を適切に計画することができるので、液状化による既存構造物の被害を防ぐことができると共に、過剰な地盤改良を行うことを防ぐことができる。
Further, in the liquefaction countermeasure structure according to the present invention, the liquefaction strength of the partially improved ground where the underground wall is disposed is calculated by calculating the shear stress (τ d ) generated in the ground before the improvement at the time of the earthquake. d ) Calculate the shear strain (γ i ) of the ground before the improvement based on d ), calculate the equivalent shear stiffness (G eq ) of the ground after the improvement, The generated shear strain (γ i ) is obtained, the equivalent shear stiffness (G eq ) corresponding to the shear strain (γ i ) is re-determined, and the re-determined equivalent shear stiffness (G eq ) is used to determine the shear strain (γ i ). To calculate the shear strain (γ i ) until it converges to a certain value, and the excess pore water pressure ratio (Δu / σ ν ′) generated in the unmodified ground based on the determined shear strain (γ i ) determined, based on the excess pore water pressure ratio (Δu / σ ν ') Characterized in that it is evaluated.
In the present invention, by evaluating in advance the liquefaction strength of the partially improved ground, it is possible to appropriately plan the shape of the underground wall, so that damage to existing structures due to liquefaction can be prevented, and excess It is possible to prevent the ground improvement.

また、本発明に係る液状化対策工法は、液状化による既存構造物の被害を低減させる液状化対策工法であって、既存構造物の外周部の下方地盤および周囲地盤に固化材を供給しつつ原位置土と攪拌混合する攪拌混合機を挿入し、攪拌混合機を水平姿勢で上下方向および水平各方向に移動して地中壁を形成することを特徴とする。
本発明では、既存構造物の外周部の下方地盤および周囲地盤に固化材を供給しつつ原位置土と攪拌混合する攪拌混合機を挿入し、地中で攪拌混合機を水平姿勢で上下方向および水平各方向に移動することにより、既存構造物の外周部の下方地盤と周辺地盤とに地中壁を容易に形成することができる。
The liquefaction countermeasure method according to the present invention is a liquefaction countermeasure method that reduces damage to existing structures due to liquefaction, while supplying solidification material to the lower ground and the surrounding ground of the outer periphery of the existing structure. A stirrer / mixer that stirs and mixes with the in-situ soil is inserted, and the stirrer / mixer is moved in the vertical and horizontal directions in a horizontal posture to form an underground wall.
In the present invention, a stirrer / mixer that stirs and mixes with the in-situ soil while supplying the solidified material to the lower ground and the surrounding ground of the outer periphery of the existing structure is inserted, and the stirrer / mixer in the ground in the vertical direction and By moving in each horizontal direction, the underground wall can be easily formed in the lower ground and the peripheral ground of the outer peripheral portion of the existing structure.

また、本発明に係る液状化対策工法では、地中壁を形成する工程は、既存構造物の内部から行うことが好ましい。
本発明では、既存構造物の内部から地中壁を形成することにより、既存構造物の周辺の地盤に埋設された配管などをかわす必要がなく、効率的に地中壁を形成することができる。また、既存構造物の中心部の下方地盤を改良する場合には、地盤改良の作業が行いやすい。
なお、地中壁を形成する工程は、既存構造物の外部から行ってもよい。
Moreover, in the liquefaction countermeasure method according to the present invention, the step of forming the underground wall is preferably performed from the inside of the existing structure.
In the present invention, by forming the underground wall from the inside of the existing structure, it is not necessary to dodge the pipes embedded in the ground around the existing structure, and the underground wall can be formed efficiently. . Moreover, when improving the lower ground of the center part of the existing structure, it is easy to perform the ground improvement work.
In addition, you may perform the process of forming an underground wall from the exterior of the existing structure.

本発明によれば、既存構造物の外周部の下方地盤および周囲地盤に、地中壁が配設されていることにより、液状化による既存構造物の被害を低減させて、地震による既存構造物の振動を抑制することができると共に、既存構造物の下方地盤を全面改良する場合と比べて、地盤改良の量を少なくすることができ、労力やコストを軽減でき、工期を短縮することができる。   According to the present invention, the underground wall is disposed on the lower ground and the surrounding ground of the outer peripheral portion of the existing structure, thereby reducing the damage of the existing structure due to liquefaction and the existing structure due to the earthquake. As well as suppressing the vibration of the existing structure, the amount of ground improvement can be reduced compared with the case of improving the entire lower ground of the existing structure, labor and cost can be reduced, and the construction period can be shortened. .

(a)は本発明の第一の実施の形態による液状化対策構造の一例を示し(b)のA−A線断面図、(b)は(a)のB−B線断面図である。(A) shows an example of the liquefaction countermeasure structure by 1st embodiment of this invention, and shows the AA sectional view taken on the line of (b), (b) is the BB sectional drawing of (a). 図2は図1に示す液状化対策構造の単位周期構造体を示す図である。FIG. 2 is a diagram showing a unit periodic structure of the liquefaction countermeasure structure shown in FIG. 本発明のバットレスの形状を決定する際に使用する部分改良地盤の変形量の算定に使用する、簡易チャートの例を示す図である。It is a figure which shows the example of the simple chart used for calculation of the deformation amount of the partial improvement ground used when determining the shape of the buttress of this invention. 本発明の部分改良地盤の液状化強度の簡易評価法の実施形態を示すもので、その全体手順を示すフローチャートである。The embodiment of the simple evaluation method of the liquefaction strength of the partially improved ground of the present invention is shown and is a flowchart showing the entire procedure. せん断ひずみとせん断応力の関係を示す図である。It is a figure which shows the relationship between a shear strain and a shear stress. せん断剛性低下率とせん断ひずみの関係を示す図である。It is a figure which shows the relationship between a shear rigidity fall rate and a shear strain. 過剰間隙水圧比を求めるための図である。It is a figure for calculating | requiring an excess pore water pressure ratio. 液状化強度曲線の模式図である。It is a schematic diagram of a liquefaction intensity curve. 地盤改良装置によってタンクの下方地盤にバットレスを形成する工程を示すもので、事前改良部を施工した状態を示す図である。It is a figure which shows the process of forming a buttress in the lower ground of a tank with a ground improvement apparatus, and shows the state which constructed the prior improvement part. 図9において攪拌混合機を事前改良部に挿入した状態を示す図である。It is a figure which shows the state which inserted the stirring mixer in the prior improvement part in FIG. 攪拌混合機をタンクの下方地盤に到達させた状態を示す図である。It is a figure which shows the state which made the stirring mixer reach the lower ground of a tank. 攪拌混合機を事前改良部の底部まで降下させた状態を示す図である。It is a figure which shows the state which dropped the stirring mixer to the bottom part of the prior improvement part. (a)は本発明の第二の実施の形態による液状化対策構造の一例を示し(b)のC−C線断面図、(b)は(a)のD−D線断面図である。(A) shows an example of the liquefaction countermeasure structure by 2nd embodiment of this invention, and shows the CC sectional view taken on the line (b), (b) is the DD sectional view taken on the line (a). (a)は本発明の第三の実施の形態による液状化対策構造の一例を示し(b)のE−E線断面図、(b)は(a)のF−F線断面図である。(A) shows an example of the liquefaction countermeasure structure by 3rd embodiment of this invention, and shows the EE sectional view taken on the line (b), (b) is the FF sectional view taken on the line (a). (a)は本発明の第四の実施の形態による液状化対策構造の一例を示し(b)のG−G線断面図、(b)は(a)のH−H線断面図である。(A) shows an example of the liquefaction countermeasure structure according to the fourth embodiment of the present invention, and is a sectional view taken along the line GG of (b), and (b) is a sectional view taken along the line HH of (a). (a)は構造物の下方の地盤の改良深さと構造物の沈下量との関係を検証する実験の概要を示す図、(b)は(a)の実験ケースの詳細を示す図である。(A) is a figure which shows the outline | summary of the experiment which verifies the relationship between the improvement depth of the ground under a structure, and the amount of settlement of a structure, (b) is a figure which shows the detail of the experiment case of (a). 図16に示す実験の結果で実験ケースC0の沈下量を1として実験ケースC1〜C4の沈下量を示す図である。It is a figure which shows the amount of settlement of experiment cases C1-C4 by making the settlement amount of experiment case C0 into 1 as a result of the experiment shown in FIG. (a)は本発明の実施の形態の変形例による液状化対策構造の一例を示し(b)のI−I線断面図、(b)は(a)のJ−J線断面図である。(A) shows an example of the liquefaction countermeasure structure by the modification of embodiment of this invention, and shows the II sectional view taken on the line of (b), (b) is the JJ sectional view taken on the line of (a).

以下、本発明の実施の形態による液状化防止構造について、図1乃至図4に基づいて説明する。
図1(a)、(b)に示すように、本実施の形態による液状化対策構造1は、液状化対策のされていない既存のタンク2の支持地盤に液状化対策として行う地盤改良の構造であって、タンク2の外周部2aの下方の地盤Gと周辺の地盤Gとに造成された複数のバットレス(地中壁)3と、既存のタンク2の中心部2bの下方の地盤Gを全面改良した内部地盤改良体4とから構成される。本発明において、タンク2の外周部2aとはタンク2の外周側の所定範囲の部分を示し、外周部2aの内側を中心部2bとする。
Hereinafter, a liquefaction prevention structure according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 (a) and 1 (b), the liquefaction countermeasure structure 1 according to the present embodiment is a structure of ground improvement performed as a liquefaction countermeasure on the supporting ground of an existing tank 2 that has not been liquefied. A plurality of buttresses (underground walls) 3 formed on the ground G below the outer peripheral portion 2a of the tank 2 and the surrounding ground G, and the ground G below the center portion 2b of the existing tank 2 It is comprised from the internal ground improvement body 4 improved entirely. In the present invention, the outer peripheral portion 2a of the tank 2 indicates a portion in a predetermined range on the outer peripheral side of the tank 2, and the inner side of the outer peripheral portion 2a is defined as a central portion 2b.

タンク2は、円柱状に形成されており、底面には基礎スラブ11を備えている。
バットレス3は、セメント系深層混合処理工法によって形成された板状の地盤改良体で、図1(a)に示すように、タンク2の中心軸を中心として放射状に複数配設されて、隣り合うバットレス3の間には所定の間隔が設けられている。
内部地盤改良体4は、セメント系深層混合処理工法によって改良されている。
The tank 2 is formed in a columnar shape and includes a basic slab 11 on the bottom surface.
The buttress 3 is a plate-like ground improvement body formed by a cement-based deep mixing method, and a plurality of buttresses 3 are arranged radially around the central axis of the tank 2 as shown in FIG. A predetermined interval is provided between the buttresses 3.
The internal ground improvement body 4 has been improved by a cement-based deep mixing process.

このような液状化対策構造1において、バットレス3の配設された部分改良地盤G1の液状化強度を評価するには、まず、部分改良地盤G1を図2に示すように単位周期構造体G2の集合体として築造し、その単位周期構造体G2の剛性を数学的均質化理論に基づいて求めてこれを部分改良地盤G1全体の等価剛性とし、この等価剛性と築造後の部分改良地盤G1に作用する外力とから部分改良地盤G1の変形量を事前に予測算定する。
そして、改良前の地盤Gに地震時に生じるせん断応力を算出して、このせん断応力に基づいて改良前の地盤Gのせん断ひずみを算出する。改良後の部分改良地盤G1の等価せん断剛性を算出し、改良後の部分改良地盤G1におけるバットレス3間の未改良地盤に生じるせん断ひずみを求め、このせん断ひずみに応じた等価せん断剛性を再決定する。
そして、再決定した等価せん断剛性を用いてせん断ひずみが一定の値に収束するまで計算を行ってせん断ひずみを決定し、決定したせん断ひずみに基づいて未改良地盤に生じる過剰間隙水圧比を求める。
そして、この過剰間隙水圧比に基づいて部分改良地盤G1の液状化強度を評価する。
この部分改良地盤の液状化強度の簡易評価法について以下に説明する
In such a liquefaction countermeasure structure 1, in order to evaluate the liquefaction strength of the partially improved ground G1 in which the buttress 3 is disposed, first, the partially improved ground G1 is made of a unit periodic structure G2 as shown in FIG. It is constructed as an assembly, and the rigidity of the unit periodic structure G2 is obtained based on the mathematical homogenization theory, and this is set as the equivalent rigidity of the entire partially improved ground G1, and this equivalent rigidity and the partially improved ground G1 after construction are affected. The amount of deformation of the partially improved ground G1 is predicted and calculated in advance from the external force to be applied.
And the shear stress which arises in the ground G before improvement at the time of an earthquake is calculated, and the shear strain of the ground G before improvement is calculated based on this shear stress. The equivalent shear stiffness of the partially improved ground G1 after the improvement is calculated, the shear strain generated in the unmodified ground between the buttresses 3 in the partially improved ground G1 after the improvement is obtained, and the equivalent shear stiffness corresponding to the shear strain is determined again. .
Then, using the re-determined equivalent shear stiffness, calculation is performed until the shear strain converges to a constant value, the shear strain is determined, and the excess pore water pressure ratio generated in the unmodified ground is determined based on the determined shear strain.
Then, the liquefaction strength of the partially improved ground G1 is evaluated based on this excess pore water pressure ratio.
A simple method for evaluating the liquefaction strength of this partially improved ground is described below.

まず、単位周期構造体G2の改良率Rを求める。
図2に示すように、部分改良地盤G1は、バットレス3の配設されたタンク2の外周部の下方および周囲の地盤Gでリング状に形成されている。単位周期構造体G2は、部分改良地盤G1を均等に円弧状に分割したもので、厚さl のバットレス3とその周辺の原地盤G3とからなる。
ここで、単位周期構造体G2の形状を図2に示すようにx方向の長さl 、y方向の長さl の矩形の内側に、厚さlのバットレス3がy方向に1枚配置されたものとして考える。
このとき、単位周期構造体G2の水平面積に対するバットレス3の水平面積の割合を示す改良率Rは、次式で表される。
First, the improvement rate R of the unit periodic structure G2 is obtained.
As shown in FIG. 2, the partially improved ground G <b> 1 is formed in a ring shape with the ground G below and around the outer peripheral portion of the tank 2 in which the buttress 3 is disposed. Unit periodic structure G2 is obtained by dividing the partial ground improved G1 evenly arcuate, having a thickness of l buttress 3 of R and original ground G3 Metropolitan the surrounding.
Here, 1 unit periodic structure G2 shape length l x in the x direction as shown in FIG. 2, the inside of the rectangle in the y direction length l y, buttress 3 having a thickness of l R is the y-direction Think of it as being arranged.
At this time, the improvement rate R indicating the ratio of the horizontal area of the buttress 3 to the horizontal area of the unit periodic structure G2 is expressed by the following equation.

Figure 2011007031
Figure 2011007031

改良率Rの値は状況によって異なり任意に設定できるが、20〜60%を目安とする。
また、改良率Rは、後に説明する部分改良地盤G1の変形量が算定された際に、設計条件を満足していなければ、修正される。
The value of the improvement rate R varies depending on the situation and can be set arbitrarily, but 20 to 60% is a guide.
Further, the improvement rate R is corrected if the deformation amount of the partially improved ground G1 described later is calculated and the design condition is not satisfied.

次に、部分改良地盤G1の等価剛性を求める。
単位周期構造体G2は剛性の異なる2つの弾性体、すなわち未改良で低剛性の原地盤G3(その剛性をESとする)と、改良により高剛性とされたバットレス3(その剛性をERとする)の複合体と見なすことができ、さらにその複合体は、この複合体全体の剛性と等価とみなせる剛性(以下、これを等価剛性E という)を有する単一の均質体と見なすことができ、その均質体の等価剛性E は、数学的均質化理論に基づき単位周期構造体G2の特性と形状とをパラメータとして次のように求めることができる。
Next, the equivalent rigidity of the partially improved ground G1 is obtained.
The unit periodic structure G2 is composed of two elastic bodies having different rigidity, that is, an unmodified and low-rigidity ground G3 (having its rigidity as ES), and a buttress 3 that has been improved to be high in rigidity (having its rigidity as ER). And the composite can be regarded as a single homogeneous body having a rigidity that can be regarded as equivalent to the rigidity of the entire composite (hereinafter referred to as equivalent rigidity E H ). The equivalent stiffness E H of the homogeneous body can be obtained as follows using the characteristics and shape of the unit periodic structure G2 as parameters based on the mathematical homogenization theory.

すなわち、数学的均質化理論によれば、2つの弾性体の複合体と等価の1つの均質体の弾性係数C をマトリックスで表記すると、次式で表される。 That is, according to the mathematical homogenization theory, the elastic coefficient C H of one homogeneous body equivalent to a composite of two elastic bodies is expressed by the following equation when expressed in a matrix.

Figure 2011007031
Figure 2011007031

上式においてCはミクロ周期構造としての単位周期構造体G2の弾性マトリックスである。
また、Xはミクロ周期構造に単位マクロ歪みIを与えた場合の応答変位であり、3次元では次式のように6成分からなるものである。
In the above formula, C is an elastic matrix of the unit periodic structure G2 as a micro periodic structure.
X is a response displacement when a unit macro strain I is given to the micro periodic structure, and in three dimensions, it consists of six components as shown in the following equation.

Figure 2011007031
Figure 2011007031

また、均質体の弾性係数C の逆行列(コンプライアンスマトリックス)は次式で表され、この式から各方向の等価剛性を求めることができる。 Further, the inverse matrix (compliance matrix) of the elastic modulus C H of the homogeneous body is expressed by the following equation, and the equivalent stiffness in each direction can be obtained from this equation.

Figure 2011007031
Figure 2011007031

上式におけるEx は均質体のx方向の軸剛性、Ey はy方向の軸剛性、Ezはz方向の軸剛性、Gxy はx−y面内のせん断剛性、Gyz はy−z面内のせん断剛性、Gzx はz−x面(x−z面)内のせん断剛性であり、上式により求められる均質体の各剛性はすなわち単位周期構造体G2およびその集合体としての部分改良地盤G1全体の等価剛性を表すものである。
そして、本算定法においては、上式で求められる各方向の等価剛性と改良率Rとの関係を、単位周期構造体G2のパターンをパラメータとして予め簡易チャート化しておくことにより、その簡易チャートを用いて部分改良地盤G1の各方向の等価剛性(軸剛性およびせん断剛性)を簡易に求めるものである。
In the above equation, Ex H is the axial stiffness in the x direction of the homogeneous body, Ey H is the axial stiffness in the y direction, Ez H is the axial stiffness in the z direction, Gxy H is the shear stiffness in the xy plane, and Gyz H is y−. The shear stiffness in the z plane, Gzx H, is the shear stiffness in the zx plane (xz plane), and each stiffness of the homogeneous body obtained by the above equation is the unit periodic structure G2 and its aggregate This represents the equivalent rigidity of the entire partially improved ground G1.
In this calculation method, the relationship between the equivalent stiffness in each direction obtained by the above equation and the improvement rate R is preliminarily made into a simple chart by using the pattern of the unit periodic structure G2 as a parameter. By using this, the equivalent rigidity (axial rigidity and shear rigidity) in each direction of the partially improved ground G1 is easily obtained.

その簡易チャートは、具体例を図3に示すように、横軸に改良率Rをとり、縦軸に等価剛性Ex 、Ey 、Ez 、Gxy 、Gyz 、Gzx (バットレス3の軸剛性ERあるいはせん断剛性GRにより除して正規化してある)をとり、ES/ERあるいはGS/GR(バットレス3の剛性に対する原地盤G3の剛性の比)と、単位周期構造体G2の縦横比lx/lyをパラメータとして作成したものである。
図3(a)〜(f)に示す簡易チャートは、lx/ly=1、2、3とした場合のものあり、いずれもパラメータES/ERあるいはGS/GRを0、0.2、0.4、0.6、0.8としたものである。
As shown in a specific example in FIG. 3, the simplified chart has an improvement rate R on the horizontal axis and an equivalent stiffness Ex H , Ey H , Ez H , Gxy H , Gyz H , Gzx H (buttress 3 ES / ER or GS / GR (ratio of the stiffness of the base ground G3 to the stiffness of the buttress 3) and the aspect ratio of the unit periodic structure G2 This is created using lx / ly as a parameter.
The simple charts shown in FIGS. 3A to 3F are for the case where lx / ly = 1, 2, and 3, and the parameters ES / ER or GS / GR are set to 0, 0.2, 0,. 4, 0.6, and 0.8.

このような簡易チャートを予め作成しておくことにより、改良率Rと、バットレス3の剛性ERあるいはGR、原地盤G3の剛性ESあるいはGSのみから、部分改良地盤G1の各方向の等価剛性を直ちに求めることができる。   By preparing such a simple chart in advance, the equivalent rigidity in each direction of the partially improved ground G1 can be immediately obtained from only the improvement rate R, the rigidity ER or GR of the buttress 3 and the rigidity ES or GS of the original ground G3. Can be sought.

次に、部分改良地盤G1の変形量を予測算定する。
部分改良地盤G1の周囲の液状化層が全て液状化するとして、液状化後に部分改良地盤G1にかかる外力を算定する。このとき部分改良地盤G1の内側の内部地盤改良体4は全面改良が行われているので、部分改良地盤G1の内部は液状化せず、内部地盤改良体4から部分改良地盤G1には外力がかからないものとする。
そして、等価剛性と部分改良地盤G1に作用する外力とから部分改良地盤G1の変形量を算定する。その算定は2次元弾性有限要素法によるか、あるいは、より簡易な手法として、部分改良地盤全体G1をせん断棒にモデル化することにより行うことができ、いずれの場合もほぼ同様の結果が得られる。
Next, the deformation amount of the partially improved ground G1 is predicted and calculated.
Assuming that the entire liquefied layer around the partially improved ground G1 is liquefied, the external force applied to the partially improved ground G1 after liquefaction is calculated. At this time, since the entire internal ground improvement body 4 inside the partial improvement ground G1 has been improved, the inside of the partial improvement ground G1 is not liquefied, and external force is applied from the internal ground improvement body 4 to the partial improvement ground G1. It shall not take.
Then, the deformation amount of the partially improved ground G1 is calculated from the equivalent rigidity and the external force acting on the partially improved ground G1. The calculation can be performed by using the two-dimensional elastic finite element method or by modeling the entire partially improved ground G1 as a shear bar as a simpler method, and almost the same result is obtained in any case. .

以上で算定された変形量が設計条件を満足すれば、その改良率Rを最終決定として対策決定とする。変形量の算定結果が設計条件を満足しなければ改良率Rを変更して以上の手順を繰り返す。すなわち、変形量が過大であれば改良不足であるので改良率Rを大きくするように変更し、変形量が過小であれば改良過剰であるので改良率Rを小さくするように変更し、満足すべき結果が得られるまで以上の手順を繰り返せば良い。勿論、その際に必要であれば、すなわち改良率Rの修正のみでは条件を満足できない場合には、バットレス3の剛性なども併せて見直せば良い。   If the deformation amount calculated above satisfies the design conditions, the improvement rate R is determined as a final decision. If the calculation result of the deformation amount does not satisfy the design condition, the improvement rate R is changed and the above procedure is repeated. That is, if the deformation amount is excessive, the improvement rate is insufficient, so that the improvement rate R is increased, and if the deformation amount is excessively small, the improvement rate R is excessive, so that the improvement rate R is decreased. The above procedure may be repeated until the desired result is obtained. Of course, if necessary at that time, that is, if the condition cannot be satisfied only by correcting the improvement rate R, the rigidity of the buttress 3 may be reviewed together.

次に、部分改良地盤G1の液状化強度の評価を行う。
液状化強度の評価法は、図4に示すフローチャートの一連のステップ(i)〜(vii)により構成されるものであり、以下にその詳細を説明する。
Next, the liquefaction strength of the partially improved ground G1 is evaluated.
The evaluation method of liquefaction strength is composed of a series of steps (i) to (vii) in the flowchart shown in FIG. 4, and the details thereof will be described below.

(i)地震時に地盤Gに生じるせん断応力τdを算出する。せん断応力τdは地震応答解析から算定するか、簡易液状化算定法に用いられている(1)式を用いて求める。 (I) The shear stress τ d generated in the ground G during the earthquake is calculated. The shear stress τ d is calculated from the seismic response analysis or is calculated using the formula (1) used in the simple liquefaction calculation method.

Figure 2011007031
Figure 2011007031

(1) 式において、M:マグニチュード、αmax :地表面最大加速度、z:深度、σν':鉛直有効応力、σν :鉛直全応力、g:重力加速度である。 In the equation (1), M: magnitude, α max : ground surface maximum acceleration, z: depth, σ v ': vertical effective stress, σ v : vertical total stress, g: gravity acceleration.

(ii)上記の(1)式で求めたせん断応力τ と、図5を用いて、改良前の地盤Gのせん断ひずみγiを算出する。図5は(2)式をもとに作成したものである。 (Ii) The shear strain γ i of the ground G before improvement is calculated using the shear stress τ d obtained by the above equation (1) and FIG. FIG. 5 is created based on the equation (2).

Figure 2011007031
Figure 2011007031

(2)式において、hmax は最大減衰定数で砂の場合は0.2〜0.25の値となる。初期せん断剛性Gsoや基準せん断ひずみγrfは砂の種類や拘束圧によって異なるが、典型的な例としてGso=50MPa、γrf=0.1%、hmax =0.2とした。 In the equation (2), h max is a maximum attenuation constant and is 0.2 to 0.25 in the case of sand. Although the initial shear stiffness G so and the reference shear strain γ rf vary depending on the type of sand and the restraint pressure, typical examples are G so = 50 MPa, γ rf = 0.1%, and h max = 0.2.

(iii)上述した算定法で説明した手法により、図3を用いて部分改良地盤G1の改良率、バットレス3の形状、改良パターン、および地盤Gとバットレス3のせん断剛性Gso、G に応じた等価せん断剛性Geqを算出する。 (Iii) According to the method described in the calculation method described above, the improvement rate of the partially improved ground G1, the shape of the buttress 3, the improved pattern, and the shear rigidity G so and G I of the ground G and the buttress 3 using FIG. The equivalent shear rigidity G eq is calculated.

(iv)上記(i)で求めたせん断応力τ と、上記(iii)で仮算出した等価せん断剛性Geqを用いて、(3)式によりバットレス3間の地盤に生じるせん断ひずみγを求める。 (Iv) Using the shear stress τ d obtained in (i) above and the equivalent shear stiffness G eq provisionally calculated in (iii) above, the shear strain γ i generated in the ground between the buttresses 3 by the equation (3) Ask.

Figure 2011007031
Figure 2011007031

(v)上記(iv)で求めたせん断ひずみγ と図6とを用いて、せん断ひずみγに応じた等価せん断剛性Geqを再決定する。 (V) Using the shear strain γ i obtained in (iv) above and FIG. 6, the equivalent shear stiffness G eq corresponding to the shear strain γ i is determined again.

(vi)再決定した等価せん断剛性Geqと、(1)式で求めたτ を用いて、(3)式により再度せん断ひずみγi を計算し、以上の計算をせん断ひずみγi が一定の値に収束するまで行う。 (Vi) the equivalent shear modulus G eq re determined, using tau d obtained in (1), (3) by a shear strain gamma i calculated again, the above calculation of the shear strain gamma i is constant Until it converges to the value of.

(vii)決定したせん断ひずみγ を用いて、図7により過剰間隙水圧比Δu/σν’を決定する。
図7は(2)式と次の(4)〜(6)式を用いて求めたものである。
(Vii) Using the determined shear strain γ i , the excess pore water pressure ratio Δu / σ ν ′ is determined according to FIG.
FIG. 7 is obtained using the equation (2) and the following equations (4) to (6).

Figure 2011007031
Figure 2011007031

ここで、R は繰返せん断応力比、R20は液状化強度で20回で液状化に至るせん断応力比として規定している。N は液状化に至った繰返し回数である。kは実験定数で−0.25程度の値をとる。
図8は液状化強度曲線の模式図を示したものである。
(4)式はR 1回の繰返しで 1/N だけ液状化に近づいたとみなせるので、20回の繰返しせん断が生じた際の累積損傷度R は(5)式のように表せる。この状態で生じる過剰間隙水圧比は、De Albaの提案式である(6)式で表すことができる。αrfは実験定数であるが、緩い砂では0.7程度の値をとる。
Here, R 1 is defined as a repeated shear stress ratio, and R 20 is a liquefaction strength, which is defined as a shear stress ratio reaching liquefaction 20 times. N l is the number of repetitions that led to liquefaction. k is an experimental constant and takes a value of about -0.25.
FIG. 8 shows a schematic diagram of a liquefaction strength curve.
Since the equation (4) can be regarded as approaching liquefaction by 1 / N l after one iteration of R l, the cumulative damage degree R n when 20 repeated shears occur can be expressed as the equation (5). The excess pore water pressure ratio generated in this state can be expressed by equation (6), which is a proposed equation of De Alba. α rf is an experimental constant, but takes a value of about 0.7 for loose sand.

そして、ステップ(vii)において図7を用いて過剰間隙水圧比Δu/σν’を求めることにより、その過剰間隙水圧比Δu/σν’が1.0未満であれば地盤Gは液状化に至らず過剰間隙水圧がある程度上昇するに留まることになり、そのことから部分改良地盤G1の液状化強度を評価することができる。そこで、仮に過剰間隙水圧比Δu/σν’が1.0以上であって地盤Gが液状化すると評価された場合には、改良率Rやその他の条件を再設定し、過剰間隙水圧比Δu/σν’が1.0未満になるまで以上の手順を繰り返し、バットレス3の形状を決定する。 In step (vii), the excess pore water pressure ratio Δu / σ ν ′ is obtained using FIG. 7, and if the excess pore water pressure ratio Δu / σ ν ′ is less than 1.0, the ground G is liquefied. However, the excess pore water pressure will rise to some extent, and the liquefaction strength of the partially improved ground G1 can be evaluated. Therefore, if it is estimated that the excess pore water pressure ratio Δu / σ v ′ is 1.0 or more and the ground G is liquefied, the improvement rate R and other conditions are reset, and the excess pore water pressure ratio Δu The above procedure is repeated until / σν ′ becomes less than 1.0, and the shape of buttress 3 is determined.

このように、部分改良地盤G1の液状化強度を事前に評価しバットレス3の形状を決定しているので、液状化によるタンク2の被害を防ぐことができると共に、過剰な地盤改良を行うことを防ぐことができる。   Thus, since the liquefaction strength of the partially improved ground G1 is evaluated in advance and the shape of the buttress 3 is determined, damage to the tank 2 due to liquefaction can be prevented and excessive ground improvement can be performed. Can be prevented.

次に、上述した液状化対策構造の施工方法(液状化対策工法)について図面を用いて説明する。
まず、図1に示すタンク2内の基礎スラブ11を撤去し、タンク2内部に地盤Gの表面を露出させる。
そして、図9に示すように、タンク2内部に地盤改良装置21を設置し、タンク2内部からバットレス3を造成する。
Next, the construction method (liquefaction countermeasure construction method) of the liquefaction countermeasure structure mentioned above is demonstrated using drawing.
First, the foundation slab 11 in the tank 2 shown in FIG. 1 is removed, and the surface of the ground G is exposed inside the tank 2.
And as shown in FIG. 9, the ground improvement apparatus 21 is installed in the tank 2, and the buttress 3 is created from the tank 2 inside.

図9に示すように、本実施形態の地盤改良装置21は、バックホウ等をベースマシン22としてその揺動アーム23に対して攪拌混合機(トレンチャ)24を装着したものであるが、従来の地盤改良装置は攪拌混合機24を鉛直姿勢(つまり先端を下方に向けた状態)として揺動アーム23の先端部に直接的に装着したものであるのに対し、本実施形態の地盤改良装置21では揺動アーム23の先端部に鉛直アーム25を揺動ジャッキ26により揺動可能に連結し、その鉛直アーム25の先端部(下端部)に、攪拌混合機24を常にほぼ水平姿勢(つまり先端を前方に向けた状態)となるようにしてその後端部を固定したものとなっている。   As shown in FIG. 9, the ground improvement device 21 of this embodiment has a back mixer or the like as a base machine 22 and a swing mixer 23 mounted with a stirring mixer (trencher) 24. In the improvement device, the agitating mixer 24 is directly mounted on the tip of the swing arm 23 in a vertical posture (that is, in a state where the tip is directed downward), whereas in the ground improvement device 21 of the present embodiment, the improvement device 21 is. A vertical arm 25 is connected to the tip of the swing arm 23 by a swing jack 26 so as to be swingable, and the stirring mixer 24 is always in a substantially horizontal posture (that is, the tip is connected to the tip (lower end)) of the vertical arm 25. The rear end portion is fixed so as to be in a state of facing forward.

攪拌混合機24は、基本的には周知の構造をしており、攪拌翼(図示せず)を取り付けた無端状のチェーン31を対のスプロケット32間に巻回して循環駆動するとともに、図示を略した固化材供給手段によって各種の固化材を地盤G中に噴出状態で供給可能なものであり、地盤G中に固化材を供給しつつチェーン31を循環駆動することによって固化材と原位置土とを効率的に攪拌混合し得るものである。
また、攪拌混合機24には、その後部に反力板33を備えた前進用ジャッキ34が搭載され、その前進用ジャッキ34を後方に伸張させることにより後方地盤から反力をとって攪拌混合機24の全体を前方に押し出すことができるものとなっている。
なお、攪拌混合機24の全長および前進用ジャッキ34のストロークは、形成するべきバットレス3の幅寸法d (図1参照)や、後述する事前改良部41の幅寸法d を考慮して、バットレス3を効率的に形成し得るように設定すれば良いし、前進用ジャッキ34の所要ストロークが特に大きいような場合には必要に応じて多段伸張式ジャッキを採用すれば良い。
The stirring mixer 24 basically has a well-known structure, and an endless chain 31 fitted with stirring blades (not shown) is wound between a pair of sprockets 32 and driven to circulate. Various solidified materials can be supplied into the ground G in an ejected state by the abbreviated solidified material supplying means, and the solidified material and the in-situ soil are driven by circulating the chain 31 while supplying the solidified material into the ground G. Can be efficiently stirred and mixed.
Further, the agitating mixer 24 is equipped with a forward jack 34 provided with a reaction force plate 33 at the rear thereof, and the agitating mixer is configured to take the reaction force from the rear ground by extending the forward jack 34 rearward. The whole 24 can be pushed forward.
The total length of the agitating mixer 24 and the stroke of the forward jack 34 are determined in consideration of the width dimension d 1 of the buttress 3 to be formed (see FIG. 1) and the width dimension d 3 of the advance improvement portion 41 described later. What is necessary is just to set so that the buttress 3 can be formed efficiently, and when the required stroke of the jack 34 for advance is especially large, what is necessary is just to employ | adopt a multistage expansion | extension type jack as needed.

上記構成の地盤改良装置21によりバットレス3を形成する場合の施工手順を図9〜図12を参照して説明する。まず、準備工程として、図9に示すように攪拌混合機24を地盤Gに挿入するための事前改良部41をタンク2の外周部2aの下方の地盤Gに形成する。
その事前改良部41の形成は適宜行えば良いが、従来の地盤改良装置を用いて固化材(本実施形態ではセメントないしセメント系固化材)を原地盤に供給しつつ原位置土と攪拌混合することで行うと良く、それにより事前改良部41の粘度を攪拌混合機24を挿入可能な程度の充分に柔軟で半流動性を有する状態としておく。
なお、事前改良部41は最終的には攪拌混合機24により形成されるバットレス3と一体となるものであり、その幅寸法dは少なくともバットレス3の全体を水平姿勢のままで挿入できる程度とし、その深さは少なくとも形成するべきバットレス3の底部に達する深度とする。
A construction procedure when the buttress 3 is formed by the ground improvement device 21 having the above-described configuration will be described with reference to FIGS. First, as a preparation step, as shown in FIG. 9, a pre-improved portion 41 for inserting the stirring mixer 24 into the ground G is formed on the ground G below the outer peripheral portion 2 a of the tank 2.
The pre-improvement portion 41 may be formed as appropriate, but is stirred and mixed with the in-situ soil while supplying the solidified material (in this embodiment, cement or cement-based solidified material) to the original ground using a conventional ground improvement device. In this way, the viscosity of the pre-improving portion 41 is set to a state that is sufficiently flexible and semi-fluid enough to allow the stirring mixer 24 to be inserted.
Incidentally, pre-improvement section 41 is to be a buttress 3 integral with eventually formed by stirring and mixing machine 24, and the extent of the whole of the width d 3 is at least buttress 3 can be inserted while the horizontal posture The depth is at least the depth that reaches the bottom of the buttress 3 to be formed.

事前改良部41を形成した後、図10に示すようにベースマシン22の操作により攪拌混合機24を事前改良部41内に挿入し、タンク2の基礎スラブ11よりも深い位置に達したら、前進用ジャッキ34を後方に伸張させて反力板33を事前改良部41の後方壁に押し付け、それにより攪拌混合機24全体を前進せしめてその先端を事前改良部41の前方壁に押し付ける。
そして、攪拌混合機24のチェーン31を循環駆動するとともに固化材としてのセメント(セメントペーストあるいはセメントミルク)ないしセメント系固化材を噴出させつつ、前進用ジャッキ34をさらに伸張させて攪拌混合機24の先端部をタンク2の周辺の地盤Gに進入させていき、これにより固化材を原位置土と攪拌混合する。その際、チェーン31の駆動方向は攪拌混合機24の先端部が地盤Gに容易に食い込んでいく方向(図示では半時計回り)に設定すると良い。
After the advance improvement part 41 is formed, the agitation mixer 24 is inserted into the advance improvement part 41 by operating the base machine 22 as shown in FIG. The jack 34 is extended rearward and the reaction force plate 33 is pressed against the rear wall of the pre-improvement unit 41, whereby the entire stirring mixer 24 is advanced and its tip is pressed against the front wall of the pre-improvement unit 41.
The chain 31 of the agitating mixer 24 is circulated and driven, and the forward jack 34 is further extended while jetting cement (cement paste or cement milk) or cement-based solidifying material as a solidifying material, and the stirring mixer 24 The tip portion is allowed to enter the ground G around the tank 2, whereby the solidified material is stirred and mixed with the in-situ soil. At that time, the driving direction of the chain 31 may be set to a direction (a counterclockwise direction in the drawing) in which the tip end portion of the stirring mixer 24 easily bites into the ground G.

図11に示すように前進用ジャッキ34を充分に伸張させて攪拌混合機24のほぼ全長がタンク2の周辺の地盤Gに進入したら、そのまま攪拌混合を継続しつつベースマシン22の操作により攪拌混合機24を徐々に降下させていく。
そして、図12に示すように攪拌混合機24が事前改良部41の底部(つまり形成するべきバットレス3の底部)まで達したら、この段階での作業が終了する。
そこで、前進用ジャッキ34を縮退させ、攪拌混合機24全体を事前改良部41の上部まで引き上げ、その位置をやや側方にずらしてから以上の作業を繰り返し、さらに以上の作業をタンク2の全周にわたって繰り返して、最終的にはバットレス3がタンク2を中心に放射状に配設され、所定期間が経過して固化材が硬化すればバットレス3が完成する。
As shown in FIG. 11, when the advancing jack 34 is fully extended and almost the entire length of the agitating mixer 24 enters the ground G around the tank 2, the agitating and mixing is continued by operating the base machine 22 while continuing the agitating and mixing. The machine 24 is gradually lowered.
Then, as shown in FIG. 12, when the stirring mixer 24 reaches the bottom of the advance improvement section 41 (that is, the bottom of the buttress 3 to be formed), the operation at this stage is finished.
Therefore, the forward jack 34 is degenerated, the entire agitating mixer 24 is pulled up to the upper part of the advance improvement section 41, the position is shifted slightly to the side, and the above operation is repeated. Repeating over the circumference, the buttress 3 is finally arranged radially around the tank 2, and the buttress 3 is completed when the solidified material is cured after a predetermined period of time.

次に、図1(a)、(b)に示す内部地盤改良体4の形成を行う。
内部地盤改良体4は、バットレス3の形成後に、あるいはそれに相前後して形成される。内部地盤改良体4は、図9に示す本実施の形態による地盤改良装置21または従来の地盤改良装置を用いてタンク2の中心部2bの下方の地盤Gを全体にわたって固化材と原位置土とを攪拌混合して地盤改良を行い、所定期間が経過して固化材が硬化すれば完成する。
そして、基礎スラブ11を復旧し、タンク2の支持地盤に液状化対策構造1が施される。
Next, the internal ground improvement body 4 shown in FIGS. 1A and 1B is formed.
The internal ground improvement body 4 is formed after or after the buttress 3 is formed. The internal ground improvement body 4 uses the ground improvement device 21 according to the present embodiment shown in FIG. 9 or the conventional ground improvement device to make the ground G below the central portion 2b of the tank 2 entirely solidified and in situ. The ground is improved by stirring and mixing, and is completed when the solidified material is cured after a predetermined period of time.
Then, the foundation slab 11 is restored, and the liquefaction countermeasure structure 1 is applied to the support ground of the tank 2.

次に、上述した第一の実施の形態による液状化対策構造の作用について図面を用いて説明する。
第一の実施の形態による液状化対策構造1によれば、タンク2の外周部2aの下方の地盤Gと、周辺の地盤Gに複数のバットレス3が放射状に配設されていることにより、バットレス3がバットレス3間の地盤Gを拘束することができ、タンク2の外周部の下方および周囲の地盤Gの強度を増大させることができる。また、バットレス3はセメント系の固化材と原位置土とを攪拌混合して形成するので、タンク2を支持する地盤G全体の剛性を高めることができる。
Next, the operation of the liquefaction countermeasure structure according to the first embodiment will be described with reference to the drawings.
According to the liquefaction countermeasure structure 1 according to the first embodiment, a plurality of buttresses 3 are radially arranged on the ground G below the outer peripheral portion 2a of the tank 2 and the surrounding ground G. 3 can restrain the ground G between the buttresses 3, and the strength of the ground G below and around the outer peripheral portion of the tank 2 can be increased. Further, since the buttress 3 is formed by stirring and mixing the cement-based solidified material and the in-situ soil, the rigidity of the entire ground G supporting the tank 2 can be increased.

上述した第一の実施の形態による液状化対策構造1では、タンク2の外周部2aの下方の地盤Gと、周辺の地盤Gに複数のバットレス3が放射状に配設されていることにより、液状化によるタンク2の被害を低減させると共に、地震によるタンク2の振動を抑制することができる効果を奏する。
また、タンク2の下方の地盤Gを全面改良する従来の液状化対策構造と比べて、地盤改良の量を少なくすることができ、労力やコストを軽減でき、工期を短縮することができる。
In the liquefaction countermeasure structure 1 according to the first embodiment described above, a plurality of buttresses 3 are disposed radially on the ground G below the outer peripheral portion 2a of the tank 2 and the surrounding ground G, thereby It is possible to reduce the damage of the tank 2 due to the conversion and to suppress the vibration of the tank 2 due to the earthquake.
Moreover, compared with the conventional liquefaction countermeasure structure that improves the entire ground G below the tank 2, the amount of ground improvement can be reduced, labor and cost can be reduced, and the construction period can be shortened.

また、第一の実施の形態による液状化対策工法によれば、固化材と原位置土と攪拌混合する攪拌混合機24が水平姿勢で上下および水平方向に移動する地盤改良装置21によってバットレス3を形成することにより、確実な地盤改良が可能である。また、タンク2の中からタンク2周辺の地盤Gの改良を行うことができるので、効率的にバットレス3を造成することができ、バットレス3を形成する労力を軽減し、工期を短縮することができる。
また、バットレス3はタンク2の内部から形成されるので、タンク2の外部に配設されたタンク2の配管などをかわしながら作業を行わなくてよいので、バットレス3の形成が行いやすい。
In addition, according to the liquefaction countermeasure method according to the first embodiment, the buttress 3 is moved by the ground improvement device 21 in which the agitating mixer 24 that agitates and mixes the solidified material and the in-situ soil moves in a horizontal posture in the vertical and horizontal directions. By forming, reliable ground improvement is possible. Moreover, since the ground G around the tank 2 can be improved from the tank 2, the buttress 3 can be efficiently created, the labor for forming the buttress 3 can be reduced, and the construction period can be shortened. it can.
In addition, since the buttress 3 is formed from the inside of the tank 2, it is not necessary to perform work while passing through the piping of the tank 2 disposed outside the tank 2, so that the buttress 3 can be easily formed.

次に、他の実施の形態について、添付図面に基づいて説明するが、上述の第一の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第一の実施の形態と異なる構成について説明する。
図13に示すように、第二の実施の形態による液状化対策構造51では、内部地盤改良体54を部分改良地盤とし、格子状に地盤改良を行う。
このとき、内部地盤改良体54の改良率や地盤改良部分の剛性などの条件は、第一の実施の形態によるバットレス3と同様に、部分地盤改良体を単位周期構造体G2の集合体として部分地盤改良体の液状化強度を評価し、これを基に決定してもよい。
また、バットレス3の条件を決定する際には、液状化がした場合の内部地盤改良体54から受ける外力を考慮して液状化強度を算出し、この液状化強度を基に決定する。
Next, other embodiments will be described with reference to the accompanying drawings. However, the same or similar members and parts as those of the above-described first embodiment are denoted by the same reference numerals, and description thereof is omitted. A configuration different from the embodiment will be described.
As shown in FIG. 13, in the liquefaction countermeasure structure 51 according to the second embodiment, the internal ground improvement body 54 is used as a partial improvement ground, and the ground is improved in a lattice shape.
At this time, the conditions such as the improvement rate of the internal ground improvement body 54 and the rigidity of the ground improvement part are the same as the buttress 3 according to the first embodiment, with the partial ground improvement body as a set of unit periodic structures G2. The liquefaction strength of the ground improvement body may be evaluated and determined based on this.
Further, when determining the conditions of the buttress 3, the liquefaction strength is calculated in consideration of the external force received from the internal ground improvement body 54 in the case of liquefaction, and is determined based on the liquefaction strength.

第二の実施の形態による液状化対策構造51では、タンク2の外周部2aの下方の地盤Gと、周辺の地盤Gに複数のバットレス3が放射状に配設されていることにより、第一の実施の形態による液状化対策構造1と同様の効果を奏する。   In the liquefaction countermeasure structure 51 according to the second embodiment, a plurality of buttresses 3 are radially arranged on the ground G below the outer peripheral portion 2a of the tank 2 and the surrounding ground G, so that the first The same effects as the liquefaction countermeasure structure 1 according to the embodiment are obtained.

図14に示すように、第三の実施の形態による液状化対策構造61では、内部地盤改良体64は薬液を浸透させる浸透固化工法により改良されている。
このとき、薬液により地盤Gの液状化に対する強度が上がるので、バットレス3の計画は、薬液注入の影響を考慮して行う。
第三の実施の形態による液状化対策構造61では、タンク2の外周部2aの下方の地盤Gと、周辺の地盤Gに複数のバットレス3が放射状に配設されていることにより、第一の実施の形態による液状化対策構造1と同様の効果を奏する。
また、内部地盤改良体64は薬液を浸透させる浸透固化工法により改良されていることにより、タンク2の基礎スラブ11を撤去しない場合であっても側方から薬液を注入することで内部地盤改良体64を形成することができる。
As shown in FIG. 14, in the liquefaction countermeasure structure 61 according to the third embodiment, the internal ground improvement body 64 is improved by an osmotic solidification method for infiltrating a chemical solution.
At this time, since the strength against liquefaction of the ground G is increased by the chemical solution, the buttress 3 is planned in consideration of the influence of the chemical solution injection.
In the liquefaction countermeasure structure 61 according to the third embodiment, a plurality of buttresses 3 are radially disposed on the ground G below the outer peripheral portion 2a of the tank 2 and the surrounding ground G, thereby The same effects as the liquefaction countermeasure structure 1 according to the embodiment are obtained.
Further, since the internal ground improvement body 64 is improved by a permeation solidification method for infiltrating the chemical liquid, the internal ground improvement body can be injected by injecting the chemical liquid from the side even when the basic slab 11 of the tank 2 is not removed. 64 can be formed.

図15に示すように、第四の実施の形態による液状化対策構造81では、バットレス3の下端部3aが地盤Gの非液状化層G5に根入れされていて、タンク2の中心部2bの下方の地盤Gに形成された内部地盤改良体84はその下端部84aが非液状化層G5に達していなく、非液状化層G5と内部地盤改良体84との間には液状化層G6が介在している。
内部地盤改良体84の深度h1は、液状化層G6の深度h2の5〜8割程度とすることが好ましい。内部地盤改良体84は、セメント系深層混合処理工法によって形成されていてもよく、薬液を浸透させる浸透固化工法によって形成されていてもよい。また、内部地盤改良体84は、この他の方法で形成されていても。
内部地盤改良体84は、内部地盤改良体84が形成される領域全体が改良されたものでもよく、第二の実施の形態のように格子状に改良されたものとしてもよい。
As shown in FIG. 15, in the liquefaction countermeasure structure 81 according to the fourth embodiment, the lower end 3a of the buttress 3 is rooted in the non-liquefaction layer G5 of the ground G, and the center 2b of the tank 2 is The lower end 84a of the internal ground improvement body 84 formed on the lower ground G does not reach the non-liquefied layer G5, and the liquefied layer G6 is interposed between the non-liquefied layer G5 and the internal ground improvement body 84. Intervene.
The depth h1 of the internal ground improvement body 84 is preferably about 50 to 80% of the depth h2 of the liquefied layer G6. The internal ground improvement body 84 may be formed by a cement-based deep mixing method, or may be formed by an osmotic solidification method in which a chemical solution is infiltrated. Moreover, even if the internal ground improvement body 84 is formed by this other method.
The internal ground improvement body 84 may be an improvement of the entire region in which the internal ground improvement body 84 is formed, or may be improved in a lattice shape as in the second embodiment.

第四の実施の形態による液状化対策構造81によれば、第一の実施の形態による液状化対策構造1と同様の効果を奏すると共に、バットレス3が非液状化層G5に根入れされていることにより、地震時のバットレスの3の変位が抑えられるので、隣り合うバットレス3間の地盤Gがせん断変形することを抑制できタンク2の不同沈下を防ぐことができる。
また、非液状化層G5と内部地盤改良体84との間に液状化層G6が介在していることにより、地震時に非液状化層G5から内部地盤改良体84に伝達する振動の一部が液状化層G6によって吸収されるので、タンク2に伝達する振動を減少させることができる。
また、内部地盤改良体84の下端部84aが非液状化層G5に達するように形成された場合と比べて、本実施の形態は内部地盤改良体84の施工量を少なくすることができるので、コスト削減と工期短縮を図ることができる。
According to the liquefaction countermeasure structure 81 according to the fourth embodiment, the same effect as the liquefaction countermeasure structure 1 according to the first embodiment is obtained, and the buttress 3 is embedded in the non-liquefaction layer G5. Thus, since the displacement of the buttress 3 at the time of the earthquake is suppressed, it is possible to suppress the ground G between the adjacent buttresses 3 from being sheared and to prevent the tank 2 from being settling down.
Further, since the liquefied layer G6 is interposed between the non-liquefied layer G5 and the internal ground improvement body 84, a part of vibration transmitted from the non-liquefied layer G5 to the internal ground improvement body 84 at the time of an earthquake is generated. Since it is absorbed by the liquefied layer G6, vibration transmitted to the tank 2 can be reduced.
Moreover, since this Embodiment can reduce the construction amount of the internal ground improvement body 84 compared with the case where the lower end part 84a of the internal ground improvement body 84 is formed so that it may reach the non-liquefaction layer G5, Cost reduction and construction period can be shortened.

ここで、構造物の下方の地盤の改良深さと構造物の沈下量との関係を検証する実験を行った。
図16(a)に示すように、非液状化層に相当する地盤Gに締め固めによる地盤改良を行い、この上に鋼鉄ブロック91を配設して所定の遠心振動実験(q=100kPa)を行い、鋼鉄ブロック91の沈下量を測定した。図16(a)において地盤改良された領域を地盤改良領域92とし、地盤改良領域92は平面視で鋼鉄ブロック91よりも大きい円形を断面とする円柱状に形成されている。
本実験では実験ケースC0〜C4の5つのケースについて行った。これらのケースC0〜C5では地盤改良領域92の深さh1が異なり、図16(b)にそれぞれの深さh1および地盤Gの深さh2に対する改良比(h1/h2)を示す。
Here, an experiment was conducted to verify the relationship between the improvement depth of the ground below the structure and the amount of settlement of the structure.
As shown in FIG. 16 (a), the ground is improved by compacting the ground G corresponding to the non-liquefied layer, and the steel block 91 is disposed thereon, and a predetermined centrifugal vibration experiment (q = 100 kPa) is performed. The amount of settlement of the steel block 91 was measured. In FIG. 16A, the ground improved region is a ground improved region 92, and the ground improved region 92 is formed in a columnar shape having a cross section that is larger than the steel block 91 in plan view.
In this experiment, five cases of experiment cases C0 to C4 were performed. In these cases C0 to C5, the depth h1 of the ground improvement region 92 is different, and FIG. 16B shows the improvement ratio (h1 / h2) with respect to the depth h1 and the depth h2 of the ground G, respectively.

図17の鋼鉄ブロックの沈下量を示す図からわかるように、ケースC2(改良比0.53)とケースC4(改良比1.00)では沈下量がほとんど変わらない。このことより、地盤Gの深さh2に対して約53パーセント以上の深さの地盤改良を行うことで地盤Gの全深さh2に改良を行った場合と鋼鉄ブロック91の沈下量を同等に抑えることができることがわかる。   As can be seen from the figure showing the amount of settlement of the steel block in FIG. 17, the amount of settlement is almost the same in case C2 (improvement ratio 0.53) and case C4 (improvement ratio 1.00). As a result, the amount of subsidence of the steel block 91 is equivalent to that when the ground is improved to a total depth h2 by improving the ground at a depth of about 53% or more with respect to the depth h2 of the ground G. It can be seen that it can be suppressed.

以上、本発明による液状化対策構造の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上述した実施の形態では、タンク2の外周部2aの下方と周辺の地盤Gにバットレス3を配設し、タンク2の中心部2bの下方の地盤Gを改良しているが、タンク2の中心部2bの下方の地盤Gを改良せずに、タンク2の外周部2aの下方と周辺の地盤Gにバットレス3を配設する構造としてもよい。
また、上記の実施の形態では、基礎スラブ11を撤去してからタンク2の内部からバットレス3を施工しているが、タンク2の外方から本実施の形態による地盤改良装置21を使用してバットレス3を造成してもよい。
また、上記の実施の形態では、部分改良地盤G1の液状化強度を基に、バットレス3の形状を決定しているが、そのほか有限要素法(FEM)などを用いてバットレス3の検討を行ってもよい。
また、第二の実施の形態では、内部地盤改良体54は格子状に地盤改良された部分改良地盤であるが、所定の間隔で配設された柱状の地盤改良体が配設された部分改良地盤としてもよい。
また、本実施の形態では、円柱状のタンク2を支持する地盤Gに液状化対策構造を適用しているが、図18に示すように、平面視四角形などの他の形の構造物72に本実施の形態による液状化対策構造を適用してもよい。
As mentioned above, although embodiment of the liquefaction countermeasure structure by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.
For example, in the embodiment described above, the buttress 3 is disposed below the outer peripheral portion 2a of the tank 2 and the surrounding ground G, and the ground G below the central portion 2b of the tank 2 is improved. The buttress 3 may be disposed below the outer peripheral portion 2a of the tank 2 and the surrounding ground G without improving the ground G below the central portion 2b.
In the above embodiment, the buttress 3 is constructed from the inside of the tank 2 after the foundation slab 11 is removed, but the ground improvement device 21 according to the present embodiment is used from the outside of the tank 2. Buttress 3 may be created.
In the above embodiment, the shape of the buttress 3 is determined on the basis of the liquefaction strength of the partially improved ground G1, but the buttress 3 is also examined using a finite element method (FEM) or the like. Also good.
In the second embodiment, the internal ground improvement body 54 is a partial improvement ground improved in a grid shape, but a partial improvement in which columnar ground improvement bodies arranged at predetermined intervals are provided. It may be the ground.
In the present embodiment, the liquefaction countermeasure structure is applied to the ground G that supports the cylindrical tank 2, but as shown in FIG. The liquefaction countermeasure structure according to this embodiment may be applied.

1、51、61 液状化対策構造
2 タンク(既存構造物)
3 バットレス(地中壁)
4、54、64 内部地盤改良体
11 基礎スラブ
21 地盤改良装置
22 ベースマシン
24 攪拌混合機
G 地盤
G1、G4 部分改良地盤
G5 非液状化層
G6 液状化層
τ せん断応力
γ せん断ひずみ
eq 等価せん断剛性
Δu/σν’ 過剰間隙水圧比
1, 51, 61 Liquefaction countermeasure structure 2 Tank (existing structure)
3 Buttress (underground wall)
4, 54, 64 Internal ground improvement body 11 Basic slab 21 Ground improvement device 22 Base machine 24 Stir mixer G Ground G1, G4 Partially improved ground G5 Non-liquefied layer G6 Liquefied layer τ d Shear stress γ i Shear strain G eq Equivalent shear stiffness Δu / σ ν 'Excess pore water pressure ratio

Claims (10)

液状化による既存構造物の被害を低減させる液状化対策構造であって、
前記既存構造物の外周部の下方および周囲の地盤に、前記地盤の原位置土と固化材とを攪拌して形成されていて、前記既存構造物の外周に直交する向きもしくは直交に近い向きの地中壁が、前記既存構造物の外周に平行な方向に所定の間隔をあけて複数配設されていることを特徴とする液状化対策構造。
A liquefaction countermeasure structure that reduces damage to existing structures due to liquefaction,
It is formed by stirring the in-situ soil and solidification material of the ground below and around the outer periphery of the existing structure, and is oriented in a direction perpendicular to or substantially perpendicular to the outer periphery of the existing structure. 2. A liquefaction countermeasure structure, wherein a plurality of underground walls are arranged at predetermined intervals in a direction parallel to the outer periphery of the existing structure.
前記既存構造物の中心部の下方の地盤は改良されていることを特徴とする請求項1に記載の液状化対策構造。   The liquefaction countermeasure structure according to claim 1, wherein the ground below the center of the existing structure is improved. 前記地中壁は下端部が前記地盤の非液状化層に根入れされていて、前記既存構造物の中心部の下方の地盤の改良は非液状化層に達していないことを特徴とする請求項2に記載の液状化対策構造。   The lower end of the underground wall is embedded in the non-liquefied layer of the ground, and the improvement of the ground below the central portion of the existing structure does not reach the non-liquefied layer. Item 3. The liquefaction countermeasure structure according to Item 2. 前記既存構造物の中心部の下方の地盤には、前記地盤の原位置土と固化材とを攪拌して形成された地盤改良体が部分的に配設されていることを特徴とする請求項2または3に記載の液状化対策構造。     2. The ground improvement body formed by stirring the original soil and solidification material of the ground is partially disposed on the ground below the center of the existing structure. The liquefaction countermeasure structure according to 2 or 3. 前記既存構造物の中心部の下方地盤は、薬液を注入し浸透固化させることにより改良されていることを特徴とする請求項2または3に記載の液状化対策構造。   The liquefaction countermeasure structure according to claim 2 or 3, wherein the lower ground in the central portion of the existing structure is improved by injecting a chemical solution and solidifying it by penetration. 前記固化材はセメントまたはセメント系固化材であることを特徴とする請求項1乃至5のいずれかに記載の液状化対策構造。   The liquefaction countermeasure structure according to any one of claims 1 to 5, wherein the solidifying material is cement or a cement-based solidifying material. 前記地中壁が配設された部分改良地盤の液状化強度は、
改良前の地盤に地震時に生じるせん断応力を算出し、
前記せん断応力に基づいて改良前の地盤のせん断ひずみを算出し、
改良後の地盤の等価せん断剛性を算出し、
改良後の地盤における前記地中壁間の未改良地盤に生じるせん断ひずみを求め、
前記せん断ひずみに応じた等価せん断剛性を再決定し、
再決定した等価せん断剛性を用いてせん断ひずみが一定の値に収束するまで計算を行ってせん断ひずみを決定し、
決定したせん断ひずみに基づいて未改良地盤に生じる過剰間隙水圧比を求め、
前記過剰間隙水圧比に基づいて評価されていることを特徴とする請求項1乃至6のいずれかに記載の液状化対策構造。
The liquefaction strength of the partially improved ground where the underground wall is disposed is
Calculate the shear stress generated during the earthquake on the ground before improvement,
Calculate the shear strain of the ground before improvement based on the shear stress,
Calculate the equivalent shear stiffness of the ground after improvement,
Obtain the shear strain generated in the unimproved ground between the underground walls in the improved ground,
Re-determining the equivalent shear stiffness according to the shear strain;
Using the re-determined equivalent shear stiffness, calculate the shear strain until the shear strain converges to a certain value, determine the shear strain,
Based on the determined shear strain, find the excess pore water pressure ratio that occurs in the unmodified ground,
The liquefaction countermeasure structure according to any one of claims 1 to 6, wherein the structure is evaluated based on the excess pore water pressure ratio.
前記既存構造物は平面視円形の構造物で、前記地中壁は前記既存構造物に対して放射状に配設されていることを特徴とする請求項1乃至7に記載の液状化対策構造。   The liquefaction countermeasure structure according to claim 1, wherein the existing structure is a circular structure in plan view, and the underground wall is arranged radially with respect to the existing structure. 液状化による既存構造物の被害を低減させる液状化対策工法であって、
前記既存構造物の外周部の下方地盤および周囲地盤に固化材を供給しつつ原位置土と攪拌混合する攪拌混合機を挿入し、前記攪拌混合機を水平姿勢で上下方向および水平各方向に移動して地中壁を形成することを特徴とする液状化対策工法。
A liquefaction countermeasure method that reduces damage to existing structures due to liquefaction,
Insert a stirring mixer that stirs and mixes with the in-situ soil while supplying solidification material to the lower ground and surrounding ground of the outer periphery of the existing structure, and moves the stirring mixer in the vertical and horizontal directions in a horizontal position. A liquefaction countermeasure method characterized by forming underground walls.
前記地中壁を形成する工程は、前記既存構造物の内部から行うことを特徴とする請求項9に記載の液状化対策工法。

The liquefaction countermeasure method according to claim 9, wherein the step of forming the underground wall is performed from the inside of the existing structure.

JP2009260226A 2009-05-25 2009-11-13 Liquefaction countermeasure structure Expired - Fee Related JP5413665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009260226A JP5413665B2 (en) 2009-05-25 2009-11-13 Liquefaction countermeasure structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009125166 2009-05-25
JP2009125166 2009-05-25
JP2009260226A JP5413665B2 (en) 2009-05-25 2009-11-13 Liquefaction countermeasure structure

Publications (2)

Publication Number Publication Date
JP2011007031A true JP2011007031A (en) 2011-01-13
JP5413665B2 JP5413665B2 (en) 2014-02-12

Family

ID=43563971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009260226A Expired - Fee Related JP5413665B2 (en) 2009-05-25 2009-11-13 Liquefaction countermeasure structure

Country Status (1)

Country Link
JP (1) JP5413665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143328A (en) * 2018-02-19 2019-08-29 鹿島建設株式会社 Building installation structure and installation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7099265B2 (en) 2018-11-12 2022-07-12 日本製鉄株式会社 Wastewater treatment equipment and wastewater treatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219676A (en) * 1997-02-12 1998-08-18 Shimizu Corp Ground sideways flow preventive structure
JP2002302935A (en) * 2001-04-09 2002-10-18 Ohbayashi Corp Simplified design method for grid-shaped improved body in liquefaction resistance, grid-shaped depth mixture treatment construction method
JP2005083174A (en) * 2003-09-11 2005-03-31 Shimizu Corp Countermeasure structure against liquefaction of foundation for construction
JP2005105602A (en) * 2003-09-29 2005-04-21 Shimizu Corp Counter measure structure for liquefaction
JP2007162337A (en) * 2005-12-14 2007-06-28 Shimizu Corp Soil improving apparatus and liquefaction preventing method
JP2007247165A (en) * 2006-03-14 2007-09-27 Takenaka Komuten Co Ltd Base isolation structure and base isolation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219676A (en) * 1997-02-12 1998-08-18 Shimizu Corp Ground sideways flow preventive structure
JP2002302935A (en) * 2001-04-09 2002-10-18 Ohbayashi Corp Simplified design method for grid-shaped improved body in liquefaction resistance, grid-shaped depth mixture treatment construction method
JP2005083174A (en) * 2003-09-11 2005-03-31 Shimizu Corp Countermeasure structure against liquefaction of foundation for construction
JP2005105602A (en) * 2003-09-29 2005-04-21 Shimizu Corp Counter measure structure for liquefaction
JP2007162337A (en) * 2005-12-14 2007-06-28 Shimizu Corp Soil improving apparatus and liquefaction preventing method
JP2007247165A (en) * 2006-03-14 2007-09-27 Takenaka Komuten Co Ltd Base isolation structure and base isolation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143328A (en) * 2018-02-19 2019-08-29 鹿島建設株式会社 Building installation structure and installation method
JP7014629B2 (en) 2018-02-19 2022-02-01 鹿島建設株式会社 Building installation structure and installation method

Also Published As

Publication number Publication date
JP5413665B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
CN102071693A (en) Variable section cement-soil gravity type retaining wall and construction method thereof
JP5464510B2 (en) Submarine foundation for offshore structures and construction method thereof
JP6413469B2 (en) Pile foundation and pile foundation construction method
JP5413665B2 (en) Liquefaction countermeasure structure
JP5979635B2 (en) Underground cavity filling material and method for producing the filling material
CN108978742A (en) One kind cutting stake forced-landing tilt correcting structure, method
KR100699359B1 (en) Underground diaphragm wall with post-tensioning equipment and construction method the same
CN102926382B (en) A kind of construction method of SMW engineering method
JP7085464B2 (en) How to build a retaining wall structure in the reverse striking method
JP6645098B2 (en) Removal method of existing pile
JP5809369B2 (en) Cast-in-place concrete pile method
JP5681988B2 (en) Breakwater reinforcement method and reinforced breakwater
JP2006322190A (en) Pile head processing method of cast-in-place concrete pile and concrete processing agent mixing device
JP2007126817A (en) Improved ground preparation method
KR101347763B1 (en) A structure and method of underwater construction repair
JP2016205062A (en) Chemical injection method
JP7096469B1 (en) Small cross-section underground continuous wall
CN109826066A (en) A kind of road structure and construction method of light soil roadbed combination steel-pipe pile
JP6646642B2 (en) Manufacturing method of improved body
JP6710807B2 (en) Method of manufacturing improved body
JP4413166B2 (en) Cast-in-place pile construction method and cast-in-place pile structure
JP2010180633A (en) Method of filling up gap part produced by land subsidence
JP2008280803A (en) Pile foundation reinforcing construction method by additional pile
JP5053807B2 (en) Ground improvement body construction method and ground improvement foundation structure
KR200430945Y1 (en) Underground diaphragm wall with post-tensioning equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

R150 Certificate of patent or registration of utility model

Ref document number: 5413665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees