JP2007126817A - Improved ground preparation method - Google Patents

Improved ground preparation method Download PDF

Info

Publication number
JP2007126817A
JP2007126817A JP2005317873A JP2005317873A JP2007126817A JP 2007126817 A JP2007126817 A JP 2007126817A JP 2005317873 A JP2005317873 A JP 2005317873A JP 2005317873 A JP2005317873 A JP 2005317873A JP 2007126817 A JP2007126817 A JP 2007126817A
Authority
JP
Japan
Prior art keywords
soil
stirring
void
improved
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005317873A
Other languages
Japanese (ja)
Inventor
Masaki Makino
昌己 牧野
Tomohiro Katsurayama
友宏 桂山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kato Construction Co Ltd
Original Assignee
Kato Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kato Construction Co Ltd filed Critical Kato Construction Co Ltd
Priority to JP2005317873A priority Critical patent/JP2007126817A/en
Publication of JP2007126817A publication Critical patent/JP2007126817A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved ground preparation method without causing unequal settlement while reducing cost. <P>SOLUTION: This preparation method prepares the ground by this bubble mixed earth by manufacturing the fluid bubble mixed earth by agitating and mixing three members of present position earth, cement being a solidifying material and bubbles being a void forming material in a present position. An improved ground preparation body 38 is prepared by its bubble mixed earth so that the area of an improved earth layer 7 occupied by the bubble mixed earth overflowing from a corresponding place while including the area of its improved column body 1 becomes larger than the area of an improved column body 1 corresponding part for applying agitating mixing processing for manufacturing the bubble mixed earth. In this case, the improved ground preparation body is prepared so that a vertical cross-sectional shape of the single improved ground preparation body 38 becomes a substantially T shape. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軟弱な地盤上に盛土体やコンクリート等の構造物を構築するにあたり、それに先立って実施する改良地盤造成方法に関し、特に発泡ビーズや気泡を空隙形成材として用いたいわゆる軽量混合土をもって改良地盤を造成する方法に関するものである。   The present invention relates to an improved ground formation method to be performed prior to the construction of a structure such as embankment or concrete on soft ground, and in particular, with a so-called lightweight mixed soil using foam beads or bubbles as a gap forming material. The present invention relates to a method for creating an improved ground.

軟弱地盤上にコンクリート構造物や盛土体を構築する場合に、いわゆる軽量混合土を用いたフローティング工法を用いることがある。この工法の概念は、例えば建物とそれを支える地盤との関係において、建物の重量と等しい重量の地盤を取り除いた上でその跡に建物を置けば、その下にある地盤では応力が変わらないので、沈下も膨張も起こらず、その意味で「浮き基礎(floating foundation)」と呼ばれている(例えば、「吉見吉昭のホームページ」 http://homepage2.nifty.com/yoshimi−y/floating.htm)。   When constructing a concrete structure or embankment on soft ground, a floating construction method using a so-called lightweight mixed soil may be used. The concept of this method is that, for example, in the relationship between the building and the ground that supports it, if the building is placed on the trace after removing the ground with the same weight as the building, the stress does not change on the ground below it. In this sense, neither settlement nor expansion occurs, and it is called “floating foundation” (for example, “Homepage of Yoshiaki Yoshiaki”) http://homepage2.nifty.com/yosimi-y/floating.htm ).

一方、上記フローティング工法に類似した技術として例えば特許文献1に記載の軟弱地盤対策工法が本出願人により提案されている。この工法では、現位置土に空隙形成材として発泡性合成樹脂の小片であるいわゆる発泡ビーズ等と固化材を撹拌混合して、軽量で且つ強度的には上載荷重に十分に耐え得るだけの強度を有する軽量土を造成することで、構造物を軟弱地盤上に構築した場合に相当する重量(増加荷重)を軽減しつつ地耐力をも確保できるようにした工法である。すなわち、上載荷重(増加荷重)と現位置土の軽減重量をほぼ同等のものとすることにより、結果的には構造物を軟弱地盤上に構築したとしてもそれによる増加荷重がなかったとみなし得る状態をつくり出すことができる軟弱地盤対策工法である。   On the other hand, as a technique similar to the floating construction method, for example, a soft ground countermeasure construction method described in Patent Document 1 has been proposed by the present applicant. In this method, the solidified material is mixed with a so-called foamed bead, which is a small piece of foamable synthetic resin, as a void-forming material in the current position soil, and it is lightweight and strong enough to withstand the onboard load. Is a construction method that can secure ground strength while reducing the weight (increased load) corresponding to the construction of the structure on soft ground. That is, by making the mounted load (increased load) and the reduced weight of the current position soil approximately the same, even if the structure is built on soft ground, it can be considered that there was no increased load due to it. It is a soft ground countermeasure method that can create

また、その手段として、空隙形成材と固化材を現位置土中に吐出しながら現位置土と撹拌混合して、構造物や盛土体の構築に伴う上載荷重に耐え得るだけの強度を有する軽量土を造成するにあたり、現位置土の軽量土化に伴う軽減重量が上載荷重とほぼ等しくなるように施工する、としているほか、所定高さの盛土体を構築するのに必要な体積分またはその一部分を、その盛土体の底面部の現位置土中に空隙形成材と固化材を吐出しながら撹拌混合することで造成した軽量土の増量分でまかなうとともに、盛土体として必要な強度を有する軽量土を造成する、としている。   In addition, as a means for doing so, a lightweight material with sufficient strength to withstand the overload associated with construction of structures and embankments by stirring and mixing with the current position soil while discharging the gap forming material and the solidified material into the current position soil. In constructing the soil, construction should be made so that the reduced weight associated with the lighter soil at the current location is almost equal to the load on top of the soil. A part is covered with the increased amount of lightweight soil created by stirring and mixing while discharging void formation material and solidification material into the soil at the current position of the bottom of the embankment body, and light weight with the strength necessary for embankment body It is going to create soil.

言い換え得るならば、前者では、現位置土の軽量土化に伴う軽減重量が上載荷重とほぼ等しくなるように施工する、とし、また後者では、所定高さの盛土体を構築するのに必要な体積分またはその一部分を造成した軽量土の増量分でまかなう、としており、いずれにしても構造物や盛土体の下部領域(底面部)を全面的に軽量化する軟弱地盤対策工法である。
特開2004−300915号公報
In other words, in the former case, construction should be made so that the reduced weight associated with the lighter soil at the current position is almost equal to the loading load, and in the latter case, it is necessary to construct the embankment with a predetermined height. It is a soft ground countermeasure construction method that reduces the weight of the lower area (bottom part) of the structure and embankment in any case.
JP 2004-300915 A

上記特許文献1に記載の前者の技術によれば、軽量土化に伴う軽減重量と構造物や盛土体の上載荷重とほぼ等しくなるように施工する技術であることから、その軽減重量に相当する体積分の現位置土(原土)と軽量土とを置き換える必要がある。よって、上載荷重が大きくなるのに伴い構造物や盛土体の下部領域における掘削深度(置き換え深さ)が大きくなり、コストアップを招くという課題があった。   According to the former technique described in the above-mentioned Patent Document 1, since it is a technique of constructing so that the reduced weight associated with lightening of the soil and the load on the structure or embankment body becomes substantially equal, it corresponds to the reduced weight. It is necessary to replace the current position soil (raw soil) for the volume with light soil. Accordingly, there is a problem that the excavation depth (replacement depth) in the lower region of the structure or embankment increases with an increase in the upper load, leading to an increase in cost.

また、上記特許文献1に記載の後者の技術によれば、盛土体の体積を造成した軽量土の増量分でまかなう技術であることから、軽量土が流動性を有していることを考慮すると、増量分を盛り.上げる型枠を必要とすることになる。よって、その型枠の使用を前提とすると盛土高さが比較的小さい低盛土体(2〜3m)には最適な技術ではあるものの、盛土高さが比較的大きな高盛土体(4〜5m以上)となると型枠の組み立てに大きな時間と費用を要することになるほか、現位置混合であるためにそのための作業機械に型枠が干渉し、盛土体の高さと軽量土の増量分の高さに差が生じるのに伴い盛土体の不同沈下を起こす等の問題があった。   In addition, according to the latter technique described in the above-mentioned Patent Document 1, since it is a technique that can cover the increased volume of the lightweight soil that created the volume of the embankment body, considering that the lightweight soil has fluidity. You will need a formwork to increase the amount of increase. Therefore, although it is an optimal technique for a low embankment with a relatively low embankment height (2-3 m) assuming that the formwork is used, a high embankment with a relatively large embankment height (4-5 m or more) ), It takes a lot of time and money to assemble the formwork, and because it is in-situ mixing, the formwork interferes with the work machine for that purpose, and the height of the embankment and the increase in the weight of the lightweight soil There was a problem such as causing uneven settlement of the embankment as the difference occurred.

本発明はこのような課題に着目してなされたものであり、とりわけコストの低減を図りながら不同沈下を起こすことのない改良地盤造成方法を提供しようとするものである。   The present invention has been made paying attention to such problems, and in particular, an object of the present invention is to provide an improved ground preparation method that does not cause uneven settlement while reducing costs.

請求項1に記載の発明は、現位置土と固化材および空隙形成材の三者を現位置にて撹拌混合して流動性を有する空隙形成材混合土を製造するとともに、この空隙形成材混合土をもって地盤を造成するに際し、空隙形成材混合土を製造するべく撹拌混合処理を施す撹拌混合箇所の面積よりもその撹拌混合箇所の面積を含みつつ当該撹拌混合箇所から溢れ出た空隙形成材混合土が占有する面積の方が大きくなるようにその空隙形成材混合土をもって改良地盤を造成することを特徴とする。   The invention according to claim 1 is to produce a void-forming material mixed soil having fluidity by stirring and mixing the current position soil, the solidified material and the void-forming material at the current position, and mixing the void-forming material. When creating the ground with soil, the void forming material mixture overflowing from the stirring and mixing location including the area of the stirring and mixing location rather than the area of the stirring and mixing location that is subjected to the stirring and mixing treatment to produce the void forming material mixed soil The improved ground is created with the void forming material mixed soil so that the area occupied by the soil is larger.

ここに言う空隙形成材としては、例えば請求項6に記載のような発泡ポリスチレン等の小片である発泡ビーズ、または請求項7に記載のような気泡の使用を想定している。   As the void forming material mentioned here, for example, the use of expanded beads such as expanded polystyrene as described in claim 6 or bubbles as described in claim 7 is assumed.

この場合において、請求項2,3に記載のように、撹拌混合箇所の空隙形成材混合土とこの撹拌混合箇所から溢れ出た空隙形成材混合土とをもって形成される単一の改良地盤造成体の垂直断面形状が略T字状もしくは略逆U字状のものとなるように造成することが望ましい。   In this case, as described in claims 2 and 3, a single improved ground formation formed by the void forming material mixed soil at the stirring and mixing portion and the void forming material mixed soil overflowing from the stirring and mixing portion. It is desirable that the vertical cross-sectional shape is substantially T-shaped or substantially inverted U-shaped.

より具体的には、請求項4に記載のように、撹拌混合箇所の空隙形成材混合土とこの撹拌混合箇所から溢れ出た空隙形成材混合土とをもって形成される改良地盤造成体を単一且つ独立したものとして、この改良地盤造成体を二つ以上並設するように造成するものとする。   More specifically, as described in claim 4, a single improved ground formation is formed by the void forming material mixed soil at the stirring and mixing location and the void forming material mixed soil overflowing from the stirring and mixing location. And as an independent thing, it shall construct so that two or more of this improved ground formation object may be arranged in parallel.

または、請求項5に記載のように、撹拌混合箇所の空隙形成材混合土とこの撹拌混合箇所から溢れ出た空隙形成材混合土とをもって形成される改良地盤造成体を単一のものとして、この改良地盤造成体を二つ以上連結するように造成するものとする。   Or, as described in claim 5, the improved ground formation formed by the void forming material mixed soil at the stirring and mixing location and the void forming material mixed soil overflowing from the stirring and mixing location as a single one, It shall be constructed so as to connect two or more of this improved ground formation.

現位置土と固化材および空隙形成材の三者を現位置にて撹拌混合して流動性を有する空隙形成材混合土を製造するには、請求項8に記載のように、作業系建設機械のアームの先端に装着された撹拌混合機を地中に貫入して、現位置土の掘削のほかその現位置土と固化材および空隙形成材との撹拌混合処理を行うものとする。   In order to produce a void forming material mixed soil having fluidity by stirring and mixing the current position soil, the solidified material, and the void forming material at the current position, the work system construction machine as described in claim 8 In addition to excavation of the current position soil, the stirring and mixing process of the current position soil with the solidified material and the void forming material is performed.

より具体的には、請求項9に記載のように、撹拌混合機のフレーム上部の駆動輪とフレーム下部の従動輪との間にエンドレスなチェーンを巻き掛けるとともに、そのチェーンを上下方向に周回移動させることで現位置土の掘削のほかその現位置土と固化材および空隙形成材との撹拌混合処理を行うものとする。   More specifically, as described in claim 9, an endless chain is wound between the driving wheel at the upper part of the frame of the stirring mixer and the driven wheel at the lower part of the frame, and the chain is moved in the vertical direction. By doing so, in addition to excavation of the current position soil, stirring and mixing processing of the current position soil and the solidifying material and the void forming material is performed.

したがって、少なくとも請求項1に記載の発明では、現位置土に固化材のほか先に述べた発泡ビーズや気泡等の空隙形成材を加えた上でそれら三者を現位置にて撹拌混合して流動性を有する空隙形成材混合土を製造すると、必然的に現位置土が軽量土化されて増量されることになる。そこで、撹拌混合処理を施す撹拌混合箇所の面積よりもその撹拌混合箇所の面積を含みつつ当該撹拌混合箇所から溢れ出た空隙形成材混合土が占有する面積の方が大きくなるようにその空隙形成材混合土をもって改良地盤を造成する。その結果、撹拌混合すべき現位置土量(仕事量)ひいては撹拌混合体積が従来よりも減少するにもかかわらず、造成土量ひいては造成体積は増大することになる。特に改良地盤の上に盛土体を構築する場合には、盛土土量の一部が増量された空隙形成材混合土でまかなわれることから、盛土体として必要な盛土土量も相対的に少なくて済むことになる。   Therefore, in at least the invention described in claim 1, after adding the above-mentioned void forming material such as foam beads and bubbles in addition to the solidified material to the current position soil, these three are stirred and mixed at the current position. When the void forming material mixed soil having fluidity is produced, the soil in the current position is inevitably made lighter and increased. Therefore, the void formation so that the area occupied by the void-forming material mixed soil overflowing from the stirring and mixing location, including the area of the stirring and mixing location, is larger than the area of the stirring and mixing location where the stirring and mixing treatment is performed. The improved ground will be created with mixed soil. As a result, the soil volume to be agitated and mixed, and the agitated and mixed volume is reduced as compared with the conventional method, but the soil volume and the created volume are increased. In particular, when constructing an embankment body on the improved ground, a portion of the embankment volume is covered by the increased void forming material mixed soil, so the embankment volume required for the embankment body is relatively small. It will be over.

請求項1に記載の発明によれば、必要最小限の撹拌混合土量をもっていわゆる軽量土化された改良地盤を造成できるため、従来に比べて大幅なコストの低減が可能であるとともに、造成後の改良地盤が不同沈下を起こすこともない。   According to the first aspect of the present invention, since the so-called lightweight soil-improved improved ground can be created with the minimum necessary amount of agitated and mixed soil, the cost can be greatly reduced as compared with the prior art. The improved ground will not cause subsidence.

図1には本発明のより具体的な実施の形態として改良地盤の概略を示している。   FIG. 1 shows an outline of an improved ground as a more specific embodiment of the present invention.

ここでは、幅18m、延長90mで改良対象面積1620m2の地盤領域に対して面積比で20%の割合で多数の改良柱体1,1‥を地中に等ピッチで構築し、それらの改良柱体1,1‥の上に高さ5mの盛土を施して盛土体(堤体)2を造成する場合の例を示している。改良柱体1は2m×2m角の角柱状のものであり、その深さ(高さ)は10mである。また、盛土体2はその底辺が22m、上辺が12mの断面台形状のものである。なお、図1以下の図面では各部の寸法をmm(ミリ)単位で表示してある。 Here, a large number of improved pillars 1, 1... Are constructed at an equal pitch in the ground at an area ratio of 20% with respect to a ground area of width 18m, extension 90m, and area to be improved 1620m 2. The example in the case of embankment with a height of 5 m on the pillars 1, 1. The improved column 1 is a 2 m × 2 m square prism, and its depth (height) is 10 m. The embankment body 2 has a trapezoidal cross section with a base of 22 m and an upper side of 12 m. In the drawings after FIG. 1, the dimensions of each part are displayed in mm (mm) units.

実施工にあたっては、図2の(A)に示すように、改良対象領域を囲むように地面G上に型枠3を立設するとともに、ベースマシンとして機能するバックホウ4のアーム5先端に装着した撹拌混合機6を用意し、その撹拌混合機6を順次地中に貫入して、現位置土(原土)を掘削しながら固化材としての例えばセメントミルクと空隙形成材としての気泡とをそれぞれ地中に吐出して、それら三者を撹拌混合することによりいわゆる軽量土化しつつそれぞれの改良柱体1,1‥を構築する。   In carrying out the construction, as shown in FIG. 2A, the formwork 3 is erected on the ground G so as to surround the area to be improved and attached to the tip of the arm 5 of the backhoe 4 that functions as a base machine. Agitating and mixing machine 6 is prepared, and the agitating and mixing machine 6 sequentially penetrates into the ground, while excavating the current position soil (raw soil), for example, cement milk as a solidifying material and bubbles as a void forming material, respectively. Each of the improved pillars 1, 1... Is constructed by discharging into the ground and stirring and mixing these three while making a so-called lightweight soil.

ここで、現位置土に対する固化材および気泡のそれぞれの混合割合は、いわゆる軽量土と化した後の体積増加率が2倍となるように予め調整してある。   Here, the mixing ratios of the solidification material and the bubbles to the current position soil are adjusted in advance so that the volume increase rate after the so-called lightweight soil is doubled.

図2に示した改良柱体1,1‥はそれぞれが独立しているものの、現位置土と固化材および気泡の三者を相互に撹拌混合することで軽量土化とともに増量されており、その増量分が上方に溢れ出て、地面G上には各改良柱体1,1‥の上方側にそれらの改良柱体1,1‥が共有することになる改良土層7が形成されることになる。なお、この改良土層7の土質は改良柱体1,1‥のそれと同じであることは言うまでもなく、また先にも述べたように軽量土と化した時点での体積増加率が2倍であることから、改良柱体1,1‥の構築に伴い増量して上方に溢れ出た軽量土の量、すなわち改良土層7の体積は各改良柱体1,1‥の総体積と等しいことになる。   Although the improved pillars 1, 1... Shown in FIG. 2 are independent of each other, the weight is increased along with the lightening of the soil by mixing and stirring the current position soil, the solidified material, and the bubbles. The increased amount overflows upward, and on the ground G, an improved soil layer 7 is formed on the upper side of each of the improved pillars 1, 1. become. Needless to say, the soil quality of the improved soil layer 7 is the same as that of the improved pillars 1, 1,... Therefore, the amount of lightweight soil that has increased with the construction of the improved pillars 1, 1, and overflowed upward, that is, the volume of the improved soil layer 7 is equal to the total volume of each improved pillar 1, 1. become.

こうして、改良土層7とともに多数の改良柱体1,1‥が構築されたならば、図2の(B)に示すように、改良対象領域を囲っていた型枠3を撤去した上で、ダンプトラック8等にて盛土用の土を搬入して改良土層7の上に盛り上げるとともに、ブルドーザー9等にて敷き均しを行って、図3に示すように盛土体2を造成する。   In this way, if a large number of improved pillars 1, 1... Are constructed together with the improved soil layer 7, as shown in FIG. 2 (B), after removing the mold 3 surrounding the area to be improved, The earth for embankment is carried in with the dump truck 8 etc., raised on the improved soil layer 7, and spread with a bulldozer 9 etc., and the embankment body 2 is formed as shown in FIG.

これを整理すると次のようになる。   This is organized as follows.

・改良対象面積
90m×18m=1620m2
・改良柱体1の構築のための撹拌土量
1620m2×20%×10m=3240m3
・軽量土として改良された総造成体積
=改良柱体1と化した軽量土量+改良土層7と化した軽量土量
=3240m3+3240m3=6480m3
・盛土体2を造成するのに必要な搬入すべき土の量
=(盛土体2の台形の断面積−改良土層7の断面積)×盛土体2の長さ
=(85m2−36m2)×90m=4410m3
ここで、比較のために、図1,3と同じ断面形状の盛土体2を造成する場合の従来の工法について検討してみる。なお、図4,5等の図面でも各部の寸法をmm(ミリ)単位で表示してある。
・ Area to be improved 90m × 18m = 1620m 2
・ Agitation soil volume for construction of improved column 1 1620 m 2 × 20% × 10 m = 3240 m 3
-Total creation volume improved as lightweight soil = Light soil volume converted into improved column 1 + Light soil volume converted into improved soil layer = 3240m 3 + 3240m 3 = 6480m 3
-Amount of soil to be carried in to form the embankment body 2 = (trapezoidal cross-sectional area of the embankment body 2-cross-sectional area of the improved soil layer 7) x length of the embankment body 2 = (85 m 2 -36 m 2 ) × 90m = 4410m 3
Here, for comparison, a conventional construction method in the case where the embankment body 2 having the same cross-sectional shape as in FIGS. In addition, in the drawings such as FIGS. 4 and 5, the dimensions of each part are indicated in mm (mm).

図4に示す従来の工法では、盛土体12の造成による増加荷重対策として、幅18m、延長90mで改良対象面積1620m2の地盤領域に対して面積比で20%の割合で円柱状のセメントソイル杭(地面下2m〜10mまでの8mの長さのもの)11,11‥を地中に等ピッチで構築し、それらのセメントソイル杭11,11‥上に高さ5mの盛土を施して盛土体(堤体)12を造成する場合の例を示している。なお、セメントソイル杭11,11‥の構築には図5の(A)に示すように深層攪拌混合機10を用いている。また、その深層攪拌混合機10にて構築されるセメントソイル杭11,11‥は図1,3の改良柱体1と断面積が同じとなるように直径を2.26mとした。また、盛土体12の断面形状および断面積は図13に示したものと同じである。 In the conventional construction method shown in FIG. 4, as a countermeasure against an increased load due to the formation of the embankment body 12, a cylindrical cement soil having a ratio of 20% to the ground area having a width of 18 m, an extension of 90 m and an area to be improved of 1620 m 2. Piles (8m length from 2m to 10m below the ground) 11, 11 ... are constructed in the ground at an equal pitch, and 5m high embankment is applied to the cement soil piles 11, 11 ... The example in the case of constructing the body (bank body) 12 is shown. For the construction of the cement soil piles 11, 11,..., A deep stirring mixer 10 is used as shown in FIG. Further, the cement soil piles 11, 11... Constructed by the deep stirring mixer 10 have a diameter of 2.26 m so that the cross-sectional area is the same as that of the improved column 1 of FIGS. Moreover, the cross-sectional shape and cross-sectional area of the embankment body 12 are the same as what was shown in FIG.

図5の(B)のようにセメントソイル杭11,11‥を構築したままでその上に盛土体12を造成すると、不同沈下を生ずるおそれがあることから、セメントソイル杭11,11‥の上面に地面Gと面一状態となるように深さ2mの地盤改良層13を造成した。なお、この地盤改良層13の造成には図2と同様の撹拌混合機14を使用した。その後、図6に示すように地盤改良層13の上にブルドーザー8等にて所定高さの盛土体12を造成した。   If the embankment body 12 is formed on the cement soil piles 11, 11... As shown in FIG. 5 (B), there is a possibility that uneven settlement will occur. Therefore, the upper surface of the cement soil piles 11, 11. A ground improvement layer 13 having a depth of 2 m was formed so as to be flush with the ground G. In addition, the same stirring mixer 14 as FIG. 2 was used for creation of this ground improvement layer 13. As shown in FIG. After that, as shown in FIG. 6, the embankment body 12 having a predetermined height was formed on the ground improvement layer 13 with a bulldozer 8 or the like.

これを整理すると次のようになる。   This is organized as follows.

・改良対象面積
90m×18m=1620m2
・セメントソイル杭11の構築のための撹拌土量
1620m2×20%×8m=2592m3
・地盤改良された総造成体積
=セメントソイル杭11と化した改良土量+地盤改良層13と化した改良土量
=2592m3+3240m3=5832m3
・盛土体12を造成するのに必要な搬入すべき土の量
=盛土体12の台形の断面積×盛土体12の長さ
=(85m2×90m=7650m3
ここで、先の実施の形態と従来工法とを比較のために表としてまとめると表1のようになる。
・ Area to be improved 90m × 18m = 1620m 2
・ Agitation soil volume for construction of cement soil pile 11 1620 m 2 × 20% × 8 m = 2589 m 3
・ Ground improved total creation volume = Improved soil volume converted to cement soil pile 11 + Improved soil volume converted to ground improved layer 13 = 2592m 3 + 3240m 3 = 5832m 3
-Amount of soil to be loaded necessary to create the embankment body 12 = trapezoidal cross-sectional area of the embankment body 12 x length of the embankment body 12 = (85 m 2 × 90 m = 7650 m 3
Here, Table 1 summarizes the previous embodiment and the conventional method as a table for comparison.

Figure 2007126817
Figure 2007126817

表1から明らかなように、本実施の形態によれば、従来工法に比較して、撹拌すべき土量および仕事の成果としての造成土量が大幅に増大する一方、盛土体2を造成するのに必要な土量も大幅に少なくて済むことになり、結果として施工コストの大幅な低減が可能となる。   As is apparent from Table 1, according to the present embodiment, the amount of soil to be stirred and the amount of created soil as a result of work are greatly increased, while the embankment body 2 is created. As a result, the amount of soil required for this is greatly reduced, and as a result, the construction cost can be greatly reduced.

次に、上記工法を前提としたより詳細な実施例について説明する。   Next, more detailed examples based on the above construction method will be described.

現位置土の単位体積重量ρt=1.5t/m3の軟弱地盤上に5t/m2の重量を有する構造物を構築しようとする場合において、現位置土に空隙形成材と固化材を混合撹拌して、単位体積重量ρt=1.0t/m3となる軽量土、すなわち空隙形成材混合土が造成された場合について検証する。 When constructing a structure having a weight of 5 t / m 2 on soft ground with unit volume weight ρt = 1.5 t / m 3 of the current position soil, a void forming material and a solidifying material are mixed in the current position soil. A case where a lightweight soil having a unit volume weight ρt = 1.0 t / m 3 , that is, a void-forming material mixed soil, is created by stirring.

ここでは空隙形成材として気泡を用いるものとし、その結果として空隙形成材混合土としては気泡混合土となる。また、各用語の定義は下記のとおりとする。   Here, it is assumed that bubbles are used as the void forming material, and as a result, the void forming material mixed soil is the bubble mixed soil. The definition of each term is as follows.

・気泡混合土:現位置土にエアミルク(固化材+水+気泡)を加えて混合撹拌して造成された軽量土
・起泡剤:本事例では界面活性剤系のジオハートII(麻生フオームクリート(株)製)を使用する。
・ Bubble mixed soil: Lightweight soil created by adding air milk (solidified material + water + bubbles) to the current soil and mixing and stirring. Use).

・起泡材:起泡剤に水を加えた希釈液(本事例では15倍希釈)
・気泡:15倍希釈した起泡材に空気を加え発泡させた泡(本事例では20倍発泡)
・起泡材ミルク:セメントミルクに起泡材を添加したスラリー状の材料
・エアミルク:起泡材ミルクに圧縮空気を巻き込ませた泡状の混合材料
そして、単位体積重量ρt=1.5t/m3の現位置土を単位体積重量ρt=1.0t/m3の気泡混合土とする場合の配合事例を表2に示す。
-Foaming material: Diluted solution of water added to foaming agent (diluted 15 times in this case)
・ Air bubbles: Foam made by adding air to foamed material diluted 15 times (in this case, 20 times foaming)
-Foam milk: a slurry-like material obtained by adding a foaming material to cement milk-Air milk: a foam-like mixed material in which compressed air is involved in the foam foam milk and unit volume weight ρt = 1.5 t / m the formulation examples in the case of 3 of the current position soil and air bubbles mixed soil of specific weight ρt = 1.0t / m 3 shown in Table 2.

Figure 2007126817
Figure 2007126817

また、上記配合事例にて得られるそれぞれの値は次のようになる。   Moreover, each value obtained by the said mixing | blending example is as follows.

・気泡混合土重量:(原土+固化材+水+気泡)の合計重量
=1.5+0.156+0.312+0.0316=2.0t
・気泡混合土強度:室内における一軸圧縮強度(qu28)
=100kN/m2以上
・気泡混合土体積:(原土+固化材+水+気泡)の合計体積
=1.0+0.052+0.312+0.632=2.0m3
・気泡混合土の単位体積重量:気泡混合土重量/気泡混合土体積
=2.0t/2.0m3=1.0t/m3
・原土と気泡混合土の体積増加率:気泡混合土/原土
=2/1=2倍
なお、撹拌混合直後における気泡混合土の流動値としてテーブルフロー値での値として130mm以上となることを確認するものとする。
・ Bubble mixed soil weight: Total weight of (raw soil + solidifying material + water + bubbles) = 1.5 + 0.156 + 0.312 + 0.0316 = 2.0 t
・ Bubble mixed soil strength: uniaxial compressive strength in the room (qu28)
= 100 kN / m 2 or more ・ Bubble mixed soil volume: Total volume of (raw soil + solidified material + water + bubbles) = 1.0 + 0.052 + 0.312 + 0.632 = 2.0 m 3
-Unit volume weight of bubble mixed soil: bubble mixed soil weight / bubble mixed soil volume = 2.0 t / 2.0 m 3 = 1.0 t / m 3
・ Volume increase rate of raw soil and bubble mixed soil: Bubble mixed soil / raw soil = 2/1 = 2 times Note that the flow value of the bubble mixed soil immediately after stirring and mixing is 130 mm or more as the value of the table flow value. Shall be confirmed.

図7は上記気泡混合土化処理のためのシステムの概略を示す。このシステムでは、図示外のミキサーを主要素とするスラリープラント15にて起泡材と固化材であるセメントミルク(セメントを水で溶かしたスラリー状のもの)とを混合して起泡材ミルクを製造した上で、この起泡材ミルクをグラウトポンプ16と高圧ホース17にて撹拌混合機6側に圧送することになる。なお、18は起泡剤タンク、19,20は水槽、21は固化材(セメント)サイロ、22は発動発電機、23はコンプレッサーである。また、上記撹拌混合機6は例えば作業系もしくは掘削系建設機械であるバックホウ4をベースマシン(母機)としてそのアーム5の先端に装着されているもので、後述するように地中に貫入した上で現位置土を掘削しながら先端の材料吐出口からエアミルクを吐出して現位置土との撹拌混合処理を施すことになる。   FIG. 7 shows an outline of a system for the above-mentioned bubble mixed soil treatment. In this system, a foaming material and cement milk (a slurry in which cement is dissolved in water) are mixed with a foaming material and a solidifying material in a slurry plant 15 having a mixer (not shown) as a main element, and the foaming material milk is mixed. After the production, the foamed milk is pumped to the stirring mixer 6 side by the grout pump 16 and the high-pressure hose 17. In addition, 18 is a foaming agent tank, 19 and 20 are water tanks, 21 is a solidification material (cement) silo, 22 is a motor generator, and 23 is a compressor. The agitator-mixer 6 is, for example, a backhoe 4 which is a working or excavating construction machine and is mounted at the tip of the arm 5 as a base machine (base machine), and penetrates into the ground as will be described later. Then, while excavating the current position soil, air milk is discharged from the material discharge port at the tip, and agitation and mixing with the current position soil is performed.

図8,9は上記撹拌混合機6の詳細を示しており、撹拌混合機6自体は、ブラケット24付きの上下方向に延びるフレーム25の上部の駆動輪26と下部の従動輪27との間にエンドレスなドライブチェーン28を巻き掛けるとともに、そのドライブチェーン28の外周に所定のピッチで複数の撹拌翼29を装着したもので、フレーム25の下端(先端)には材料吐出口30を設けてある。そして、フレーム25の上部に設けた油圧モータ31の起動により各撹拌翼29がドライブチェーン28とともに周回移動して、それに併せてバックホウ4自体の推力により地中への貫入することにより、施工箇所の土砂の掘削と並行して先のエアミルクとの撹拌混合処理を施すことになる。   8 and 9 show the details of the agitating mixer 6, and the agitating mixer 6 itself is disposed between a driving wheel 26 at the upper part of a frame 25 with a bracket 24 and an upper driven wheel 26 and a driven wheel 27 at the lower part. An endless drive chain 28 is wound and a plurality of stirring blades 29 are mounted on the outer periphery of the drive chain 28 at a predetermined pitch. A material discharge port 30 is provided at the lower end (tip) of the frame 25. Then, when the hydraulic motor 31 provided at the upper part of the frame 25 is started, each stirring blade 29 moves around together with the drive chain 28, and at the same time, it penetrates into the ground by the thrust of the backhoe 4 itself. In parallel with the excavation of the earth and sand, a stirring and mixing process with the air milk is performed.

撹拌混合機6のフレーム25上端のブラケット24には発泡装置32を設けてあり、先に述べた材料吐出口30と発泡装置32とは撹拌混合機6自体のフレーム25に沿って配置した圧送管33を介して相互に接続してあるとともに、発泡装置32は先に述べた高圧ホース17(図7参照)を介してグラウトポンプ16に接続してある。そして、発泡装置32に対しグラウトポンプ16にて圧送されてきた起泡材ミルクとコンプレッサー23からの圧縮空気を共に導入することで発泡化を促進させてフォーム状のエアミルクを積極的に形成し、そのエアミルクが先端の材料吐出口30から吐出されることになる。なお、34は圧縮空気導入用の配管である。   The bracket 24 at the upper end of the frame 25 of the stirring mixer 6 is provided with a foaming device 32, and the material discharge port 30 and the foaming device 32 described above are arranged along the frame 25 of the stirring mixer 6 itself. The foaming device 32 is connected to the grout pump 16 via the high-pressure hose 17 (see FIG. 7) described above. Then, foaming milk is promoted by introducing both the foaming material milk pumped by the grout pump 16 and the compressed air from the compressor 23 to the foaming device 32 to actively form foam-like air milk, The air milk is discharged from the material discharge port 30 at the tip. Reference numeral 34 denotes a pipe for introducing compressed air.

発泡装置32は、図10に示すように下方に向かって縮径化されているテーパ状のハウジング35を主要素として構成されていて、ハウジング34の上端には図8,9の高圧ホース17および圧縮空気導入用の配管34に接続されることになる導入管36が、ハウジング35の下端には同じく図8,9の圧送管33に接続されることになる導出管37がそれぞれ延長形成されている。また、ハウジング35内には、発泡促進材として例えば金属基板に矩形もしくは丸い孔を無数に打ち抜き形成したいわゆるパンチングプレート製の多孔板38を所定間隙を隔てながら複数枚積層配置してある。もちろん、上記パンチングプレートに代えて金属製もしくは樹脂製のメッシュプレートを用いることも可能である。そして、先に述べたように発泡装置32に導入された起泡材ミルクと圧縮空気が上記多孔板38を通過することによりその発泡化が促進されてエアミルクが製造され、その結果、撹拌混合機6の先端の材料吐出口30からいわゆるフォーム状のエアミルクが吐出されることになる。   As shown in FIG. 10, the foaming device 32 has a tapered housing 35 whose diameter is reduced downward as a main element, and the upper end of the housing 34 has the high-pressure hose 17 and FIGS. An introduction pipe 36 to be connected to the compressed air introduction pipe 34 is extended, and an outlet pipe 37 to be connected to the pressure feed pipe 33 in FIGS. Yes. Further, in the housing 35, a plurality of so-called punching plate perforated plates 38 in which a number of rectangular or round holes are punched and formed in a metal substrate, for example, as a foaming promoting material are stacked and arranged with a predetermined gap therebetween. Of course, a metal or resin mesh plate may be used instead of the punching plate. As described above, the foamed milk and the compressed air introduced into the foaming device 32 pass through the porous plate 38 to promote the foaming, thereby producing air milk. The so-called foam-shaped air milk is discharged from the material discharge port 30 at the tip of 6.

ここで、図11には起泡剤と固化材であるセメントとが起泡材ミルクを経てエアミルクと化し、さらに最終的には気泡混合土になるまでの過程を模式的に示した。この過程を順に説明すれば次のとおりである。   Here, FIG. 11 schematically shows a process in which the foaming agent and the cement as the solidifying material are converted into air milk through foaming material milk and finally become bubble mixed soil. This process will be described in order as follows.

(1)図7に示したように、最初に水槽19または20より1バッチ分の水をスラリープラント15に投入し、次いで固化材サイロ21より1バッチ分のセメントを軽量してスラリープラント15に投入し、両者を混練してセメントミルクを製造する。   (1) As shown in FIG. 7, first, a batch of water is put into the slurry plant 15 from the water tank 19 or 20, and then a batch of cement is lightened from the solidifying silo 21 to the slurry plant 15. The mixture is mixed and kneaded to produce cement milk.

(2)起泡剤タンク18からの起泡剤と水槽19または20からの水とをもって予め15倍希釈した起泡材をスラリープラント15に投入して、セメントミルクと混練して起泡材ミルクを製造する。   (2) A foaming material diluted 15 times in advance with the foaming agent from the foaming agent tank 18 and the water from the water tank 19 or 20 is put into the slurry plant 15 and kneaded with cement milk to produce the foaming material milk. Manufacturing.

(3)起泡材ミルクをグラウトポンプ16にて撹拌混合機6側の発泡装置32まで圧送する。   (3) The foamed milk is pumped by the grout pump 16 to the foaming device 32 on the stirring mixer 6 side.

(4)発泡装置32では、先に述べたように圧送されてきた起泡材ミルクと共に圧縮空気を内部に導入してその発泡を促進させた上で、撹拌混合機6の先端の材料吐出口30からフォーム状のエアミルクとして吐出させる。   (4) In the foaming device 32, the compressed air is introduced into the foamed milk together with the foamed milk that has been fed as described above to promote the foaming, and then the material discharge port at the tip of the stirring mixer 6 is used. It is made to discharge from 30 as foam-like air milk.

(5)現位置にて原位置土とエアミルクとを撹拌混合することにより気泡混合土と化す。   (5) In situ soil and air milk are agitated and mixed at the current position to form bubble mixed soil.

ここでは、実施工に際して図12に示すように2m×2m角の角柱状の改良柱体1を地面から深度10mまで先に述べた気泡混合土をもって構築する場合を想定し、地面G上には改良対象領域を取り囲むように予め型枠3を立設しておく。   Here, it is assumed that a 2 m × 2 m square prismatic improved pillar 1 is constructed with the above-described bubble mixed soil from the ground to a depth of 10 m as shown in FIG. The mold 3 is erected in advance so as to surround the area to be improved.

改良柱体1となるべきエアミルクを製造するための原土1m3当たりの固化材等の配合は表2に示したとおりであって、固化材(セメント)0.156t、水0.312m3、起泡材0.0316m3とする。また、気泡混合土の単位体積重量ρtは1.0t/m3(ただし、±0.1とする)、気泡混合土の一軸圧縮強度quは50kN/m2(ただし、現場室内強度比1/2とした時の現場目標強度)とする。 The composition of the solidified material per 1 m 3 of the raw earth for producing air milk to be the improved pillar 1 is as shown in Table 2 and is 0.156 t of solidified material (cement), 0.312 m 3 of water, The foaming material is 0.0316 m 3 . Further, the unit volume weight ρt of the bubble mixed soil is 1.0 t / m 3 (provided that ± 0.1), and the uniaxial compressive strength qu of the bubble mixed soil is 50 kN / m 2 (however, the on-site indoor strength ratio 1 / Field target strength when 2).

図12の(A),(B)に示すように、撹拌混合機6の先端の材料吐出口30(図9)からエアミルクを吐出しながら、その撹拌混合機6を地中に貫入して現位置土を掘削しながらエアミルクとの撹拌混合処理を施し、気泡混合土をもって2m×2m角で深度10mの角柱状の改良柱体1を構築する。この場合、エアミルクの比重が0.5±0.05であることを予め確認しておくものとする。また、撹拌混合処理直後の処理土は流動性を呈するようになるが、その処理土の流動値がテーブルフロー値にて130mm以上であることもまた確認する。   As shown in FIGS. 12A and 12B, while the air milk is being discharged from the material discharge port 30 (FIG. 9) at the tip of the stirring mixer 6, the stirring mixer 6 is penetrated into the ground. While excavating the position soil, a stirring and mixing process with air milk is performed, and a 2 mm × 2 m square and 10 m deep prismatic improved column body 1 is constructed with the bubble mixed soil. In this case, it should be confirmed in advance that the specific gravity of the air milk is 0.5 ± 0.05. Moreover, although the treated soil immediately after the stirring and mixing treatment exhibits fluidity, it is also confirmed that the flow value of the treated soil is 130 mm or more as a table flow value.

現位置における撹拌混合面積Aは2m×2m=4m2、同じく現位置における撹拌混合深度は10mであることから、現位置における撹拌混合土量は4m2×10m=40m3となる。この場合において、先に述べたように原土に対する気泡混合土の体積増加倍率が2倍であることから、40m3の原土はエアミルクと撹拌混合されることにより80m3の気泡混合土に増量される。そして、増量した分の気泡混合土が面積Aの改良対象領域より上方に溢れ出して、図12に示すように改良柱体1の上方であって且つ型枠3で囲まれた4.5m四方の領域Bに深さ1.98mの改良土層7が造成される。つまり、角柱状の改良柱体1と改良土層7とを区別しなければ、図13の(A),(B)に示すように現土が気泡混合土と化すことで増量されて全体としては断面形状が略T字状の改良地盤造成体38が形成されたことになる。 The stirring and mixing area A at the current position is 2 m × 2 m = 4 m 2 , and the stirring and mixing depth at the current position is 10 m. Therefore, the amount of the stirring and mixing soil at the current position is 4 m 2 × 10 m = 40 m 3 . In this case, since the volume increase ratio of the bubble mixed soil with respect to the raw soil is twice as described above, the 40 m 3 raw soil is agitated and mixed with the air milk to increase the volume to 80 m 3 bubble mixed soil. Is done. Then, the increased amount of bubble mixed soil overflows from the area to be improved of area A, and is 4.5 m square above the improved pillar 1 and surrounded by the mold 3 as shown in FIG. The improved soil layer 7 having a depth of 1.98 m is formed in the area B of the above. In other words, if the prismatic improved column 1 and the improved soil layer 7 are not distinguished, as shown in (A) and (B) of FIG. Thus, an improved ground formation body 38 having a substantially T-shaped cross section is formed.

こうして改良柱体1の構築とともにその上に改良土層7が造成されたならば、例えば1週間〜4週間程度の養生期間を経た上で型枠3を解体して撤去する。   When the improved soil layer 7 is formed on the improved pillar body 1 in this way, the mold 3 is disassembled and removed after a curing period of, for example, about 1 week to 4 weeks.

すなわち、この実施例1では、平面形状が2m×2m角(面積A)で深度が10mの気泡混合土製の改良柱体1の上に平面形状4.5m×4.5m角(面積B)で深さ1.98mの同じく気泡混合土製の改良土層7が造成されて、その面積比は20.25/4≒5.06となり、A<Bを満たしていることになる。なお、本実施例1では面積Aに対して面積Bは5.06倍となったが、この値は原土の性状、気泡混合土の体積増加率あるいは撹拌混合深度等によっても変化することになるので、B/Aは少なくとも1.2倍以上とすることが望ましい。   That is, in Example 1, the planar shape is 2 m × 2 m square (area A) and the depth is 10 m on the improved pillar body 1 made of bubble mixed soil, and the planar shape is 4.5 m × 4.5 m square (area B). The improved soil layer 7 made of the same bubble-mixed soil having a depth of 1.98 m is formed, and the area ratio is 20.25 / 4≈5.06, which satisfies A <B. In Example 1, the area B is 5.06 times the area A. However, this value varies depending on the properties of the raw soil, the volume increase rate of the bubble mixed soil, or the mixing depth of the agitation. Therefore, it is desirable that B / A be at least 1.2 times or more.

図14は実施例2を示す。この実施例2では、先の実施例1の工法を前提とした上で、互いに独立した多数の改良地盤造成体38を規則性をもって所定のピッチで並設し、それらの多数の改良地盤造成体38,38‥の上に盛土体12を造成するようにしたものである。   FIG. 14 shows a second embodiment. In the second embodiment, on the premise of the construction method of the first embodiment, a large number of improved ground formation bodies 38 that are independent from each other are arranged in parallel at a predetermined pitch with a regularity, and a large number of these improved ground formation bodies are arranged. The embankment body 12 is formed on 38, 38.

図15は実施例3を示す。この実施例3では、先の実施例1の工法を前提とした上で、多数の改良地盤造成体38,38‥を規則性をもって所定のピッチで並設するとともに、隣り合う改良地盤造成体38,38の上側の改良土層7,7同士を互いに連結し、それらの多数の改良地盤造成体38,38‥の上に盛土体2を造成するようにしたものである。   FIG. 15 shows a third embodiment. In the third embodiment, on the premise of the construction method of the first embodiment, a large number of improved ground formation bodies 38, 38,... , 38 are connected to each other, and the embankment body 2 is formed on the many improved ground formation bodies 38, 38,.

図16は実施例4を示す。この実施例4では、図15に示した実施例3の工法を前提とした上で、多数の改良地盤造成体38,38‥における改良土層7の上面が地面とほぼ面一状態となるように施工を行い、多数の改良地盤造成体38,38‥の上に例えばコンクリート製の建物39を構築するようにしたものである。   FIG. 16 shows a fourth embodiment. In the fourth embodiment, on the assumption of the construction method of the third embodiment shown in FIG. 15, the upper surfaces of the improved soil layers 7 in the many improved ground formation bodies 38, 38,. For example, a concrete building 39 is constructed on a large number of improved ground formation bodies 38, 38,.

図17は実施例5を示す。実施例1では、図13に示したように改良柱体1と改良土層7をもって断面形状が略T字状の改良地盤造成体38を造成もしくは構築する場合の例を示しているのに対して、この実施例5では、例えば図17に示すように地中に中空角筒状の改良柱体51を構築する一方で、その上方に蓋をするような形態で改良土層57を形成し、もって全体として断面略逆U字状の改良地盤造成体58を造成もしくは構築するようにしたものである。   FIG. 17 shows a fifth embodiment. In the first embodiment, as shown in FIG. 13, an example is shown in which an improved ground structure 38 having a substantially T-shaped cross section is formed or constructed with the improved pillar 1 and the improved soil layer 7. Thus, in the fifth embodiment, for example, as shown in FIG. 17, a hollow prismatic improved pillar body 51 is constructed in the ground, while an improved soil layer 57 is formed in such a form that a lid is placed on the upper side. Thus, the improved ground formation body 58 having a substantially inverted U-shaped cross section as a whole is formed or constructed.

図18は実施例6を示す。この実施例6では、先の実施例5の工法を前提とした上で、互いに独立した多数の改良地盤造成体58,58‥を規則性をもって所定のピッチで並設し、それらの多数の改良地盤造成体58,58‥の上に盛土体2を造成するようにしたものである。   FIG. 18 shows a sixth embodiment. In this sixth embodiment, on the premise of the construction method of the fifth embodiment, a large number of improved ground formation bodies 58, 58... Independent from each other are arranged side by side at a predetermined pitch with regularity. The embankment body 2 is formed on the ground formation bodies 58, 58.

図19は実施例7を示す。この実施例7では、先の実施例6の工法を前提とした上で、多数の改良地盤造成体58,58‥を規則性をもって所定のピッチで並設するとともに、隣り合う改良地盤造成体58,58の上側の改良土層57,57同士を互いに連結し、それらの多数の改良地盤造成体58,58‥の上に盛土体2を造成するようにしたものである。   FIG. 19 shows a seventh embodiment. In the seventh embodiment, on the premise of the construction method of the sixth embodiment, a large number of improved ground formation bodies 58, 58... Are arranged with regularity at a predetermined pitch, and adjacent improved ground formation bodies 58 are arranged side by side. , 58 are connected to each other, and the embankment body 2 is formed on the large number of improved ground formation bodies 58, 58.

図20は実施例8を示す。この実施例8では、図19に示した実施例7の工法を前提とした上で、多数の改良地盤造成体58,58‥における改良土層57の上面が地面Gとほぼ面一状態となるように施工を行い、多数の改良地盤造成体58,58‥の上に例えばコンクリート製の建物39を構築するようにしたものである。   FIG. 20 shows an eighth embodiment. In the eighth embodiment, on the premise of the construction method of the seventh embodiment shown in FIG. 19, the upper surfaces of the improved soil layers 57 in many improved ground formation bodies 58, 58. For example, a concrete building 39 is constructed on a large number of improved ground formation bodies 58, 58.

ここで、上記各実施の形態では、現位置土を軽量土化するための空隙形成材として気泡を用いる場合について説明したが、これに代えて、例えば発泡ポリスチレン、発泡ポリプロピレン等のビーズ状のものに代表されるような発泡性合成樹脂の小片であるいわゆる発泡ビーズを用いることも可能である。   Here, in each of the above-described embodiments, the case where air bubbles are used as a gap forming material for lightening the current position soil is described. Instead, for example, beads such as foamed polystyrene and foamed polypropylene are used. It is also possible to use so-called expanded beads, which are small pieces of expandable synthetic resin represented by

この場合には、発泡ビーズと固化材であるセメントとを予め混合しておき、この混合物を先に述べた撹拌混合機6の材料吐出口30から地中に吐出するとともに、水を同時吐出して、現位置土と発泡ビーズ、固化材および水を撹拌混合して流動性を有する混合軽量土を造成するものとする。一般的には、現土1m3当たりに発泡ビーズ0.3〜2.0m3と固化材50kgを撹拌混合して、0.6〜1.5t/m3の重量の混合軽量土とすることが望ましい。なお、空隙形成材として発泡ビーズを用いた現位置での混合軽量土工法は特開2004−300915号公報に詳しい。 In this case, foam beads and cement as a solidifying material are mixed in advance, and this mixture is discharged into the ground from the material discharge port 30 of the agitating mixer 6 described above, and water is simultaneously discharged. Thus, a mixed lightweight soil having fluidity is created by stirring and mixing the present position soil, foam beads, solidifying material and water. In general, it was stirred and mixed to solidifying material 50kg and expanded beads 0.3~2.0M 3 to the current soil 1 m 3 per a mixed lightweight soil weight 0.6~1.5t / m 3 Is desirable. In addition, the mixing lightweight earthwork method in the present position using foam beads as a space | gap formation material is detailed in Unexamined-Japanese-Patent No. 2004-300915.

本発明方法によって造成された改良地盤の概略を示す図で、(A)は地面下の平面説明図、(B)は造成された改良地盤の断面説明図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the outline of the improved ground created by the method of this invention, (A) is plane explanatory drawing under the ground, (B) is sectional explanatory drawing of the created improved ground. (A),(B)共に図1の改良地盤の造成手順を示す工程説明図。(A), (B) Both process explanatory drawing which shows the creation procedure of the improved ground of FIG. 図2の(B)に続く造成手順の工程説明図で、(A)は造成された改良地盤の断面説明図、(B)は造成された改良地盤の地面下の平面説明図。It is process explanatory drawing of the creation procedure following (B) of Drawing 2, (A) is a section explanatory view of the created improved ground, and (B) is a plane explanatory view under the ground of the created improved ground. 図1における改良地盤の造成との比較のために従来工法の一例を示す図で、(A)はその断面説明図、(B)は同図(A)の地面下の平面説明図。It is a figure which shows an example of a conventional construction method for the comparison with creation of the improved ground in FIG. 1, (A) is the cross-sectional explanatory drawing, (B) is the plane explanatory drawing under the ground of the same figure (A). (A),(B)共に図4の改良地盤の造成手順を示す工程説明図。Process explanatory drawing which shows the creation procedure of the improved ground of FIG. 4 both (A) and (B). 図5の(B)に続く造成手順の工程説明図。Process explanatory drawing of the creation procedure following (B) of FIG. 図1の改良地盤の造成のための気泡混合土施工システム全体の概略説明図。The schematic explanatory drawing of the whole bubble mixing soil construction system for creation of the improved ground of FIG. 図7のおける撹拌混合機の詳細を示す拡大図。The enlarged view which shows the detail of the stirring mixer in FIG. 図8の側面説明図。Side surface explanatory drawing of FIG. 図8,9における発泡装置の拡大断面説明図。Explanatory sectional explanatory drawing of the foaming apparatus in FIG. 起泡剤や固化材であるセメントが起泡材ミルクおよびエアミルクの状態を経て最終的に気泡混合土となるまでのプロセスを示す説明図。Explanatory drawing which shows the process until cement which is a foaming agent and a solidification material finally turns into foam mixed soil through the state of foaming material milk and air milk. より具体的な造成方法の実施例1を示す図で、(A)は改良柱体と改良土層とからなる改良地盤造成体を単独で造成する場合の平面説明図、(B)は同図(A)の断面説明図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Example 1 of a more concrete creation method, (A) is plane explanatory drawing in the case of producing the improved ground formation body which consists of an improved pillar and an improved soil layer independently, (B) is the figure. Cross-sectional explanatory drawing of (A). (A)は図12で造成される改良地盤造成体の平面説明図、(B)が同じくその断面説明図。(A) is plane explanatory drawing of the improved ground formation body created in FIG. 12, (B) is the cross-sectional explanatory drawing similarly. より具体的な造成方法の実施例2を示す図で、(A)は平面説明図、(B)はその断面説明図。It is a figure which shows Example 2 of the more concrete creation method, (A) is plane explanatory drawing, (B) is the cross-sectional explanatory drawing. より具体的な造成方法の実施例3を示す図で、(A)は平面説明図、(B)はその断面説明図。It is a figure which shows Example 3 of the more concrete creation method, (A) is plane explanatory drawing, (B) is the cross-sectional explanatory drawing. より具体的な造成方法の実施例4を示す断面説明図。Cross-sectional explanatory drawing which shows Example 4 of a more concrete creation method. より具体的な造成方法の実施例5として図13の変形例を示す図で、(A)は平面説明図、(B)はその断面説明図。FIGS. 13A and 13B are diagrams illustrating a modified example of FIG. 13 as Example 5 of a more specific creation method, where FIG. より具体的な造成方法の実施例6を示す図で、(A)は平面説明図、(B)はその断面説明図。It is a figure which shows Example 6 of the more concrete creation method, (A) is plane explanatory drawing, (B) is the cross-sectional explanatory drawing. より具体的な造成方法の実施例7を示す図で、(A)は平面説明図、(B)はその断面説明図。It is a figure which shows Example 7 of the more concrete creation method, (A) is plane explanatory drawing, (B) is the cross-sectional explanatory drawing. より具体的な造成方法の実施例8を示す断面説明図。Cross-sectional explanatory drawing which shows Example 8 of a more concrete creation method.

符号の説明Explanation of symbols

1…改良柱体
2…盛土体
6…撹拌混合機
7…改良土層
15…スラリープラント
25…フレーム
26…駆動輪
27…従動輪
28…ドライブチェーン
29…撹拌翼
30…材料吐出口
32…発泡装置
38…改良地盤造成体
51…改良柱体
57…改良土層
58…改良地盤造成体
DESCRIPTION OF SYMBOLS 1 ... Improved column body 2 ... Embankment body 6 ... Stir mixer 7 ... Improved soil layer 15 ... Slurry plant 25 ... Frame 26 ... Drive wheel 27 ... Drive wheel 28 ... Drive chain 29 ... Stir blade 30 ... Material discharge port 32 ... Foaming Equipment 38 ... Improved ground formation 51 ... Improved pillar 57 ... Improved soil layer 58 ... Improved ground formation

Claims (9)

現位置土と固化材および空隙形成材の三者を現位置にて撹拌混合して流動性を有する空隙形成材混合土を製造するとともに、この空隙形成材混合土をもって地盤を造成するに際し、
空隙形成材混合土を製造するべく撹拌混合処理を施す撹拌混合箇所の面積よりもその撹拌混合箇所の面積を含みつつ当該撹拌混合箇所から溢れ出た空隙形成材混合土が占有する面積の方が大きくなるようにその空隙形成材混合土をもって改良地盤を造成することを特徴とする改良地盤造成方法。
While producing the void-forming material mixed soil having fluidity by stirring and mixing the current position soil and the solidified material and the void-forming material at the current position, when creating the ground with this void-forming material mixed soil,
The area occupied by the void-forming material mixed soil overflowing from the stirring and mixing portion while including the area of the stirring and mixing portion is larger than the area of the stirring and mixing portion where the stirring and mixing process is performed to produce the void-forming material mixed soil. An improved ground preparation method, characterized in that the improved ground is created with the void forming material mixed soil so as to be large.
撹拌混合箇所の空隙形成材混合土とこの撹拌混合箇所から溢れ出た空隙形成材混合土とをもって形成される単一の改良地盤造成体の垂直断面形状が略T字状のものとなるように造成することを特徴とする請求項1に記載の改良地盤造成方法。   The vertical cross-sectional shape of a single improved ground formation formed by the void forming material mixed soil at the stirring and mixing portion and the void forming material mixed soil overflowing from the stirring and mixing portion is substantially T-shaped. The improved ground building method according to claim 1, wherein the ground is formed. 撹拌混合箇所の空隙形成材混合土とこの撹拌混合箇所から溢れ出た空隙形成材混合土とをもって形成される単一の改良地盤造成体の垂直断面形状が略逆U字状のものとなるように造成することを特徴とする請求項1に記載の改良地盤造成方法。   The vertical cross-sectional shape of a single improved ground formation formed by the void-forming material mixed soil at the stirring and mixing location and the void-forming material mixed soil overflowing from the stirring and mixing location is substantially inverted U-shaped. 2. The improved ground preparation method according to claim 1, wherein 撹拌混合箇所の空隙形成材混合土とこの撹拌混合箇所から溢れ出た空隙形成材混合土とをもって形成される改良地盤造成体を単一且つ独立したものとして、この改良地盤造成体を二つ以上並設するように造成することを特徴とする請求項1〜3のいずれかに記載の改良地盤造成方法。   Two or more improved ground formations are formed as a single and independent improvement ground formation formed by the void formation material mixed soil at the stirring mixing location and the void formation material mixed soil overflowing from the stirring mixing location. The improved ground creation method according to any one of claims 1 to 3, wherein the ground is constructed in parallel. 撹拌混合箇所の空隙形成材混合土とこの撹拌混合箇所から溢れ出た空隙形成材混合土とをもって形成される改良地盤造成体を単一のものとして、この改良地盤造成体を二つ以上連結するように造成することを特徴とする請求項1〜3のいずれかに記載の改良地盤造成方法。   Two or more improved ground formations are connected with a single improved ground formation formed by the void formation material mixed soil at the stirring mixing location and the void formation material mixed soil overflowing from the stirring mixing location. The improved ground formation method according to any one of claims 1 to 3, wherein the ground is formed as described above. 空隙形成材として発泡ビーズを使用することを特徴とする請求項1〜5のいずれかに記載の改良地盤造成方法。   The improved ground building method according to any one of claims 1 to 5, wherein foam beads are used as the gap forming material. 空隙形成材として気泡を使用することを特徴とする請求項1〜5のいずれかに記載の改良地盤造成方法。   The improved ground preparation method according to any one of claims 1 to 5, wherein bubbles are used as the gap forming material. 現位置土と固化材および空隙形成材の三者を現位置にて撹拌混合して流動性を有する空隙形成材混合土を製造するにあたり、作業系建設機械のアームの先端に装着された撹拌混合機を地中に貫入して、現位置土の掘削のほかその現位置土と固化材および空隙形成材との撹拌混合処理を行うことを特徴する請求項1〜7のいずれかに記載の改良地盤造成方法。   Stir mixing at the tip of the arm of the work system construction machine to produce a void forming material mixed soil having fluidity by stirring and mixing the current position soil, solidified material and void forming material at the current position. The improvement according to any one of claims 1 to 7, wherein the machine is penetrated into the ground, and in addition to excavation of the current position soil, a stirring and mixing process of the current position soil, the solidified material and the void forming material is performed. Ground preparation method. 撹拌混合機は、フレーム上部の駆動輪とフレーム下部の従動輪との間にエンドレスなチェーンを巻き掛けるとともに、そのチェーンを上下方向に周回移動させることで現位置土の掘削のほかその現位置土と固化材および空隙形成材との撹拌混合処理を行うことを特徴する請求項8に記載の改良地盤造成方法。   An agitator / mixer wraps an endless chain between the drive wheel at the top of the frame and the driven wheel at the bottom of the frame, and moves the chain around in the vertical direction to excavate the current position soil as well as the current position soil. The improved ground preparation method according to claim 8, wherein a stirring and mixing process is performed with the solidified material and the void forming material.
JP2005317873A 2005-11-01 2005-11-01 Improved ground preparation method Pending JP2007126817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317873A JP2007126817A (en) 2005-11-01 2005-11-01 Improved ground preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317873A JP2007126817A (en) 2005-11-01 2005-11-01 Improved ground preparation method

Publications (1)

Publication Number Publication Date
JP2007126817A true JP2007126817A (en) 2007-05-24

Family

ID=38149681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317873A Pending JP2007126817A (en) 2005-11-01 2005-11-01 Improved ground preparation method

Country Status (1)

Country Link
JP (1) JP2007126817A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031047A (en) * 2013-08-02 2015-02-16 鹿島建設株式会社 Ground improvement method
CN104563094A (en) * 2014-12-18 2015-04-29 宁波高新区围海工程技术开发有限公司 Silt soft foundation processing equipment
JP2018071094A (en) * 2016-10-26 2018-05-10 西日本旅客鉄道株式会社 Reinforcement method of back fill on abutment
CN112030614A (en) * 2020-09-14 2020-12-04 中铁二十一局集团第六工程有限公司 Roadbed construction method based on large-thickness collapsible loess area column hammer impact pile extension and cement improved soil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293808A (en) * 1991-03-20 1992-10-19 Penta Ocean Constr Co Ltd Banking method on soft ground
JPH11256564A (en) * 1998-03-13 1999-09-21 Tenox Corp Continuous two-plane soil improvement body and construction method therefor
JP2001234526A (en) * 2000-02-23 2001-08-31 Shohei Senda Deep mixing method of soil stabilization, and device therefor
JP2004300915A (en) * 2003-03-18 2004-10-28 Kato Construction Co Ltd Work method using light soil as measure for soft ground and its execution device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293808A (en) * 1991-03-20 1992-10-19 Penta Ocean Constr Co Ltd Banking method on soft ground
JPH11256564A (en) * 1998-03-13 1999-09-21 Tenox Corp Continuous two-plane soil improvement body and construction method therefor
JP2001234526A (en) * 2000-02-23 2001-08-31 Shohei Senda Deep mixing method of soil stabilization, and device therefor
JP2004300915A (en) * 2003-03-18 2004-10-28 Kato Construction Co Ltd Work method using light soil as measure for soft ground and its execution device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031047A (en) * 2013-08-02 2015-02-16 鹿島建設株式会社 Ground improvement method
CN104563094A (en) * 2014-12-18 2015-04-29 宁波高新区围海工程技术开发有限公司 Silt soft foundation processing equipment
CN104563094B (en) * 2014-12-18 2016-04-13 宁波高新区围海工程技术开发有限公司 A kind of Silty soft foundation equipment
JP2018071094A (en) * 2016-10-26 2018-05-10 西日本旅客鉄道株式会社 Reinforcement method of back fill on abutment
CN112030614A (en) * 2020-09-14 2020-12-04 中铁二十一局集团第六工程有限公司 Roadbed construction method based on large-thickness collapsible loess area column hammer impact pile extension and cement improved soil

Similar Documents

Publication Publication Date Title
JP2007170070A (en) Method for rebuilding building
JP2007126817A (en) Improved ground preparation method
JP2005214009A (en) Device for producing bubble-mixed lightweight soil
CN201649076U (en) Inversed Y-type single-row unidirectional rotary spraying, mixing and reinforcing combined tangent pile
JP2000303466A (en) Earth retaining method
JP5513182B2 (en) Stepwise solidification method
JP7085464B2 (en) How to build a retaining wall structure in the reverse striking method
JPH11256564A (en) Continuous two-plane soil improvement body and construction method therefor
JP3784822B1 (en) Method for constructing bubble mixed lightweight soil and its construction equipment
JP4020858B2 (en) Manufacturing method for underground structures
JP4699831B2 (en) Pile foundation reinforcement structure
WO2015108146A1 (en) Method for constructing cast-in-place concrete pile
JPH02311613A (en) Liquefaction preventing construction method for sand ground
JP5413665B2 (en) Liquefaction countermeasure structure
JP2010209547A (en) Wall pile and method for creating the same
JPH1060879A (en) Building foundation and construction method thereof
EP0541998A1 (en) Refilling material and refilling method
JP2020125648A (en) Columnar improvement method, and soil cement column row wall method using core material pressing-in and vibration pressing-in
JPH07207655A (en) Soil improvement method
JP7371313B2 (en) Fluidized soil supply system
JP7222949B2 (en) Concrete structure construction method
JP2005113651A (en) Reinforced embankment construction method
CN106638621A (en) Implanting method of prefabricated plate pile
JP2001164550A (en) Improvement method of construction ground for underground structure
JP2023102736A (en) Underground continuous wall in small section

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018