JP2011003612A - Electronic component and method of manufacturing the same - Google Patents

Electronic component and method of manufacturing the same Download PDF

Info

Publication number
JP2011003612A
JP2011003612A JP2009143641A JP2009143641A JP2011003612A JP 2011003612 A JP2011003612 A JP 2011003612A JP 2009143641 A JP2009143641 A JP 2009143641A JP 2009143641 A JP2009143641 A JP 2009143641A JP 2011003612 A JP2011003612 A JP 2011003612A
Authority
JP
Japan
Prior art keywords
conductive adhesive
adhesive sheet
electronic component
element body
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009143641A
Other languages
Japanese (ja)
Inventor
Yoshio Ueda
芳男 上田
Yoshikazu Irie
美和 入江
Nobuhiko Uchida
信彦 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2009143641A priority Critical patent/JP2011003612A/en
Publication of JP2011003612A publication Critical patent/JP2011003612A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Details Of Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic component having terminal electrodes which have high size precision and shape precision, are fine and free from a void etc., and easy to form, and to provide a method of manufacturing the electronic component.SOLUTION: Element bodies 16 having end surfaces 16a and 16b where terminal electrodes are to be formed are held in a plurality of holding holes 42 of a holding plate 40 provided with the holding holes 42 in which the element bodies 16 are fitted in a direction substantially perpendicular to the end surfaces 16a and 16b so that the end surfaces 16a and 16b of the element bodies 16 are substantially flush with plate surfaces 40a and 40b of the holding plate 40. Conductive adhesive sheets 26 are stacked on the end surfaces 16a and 16b of the element bodies 16 and bonded in one body, and then cut along peripheral edges of the respective holding holes 42 of the holding plate 40, and the terminal electrodes 18 are formed on the end surfaces 16a and 16b.

Description

本発明は、端子電極を備えた電子部品、およびそのような電子部品の製造方法に関する。   The present invention relates to an electronic component provided with a terminal electrode, and a method for manufacturing such an electronic component.

積層セラミックコンデンサやチップ型セラミックサーミスタ等の電子部品は、直方体状の素子本体の両端に端子電極を備えたチップ型電子部品として知られており、各種電子機器製品に広く使用されている。   Electronic parts such as multilayer ceramic capacitors and chip type ceramic thermistors are known as chip type electronic parts having terminal electrodes at both ends of a rectangular parallelepiped element body, and are widely used in various electronic device products.

このチップ型電子部品の端子電極の形成には、従来、導電性ペースト(電極ペースト)に素子本体の一端を浸漬して被膜を形成し、次に、素子本体の他端を導電性ペーストに浸漬して被膜を形成し、その後、これらの被膜を乾燥焼成する方法(浸漬法)、あるいは、支持体上に導電性ペースト層を形成し、この導電性ペースト層を素子本体の両端に順に転写した後、乾燥焼成する方法(転写法)が用いられている。図7は、このような従来法により端子電極が形成された積層セラミックコンデンサの一例を示したもので、内部電極1が形成されたセラミック素体2の両端部に各端面を覆うように端子電極(外部電極)3が形成されている。   To form the terminal electrode of this chip-type electronic component, conventionally, one end of the element body is immersed in a conductive paste (electrode paste) to form a film, and then the other end of the element body is immersed in the conductive paste. Then, a method of drying and baking these coatings (immersion method), or forming a conductive paste layer on a support, and sequentially transferring the conductive paste layer to both ends of the element body Thereafter, a drying and firing method (transfer method) is used. FIG. 7 shows an example of a multilayer ceramic capacitor in which a terminal electrode is formed by such a conventional method. The terminal electrode is covered so as to cover both end faces of the ceramic body 2 on which the internal electrode 1 is formed. (External electrode) 3 is formed.

しかしながら、このような従来法は、サイズや形状の精密な制御が困難で、端子電極は寸法精度、形状精度の低いものとなる難点があった。このため、高い寸法精度、形状精度が要求される最近の極小サイズのチップ型電子部品に適用することは事実上不可能であった。   However, in such a conventional method, it is difficult to precisely control the size and shape, and the terminal electrode has a drawback that the dimensional accuracy and the shape accuracy are low. For this reason, it was practically impossible to apply to the latest ultra-small chip type electronic components requiring high dimensional accuracy and shape accuracy.

すなわち、近時、電子機器の軽薄短小化に伴い、チップ型電子部品においても小型化が進み、例えば積層セラミックコンデンサでは、従来、1608型(1.6mm×0.8mm×0.8mm)、1005型(1.0mm×0.5mm×0.5mm)までであったのが、最近では、0603型(0.6mm×0.3mm×0.3mm)、0402型(0.4mm×0.2mm×0.2mm)のものまで出現してきている。このような極小サイズのチップ型電子部品では、従来の浸漬法や転写法では端子電極のサイズや形状の精密な制御が困難である。   That is, recently, as electronic devices become lighter, thinner, and smaller, chip-type electronic components have also been miniaturized. For example, in a multilayer ceramic capacitor, conventionally, 1608 type (1.6 mm × 0.8 mm × 0.8 mm), 1005 It was up to the mold (1.0 mm x 0.5 mm x 0.5 mm), but recently, the 0603 type (0.6 mm x 0.3 mm x 0.3 mm), the 0402 type (0.4 mm x 0.2 mm) X 0.2 mm) has appeared. In such an extremely small chip-type electronic component, it is difficult to precisely control the size and shape of the terminal electrode by the conventional dipping method or transfer method.

また、従来法では、被膜を乾燥焼成する過程で、導電性ペーストに含まれる有機バインダが燃焼分解されて除去されるが、このいわゆる「脱バインダ」が十分に行われなかった場合には内部にボイドが発生しやすいという問題もあった。   Further, in the conventional method, the organic binder contained in the conductive paste is removed by combustion decomposition in the process of drying and baking the coating, but if this so-called “binder removal” is not performed sufficiently, There was also a problem that voids were likely to occur.

そこで、従来法に代わる方法として、例えば、コンデンサ素子本体を特定構造の保持治具に保持させることにより、コンデンサ素子本体の一方の端部と保持治具によってクボミ部が形成されるようにし、このクボミ部に導電性ペーストを充填して、コンデンサ素子本体の一端に被膜を形成し、これを乾燥固化させる方法(例えば、特許文献1参照。)、保持板に形成した保持孔に電子部品を嵌入して電子部品の端面を露出させ、その露出した端面に気相法により薄膜状の端子電極を形成する方法(例えば、特許文献2参照。)等が提案されている。   Therefore, as an alternative method to the conventional method, for example, by holding the capacitor element body on a holding jig having a specific structure, a dent portion is formed by one end of the capacitor element body and the holding jig. A method of filling the dent portion with a conductive paste, forming a film on one end of the capacitor element body, and drying and solidifying the film (for example, refer to Patent Document 1), and inserting an electronic component into a holding hole formed in the holding plate Then, a method of exposing an end face of an electronic component and forming a thin-film terminal electrode on the exposed end face by a vapor phase method (for example, see Patent Document 2) has been proposed.

しかしながら、前者のコンデンサ素子本体と保持治具によって形成したクボミ部に導電性ペーストを充填する方法では、保持治具の構造が複雑で、その組み立て等に時間がかかるため、作業性が悪い。また、寸法精度、形状精度もある程度改善されるものの必ずしも十分ではない。さらに、ボイドの問題は依然として解消されていない。一方、後者の気相法により成膜する方法は、寸法精度、形状精度、ボイドの問題はほぼ解消されるものの、気相法自体がバッチ処理によるため、生産性に乏しい。   However, in the former method of filling the hollow portion formed by the capacitor element body and the holding jig with the conductive paste, the structure of the holding jig is complicated, and it takes time to assemble and the like, so the workability is poor. Further, although the dimensional accuracy and the shape accuracy are improved to some extent, they are not always sufficient. Furthermore, the void problem has not been resolved. On the other hand, the latter method of forming a film by the vapor phase method, although the problems of dimensional accuracy, shape accuracy and void are almost solved, the vapor phase method itself is based on batch processing, so that the productivity is poor.

特開2004−281823号公報JP 2004-281823 A 特開平7−263273号公報JP-A-7-263273

本発明は上記従来技術の課題を解決するためになされたもので、寸法精度、形状精度が高く、また緻密でボイド等がなく、かつ形成も容易な端子電極を備える電子部品およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and provides an electronic component including a terminal electrode that has high dimensional accuracy and shape accuracy, is dense, has no voids, and is easy to form, and a method for manufacturing the electronic component. The purpose is to provide.

上記目的を達成するため、本発明の一態様に係る電子部品は、素子本体の両端に互いに平行する1対の端面を有し、これらの各端面に端子電極が形成されてなる電子部品であって、前記端子電極は、前記各端面に導電性接着シートを積層し一体に接着してなることを特徴とするものである。   In order to achieve the above object, an electronic component according to an aspect of the present invention is an electronic component having a pair of end faces parallel to each other at both ends of an element body, and terminal electrodes are formed on the respective end faces. The terminal electrode is formed by laminating a conductive adhesive sheet on each end face and bonding them together.

本発明の他の態様に係る電子部品の製造方法は、両端に端子電極を形成すべき端面を有する素子本体を、該素子本体が前記端面に略垂直な方向に嵌入される保持孔が複数個設けられた保持板の前記各保持孔に、前記素子本体の端子電極を形成すべき端面と前記保持板の板面が略面一になるように保持させるとともに、前記素子本体の端面上に導電性接着シートを積層し一体に接着させる工程と、前記各保持孔の周縁部に沿って前記導電性接着シートを切断して、端面に前記導電性接着シートが接着された素子本体を得る工程と、を含むことを特徴とするものである。   According to another aspect of the present invention, there is provided a method of manufacturing an electronic component comprising: an element body having end faces on which both end electrodes are to be formed; and a plurality of holding holes into which the element body is fitted in a direction substantially perpendicular to the end face. Each holding hole of the provided holding plate is held so that the end surface on which the terminal electrode of the element body is to be formed and the plate surface of the holding plate are substantially flush with each other, and conductive on the end surface of the element body A step of laminating and bonding the conductive adhesive sheets together, a step of cutting the conductive adhesive sheet along the peripheral edge of each holding hole, and obtaining an element body in which the conductive adhesive sheet is bonded to an end surface; , Including.

本発明によれば、寸法精度、形状精度が高く、また緻密でボイド等がなく、かつ形成も容易な端子電極を備えた電子部品を得ることができる。   According to the present invention, it is possible to obtain an electronic component including a terminal electrode that has high dimensional accuracy and shape accuracy, is dense, has no voids, and is easy to form.

本発明の一実施形態の積層セラミックコンデンサを示す断面図である。It is sectional drawing which shows the multilayer ceramic capacitor of one Embodiment of this invention. 本発明に使用される導電性接着剤層付き金属箔の一例を示す断面図である。It is sectional drawing which shows an example of the metal foil with a conductive adhesive layer used for this invention. 本発明に使用される導電性接着剤シートの一例を示す断面図である。It is sectional drawing which shows an example of the electroconductive adhesive sheet used for this invention. 本発明方法の各工程を模式的に示す断面図である。It is sectional drawing which shows each process of this invention method typically. 本発明方法に使用される保持板の一例を示す断面図である。It is sectional drawing which shows an example of the holding plate used for this invention method. (a)は図1の積層セラミックコンデンサを配線基板上に実装した状態を示す断面図、(b)従来の積層セラミックコンデンサを配線基板上に実装した状態を示す断面図である。(A) is sectional drawing which shows the state which mounted the multilayer ceramic capacitor of FIG. 1 on the wiring board, (b) It is sectional drawing which shows the state which mounted the conventional multilayer ceramic capacitor on the wiring board. 従来法による端子電極を備えた積層セラミックコンデンサの一例を示す断面図である。It is sectional drawing which shows an example of the multilayer ceramic capacitor provided with the terminal electrode by the conventional method.

以下、本発明を実施するための形態について説明する。なお、説明は図面に基づいて行うが、それらの図面は単に図解のために提供されるものであって、本発明はそれらの図面により何ら限定されるものではない。また、以下の図面の記載において、共通する部分もしくは略同様の機能を有する部分には、同一符号を付している。   Hereinafter, modes for carrying out the present invention will be described. Although the description will be made based on the drawings, the drawings are provided for illustration only, and the present invention is not limited to the drawings. In the following description of the drawings, common portions or portions having substantially the same function are denoted by the same reference numerals.

図1は、本発明の電子部品の一実施形態の積層セラミックコンデンサを示す断面図である。   FIG. 1 is a cross-sectional view showing a multilayer ceramic capacitor according to an embodiment of an electronic component of the present invention.

図1に示すように、本実施形態の積層セラミックコンデンサ10は、セラミック素体12および内部電極14からなるコンデンサ素子本体16と、その両端部に形成された端子電極(外部電極)18、18とを備えている。   As shown in FIG. 1, the multilayer ceramic capacitor 10 of this embodiment includes a capacitor element body 16 composed of a ceramic body 12 and internal electrodes 14, terminal electrodes (external electrodes) 18, 18 formed at both ends thereof, and It has.

セラミック素体12は、誘電体材料、例えばBaTiOを主成分とするセラミックグリーンシートを複数枚(例えば30〜50枚程度)積層し、所定の温度で焼成したものである。このセラミック素体12は、ほぼ直方体の形状を有している。 The ceramic body 12 is obtained by laminating a plurality of (for example, about 30 to 50) ceramic green sheets mainly composed of a dielectric material, for example, BaTiO 3 , and firing them at a predetermined temperature. The ceramic body 12 has a substantially rectangular parallelepiped shape.

内部電極14は、それぞれの端縁がセラミック素体12のいずれかの端面に露出するようにセラミック素体12内に層状に形成されている。これらの内部電極14は、例えば銅、ニッケル等の導電成分を含む導電性ペーストを所定のセラミックグリーンシート上に、スクリーン印刷やインクジェット方式等により直接所望のパターンに塗布し、同時に焼成することにより形成される。   The internal electrodes 14 are formed in layers in the ceramic body 12 such that the respective edges are exposed at any end face of the ceramic body 12. These internal electrodes 14 are formed by, for example, applying a conductive paste containing a conductive component such as copper or nickel onto a predetermined ceramic green sheet directly in a desired pattern by screen printing, an ink jet method, or the like, and simultaneously firing it. Is done.

端子電極18は、セラミック素体12の内部電極14が露出している両端面に、導電性接着性シートを積層し一体に接着することにより形成される。これらの端子電極18は、上記内部電極14と電気的かつ機械的に接合されている。   The terminal electrode 18 is formed by laminating a conductive adhesive sheet on both end surfaces of the ceramic body 12 where the internal electrode 14 is exposed and bonding them together. These terminal electrodes 18 are electrically and mechanically joined to the internal electrode 14.

上記導電性接着シートとしては、例えば、図2に示すような、金属箔22の片面に導電性接着剤層24を設けた導電性接着剤層付き金属箔26や、図3に示すような、導電性接着剤組成物をシート状に成形した導電性接着剤シート30等が使用される。   As the conductive adhesive sheet, for example, as shown in FIG. 2, a metal foil 26 with a conductive adhesive layer in which a conductive adhesive layer 24 is provided on one side of the metal foil 22, or as shown in FIG. The conductive adhesive sheet 30 etc. which shape | molded the conductive adhesive composition in the sheet form are used.

導電性接着剤層付き金属箔26の金属箔22としては、例えば銅箔が挙げられる。銅箔は、厚さが5〜50μmであることが好ましい。銅箔の種類は特に限定されるものではなく、電解銅箔、圧延銅箔等の市販の各種銅箔を使用することができる。導電性接着剤層24を構成する導電性接着剤としては、導電性粉末と有機バインダを含む接着剤が挙げられる。この接着剤は、硬化物が導電性を有し、金属箔22とコンデンサ素子本体16を接着できるものであればよい。導電性粉末としては、例えば、銅、金、銀、ニッケル、パラジウム、コバルト等の金属単体、または、前記金属元素から選ばれる少なくとも1種を含む合金からなる金属粉末等が挙げられる。これらの導電性粉末のなかでも、導電性と価格のバランス等の点から、銅粉が好ましい。また、有機バインダとしては、金属との接着性の良いものが好ましく、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、スチレン樹脂、フェノール樹脂、ポリアミド樹脂、ポリオレフィン樹脂、メラミン樹脂、ウレア樹脂等が挙げられる。これらのなかでも、接続信頼性等の点からエポキシ樹脂が好ましい。   Examples of the metal foil 22 of the metal foil 26 with the conductive adhesive layer include a copper foil. The copper foil preferably has a thickness of 5 to 50 μm. The kind of copper foil is not particularly limited, and various commercially available copper foils such as electrolytic copper foil and rolled copper foil can be used. Examples of the conductive adhesive constituting the conductive adhesive layer 24 include an adhesive containing conductive powder and an organic binder. Any adhesive may be used as long as the cured product has conductivity and can adhere the metal foil 22 and the capacitor element body 16. Examples of the conductive powder include a metal simple substance such as copper, gold, silver, nickel, palladium, cobalt, or a metal powder made of an alloy containing at least one selected from the above metal elements. Among these conductive powders, copper powder is preferable from the viewpoint of balance between conductivity and price. In addition, as the organic binder, those having good adhesion to metal are preferable, for example, epoxy resin, acrylic resin, urethane resin, silicone resin, styrene resin, phenol resin, polyamide resin, polyolefin resin, melamine resin, urea resin, etc. Is mentioned. Among these, an epoxy resin is preferable from the viewpoint of connection reliability and the like.

また、導電性接着剤シート30の形成に使用される導電性接着剤組成物は、導電性粉末と有機バインダを含み、好ましくは、さらにガラス粉末を含むものである。   Moreover, the conductive adhesive composition used for forming the conductive adhesive sheet 30 includes a conductive powder and an organic binder, and preferably further includes a glass powder.

導電性粉末としては、前述した接着剤層付き金属箔26の導電性接着剤層24の説明において例示したものと同様の導電性粉末、すなわち、例えば、銅、金、銀、ニッケル、パラジウム、コバルト等の金属単体、または、前記金属元素から選ばれる少なくとも1種を含む合金からなる金属粉末等が挙げられ、また、これらの導電性粉末のなかでも、導電性と価格のバランス等の点から、銅粉が好ましい。この導電性粉末は、導電性接着剤組成物中に50〜90質量%含有されていることが好ましく、65〜85質量%含有されていることがより好ましい。導電性粉末の含有量が前記範囲より少ないと、導電性が低下し、逆に、前記範囲より多くなると、シート化が困難になる。   As the conductive powder, the same conductive powder as exemplified in the description of the conductive adhesive layer 24 of the metal foil 26 with the adhesive layer described above, that is, for example, copper, gold, silver, nickel, palladium, cobalt Examples of such a simple metal, or a metal powder made of an alloy containing at least one selected from the above metal elements, among these conductive powders, from the viewpoint of the balance between conductivity and price, etc. Copper powder is preferred. The conductive powder is preferably contained in the conductive adhesive composition in an amount of 50 to 90% by mass, and more preferably 65 to 85% by mass. When the content of the conductive powder is less than the above range, the conductivity is lowered. Conversely, when the content is more than the above range, it becomes difficult to form a sheet.

また、有機バインダは、炉内の雰囲気の酸素濃度が低い状態でも熱分解するものが好ましく、例えば(メタ)アクリル酸エステルの(共)重合体、(メタ)アクリル酸エステルと(メタ)アクリル酸との共重合体等のアクリル樹脂が使用される。(メタ)アクリル酸エステルの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、iso−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、グリシジルメタクリレート、メチルグリシジルメタクリレート、2−ヒドロキシ(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノ(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、1,6−ヘキサンジオール(メタ)アクリレート等が挙げられる。これらは1種を単独で使用してもよく、2種以上を混合して使用してもよい。   The organic binder is preferably one that thermally decomposes even when the oxygen concentration in the furnace atmosphere is low. For example, a (co) polymer of (meth) acrylic acid ester, (meth) acrylic acid ester and (meth) acrylic acid An acrylic resin such as a copolymer is used. Specific examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth) acrylate, iso- Butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, glycidyl methacrylate, methyl glycidyl methacrylate, 2-hydroxy (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate , Diethylaminoethyl (meth) acrylate, dimethylamino (meth) acrylate, dimethylaminoethyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate Rate, 1,6-hexanediol (meth) acrylate. These may be used individually by 1 type, and may mix and use 2 or more types.

この有機バインダは、分子量(ゲルパーミッションクロマトグラフィにより測定される重量平均分子量)が5万〜30万であることが好ましい。分子量が5万より小さいと、シート化が困難になり、また、分子量が30万より大きいと、粘度調整のための溶剤が過剰となり、焼成後、ボイドが発生しやすくなる。   This organic binder preferably has a molecular weight (weight average molecular weight measured by gel permeation chromatography) of 50,000 to 300,000. If the molecular weight is less than 50,000, it becomes difficult to form a sheet. If the molecular weight is more than 300,000, the solvent for adjusting the viscosity becomes excessive, and voids are likely to occur after firing.

また、有機バインダは、導電性接着剤組成物中に3〜10質量%含有されていることが好ましい。有機バインダの含有量が3質量%未満では、シート化が困難になり、逆に、10質量%を超えると、焼成後の緻密度が低下する。   Moreover, it is preferable that 3-10 mass% of organic binders are contained in the conductive adhesive composition. When the content of the organic binder is less than 3% by mass, it becomes difficult to form a sheet. Conversely, when the content exceeds 10% by mass, the density after firing decreases.

なお、導電性接着剤シート30は、適度な粘性を有することが好ましい。導電性接着剤シート30の粘性の調整は、有機バインダの分子量および配合量、並びに溶剤の量によって調整することができる。   The conductive adhesive sheet 30 preferably has an appropriate viscosity. Adjustment of the viscosity of the conductive adhesive sheet 30 can be adjusted by the molecular weight and blending amount of the organic binder and the amount of the solvent.

ガラス粉末は、基本的に上記金属粉末の焼結を容易にするために配合される成分である。ガラス粉末としては、例えば、BaO−B−SiO系ガラス粉末、Bi−B−SiO系ガラス粉末、ZnO−B−SiO系ガラス粉末、これらの混合物等が使用される。これらのガラス粉末は、特性に影響のない範囲で、少量の他の酸化物、例えば、アルカリ金属、ストロンチウム、鉛、銅、スズ、鉄、コバルト等の酸化物を含有していてもよい。 Glass powder is a component that is basically blended to facilitate sintering of the metal powder. Examples of the glass powder include BaO—B 2 O 3 —SiO 2 glass powder, Bi 2 O 3 —B 2 O 3 —SiO 2 glass powder, ZnO—B 2 O 3 —SiO 2 glass powder, and the like. A mixture of these is used. These glass powders may contain a small amount of other oxides, for example, oxides of alkali metals, strontium, lead, copper, tin, iron, cobalt, etc., as long as the properties are not affected.

本発明において使用されるガラス粉末は、各成分の原料化合物を混合し、溶融後、急冷し粉砕する通常の方法の他、ゾルゲル法、噴霧熱分解法、アトマイズ法等により製造することができる。これらの方法の中でも、噴霧熱分解法は、微細で粒度の揃った球状のガラス粉末が得られ、組成物に配合する際に粉砕処理を行う必要がないことから好ましい。   The glass powder used in the present invention can be produced by a sol-gel method, a spray pyrolysis method, an atomizing method, or the like, in addition to a usual method of mixing raw material compounds of each component, melting, quenching and grinding. Among these methods, the spray pyrolysis method is preferable because a spherical glass powder having a fine and uniform particle size is obtained, and it is not necessary to perform a pulverization treatment when blended into the composition.

ガラス粉末を配合する場合、その配合量は、導電性接着剤組成物全体の5〜12質量%とすることが好ましく、6〜10質量%とすることがより好ましい。ガラス粉末の配合量が5質量%未満では、焼成後の緻密度が十分に得られず、逆に、12質量%を超えると、導電性が十分に得られない。   When mix | blending glass powder, it is preferable to set the compounding quantity as 5-12 mass% of the whole conductive adhesive composition, and it is more preferable to set it as 6-10 mass%. When the blending amount of the glass powder is less than 5% by mass, the density after firing cannot be sufficiently obtained. Conversely, when the amount exceeds 12% by mass, sufficient conductivity cannot be obtained.

なお、図示は省略したが、端子電極18の表面には、ニッケル、スズ、半田等の湿式めっきによるめっき膜を設けるようにしてもよい。このようなめっき膜を設けることにより、半田濡れ性や半田耐熱性を向上させることができる。   Although not shown, a plating film by wet plating such as nickel, tin, or solder may be provided on the surface of the terminal electrode 18. By providing such a plating film, solder wettability and solder heat resistance can be improved.

次に、上記積層セラミックコンデンサ10の製造方法について、図4を用いて説明する。この方法では、図5に示すような、保持板40が使用される。すなわち、この保持板40は、コンデンサ素子本体16の長さ(端子電極18を形成する端面に垂直な方向の長さ)と略同じ厚さを有する平板41に、コンデンサ素子本体16を保持するための多数の方形の保持孔42を設けた構造を有する。なお、図5では、25個の保持孔42がほぼ等配されて設けられているが、保持孔42の数や形成位置等は特にこれに限定されるものではない。   Next, a method for manufacturing the multilayer ceramic capacitor 10 will be described with reference to FIG. In this method, a holding plate 40 as shown in FIG. 5 is used. That is, the holding plate 40 holds the capacitor element body 16 on a flat plate 41 having a thickness substantially the same as the length of the capacitor element body 16 (the length in the direction perpendicular to the end face forming the terminal electrode 18). A plurality of rectangular holding holes 42 are provided. In FIG. 5, the 25 holding holes 42 are provided so as to be substantially equally arranged, but the number, the formation positions, and the like of the holding holes 42 are not particularly limited thereto.

平板41としては、ステンレス鋼、銅等からなる金属板や、各種有機材料からなる板等が使用されるが、なかでも、加工性が良好で、反りや捩れの少ない有機材料、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、不飽和エステル樹脂、メラミン樹脂等の熱硬化性樹脂や、フッ素樹脂、ポリ塩化ビニル、ポリエステル樹脂、アクリル樹脂等の熱可塑性樹脂からなるものが好ましい。ガラス繊維、アラミド繊維、セルロース繊維、ポリエステル繊維、バサルト繊維の繊維により強化した繊維強化プラスチック(FRP)からなる平板は、薄くても強度が大きいため、保持板サイズを大きくして、一度の処理数を多くすることができることからより好ましい。配線基板の材料として従来より一般に使用されているガラスエポキシ積層板は、保持板40の材料として好適である。   As the flat plate 41, a metal plate made of stainless steel, copper, or the like, or a plate made of various organic materials is used. Among them, an organic material having good workability and less warping and twisting, for example, an epoxy resin It is preferable to use a thermosetting resin such as a phenol resin, a polyimide resin, an unsaturated ester resin, or a melamine resin, or a thermoplastic resin such as a fluorine resin, polyvinyl chloride, a polyester resin, or an acrylic resin. A flat plate made of fiber reinforced plastic (FRP) reinforced with fibers of glass fiber, aramid fiber, cellulose fiber, polyester fiber, and basalt fiber has high strength even if it is thin. It is more preferable because it can be increased. A glass epoxy laminated plate generally used conventionally as a material for the wiring board is suitable as a material for the holding plate 40.

また、このようなガラスエポキシ積層板等からなる平板41に保持孔42を形成する方法としては、ドリル加工、ルーター加工、金型打ち抜き、レーザ加工等の従来より知られる各種孔開け方法を用いることができる。   In addition, as a method of forming the holding hole 42 in the flat plate 41 made of such a glass epoxy laminated plate or the like, various conventionally known drilling methods such as drilling, router processing, die punching, and laser processing are used. Can do.

なお、このように平板41に穴開け加工を施したものの他、樹脂の射出成形等により予め所定の形状に成形したものを保持板40として用いることも可能である。   It is also possible to use the holding plate 40 that has been molded into a predetermined shape in advance by resin injection molding or the like in addition to the plate 41 that has been perforated.

本製造方法においては、まず、図4(a)に示すように、保持板40の各保持孔42に、セラミック素体の内部に内部電極を備えたコンデンサ素子本体16を、その端子電極を形成する各端面(第1の端面16aおよび第2の端面16b)と保持板40の上側および下側の各板面(第1の板面40aおよび第2の板面40b)とがそれぞれ略面一になるように挿入する。   In this manufacturing method, first, as shown in FIG. 4 (a), the capacitor element body 16 provided with an internal electrode inside the ceramic body is formed in each holding hole 42 of the holding plate 40, and its terminal electrode is formed. The respective end surfaces (the first end surface 16a and the second end surface 16b) to be performed and the upper and lower plate surfaces (the first plate surface 40a and the second plate surface 40b) of the holding plate 40 are substantially flush with each other. Insert to become.

次に、図4(b)に示すように、コンデンサ素子本体16を挿入した保持板40の第1および第2の板面40a、40bに導電性接着シートをそれぞれ積層し一体に接着させる。   Next, as shown in FIG. 4B, a conductive adhesive sheet is laminated on each of the first and second plate surfaces 40a and 40b of the holding plate 40 in which the capacitor element body 16 is inserted, and bonded together.

図面は、導電性接着シートとして、図2に示すような導電性接着剤層付き金属箔26を用いた例を示している。このように導電性接着剤層付き金属箔26を用いる場合には、導電性接着剤層24側を第1の端面16aあるいは第2の端面16b側に向けて積層した後、プレスやロール等を用いて、例えば室温〜150℃、圧力0〜0.5MPaで加熱加圧して一体に接着させる。接着後、必要に応じて、さらに150〜200℃で加熱してエージングを行い、接着剤を完全硬化させる。   The drawing shows an example in which a metal foil 26 with a conductive adhesive layer as shown in FIG. 2 is used as a conductive adhesive sheet. Thus, when using the metal foil 26 with a conductive adhesive layer, after laminating | stacking the conductive adhesive layer 24 side toward the 1st end surface 16a or the 2nd end surface 16b side, a press, a roll, etc. are carried out. For example, it is heated and pressurized at room temperature to 150 ° C. and a pressure of 0 to 0.5 MPa, and bonded together. After the bonding, if necessary, the adhesive is further aged by heating at 150 to 200 ° C. to completely cure the adhesive.

この後、必要に応じて、端子電極18上に、湿式めっき法により、ニッケル、スズ、半田等のめっき膜を形成した後、図4(c)に示すように、コンデンサ素子本体16の第1および第2の端面16a、16bに接着させた導電性接着シート(導電性接着剤層付き金属箔26)を、ルーター等を用いて、各保持孔42の周縁部に沿って切断する。   Thereafter, if necessary, a plating film of nickel, tin, solder, or the like is formed on the terminal electrode 18 by a wet plating method. Then, as shown in FIG. The conductive adhesive sheet (metal foil 26 with a conductive adhesive layer) adhered to the second end faces 16a and 16b is cut along the peripheral edge of each holding hole 42 using a router or the like.

これにより、図1に示したような、コンデンサ素子本体16の両端部に端子電極18が形成された積層セラミックコンデンサ10が得られる。   Thereby, the multilayer ceramic capacitor 10 in which the terminal electrodes 18 are formed at both ends of the capacitor element body 16 as shown in FIG. 1 is obtained.

なお、図面による説明は省略するが、導電性接着シートとして、図3に示すような導電性接着剤シート30を用いる場合には、保持板40の各保持孔42にコンデンサ素子本体16を挿入後、保持板40の第1および第2の板面40a、40bに導電性接着剤シート30を積層し、導電性接着剤層付き金属箔26の場合と同様、例えば室温〜150℃、圧力0〜0.5MPaで加熱加圧して一体に接着させる。次に、この接着させた導電性接着剤シート30を、ルーター等を用いて、各42保持孔の周縁部に沿って切断し、両端面に導電性接着剤シート30が接着されたコンデンサ素子本体16を得る。次に、この両端面に導電性接着剤シート30が接着されたコンデンサ素子本体16を、加熱炉に入れ、例えば650〜850℃で、0.5〜2時間程度加熱し、導電性接着剤シート30を焼成させ、端子電極18を形成する。この後、必要に応じて、端子電極18上に、湿式めっき法により、ニッケル、スズ、半田等のめっき膜を形成する。これにより、図1に示したような、コンデンサ素子本体16の両端部に端子電極18が形成された積層セラミックコンデンサ10が得られる。   Although not described with reference to the drawings, when the conductive adhesive sheet 30 as shown in FIG. 3 is used as the conductive adhesive sheet, the capacitor element body 16 is inserted into each holding hole 42 of the holding plate 40. The conductive adhesive sheet 30 is laminated on the first and second plate surfaces 40a, 40b of the holding plate 40, and the same as in the case of the metal foil 26 with the conductive adhesive layer, for example, room temperature to 150 ° C., pressure 0 to Heat and press at 0.5 MPa to bond them together. Next, the bonded conductive adhesive sheet 30 is cut along the peripheral edge of each of the 42 holding holes by using a router or the like, and the capacitor element body in which the conductive adhesive sheet 30 is bonded to both end faces. Get 16. Next, the capacitor element body 16 in which the conductive adhesive sheet 30 is bonded to both end faces is placed in a heating furnace and heated at, for example, 650 to 850 ° C. for about 0.5 to 2 hours, and the conductive adhesive sheet 30 is fired to form the terminal electrode 18. Thereafter, if necessary, a plating film of nickel, tin, solder or the like is formed on the terminal electrode 18 by wet plating. Thereby, the multilayer ceramic capacitor 10 in which the terminal electrodes 18 are formed at both ends of the capacitor element body 16 as shown in FIG. 1 is obtained.

このような製造方法においては、予め成形された導電性接着シートを用いて端子電極を形成するので、寸法精度、形状精度に優れ、かつ緻密でボイドの少ない端子電極を形成することができる。導電性接着シートとして、導電性接着剤層付き金属箔を使用した場合には、焼成の必要もないため、少ない工程で端子電極を形成することができる。しかも、簡単な構造の保持治具を用いて、多数のコンデンサ素子本体の両端面に一括して端子電極を形成することが可能であるため、作業性および生産性にも優れている。   In such a manufacturing method, since the terminal electrode is formed using a pre-formed conductive adhesive sheet, it is possible to form a terminal electrode that is excellent in dimensional accuracy and shape accuracy and is dense and has few voids. When a metal foil with a conductive adhesive layer is used as the conductive adhesive sheet, since there is no need for firing, the terminal electrode can be formed with few steps. Moreover, since it is possible to form terminal electrodes on both end faces of a large number of capacitor element bodies using a simple holding jig, the workability and productivity are excellent.

さらに、本実施形態による端子電極18は、コンデンサ素子本体16の端面のみに形成されるため、従来の端面から側面に連続して設けられる端子電極に比べ、基板面の導体接続時の半田濡れ性に優れたものとなる。すなわち、図6(a)は、図1に示す本実施形態の積層セラミックコンデンサ10を配線基板70上に実装した状態を示した断面図であり、また、図6(b)は、図7に示す従来の積層セラミックコンデンサを配線基板70上に実装した状態を示した断面図である。これらの図面が示すように、本実施形態による端子電極18は従来の端子電極3に比べ半田濡れ性が良好であるため、配線基板70上の導体層71に対し、半田72により信頼性の高い接続が可能となる。   Furthermore, since the terminal electrode 18 according to the present embodiment is formed only on the end face of the capacitor element body 16, the solder wettability at the time of connecting the conductor on the board surface as compared with the conventional terminal electrode provided continuously from the end face to the side face. It will be excellent. 6A is a cross-sectional view showing a state in which the multilayer ceramic capacitor 10 of the present embodiment shown in FIG. 1 is mounted on the wiring board 70, and FIG. 6B is a cross-sectional view of FIG. 6 is a cross-sectional view showing a state in which the conventional multilayer ceramic capacitor shown is mounted on a wiring board 70. FIG. As shown in these drawings, since the terminal electrode 18 according to the present embodiment has better solder wettability than the conventional terminal electrode 3, the solder layer 72 is more reliable than the conductor layer 71 on the wiring board 70. Connection is possible.

なお、本発明は、上述した積層セラミックコンデンサのみならず、チップ型セラミックサーミスタを始め、端部に端子電極を備えるチップ型の各種電子部品に広く適用可能であり、寸法精度、形状精度の良い端子電極を備え、かつ作業性、生産性に優れた電子部品を得ることができる。   The present invention can be widely applied not only to the above-described multilayer ceramic capacitor but also to chip-type ceramic thermistors and various chip-type electronic components having terminal electrodes at the ends, and has high dimensional accuracy and shape accuracy. An electronic component having electrodes and excellent workability and productivity can be obtained.

次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、以下の記載において特に明示しない限り、「部」は「質量部」を示すものとする。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all. In the following description, “parts” means “parts by mass” unless otherwise specified.

(実施例1)
ビスフェノールA型液状エポキシ樹脂(旭電化(株)製 商品名 EP4100E)100部、ノボラック型エポキシ樹脂(DIC(株)製 商品名 N−673)50部、フェノキシ樹脂(ジャパンエポキシレジン(株)製 商品名 XY8100)40部、硬化促進剤(四国化成(株)製 商品名 C11Z)5部、球状銀粉(数平均粒径1.5μm)60部、および希釈剤としてメチルエチルケトン/トルエン混合物(質量比6/4)600部を撹拌混合した後、この液状混合物を厚さ35μmの電解銅箔(福田金属箔粉工業(株)製)の片面に塗布し乾燥させて厚さ10μmの導電性接着剤層を形成し、導電性接着剤層付き銅箔を作製した。
Example 1
100 parts of bisphenol A liquid epoxy resin (trade name EP4100E manufactured by Asahi Denka Co., Ltd.), 50 parts of novolak type epoxy resin (trade name N-673 manufactured by DIC Corporation), product manufactured by Japan Epoxy Resin Co., Ltd. Name XY8100) 40 parts, curing accelerator (product name C11Z, manufactured by Shikoku Kasei Co., Ltd.) 5 parts, spherical silver powder (number average particle size 1.5 μm) 60 parts, and methyl ethyl ketone / toluene mixture (mass ratio 6 / 4) After stirring and mixing 600 parts, this liquid mixture was applied to one side of a 35 μm thick electrolytic copper foil (Fukuda Metal Foil Powder Co., Ltd.) and dried to form a 10 μm thick conductive adhesive layer. A copper foil with a conductive adhesive layer was formed.

また、縦300mm、横300mm、厚さ4mmのガラスエポキシ積層板(京セラケミカル(株)製 商品名 TLB−551)にルーターを使用して、縦/横=2mm/2mmの方形の貫通孔を穿設し、図5に示したような保持板を作製した。   In addition, using a router on a 300 mm long, 300 mm wide, 4 mm thick glass epoxy laminate (trade name: TLB-551, manufactured by Kyocera Chemical Co., Ltd.), a rectangular through-hole of vertical / horizontal = 2mm / 2mm is drilled. And a holding plate as shown in FIG. 5 was produced.

この保持板の各貫通孔に、内部に内部電極を形成した1005型積層セラミックコンデンサの素子本体を挿入した後、その上面および下面に、上記導電性接着剤層付き銅箔を導電性接着剤層側をセラミック素体に向けて重ね合わせ、熱プレスにて、温度130℃、圧力0.5MPaで30分間加熱加圧し、さらに、170℃で1時間加熱して、素子本体と銅箔とを一体化させた。   After inserting the element body of a 1005 type multilayer ceramic capacitor having an internal electrode formed in each through hole of the holding plate, the copper foil with the conductive adhesive layer is formed on the upper surface and the lower surface of the conductive adhesive layer. Lay the side facing the ceramic body, heat press for 30 minutes at a temperature of 130 ° C and a pressure of 0.5 MPa, and further heat at 170 ° C for 1 hour to integrate the element body and copper foil together Made it.

この後、ルーターを用いて積層した銅箔を保持板とともに切断し、両端面に外部電極を備えた積層セラミックコンデンサを製造した。   Thereafter, the laminated copper foil using a router was cut together with a holding plate to produce a multilayer ceramic capacitor having external electrodes on both end faces.

(実施例2)
鱗片状銅粉(数平均粒径1.5μm)10部、球状銅粉(数平均粒径1.3μm)65部、ガラス粉末(数平均粒径3μm)8部および30%iso‐ブチルメタクリレート樹脂含有ターピネオール溶液(根上工業(株)製 商品名 ハイパールM−0603−30c、重量平均分子量17万)17部を混合した後、ロールにて厚さ50μmの導電性接着剤シートを作製した。
(Example 2)
10 parts of scaly copper powder (number average particle size 1.5 μm), 65 parts of spherical copper powder (number average particle size 1.3 μm), 8 parts of glass powder (number average particle size 3 μm) and 30% iso-butyl methacrylate resin After mixing 17 parts of a contained terpineol solution (trade name High Pearl M-0603-30c, weight average molecular weight 170,000 manufactured by Negami Kogyo Co., Ltd.), a conductive adhesive sheet having a thickness of 50 μm was prepared with a roll.

この導電性接着剤シートを、実施例1と同様に作製し、その貫通孔に、内部に内部電極を形成した1005型積層セラミックコンデンサの素子本体を挿入した保持板の上面および下面に重ね合わせ、熱プレスにて、温度100℃、圧力0.2MPaで30分間加熱加圧して、接着させた。   This conductive adhesive sheet was produced in the same manner as in Example 1, and the upper and lower surfaces of the holding plate in which the element body of the 1005 type multilayer ceramic capacitor having the internal electrode formed therein was inserted into the through-hole, In a hot press, it was heated and pressed at a temperature of 100 ° C. and a pressure of 0.2 MPa for 30 minutes for adhesion.

この後、ルーターを用いて導電性接着剤シートを切断し、両端面に導電性接着剤シートを備えた1005型積層セラミックコンデンサの素子本体を得た後、これらを窒素雰囲気中、温度700℃で50分間加熱することにより、導電性接着剤シートを焼き付けて、両端面に外部電極を備えた積層セラミックコンデンサを製造した。   Thereafter, the conductive adhesive sheet is cut using a router to obtain an element body of a 1005 type multilayer ceramic capacitor having conductive adhesive sheets on both end faces, and then these are placed in a nitrogen atmosphere at a temperature of 700 ° C. By heating for 50 minutes, the conductive adhesive sheet was baked to produce a multilayer ceramic capacitor having external electrodes on both end faces.

(比較例)
内部に内部電極を形成した1005型積層セラミックコンデンサの素子本体100個を用意し、各素子本体の一方の端部を粘着テープに固定した状態で、浸漬槽に収容した導電性ペーストに、他方の端部を浸漬する方法により、各素子素体の両端部に導電性ペーストを塗布し、150℃で15分間乾燥させた後、窒素雰囲気中において、700℃で50分間焼き付けて端子電極を形成した。導電性ペーストには市販の導電性ペースト(京セラ(株)製 商品名 CT600)を用いた。
(Comparative example)
Prepare 100 element bodies of 1005 type multilayer ceramic capacitor with internal electrodes formed inside, and with one end of each element body fixed to the adhesive tape, the conductive paste contained in the immersion tank A conductive paste was applied to both ends of each element body by a method of immersing the ends, dried at 150 ° C. for 15 minutes, and then baked at 700 ° C. for 50 minutes in a nitrogen atmosphere to form terminal electrodes. . As the conductive paste, a commercially available conductive paste (trade name: CT600 manufactured by Kyocera Corporation) was used.

上記各実施例および比較例で得られた積層セラミックコンデンサの端子電極の寸法(図6に示す電極間距離Lおよび電極側面部長M)を測定するとともに、断面を観察しボイドの発生が認められた試料の数を計数した。また、配線基板上に半田を用いて実装し、その端面全体に対する半田濡れ面積の割合を求め、半田濡れ性を評価した(n=5の平均値)。結果を表1に示す。   The dimensions of the terminal electrodes (distance L between electrodes and electrode side length M shown in FIG. 6) of the multilayer ceramic capacitors obtained in each of the above examples and comparative examples were measured, and the occurrence of voids was observed by observing the cross section. The number of samples was counted. In addition, the solder was mounted on the wiring board, the ratio of the solder wet area to the entire end face was determined, and the solder wettability was evaluated (average value of n = 5). The results are shown in Table 1.

Figure 2011003612
Figure 2011003612

表1から明らかなように、従来法を適用した比較例に比べ、実施例で形成された端子電極は、いずれも寸法精度に優れ、端子電極におけるボイドの発生が少ないうえに、半田濡れ性も良好であった。   As is apparent from Table 1, the terminal electrodes formed in the examples are superior in dimensional accuracy compared to the comparative example to which the conventional method is applied, and the occurrence of voids in the terminal electrodes is small, and the solder wettability is also low. It was good.

10…積層セラミックコンデンサ、12…セラミック素体、14…内部電極、16…コンデンサ素子本体、16a…第1の端面、16b…第2の端面、18…外部電極、22…金属箔、24…導電性接着剤層、26…導電性接着剤層付き金属箔、30…導電性接着剤シート、40…保持板、40a…第1の板面、40b…第2の板面、42…保持孔。   DESCRIPTION OF SYMBOLS 10 ... Multilayer ceramic capacitor, 12 ... Ceramic body, 14 ... Internal electrode, 16 ... Capacitor element main body, 16a ... 1st end surface, 16b ... 2nd end surface, 18 ... External electrode, 22 ... Metal foil, 24 ... Conductivity Conductive adhesive layer, 26 ... metal foil with conductive adhesive layer, 30 ... conductive adhesive sheet, 40 ... holding plate, 40a ... first plate surface, 40b ... second plate surface, 42 ... holding hole.

Claims (6)

素子本体の両端に互いに平行する1対の端面を有し、これらの各端面に端子電極が形成されてなる電子部品であって、前記端子電極は、前記各端面に導電性接着シートを積層し一体に接着してなることを特徴とする電子部品。   An electronic component having a pair of end faces parallel to each other at both ends of the element body, and terminal electrodes are formed on each of these end faces, wherein the terminal electrodes are formed by laminating a conductive adhesive sheet on each end face. Electronic parts characterized by being bonded together. 前記導電性接着シートは、金属箔の片面に導電性接着剤層を設けた導電性接着剤層付き金属箔であることを特徴とする請求項1記載の電子部品。   The electronic component according to claim 1, wherein the conductive adhesive sheet is a metal foil with a conductive adhesive layer in which a conductive adhesive layer is provided on one side of the metal foil. 前記導電性接着シートは、導電性接着剤組成物をシート状に成形した導電性接着剤シートであることを特徴とする請求項1記載の電子部品。   The electronic component according to claim 1, wherein the conductive adhesive sheet is a conductive adhesive sheet obtained by forming a conductive adhesive composition into a sheet shape. 電子部品は、積層セラミックコンデンサまたはチップ形セラミックサーミスタ素子であることを特徴とする請求項1乃至3のいずれか1項記載の電子部品。   4. The electronic component according to claim 1, wherein the electronic component is a multilayer ceramic capacitor or a chip-type ceramic thermistor element. 両端に端子電極を形成すべき端面を有する素子本体を、該素子本体が前記端面に略垂直な方向に嵌入される保持孔が複数個設けられた保持板の前記各保持孔に、前記素子本体の端子電極を形成すべき端面と前記保持板の板面が略面一になるように保持させるとともに、前記素子本体の端面上に導電性接着シートを積層し一体に接着させる工程と、
前記各保持孔の周縁部に沿って前記導電性接着シートを切断して、端面に前記導電性接着シートが接着された素子本体を得る工程と、
を含むことを特徴とする電子部品の製造方法。
The element body having an end surface on which the terminal electrodes are to be formed at both ends, and the element body in each holding hole provided with a plurality of holding holes into which the element body is fitted in a direction substantially perpendicular to the end surface. And a step of laminating a conductive adhesive sheet on the end face of the element body and integrally bonding the end face to be formed so that the end face of the terminal electrode and the holding plate are substantially flush with each other, and
Cutting the conductive adhesive sheet along the peripheral edge of each holding hole to obtain an element body having the conductive adhesive sheet bonded to an end surface;
The manufacturing method of the electronic component characterized by including.
前記導電性接着シートを切断した後、素子本体端面に接着された導電性接着シートに所定の熱処理を施すことを特徴とする請求項5記載の電子部品の製造方法。   6. The method of manufacturing an electronic component according to claim 5, wherein after the conductive adhesive sheet is cut, a predetermined heat treatment is performed on the conductive adhesive sheet bonded to the end face of the element body.
JP2009143641A 2009-06-16 2009-06-16 Electronic component and method of manufacturing the same Withdrawn JP2011003612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143641A JP2011003612A (en) 2009-06-16 2009-06-16 Electronic component and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143641A JP2011003612A (en) 2009-06-16 2009-06-16 Electronic component and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011003612A true JP2011003612A (en) 2011-01-06

Family

ID=43561371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143641A Withdrawn JP2011003612A (en) 2009-06-16 2009-06-16 Electronic component and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011003612A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033241A (en) * 2010-06-24 2014-02-20 Tdk Corp Chip thermister and manufacturing method therefor
JP2015035581A (en) * 2013-07-10 2015-02-19 株式会社村田製作所 Ceramic electronic component and method for manufacturing the same
JP2016127290A (en) * 2014-12-29 2016-07-11 サムソン エレクトロ−メカニックス カンパニーリミテッド. Circuit board and manufacturing method of the same
US20170140874A1 (en) * 2013-06-19 2017-05-18 Murata Manufacturing Co., Ltd. Ceramic electronic component and method of manufacturing the same
JPWO2016042884A1 (en) * 2014-09-19 2017-06-15 株式会社村田製作所 Chip ceramic semiconductor electronic components
CN107293404A (en) * 2016-04-01 2017-10-24 三星电机株式会社 Laminated electronic component and its manufacture method
WO2021014671A1 (en) * 2019-07-23 2021-01-28 株式会社クレハ Resin composition for temperature sensor, and element for temperature sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033241A (en) * 2010-06-24 2014-02-20 Tdk Corp Chip thermister and manufacturing method therefor
US8896410B2 (en) 2010-06-24 2014-11-25 Tdk Corporation Chip thermistor and method of manufacturing same
US9324483B2 (en) 2010-06-24 2016-04-26 Tdk Corporation Chip thermistor and method of manufacturing same
US20170140874A1 (en) * 2013-06-19 2017-05-18 Murata Manufacturing Co., Ltd. Ceramic electronic component and method of manufacturing the same
US10283273B2 (en) * 2013-06-19 2019-05-07 Murata Manufacturing Co., Ltd. Method of manufacturing a ceramic electronic component
JP2015035581A (en) * 2013-07-10 2015-02-19 株式会社村田製作所 Ceramic electronic component and method for manufacturing the same
JPWO2016042884A1 (en) * 2014-09-19 2017-06-15 株式会社村田製作所 Chip ceramic semiconductor electronic components
JP2016127290A (en) * 2014-12-29 2016-07-11 サムソン エレクトロ−メカニックス カンパニーリミテッド. Circuit board and manufacturing method of the same
CN107293404A (en) * 2016-04-01 2017-10-24 三星电机株式会社 Laminated electronic component and its manufacture method
KR101813366B1 (en) * 2016-04-01 2018-01-30 삼성전기주식회사 Multilayed electronic component and method of the same
CN107293404B (en) * 2016-04-01 2020-08-28 三星电机株式会社 Laminated electronic component and method for manufacturing same
WO2021014671A1 (en) * 2019-07-23 2021-01-28 株式会社クレハ Resin composition for temperature sensor, and element for temperature sensor

Similar Documents

Publication Publication Date Title
JP2011003612A (en) Electronic component and method of manufacturing the same
KR101191503B1 (en) Conductive resin composition and chip-type electronic component
DE69008963T2 (en) Electronic circuit substrate.
US9779880B2 (en) Resin composition and dielectric layer and capacitor produced therefrom
KR101559605B1 (en) Thermosetting conductive paste and laminated ceramic electronic component possessing external electrodes formed using same
JP2019179778A (en) Multilayer ceramic capacitor and mounting structure of the same
CN100469215C (en) Multiplayer circuit base and its producing method
JP4932035B2 (en) Low temperature fired ceramic circuit board
JP2012009556A (en) Ceramic electronic component and method of manufacturing the same
JP2014201484A (en) Black marking composition and electronic component using the same
KR100744855B1 (en) High Thermal Cycle Conductor System
KR101442065B1 (en) Resin electrode paste, and electronic component equipped with resin electrode produced using same
JP2002111219A (en) Wiring board incorporating electric element and its manufacturing method
US20200126695A1 (en) Chip-shaped electronic component
JP4619026B2 (en) Glass ceramic substrate and manufacturing method thereof
JP2010080731A (en) Ceramic film forming method, and method of manufacturing laminated ceramic electronic component
JP2002362987A (en) Electronic component and method for manufacturing the same
KR101860745B1 (en) Pressure-resistant electrode paste for chip component using thermo-plastic resin and manufacturing method therewith
JP2005216987A (en) Conductive paste for ceramic electronic component and ceramic electronic component
JP2011198470A (en) Conductive paste for film electrode, conductive film for electrode, and film electrode
WO2006134673A1 (en) Process for producing ceramic sheet
JP4481734B2 (en) Conductive paste composition for multilayer wiring board
US11817266B2 (en) Conductive paste and ceramic electronic component
JP2002198250A (en) Laminated electronic component
JP4703208B2 (en) Multilayer wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120904