WO2021014671A1 - Resin composition for temperature sensor, and element for temperature sensor - Google Patents

Resin composition for temperature sensor, and element for temperature sensor Download PDF

Info

Publication number
WO2021014671A1
WO2021014671A1 PCT/JP2020/010178 JP2020010178W WO2021014671A1 WO 2021014671 A1 WO2021014671 A1 WO 2021014671A1 JP 2020010178 W JP2020010178 W JP 2020010178W WO 2021014671 A1 WO2021014671 A1 WO 2021014671A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
meth
resin composition
temperature
structural unit
Prior art date
Application number
PCT/JP2020/010178
Other languages
French (fr)
Japanese (ja)
Inventor
町田 克一
巧 葛尾
誠史 丹野
清水 和彦
則之 荒川
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2021014671A1 publication Critical patent/WO2021014671A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient

Definitions

  • the present invention relates to a resin composition for a temperature sensor and an element for a temperature sensor.
  • Patent Document 1 proposes a temperature sensor that utilizes the property that electrical resistance changes with temperature.
  • a resin composition containing a polymer of an aliphatic acrylic monomer and conductive particles is arranged between a pair of electrodes.
  • the temperature is specified by utilizing the property that the electric resistance value of the resin composition rapidly increases as the temperature rises in a specific temperature range (hereinafter, also referred to as “PTC characteristic”).
  • the temperature sensor of Patent Document 1 can be used repeatedly.
  • the electric resistance value at the time of raising the temperature and the electric resistance value at the time of lowering the temperature deviate from each other, or when the temperature is repeatedly used, the electric resistance value becomes the value each time.
  • blurring occurs (hereinafter, also referred to as “hysteresis”).
  • the value temporarily jumps up (hereinafter, also referred to as “overshoot”) before the resistance value reaches the equilibrium value. Therefore, there is a problem that it is difficult to accurately measure the temperature with the temperature sensor.
  • An object of the present invention is to provide an element for a temperature sensor that is less likely to cause hysteresis or overshoot and can accurately specify the temperature, and a resin composition for the temperature sensor used therefor.
  • a resin composition for a temperature sensor which comprises a polymer containing at least one of an aromatic vinyl structural unit and an aromatic (meth) acrylic acid ester structural unit, and a conductive filler.
  • the present invention further provides the following temperature sensor elements.
  • a substrate, a pair of electrodes arranged on the substrate, and a resin resistance portion arranged on the substrate and between the pair of electrodes are included, and the resin resistance portion is the resin composition for a temperature sensor described above.
  • an element for a temperature sensor that is less likely to cause hysteresis and overshoot and can accurately specify the temperature can be obtained.
  • the resin composition for temperature sensor of the present invention (hereinafter, also simply referred to as “resin composition”) is a resin composition for producing a resin resistance portion of a temperature sensor element described later.
  • the temperature sensor element which will be described in detail later, has a pair of electrodes and a resin resistance portion arranged between the pair of electrodes.
  • the resin resistance portion contains a resin and a conductive filler, and when the temperature of the temperature sensor element rises, the resin expands. As a result, the distance between the conductive fillers becomes long, and the resistance value of the resin resistance portion increases. That is, in the temperature sensor element having such a structure, it is possible to specify the temperature of the temperature sensor element and the temperature around the temperature sensor element by measuring the resistance value of the resin resistance portion.
  • the resin resistance part of the conventional temperature sensor element has a problem that when the resistance value is held at a predetermined temperature for a certain period of time, the value tends to jump up temporarily (overshoot) until the resistance value reaches equilibrium. It was. Therefore, there is a problem that it is difficult to accurately specify the temperature with the temperature sensor.
  • the resin composition of the present invention contains a polymer containing at least one of an aromatic vinyl structural unit and an aromatic (meth) acrylic acid ester structural unit, and a conductive filler.
  • the above-mentioned hysteresis and overshoot are remarkably less likely to occur. It is presumed that the suppression of hysteresis is because the volume change due to melting and precipitation of crystals is not used as in Patent Document 1, but only the volume change of the resin (polymer) due to temperature is used.
  • overshoot suppression is achieved by combining a conductive filler with a specific polymer, so that the conductive filler and the polymer interact more strongly than previously known interactions between the resin and the filler in the above temperature range. It is presumed that this is because it acts and stabilizes the dispersed state of the conductive filler in the resin (polymer).
  • the resin composition of the present invention may contain a solvent, various additives, and the like, if necessary, in addition to the above polymer and the conductive filler.
  • a solvent various additives, and the like, if necessary, in addition to the above polymer and the conductive filler.
  • each component will be described.
  • the polymer is a component that serves as a matrix that supports a conductive filler in the resin resistance portion of the temperature sensor element. That is, it is a component that supports the conductive filler described later in the resin resistance portion and expands or contracts in a desired temperature range to exhibit the above-mentioned PTC characteristics.
  • the polymer may contain at least one of an aromatic vinyl structural unit and an aromatic (meth) acrylic acid ester structural unit.
  • the aromatic vinyl structural unit means a structural unit derived from an aromatic vinyl compound (monomer).
  • the aromatic (meth) acrylic acid ester structural unit means a structural unit derived from an aromatic (meth) acrylic acid ester compound (monomer).
  • (meth) acrylic means acrylic and / or methacrylic.
  • the polymer may contain only one of the aromatic vinyl structural unit and the aromatic (meth) acrylic acid ester structural unit, or may contain both. Further, structural units other than these may be included as long as the object of the present invention and curing are not impaired.
  • the total mass of the aromatic vinyl structural unit and the aromatic (meth) acrylic acid ester structural unit with respect to the total mass of the structural units constituting the polymer is preferably 40% by mass or more, more preferably 45% by mass or more. 50% by mass or more is more preferable.
  • the total mass of the aromatic vinyl structural unit and the aromatic (meth) acrylic acid ester structural unit is 40% by mass or more, the above-mentioned hysteresis and overshoot are less likely to occur.
  • the aromatic vinyl compound for obtaining the above aromatic vinyl structural unit may be a compound having an aromatic ring and a vinyl group (however, those containing a (meth) acrylic group are excluded).
  • the aromatic ring may be a monocyclic type or a polycyclic type.
  • the polymer may contain only one type of aromatic vinyl structural unit, or may contain two or more types.
  • aromatic vinyl compounds examples include styrene, ⁇ -methylstyrene, p-methylstyrene, m-methylstyrene, p-ethylstyrene, o-tert-butylstyrene, m-tert-butylstyrene, p-tert-butyl.
  • aromatic vinyl compounds such as styrene, o-chlorostyrene, chloromethylstyrene, dibromstyrene, methoxystyrene, vinylbenzoic acid, hydroxymethylstyrene and vinylnaphthalene.
  • the number of vinyl groups contained in the aromatic vinyl compound is not particularly limited, but one, that is, monofunctional is particularly preferable. As a result, the flexibility of the obtained resin resistance portion tends to increase, and the flexibility of the obtained temperature sensor element tends to increase. Therefore, among the above, the aromatic vinyl compound is preferably styrene, ⁇ -methylstyrene, and p-methylstyrene.
  • the aromatic (meth) acrylic acid ester compound for obtaining the aromatic (meth) acrylic acid ester structural unit may be a compound having an aromatic ring and a (meth) acrylic acid ester bond.
  • the aromatic ring may be a monocyclic type or a polycyclic type.
  • the polymer may contain only one type of aromatic (meth) acrylic acid ester structural unit, or may contain two or more types.
  • aromatic (meth) acrylic acid ester compounds include benzyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, methylphenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, and phenoxybenzyl (meth) acrylate. , Ethonylated nonylphenyl (meth) acrylate, nonylphenol ethylene oxide adduct (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate and the like.
  • the number of (meth) acrylic groups contained in the aromatic (meth) acrylic acid ester compound is not particularly limited, but one, that is, monofunctional is particularly preferable.
  • the flexibility of the obtained resin resistance portion tends to increase, and eventually the flexibility of the obtained temperature sensor element tends to increase.
  • the structural units other than the aromatic vinyl structural unit and the aromatic (meth) acrylic acid ester structural unit are not particularly limited, and for example, the aliphatic (meth) acrylic acid ester structural unit derived from the aliphatic (meth) acrylic acid ester compound may be used. preferable.
  • the aliphatic (meth) acrylic acid ester compound is a compound having an aliphatic group and a (meth) acrylic group.
  • the aliphatic group may be linear, may be branched, or may have an alicyclic structure. Further, the aliphatic group may have a substituent (for example, an alkoxy group).
  • the carbon number of the aliphatic group is preferably about 1 to 24, and more preferably about 1 to 18, from the viewpoint that a non-crystalline polymer can be easily obtained.
  • aliphatic (meth) acrylic acid ester compound examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, and 2 -Ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, n-lauryl (meth) acrylate, tridecyl (meth) acrylate, isobornyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, methoxyoligoethylene Glycol (meth) acrylate and the like are included.
  • the polymer is preferably amorphous, and it is preferable that no melting point is observed in a preferable operating temperature range (for example, 30 to 50 ° C.) of the temperature sensor.
  • a preferable operating temperature range for example, 30 to 50 ° C.
  • the presence or absence of a melting point can be confirmed by a differential scanning calorimeter (DSC) or the like.
  • the weight average molecular weight of the polymer is appropriately selected depending on the method of printing the resin composition on the electrodes, but when screen printing is used, it is preferably 10,000 to 500,000, more preferably 20,000 to 400,000. .. If the weight average molecular weight is 10,000 or less, the fluidity of the resin composition is too high, and there is a high possibility that ink will flow during printing. On the other hand, when the weight average molecular weight is 500,000 or more, it becomes difficult to dissolve the polymer in a solvent, and even if it is dissolved, the viscosity is too high and there is a high possibility that printing cannot be performed.
  • the amount of the polymer in the resin composition is appropriately selected according to the physical characteristics of the desired temperature sensor element, the molecular weight of the polymer, the viscosity, and the like. Viscosity is especially important because there is an appropriate area depending on the printing method.
  • the amount of the polymer is preferably 10 to 99% by mass, more preferably 20 to 98% by mass, still more preferably 30 to 97% by mass, based on the solid content of the resin composition.
  • the method for preparing the above polymer is not particularly limited, and can be prepared by various known polymerization methods. For example, a method of polymerizing the aromatic vinyl compound, the aromatic (meth) acrylic compound, and if necessary, the aliphatic (meth) acrylic acid ester compound by solution polymerization can be mentioned.
  • the conductive filler may be any filler that has conductivity and can be bound by the above polymer.
  • the shape of the conductive filler is not particularly limited, and may be, for example, spherical, flat, or fibrous. Further, any shape such as a rod shape or a prismatic shape may be used.
  • the type of the conductive filler is not particularly limited, and may be graphite, carbon black, carbon fiber, carbon nanotube, metal particles, metal oxide particles, or the like.
  • metal particles include silver nanoparticles, gold nanoparticles, silver nanoparticles, aluminum flakes and the like.
  • metal oxide particles include tin oxide, zinc oxide, titanium oxide, indium tin oxide and the like.
  • carbon-containing fillers such as graphite, carbon black, carbon fibers, and carbon nanotubes are preferable from the viewpoint of having high affinity with the polymer and being extremely stable in the material.
  • the amount of the conductive filler in the resin composition is appropriately selected according to the physical characteristics of the desired temperature sensor element, the molecular weight of the polymer, the viscosity, and the like. However, the amount of the conductive filler varies greatly depending on the material, particle size, shape, surface characteristics, etc., but is preferably 1.0 to 50% by mass, preferably 2.0 to 45% by mass, based on the solid content of the resin composition. % Is more preferable, and 3.0 to 40% by mass is further preferable. When the amount of the conductive filler in the resin composition is within the above range, the conductive filler is appropriately arranged in the matrix of the polymer in the obtained resin resistance portion, and the above-mentioned PTC characteristics can be easily obtained.
  • the resin composition may contain a solvent, if necessary.
  • the type of solvent is not particularly limited as long as it is possible to dissolve the polymer and uniformly disperse the conductive filler.
  • the solvent is appropriately selected according to the type of polymer and the like, and examples thereof include 4-methyl-2-pentanone, toluene, methyl ethyl ketone, xylene, acetone, ethyl acetate, tetrahydrofuran and the like.
  • the amount of the solvent can be changed for mixing the polymer and the conductive filler or when forming a layer of the resin composition by printing, in order to adjust the viscosity suitable for printing, but the solid of the resin composition. 80% by mass or less is preferable, and 10 to 75% by mass is more preferable with respect to the total mass of the minutes. If the amount of the solvent is excessively large, the viscosity of the resin composition becomes too low, and there is a possibility that the resin composition cannot be coated on the electrode.
  • the resin composition can be prepared by sufficiently mixing a polymer, a conductive filler, and if necessary, a solvent and the like.
  • the mixing can be carried out by a general method, but a method in which stirring and defoaming are carried out at the same time is preferable. If air bubbles are contained in the resin composition, voids are generated inside when the resin resistance portion is produced, and accurate resistance value measurement (temperature measurement) tends to be difficult.
  • the resin composition may be solid at room temperature, but is preferably liquid from the viewpoint of producing a resin resistance portion by printing or the like.
  • the viscosity of the resin composition is appropriately selected according to the method for producing the resin resistance portion (method for applying the resin composition) described later.
  • the viscosity of the resin composition is preferably 100 mPa ⁇ s to 250 Pa ⁇ s, more preferably 1 Pa ⁇ s to 200 Pa ⁇ s.
  • the viscosity of the resin composition is preferably 1 mPa ⁇ s to 30 mPa ⁇ s, more preferably 2 mPa ⁇ s to 25 Pa ⁇ s.
  • the viscosity is a value measured by an E-type viscometer at 25 ° C. and 5 rpm.
  • FIG. 1 shows a plan view of a structure according to an example of the element 100 for temperature sensor of the present invention.
  • the temperature sensor sensor element 100 includes a substrate 1, a pair of electrodes 10 arranged on the substrate 1, and a resin resistance portion 20 arranged between the pair of electrodes.
  • the temperature sensor element 100 can be manufactured, for example, as follows. First, a pair of electrodes 10 are produced at a desired position on the substrate 1.
  • the method for producing the electrode 10 is not particularly limited, and for example, a printing method such as screen printing or inkjet printing may be used, or a photolithography method or the like may be used. It can also be produced by vapor deposition or sputtering.
  • the above-mentioned resin composition is applied to a desired position between the pair of electrodes 10 and solidified.
  • the coating method of the resin composition is not particularly limited, and may be, for example, coating using a dispenser, screen printing, inkjet printing, gravure printing, or the like.
  • the solvent is removed to cure (solidify) the resin composition.
  • heating may be performed, and the pressure may be reduced if necessary.
  • the heating temperature is preferably a temperature that does not affect the substrate 1, the electrode 10, the polymer in the resin composition, or the conductive filler, and is usually about 40 to 100 ° C. for 10 minutes to 3 hours.
  • the substrate 1 is not particularly limited as long as it is a plate-shaped member having insulating properties and having a high affinity with the above-mentioned resin composition (particularly a polymer), but a flexible member is preferable.
  • the temperature sensor element 100 can be used for various purposes, for example, it can be wrapped around a human arm or foot to measure the temperature.
  • the substrate 1 is preferably made of a material having a low coefficient of thermal expansion.
  • the type of the substrate 1 is not particularly limited, but examples thereof include polyethylene naphthalate, polyethylene terephthalate (PET), and polyimide from the viewpoint of affinity with the polymer and low coefficient of thermal expansion.
  • the size of the substrate 1 is appropriately selected according to the application of the temperature sensor element 100.
  • the thickness thereof is appropriately selected depending on the application of the temperature sensor element 100, the material of the substrate 1, and the like, but is usually preferably about 5 to 100 ⁇ m, more preferably about 10 to 50 ⁇ m. When the thickness of the substrate 1 is within the range, the flexibility of the entire temperature sensor element 100 tends to increase, and it becomes easy to apply it to various applications.
  • the pair of electrodes 10 may be any structure having conductivity arranged on the substrate 1, and the shape thereof is not particularly limited.
  • the temperature sensor element 100 shown in FIG. 1 has a terminal 11 at one end and a comb-shaped region at the other end.
  • the pair of electrodes 10 are arranged with a gap, and the comb-shaped regions are arranged so as to face each other in a staggered manner.
  • the width and length of each portion of the electrode 10 are appropriately selected according to the application of the temperature sensor element 100.
  • the thickness of the electrode 10 is also appropriately selected depending on the application of the temperature sensor element 100 and the like, but is usually preferably about 0.1 to 30 ⁇ m, more preferably about 0.3 to 20 ⁇ m. When the thickness of the electrode 10 is within this range, the thickness of the temperature sensor element 100 becomes thin, and its flexibility is increased. However, if it becomes too thin, the resistance may increase or the wire may break.
  • only one pair of electrodes 10 is arranged on the substrate 1.
  • two or more electrodes 10 may be arranged on the substrate 1.
  • the material constituting the electrode 10 may be any material having sufficient electrical conductivity, and a commercially available ink in which silver or carbon is dispersed can be used as the conductive paste.
  • the resin resistance portion 20 is a solidified product of the above-mentioned resin composition, and plays a role of electrically bridging the pair of electrodes 10.
  • the position where the resin resistance portion 20 is arranged is appropriately selected depending on the type and application of the temperature sensor element 100 and the shape of the electrode 10, but in the temperature sensor element 100 shown in FIG. 1, a pair of opposing comb-shaped elements It is arranged between the electrodes 10 so as to fill these gaps.
  • the thickness of the resin resistance portion 20 is preferably 1 to 50 ⁇ m, more preferably 1 to 25 ⁇ m.
  • the thickness of the solidified product 20 is 50 ⁇ m or less, the flexibility of the temperature sensor element 100 tends to increase.
  • the thickness of the solidified product is 1 ⁇ m or more, the element stability of the temperature sensor element tends to increase.
  • the total thickness of the temperature sensor element 100 is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. When the total thickness of the temperature sensor element 100 is 100 ⁇ m or less, the flexibility tends to increase.
  • the temperature sensor element 100 described above is used as a temperature sensor by connecting the terminals of a pair of electrodes 10 to an ohmmeter (not shown). In the temperature sensor, the electrical resistance of the resin resistance portion 20 changes due to an external temperature change. Then, by outputting a signal corresponding to the electric resistance to the outside, the external temperature of the temperature sensor element 100 is specified.
  • the operating temperature of the temperature sensor is preferably 30 ° C. or higher and 50 ° C. or lower.
  • the operating temperature can be adjusted according to the type and structure of the polymer in the resin resistance portion 20 described above.
  • the operating temperature of the temperature sensor is within the above range, it is possible to measure the body temperature of the human body, and for example, the body temperature can be specified only by bringing the temperature sensor into contact with the arm, foot, or the like.
  • Example 1 (1) Preparation of Polymer 6.0 g of styrene, 6.0 g of 2-phenoxyethyl methacrylate and 24.0 g of 4-methyl-2-pentanone (hereinafter, also referred to as "MIBK”) were sufficiently mixed. Then, 0.25 g of 1,1-bis (t-hexyl peroxy) cyclohexane as a polymerization initiator was added and further mixed. The mixture was deoxidized for 30 minutes with stirring under a nitrogen stream. Then, polymerization was carried out at 70 ° C. for 4 hours, 80 ° C. for 2 hours, 90 ° C. for 2 hours, and 100 ° C. for 1.5 hours while raising the temperature.
  • MIBK 4-methyl-2-pentanone
  • MIBK MIBK was distilled off under reduced pressure at 80 ° C. using a rotary evaporator.
  • the obtained polymer was dissolved in 12.0 g of toluene to obtain a polymer solution having a polymer concentration of 50% by mass.
  • the temperature sensor element 100 obtained by the above method was attached on a hot plate using a tape. Then, both terminals of each electrode 10 and a resistance meter RM-3545 (manufactured by Hioki Electric Co., Ltd.) were connected using a bagworm clip. Then, the resistance value between both terminals was measured while changing the temperature of the hot plate. The temperature of the electrode 10 was measured by attaching a film-shaped thermocouple to the temperature sensor element.
  • the temperature of the temperature sensor element was raised from 30 ° C to 40 ° C in 1 ° C increments.
  • the resistance value after 2 minutes at each temperature is shown in FIG.
  • FIG. 2 also shows the resistance value after the temperature of the temperature sensor element 100 is lowered from 40 ° C. to 30 ° C. in 1 ° C. increments and 2 minutes have passed at each temperature. Further, the results when the same measurement is performed for 3 cycles with the temperature rise and fall as one cycle are also shown.
  • the temperature of the temperature sensor element was raised from 10 ° C. to 40 ° C. in 5 ° C. increments. At each temperature, the temperature was maintained for 20 to 30 minutes. The history of the resistance value of the temperature sensor element at this time is shown. The results are shown in FIG. In addition, the following numerical values were also calculated as indexes for evaluating the size of the overshoot. After the temperature of the temperature sensor element was set to 40 ° C. and held for 20 to 30 minutes, the temperature was lowered to 30 ° C. At this time, the maximum resistance value at 40 ° C. and the resistance value immediately before the temperature was lowered to 30 ° C. were specified.
  • OS value (maximum resistance value at 40 ° C. ( ⁇ ) resistance value immediately before temperature reduction to -30 ° C ( ⁇ )) / resistance value immediately before temperature reduction to 30 ° C. ( ⁇ ))
  • the OS value of the temperature sensor element was 0.0051.
  • Example 2 (1) Preparation of Polymer 12.0 g of 2-phenoxyethyl methacrylate and 24.0 g of toluene were sufficiently mixed. Then, 0.25 g of 2,2'-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator was added and mixed. The mixture was deoxidized for 30 minutes with stirring under a nitrogen stream. Then, polymerization was carried out at 45 ° C. for 4 hours, 55 ° C. for 2 hours, 65 ° C. for 2 hours, and 80 ° C. for 1.5 hours while raising the temperature. After the polymerization, toluene was distilled off at 80 ° C. under reduced pressure using a rotary evaporator. Toluene (12.0 g) was added again to the obtained polymer and dissolved to obtain a polymer solution having a polymer concentration of 50% by mass.
  • 2,2'-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator was added and mixed
  • Example 3 (1) Preparation of Polymer: 6.0 g of 2-phenoxyethyl methacrylate, 6.0 g of t-butyl methacrylate, and 24.0 g of MIBK were mixed. Then, 0.25 g of 1,1-bis (t-hexyl peroxy) cyclohexane as a polymerization initiator was added and mixed. Then, polymerization and post-treatment were carried out in the same manner as in Example 1 to obtain a polymer solution having a polymer concentration of 50% by mass.
  • Example 4 to 8 An element for a temperature sensor was produced in the same manner as in Example 1 except that the monomers and conductive fillers shown in Table 1 were used when preparing the polymer.
  • the conductive filler CGB-5 in the table represents granular graphite (manufactured by Nippon Graphite Industry Co., Ltd.).
  • hysteresis evaluation and overshoot evaluation were performed in the same manner as in Example 1.
  • the OS values in the overshoot evaluation were all 0.035 or less, and no overshoot occurred. Specific numerical values are shown in Table 1.
  • a temperature sensor element is manufactured by using a temperature sensor resin composition containing a polymer containing at least one of an aromatic vinyl structural unit and a (meth) acrylic acid ester structural unit and a conductive filler.
  • hysteresis is less likely to occur, and both overshoot and overshoot are less likely to occur (Examples 1 to 8).
  • the values were smaller by two digits or more as compared with Comparative Examples 2 to 4.
  • the resin composition for a temperature sensor of the present invention an element for a temperature sensor that is less likely to cause hysteresis and overshoot can be obtained. Further, the temperature of the temperature sensor element changes sufficiently in the range of 30 ° C. to 50 ° C. Therefore, it is very useful as a device for measuring body temperature.

Abstract

The present invention addresses the problem of providing: an element that is for a temperature sensor and that can be used to correctly determine temperature with less occurrence of hysteresis or overshoot; and a resin composition that is for a temperature sensor and that is used in the element. To solve the problem, this resin composition for a temperature sensor contains an electrically conductive filler and a polymer containing an aromatic vinyl structural unit and/or an aromatic (meth)acrylic acid ester structural unit.

Description

温度センサー用樹脂組成物、および温度センサー用素子Resin composition for temperature sensor and element for temperature sensor
 本発明は、温度センサー用樹脂組成物、および温度センサー用素子に関する。 The present invention relates to a resin composition for a temperature sensor and an element for a temperature sensor.
 近年、生体情報を計測して活用するためのウェアラブルな測定デバイスの開発が盛んに行われている。その中の一つとして、人体に接触させて、体温や皮膚温度を測定するための温度センサーが注目されている。例えば、特許文献1には、電気抵抗が温度によって変化する性質を利用した温度センサーが提案されている。 In recent years, wearable measurement devices for measuring and utilizing biological information have been actively developed. As one of them, a temperature sensor for measuring body temperature and skin temperature by contacting with the human body is attracting attention. For example, Patent Document 1 proposes a temperature sensor that utilizes the property that electrical resistance changes with temperature.
 例えば、特許文献1に記載の温度センサーでは、脂肪族アクリルモノマーの重合体および導電性粒子を含む樹脂組成物を、一対の電極間に配置する。当該温度センサーでは、特定の温度領域で、温度の上昇とともに樹脂組成物の電気抵抗値が急激に増大する性質(以下、「PTC特性」とも称する)を利用して、温度を特定する。 For example, in the temperature sensor described in Patent Document 1, a resin composition containing a polymer of an aliphatic acrylic monomer and conductive particles is arranged between a pair of electrodes. In the temperature sensor, the temperature is specified by utilizing the property that the electric resistance value of the resin composition rapidly increases as the temperature rises in a specific temperature range (hereinafter, also referred to as “PTC characteristic”).
国際公開第2015/119205号International Publication No. 2015/11205
 上記特許文献1の当該温度センサーは、繰返し使用することができる。しかしながら、本発明者らの検討によれば、当該温度センサーでは、昇温の際の電気抵抗値と、降温の際の電気抵抗値がずれたり、繰返し使用した際に、各回の電気抵抗値にブレが生じたりすること(以下、「ヒステリシス」とも称する)が明らかとなった。さらに、所定の温度で一定時間保持した場合、抵抗値が平衡値に達するまでに、一時的に数値が跳ね上がること(以下、「オーバーシュート」とも称する)も明らかとなった。そのため、当該温度センサーでは、正確な温度測定が難しい、という課題があった。 The temperature sensor of Patent Document 1 can be used repeatedly. However, according to the study by the present inventors, in the temperature sensor, the electric resistance value at the time of raising the temperature and the electric resistance value at the time of lowering the temperature deviate from each other, or when the temperature is repeatedly used, the electric resistance value becomes the value each time. It has become clear that blurring occurs (hereinafter, also referred to as "hysteresis"). Furthermore, it was also clarified that when the resistance value is held at a predetermined temperature for a certain period of time, the value temporarily jumps up (hereinafter, also referred to as “overshoot”) before the resistance value reaches the equilibrium value. Therefore, there is a problem that it is difficult to accurately measure the temperature with the temperature sensor.
 本発明は、ヒステリシスやオーバーシュートが生じ難く、正確に温度を特定可能な温度センサー用素子、およびこれに用いる温度センサー用樹脂組成物の提供を目的とする。 An object of the present invention is to provide an element for a temperature sensor that is less likely to cause hysteresis or overshoot and can accurately specify the temperature, and a resin composition for the temperature sensor used therefor.
 本発明は、以下の温度センサー用樹脂組成物を提供する。
 芳香族ビニル構造単位および芳香族(メタ)アクリル酸エステル構造単位のうち少なくとも一方を含む重合体と、導電性フィラーと、を含む、温度センサー用樹脂組成物。
The present invention provides the following resin compositions for temperature sensors.
A resin composition for a temperature sensor, which comprises a polymer containing at least one of an aromatic vinyl structural unit and an aromatic (meth) acrylic acid ester structural unit, and a conductive filler.
 本発明は、さらに、以下の温度センサー用素子を提供する。
 基板と、前記基板上に配置された一対の電極と、前記基板上、かつ前記一対の電極間に配置された樹脂抵抗部と、を含み、前記樹脂抵抗部が、上述の温度センサー用樹脂組成物の固化物である、温度センサー用素子。
The present invention further provides the following temperature sensor elements.
A substrate, a pair of electrodes arranged on the substrate, and a resin resistance portion arranged on the substrate and between the pair of electrodes are included, and the resin resistance portion is the resin composition for a temperature sensor described above. An element for a temperature sensor, which is a solidified product.
 本発明の温度センサー用樹脂組成物によれば、ヒステリシスやオーバーシュートが生じ難く、正確に温度を特定可能な温度センサー用素子が得られる。 According to the resin composition for a temperature sensor of the present invention, an element for a temperature sensor that is less likely to cause hysteresis and overshoot and can accurately specify the temperature can be obtained.
本発明の一実施の形態に係る温度センサー用素子の構造の一例を示す平面図である。It is a top view which shows an example of the structure of the element for temperature sensor which concerns on one Embodiment of this invention. 実施例1の温度センサー用素子のヒステリシス測定結果をプロットしたグラフである。It is a graph which plotted the hysteresis measurement result of the element for temperature sensor of Example 1. 実施例1の温度センサー用素子のオーバーシュート測定結果をプロットしたグラフである。It is a graph which plotted the overshoot measurement result of the element for temperature sensor of Example 1. 比較例1の温度センサー用素子のヒステリシス測定結果をプロットしたグラフである。It is a graph which plotted the hysteresis measurement result of the element for temperature sensor of the comparative example 1. 比較例1の温度センサー用素子のオーバーシュート測定結果をプロットしたグラフである。It is a graph which plotted the overshoot measurement result of the element for temperature sensor of the comparative example 1. 比較例2の温度センサー用素子のオーバーシュート測定結果をプロットしたグラフである。It is a graph which plotted the overshoot measurement result of the element for temperature sensor of the comparative example 2.
 1.温度センサー用樹脂組成物
 本発明の温度センサー用樹脂組成物(以下、単に「樹脂組成物」とも称する)は、後述の温度センサー用素子の樹脂抵抗部を作製するための樹脂組成物である。温度センサー用素子は、後で詳しく説明するが、一対の電極と、当該一対の電極間に配置された樹脂抵抗部と、を有する。当該樹脂抵抗部は、樹脂および導電性フィラーを含み、温度センサー用素子の温度が高まると、当該樹脂が膨張する。その結果、導電性フィラーどうしの距離が遠くなり、樹脂抵抗部の抵抗値が高まる。つまり、このような構造を有する温度センサー用素子では、樹脂抵抗部の抵抗値を測定することにより、温度センサー用素子の温度、ひいてはその周囲の温度を特定することが可能となる。
1. 1. Resin Composition for Temperature Sensor The resin composition for temperature sensor of the present invention (hereinafter, also simply referred to as “resin composition”) is a resin composition for producing a resin resistance portion of a temperature sensor element described later. The temperature sensor element, which will be described in detail later, has a pair of electrodes and a resin resistance portion arranged between the pair of electrodes. The resin resistance portion contains a resin and a conductive filler, and when the temperature of the temperature sensor element rises, the resin expands. As a result, the distance between the conductive fillers becomes long, and the resistance value of the resin resistance portion increases. That is, in the temperature sensor element having such a structure, it is possible to specify the temperature of the temperature sensor element and the temperature around the temperature sensor element by measuring the resistance value of the resin resistance portion.
 このような温度センサー用素子の樹脂抵抗部には、従来、温度センサー用素子の動作温度(使用温度範囲)近傍に融点を有する樹脂組成物が用いられていた。具体的には、脂肪族アクリルモノマーの重合体を含む樹脂組成物が使用されていた。しかしながら、従来の温度センサー用素子の樹脂抵抗部では、昇温時に特定の温度で示す抵抗値と、降温時に当該温度で示す抵抗値とが同一になり難く、複数回抵抗値を測定した場合、各回の抵抗値にバラツキが生じやすい(ヒステリシス)、という課題があった。 Conventionally, a resin composition having a melting point near the operating temperature (operating temperature range) of the temperature sensor element has been used for the resin resistance portion of such a temperature sensor element. Specifically, a resin composition containing a polymer of an aliphatic acrylic monomer has been used. However, in the resin resistance part of the conventional temperature sensor element, it is difficult for the resistance value indicated at a specific temperature when the temperature is raised to be the same as the resistance value indicated at the temperature when the temperature is lowered, and when the resistance value is measured multiple times, There is a problem that the resistance value of each time tends to vary (hysteresis).
 また、従来の温度センサー用素子の樹脂抵抗部では、所定の温度で一定時間保持した場合に、抵抗値が平衡に達するまでに、一時的に数値が跳ね上がりやすい(オーバーシュート)、という課題もあった。そのため、当該温度センサーでは、精密な温度特定が難しい、という課題があった。 In addition, the resin resistance part of the conventional temperature sensor element has a problem that when the resistance value is held at a predetermined temperature for a certain period of time, the value tends to jump up temporarily (overshoot) until the resistance value reaches equilibrium. It was. Therefore, there is a problem that it is difficult to accurately specify the temperature with the temperature sensor.
 これに対し、本発明の樹脂組成物は、芳香族ビニル構造単位および芳香族(メタ)アクリル酸エステル構造単位のうち少なくとも一方を含む重合体と、導電性フィラーとを含む。当該樹脂組成物から得られる樹脂抵抗部では、30~50℃程度でPTC特性が得られるのに加え、上記ヒステリシスやオーバーシュートが格段に生じ難くなる。ヒステリシスの抑制は、特許文献1のように結晶の溶融、析出による体積変化を利用せず、温度による樹脂(重合体)の体積変化のみを利用しているためと推測される。一方、オーバーシュートの抑制は、導電性フィラーと特定の重合体とを組み合わせることで、上記温度範囲において、導電性フィラーと重合体とが、従前知られた樹脂とフィラーとの相互作用より強く相互作用し、樹脂(重合体)中の導電性フィラーの分散状態が安定化するためと推察される。 On the other hand, the resin composition of the present invention contains a polymer containing at least one of an aromatic vinyl structural unit and an aromatic (meth) acrylic acid ester structural unit, and a conductive filler. In the resin resistance portion obtained from the resin composition, in addition to obtaining PTC characteristics at about 30 to 50 ° C., the above-mentioned hysteresis and overshoot are remarkably less likely to occur. It is presumed that the suppression of hysteresis is because the volume change due to melting and precipitation of crystals is not used as in Patent Document 1, but only the volume change of the resin (polymer) due to temperature is used. On the other hand, overshoot suppression is achieved by combining a conductive filler with a specific polymer, so that the conductive filler and the polymer interact more strongly than previously known interactions between the resin and the filler in the above temperature range. It is presumed that this is because it acts and stabilizes the dispersed state of the conductive filler in the resin (polymer).
 ここで、本発明の樹脂組成物は、上記重合体および導電性フィラーの他に、必要に応じて溶媒や各種添加剤等を含んでいてもよい。以下、各成分について説明する。 Here, the resin composition of the present invention may contain a solvent, various additives, and the like, if necessary, in addition to the above polymer and the conductive filler. Hereinafter, each component will be described.
 (重合体)
 重合体は、温度センサー用素子の樹脂抵抗部において、導電性フィラーを担持するマトリックスとなる成分である。つまり、樹脂抵抗部において、後述の導電性フィラーを担持すると共に、所望の温度範囲で膨張や収縮をして、上述のPTC特性を発現させる成分である。
(Polymer)
The polymer is a component that serves as a matrix that supports a conductive filler in the resin resistance portion of the temperature sensor element. That is, it is a component that supports the conductive filler described later in the resin resistance portion and expands or contracts in a desired temperature range to exhibit the above-mentioned PTC characteristics.
 当該重合体は、芳香族ビニル構造単位および芳香族(メタ)アクリル酸エステル構造単位のうち少なくとも一方を含んでいればよい。本明細書において、芳香族ビニル構造単位とは、芳香族ビニル化合物(モノマー)由来の構造単位をいう。一方、芳香族(メタ)アクリル酸エステル構造単位とは、芳香族(メタ)アクリル酸エステル化合物(モノマー)由来の構造単位をいう。また、本明細書において(メタ)アクリルとは、アクリルおよびメタクリル、もしくはこれらの両方を意味する。 The polymer may contain at least one of an aromatic vinyl structural unit and an aromatic (meth) acrylic acid ester structural unit. In the present specification, the aromatic vinyl structural unit means a structural unit derived from an aromatic vinyl compound (monomer). On the other hand, the aromatic (meth) acrylic acid ester structural unit means a structural unit derived from an aromatic (meth) acrylic acid ester compound (monomer). Further, in the present specification, (meth) acrylic means acrylic and / or methacrylic.
 重合体は、芳香族ビニル構造単位および芳香族(メタ)アクリル酸エステル構造単位の一方のみを含んでいてもよく、両方を含んでいてもよい。さらに、本発明の目的および硬化を損なわない範囲で、これら以外の構造単位を含んでいてもよい。ただし、重合体を構成する構成単位の総質量に対する、芳香族ビニル構造単位および芳香族(メタ)アクリル酸エステル構造単位の合計質量は、40質量%以上が好ましく、45質量%以上がより好ましく、50質量%以上がさらに好ましい。芳香族ビニル構造単位および芳香族(メタ)アクリル酸エステル構造単位の合計質量が、40質量%以上であると、上述のヒステリシスやオーバーシュートが生じ難くなる。 The polymer may contain only one of the aromatic vinyl structural unit and the aromatic (meth) acrylic acid ester structural unit, or may contain both. Further, structural units other than these may be included as long as the object of the present invention and curing are not impaired. However, the total mass of the aromatic vinyl structural unit and the aromatic (meth) acrylic acid ester structural unit with respect to the total mass of the structural units constituting the polymer is preferably 40% by mass or more, more preferably 45% by mass or more. 50% by mass or more is more preferable. When the total mass of the aromatic vinyl structural unit and the aromatic (meth) acrylic acid ester structural unit is 40% by mass or more, the above-mentioned hysteresis and overshoot are less likely to occur.
 ここで、上記芳香族ビニル構造単位を得るための芳香族ビニル化合物は、芳香環とビニル基とを有する化合物であればよい(ただし、(メタ)アクリル基を含むものは除く)。芳香環は、単環式であってもよく、多環式であってもよい。また、重合体は、芳香族ビニル構造単位を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Here, the aromatic vinyl compound for obtaining the above aromatic vinyl structural unit may be a compound having an aromatic ring and a vinyl group (however, those containing a (meth) acrylic group are excluded). The aromatic ring may be a monocyclic type or a polycyclic type. Further, the polymer may contain only one type of aromatic vinyl structural unit, or may contain two or more types.
 芳香族ビニル化合物の例には、スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン、p-エチルスチレン、o-tert-ブチルスチレン、m-tert-ブチルスチレン、p-tert-ブチルスチレン、o-クロロスチレン、クロロメチルスチレン、ジブロムスチレン、メトキシスチレン、ビニル安息香酸、ヒドロキシメチルスチレン、ビニルナフタレン等の芳香族ビニル化合物が挙げられる。 Examples of aromatic vinyl compounds include styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene, p-ethylstyrene, o-tert-butylstyrene, m-tert-butylstyrene, p-tert-butyl. Examples thereof include aromatic vinyl compounds such as styrene, o-chlorostyrene, chloromethylstyrene, dibromstyrene, methoxystyrene, vinylbenzoic acid, hydroxymethylstyrene and vinylnaphthalene.
 上記芳香族ビニル化合物が含むビニル基の数は特に制限されないが、1つ、すなわち単官能が特に好ましい。これにより、得られる樹脂抵抗部の柔軟性が高まりやすく、ひいては得られる温度センサー用素子のフレキシブル性が高まりやすい。したがって、芳香族ビニル化合物は、上記の中でも、スチレン、α-メチルスチレン、およびp-メチルスチレンが好ましい。 The number of vinyl groups contained in the aromatic vinyl compound is not particularly limited, but one, that is, monofunctional is particularly preferable. As a result, the flexibility of the obtained resin resistance portion tends to increase, and the flexibility of the obtained temperature sensor element tends to increase. Therefore, among the above, the aromatic vinyl compound is preferably styrene, α-methylstyrene, and p-methylstyrene.
 一方、上記芳香族(メタ)アクリル酸エステル構造単位を得るための芳香族(メタ)アクリル酸エステル化合物は、芳香環と(メタ)アクリル酸エステル結合を有する化合物であればよい。芳香環は単環式であってもよく、多環式であってもよい。また、重合体は、芳香族(メタ)アクリル酸エステル構造単位を一種のみ含んでいてもよく、二種以上含んでいてもよい。 On the other hand, the aromatic (meth) acrylic acid ester compound for obtaining the aromatic (meth) acrylic acid ester structural unit may be a compound having an aromatic ring and a (meth) acrylic acid ester bond. The aromatic ring may be a monocyclic type or a polycyclic type. Further, the polymer may contain only one type of aromatic (meth) acrylic acid ester structural unit, or may contain two or more types.
 芳香族(メタ)アクリル酸エステル化合物の例には、ベンジル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メチルフェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、エトキシ化ノニルフェニル(メタ)アクリレート、ノニルフェノールエチレンオキサイド付加物(メタ)アクリレート、3-フェノキシ―2-ヒドロキシプロピル(メタ)アクリレート等が含まれる。 Examples of aromatic (meth) acrylic acid ester compounds include benzyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, methylphenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, and phenoxybenzyl (meth) acrylate. , Ethonylated nonylphenyl (meth) acrylate, nonylphenol ethylene oxide adduct (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate and the like.
 ここで、芳香族(メタ)アクリル酸エステル化合物が含む(メタ)アクリル基の数は特に制限されないが、1つ、すなわち単官能が特に好ましい。この場合も、得られる樹脂抵抗部の柔軟性が高まりやすく、ひいては得られる温度センサー用素子のフレキシブル性が高まりやすい。 Here, the number of (meth) acrylic groups contained in the aromatic (meth) acrylic acid ester compound is not particularly limited, but one, that is, monofunctional is particularly preferable. In this case as well, the flexibility of the obtained resin resistance portion tends to increase, and eventually the flexibility of the obtained temperature sensor element tends to increase.
 芳香族ビニル構造単位および芳香族(メタ)アクリル酸エステル構造単位以外の構造単位は、特に制限されないが、例えば脂肪族(メタ)アクリル酸エステル化合物由来の脂肪族(メタ)アクリル酸エステル構造単位が好ましい。脂肪族(メタ)アクリル酸エステル化合物は、脂肪族基と、(メタ)アクリル基とを有する化合物である。脂肪族基は、直鎖状であってもよく、分岐鎖状であってもよく、脂環構造を有していてもよい。さらに、脂肪族基は置換基(例えばアルコキシ基等)を有していてもよい。脂肪族基の炭素数は、非結晶性の重合体が得られやすいとの観点で、1~24程度が好ましく、1~18程度がより好ましい。 The structural units other than the aromatic vinyl structural unit and the aromatic (meth) acrylic acid ester structural unit are not particularly limited, and for example, the aliphatic (meth) acrylic acid ester structural unit derived from the aliphatic (meth) acrylic acid ester compound may be used. preferable. The aliphatic (meth) acrylic acid ester compound is a compound having an aliphatic group and a (meth) acrylic group. The aliphatic group may be linear, may be branched, or may have an alicyclic structure. Further, the aliphatic group may have a substituent (for example, an alkoxy group). The carbon number of the aliphatic group is preferably about 1 to 24, and more preferably about 1 to 18, from the viewpoint that a non-crystalline polymer can be easily obtained.
 脂肪族(メタ)アクリル酸エステル化合物の具体例には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシオリゴエチレングリコール(メタ)アクリレート等が含まれる。 Specific examples of the aliphatic (meth) acrylic acid ester compound include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, and 2 -Ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, n-lauryl (meth) acrylate, tridecyl (meth) acrylate, isobornyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, methoxyoligoethylene Glycol (meth) acrylate and the like are included.
 ここで、上記重合体は、非晶質であることが好ましく、温度センサーの好ましい動作温度範囲(例えば30~50℃)において、融点が観測されないことが好ましい。融点の有無は、示差走査熱量計(DSC)等によって確認することができる。 Here, the polymer is preferably amorphous, and it is preferable that no melting point is observed in a preferable operating temperature range (for example, 30 to 50 ° C.) of the temperature sensor. The presence or absence of a melting point can be confirmed by a differential scanning calorimeter (DSC) or the like.
 また、重合体の重量平均分子量は、樹脂組成物を電極上に印刷する方法により、適宜選択されるが、スクリーン印刷を使用する場合1万~50万が好ましく、2万~40万がより好ましい。重量平均分子量が1万以下であると、樹脂組成物の流動性が高すぎて印刷時にインクが流れてしまう可能性が高くなる。一方で、重量平均分子量が50万以上であると、重合体を溶媒に溶かしにくくなり、溶解しても粘度が高すぎて印刷できなくなる可能性が高い。 The weight average molecular weight of the polymer is appropriately selected depending on the method of printing the resin composition on the electrodes, but when screen printing is used, it is preferably 10,000 to 500,000, more preferably 20,000 to 400,000. .. If the weight average molecular weight is 10,000 or less, the fluidity of the resin composition is too high, and there is a high possibility that ink will flow during printing. On the other hand, when the weight average molecular weight is 500,000 or more, it becomes difficult to dissolve the polymer in a solvent, and even if it is dissolved, the viscosity is too high and there is a high possibility that printing cannot be performed.
 樹脂組成物中の重合体の量は、所望の温度センサー用素子の物性や、重合体の分子量、粘度等に応じて適宜選択される。特に粘度は印刷方法によって適切な領域があるので重要である。ただし、重合体の量は、樹脂組成物の固形分量に対し、10~99質量%が好ましく、20~98質量%がより好ましく、30~97質量%がさらに好ましい。 The amount of the polymer in the resin composition is appropriately selected according to the physical characteristics of the desired temperature sensor element, the molecular weight of the polymer, the viscosity, and the like. Viscosity is especially important because there is an appropriate area depending on the printing method. However, the amount of the polymer is preferably 10 to 99% by mass, more preferably 20 to 98% by mass, still more preferably 30 to 97% by mass, based on the solid content of the resin composition.
 上記重合体の調製方法は特に制限されず、公知の各種重合法によって調製できる。例えば、上記芳香族ビニル化合物や上記芳香族(メタ)アクリル化合物、必要に応じて脂肪族(メタ)アクリル酸エステル化合物を溶液重合により重合する方法が挙げられる。 The method for preparing the above polymer is not particularly limited, and can be prepared by various known polymerization methods. For example, a method of polymerizing the aromatic vinyl compound, the aromatic (meth) acrylic compound, and if necessary, the aliphatic (meth) acrylic acid ester compound by solution polymerization can be mentioned.
 (導電性フィラー)
 導電性フィラーは、導電性を有し、かつ上記重合体によって結着可能なフィラーであればよい。
(Conductive filler)
The conductive filler may be any filler that has conductivity and can be bound by the above polymer.
 導電性フィラーの形状は特に制限されず、例えば球状であってもよく、扁平状であってもよく、繊維状であってもよい。また、棒状や角柱状等、いずれの形状であってもよい。 The shape of the conductive filler is not particularly limited, and may be, for example, spherical, flat, or fibrous. Further, any shape such as a rod shape or a prismatic shape may be used.
 導電性フィラーの種類は特に制限されず、黒鉛、カーボンブラック、炭素繊維、カーボンナノチューブ、金属粒子および金属酸化物粒子等とすることができる。金属粒子の例には、銀ナノ粒子、金ナノ粒子、銀ナノフレーク、アルミニウムフレーク等が含まれる。金属酸化物粒子の例には、酸化スズ、酸化亜鉛、酸化チタン、インジウムスズ酸化物等が含まれる。これらの中でも、重合体との親和性が高く、かつ非常に材料が安定であるとの観点で、黒鉛やカーボンブラック、炭素繊維、カーボンナノチューブ等の含炭素フィラーが好ましい。 The type of the conductive filler is not particularly limited, and may be graphite, carbon black, carbon fiber, carbon nanotube, metal particles, metal oxide particles, or the like. Examples of metal particles include silver nanoparticles, gold nanoparticles, silver nanoparticles, aluminum flakes and the like. Examples of metal oxide particles include tin oxide, zinc oxide, titanium oxide, indium tin oxide and the like. Among these, carbon-containing fillers such as graphite, carbon black, carbon fibers, and carbon nanotubes are preferable from the viewpoint of having high affinity with the polymer and being extremely stable in the material.
 樹脂組成物中の導電性フィラーの量は、所望の温度センサー用素子の物性や、重合体の分子量、粘度等に応じて適宜選択される。ただし、導電性フィラーの量は、材質、粒径、形状、表面特性などで大きく変わってくるが樹脂組成物の固形分量に対して1.0~50質量%が好ましく、2.0~45質量%がより好ましく、3.0~40質量%がさらに好ましい。樹脂組成物中の導電性フィラーの量が当該範囲であると、得られる樹脂抵抗部において、重合体のマトリックス中に導電性フィラーが適度に配置され、上述のPTC特性が得られやすくなる。 The amount of the conductive filler in the resin composition is appropriately selected according to the physical characteristics of the desired temperature sensor element, the molecular weight of the polymer, the viscosity, and the like. However, the amount of the conductive filler varies greatly depending on the material, particle size, shape, surface characteristics, etc., but is preferably 1.0 to 50% by mass, preferably 2.0 to 45% by mass, based on the solid content of the resin composition. % Is more preferable, and 3.0 to 40% by mass is further preferable. When the amount of the conductive filler in the resin composition is within the above range, the conductive filler is appropriately arranged in the matrix of the polymer in the obtained resin resistance portion, and the above-mentioned PTC characteristics can be easily obtained.
 (その他の成分)
 樹脂組成物は、上述のように、必要に応じて溶媒を含んでいてもよい。溶媒の種類は、上記重合体を溶解させたり、導電性フィラーを均一に分散させたりすることが可能であれば特に制限されない。
(Other ingredients)
As described above, the resin composition may contain a solvent, if necessary. The type of solvent is not particularly limited as long as it is possible to dissolve the polymer and uniformly disperse the conductive filler.
 溶媒は、重合体の種類等に応じて適宜選択されるが、その例には、4-メチル-2-ペンタノン、トルエン、メチルエチルケトン、キシレン、アセトン、酢酸エチル、テトラヒドロフラン等が含まれる。 The solvent is appropriately selected according to the type of polymer and the like, and examples thereof include 4-methyl-2-pentanone, toluene, methyl ethyl ketone, xylene, acetone, ethyl acetate, tetrahydrofuran and the like.
 溶媒の量は、重合体と導電性フィラーの混合のためや印刷によって樹脂組成物の層を形成する場合、印刷に適した粘度に調製するために添加量を変えられるが、樹脂組成物の固形分の総質量に対して80質量以下%が好ましく、10~75質量%がより好ましい。溶媒の量が過度に多いと、樹脂組成物の粘度が低くなり過ぎて、電極上にコートできない可能性が出てくる。 The amount of the solvent can be changed for mixing the polymer and the conductive filler or when forming a layer of the resin composition by printing, in order to adjust the viscosity suitable for printing, but the solid of the resin composition. 80% by mass or less is preferable, and 10 to 75% by mass is more preferable with respect to the total mass of the minutes. If the amount of the solvent is excessively large, the viscosity of the resin composition becomes too low, and there is a possibility that the resin composition cannot be coated on the electrode.
 (樹脂組成物の物性および製造方法)
 上記樹脂組成物は、重合体、導電性フィラー、および必要に溶媒等を十分に混合することで調製できる。混合は、一般的な方法で行うことができるが、攪拌と脱泡を同時に行う方法が好ましい。樹脂組成物中に気泡が含まれると、樹脂抵抗部を作製した際に、内部に空隙が生じ、正確な抵抗値測定(温度測定)が難しくなりやすい。
(Physical characteristics and manufacturing method of resin composition)
The resin composition can be prepared by sufficiently mixing a polymer, a conductive filler, and if necessary, a solvent and the like. The mixing can be carried out by a general method, but a method in which stirring and defoaming are carried out at the same time is preferable. If air bubbles are contained in the resin composition, voids are generated inside when the resin resistance portion is produced, and accurate resistance value measurement (temperature measurement) tends to be difficult.
 ここで、樹脂組成物は、常温で固体であってもよいが、印刷等により樹脂抵抗部を作製するとの観点で、液状であることが好ましい。当該樹脂組成物の粘度は、後述の樹脂抵抗部の作製方法(樹脂組成物の塗布方法)に応じて適宜選択される。例えば、スクリーン印刷により樹脂組成物を印刷する場合、樹脂組成物の粘度は100mPa・s~250Pa・sが好ましく、1Pa・s~200Pa・sがより好ましい。一方、インクジェット法で樹脂組成物を印刷する場合、樹脂組成物の粘度は、1mPa・s~30mPa・sが好ましく、2mPa・s~25Pa・sがより好ましい。当該粘度は、E型粘度計により、25℃、5rpmで測定される値である。 Here, the resin composition may be solid at room temperature, but is preferably liquid from the viewpoint of producing a resin resistance portion by printing or the like. The viscosity of the resin composition is appropriately selected according to the method for producing the resin resistance portion (method for applying the resin composition) described later. For example, when the resin composition is printed by screen printing, the viscosity of the resin composition is preferably 100 mPa · s to 250 Pa · s, more preferably 1 Pa · s to 200 Pa · s. On the other hand, when the resin composition is printed by the inkjet method, the viscosity of the resin composition is preferably 1 mPa · s to 30 mPa · s, more preferably 2 mPa · s to 25 Pa · s. The viscosity is a value measured by an E-type viscometer at 25 ° C. and 5 rpm.
 2.温度センサー用素子
 本発明の温度センサー用素子100の一例に係る構造の平面図を図1に示す。当該温度センサー用センサー素子100は、基板1と、当該基板1上に配置された一対の電極10と、当該一対の電極間に配置された樹脂抵抗部20と、を有する。
2. 2. Element for temperature sensor FIG. 1 shows a plan view of a structure according to an example of the element 100 for temperature sensor of the present invention. The temperature sensor sensor element 100 includes a substrate 1, a pair of electrodes 10 arranged on the substrate 1, and a resin resistance portion 20 arranged between the pair of electrodes.
 当該温度センサー用素子100は、例えば以下のように作製することができる。まず、基板1の所望の位置に、一対の電極10を作製する。電極10の作製方法は特に制限されず、例えばスクリーン印刷やインクジェット印刷等の印刷法であってもよく、フォトリソグラフィー法等による方法であってもよい。また、蒸着やスパッタリングによって作製することも可能である。 The temperature sensor element 100 can be manufactured, for example, as follows. First, a pair of electrodes 10 are produced at a desired position on the substrate 1. The method for producing the electrode 10 is not particularly limited, and for example, a printing method such as screen printing or inkjet printing may be used, or a photolithography method or the like may be used. It can also be produced by vapor deposition or sputtering.
 その後、一対の電極10の間の所望の位置に、上述の樹脂組成物を塗布し、これを固化させる。樹脂組成物の塗布方法は特に制限されず、例えばディスペンサーを用いた塗布、スクリーン印刷、インクジェット印刷、グラビア印刷等であってもよい。樹脂組成物の塗布後、溶媒を除去したりして、樹脂組成物を硬化(固化)させる。硬化(固化)の際には、加熱を行ってもよく、必要に応じて減圧することも可能である。加熱温度は、基板1や電極10、樹脂組成物中の重合体や導電性フィラーに影響を与えない温度が好ましく、通常40~100℃程度で10分~3時間が好ましい。 After that, the above-mentioned resin composition is applied to a desired position between the pair of electrodes 10 and solidified. The coating method of the resin composition is not particularly limited, and may be, for example, coating using a dispenser, screen printing, inkjet printing, gravure printing, or the like. After the application of the resin composition, the solvent is removed to cure (solidify) the resin composition. At the time of curing (solidification), heating may be performed, and the pressure may be reduced if necessary. The heating temperature is preferably a temperature that does not affect the substrate 1, the electrode 10, the polymer in the resin composition, or the conductive filler, and is usually about 40 to 100 ° C. for 10 minutes to 3 hours.
 上記基板1は、絶縁性を有し、かつ上述の樹脂組成物(特に重合体)との親和性が高い板状の部材であれば特に制限されないが、フレキシブル性を有する部材が好ましい。基板1がフレキシブル性を有すると、温度センサー用素子100を種々の用途に用いることができ、例えば人間の腕や足等に巻いて、温度を測定すること等が可能となる。 The substrate 1 is not particularly limited as long as it is a plate-shaped member having insulating properties and having a high affinity with the above-mentioned resin composition (particularly a polymer), but a flexible member is preferable. When the substrate 1 has flexibility, the temperature sensor element 100 can be used for various purposes, for example, it can be wrapped around a human arm or foot to measure the temperature.
 また、基板1は、熱膨張率が低い材料で構成されることが好ましい。基板1の種類は特に制限されないが、上記重合体との親和性や熱膨張率の低さ等の観点から、その例には、ポリエチレンナフタレート、ポリエチレンテレフタレート(PET)、ポリイミド等が含まれる。 Further, the substrate 1 is preferably made of a material having a low coefficient of thermal expansion. The type of the substrate 1 is not particularly limited, but examples thereof include polyethylene naphthalate, polyethylene terephthalate (PET), and polyimide from the viewpoint of affinity with the polymer and low coefficient of thermal expansion.
 上記基板1の大きさは、温度センサー用素子100の用途に合わせて適宜選択される。またその厚みは、温度センサー用素子100の用途や、基板1の材料等に応じて適宜選択されるが、通常5~100μm程度が好ましく、10~50μm程度がより好ましい。基板1の厚みが当該範囲であると、温度センサー用素子100全体のフレキシブル性が高まりやすく、種々の用途に適用しやすくなる。 The size of the substrate 1 is appropriately selected according to the application of the temperature sensor element 100. The thickness thereof is appropriately selected depending on the application of the temperature sensor element 100, the material of the substrate 1, and the like, but is usually preferably about 5 to 100 μm, more preferably about 10 to 50 μm. When the thickness of the substrate 1 is within the range, the flexibility of the entire temperature sensor element 100 tends to increase, and it becomes easy to apply it to various applications.
 一方、一対の電極10は、基板1上に配置された、導電性を有する構造体であればよく、その形状は特に制限されない。例えば、図1に示す温度センサー用素子100では、一端に端子11を有し、他端に櫛歯状の領域を有する。一対の電極10は、間隙をあけて配置され、櫛歯状の領域は、互い違いに対向するように配置される。なお、電極10の各部分の幅や長さは、温度センサー用素子100の用途に応じて適宜選択される。さらに、電極10の厚みも、温度センサー用素子100の用途等に応じて適宜選択されるが、通常0.1~30μm程度が好ましく、0.3~20μm程度がより好ましい。電極10の厚みが当該範囲であると、温度センサー用素子100の厚みが薄くなり、そのフレキシブル性が高まる。ただし、あまり薄くなりすぎると抵抗が高くなったり、断線したりする可能性が出てくる。 On the other hand, the pair of electrodes 10 may be any structure having conductivity arranged on the substrate 1, and the shape thereof is not particularly limited. For example, the temperature sensor element 100 shown in FIG. 1 has a terminal 11 at one end and a comb-shaped region at the other end. The pair of electrodes 10 are arranged with a gap, and the comb-shaped regions are arranged so as to face each other in a staggered manner. The width and length of each portion of the electrode 10 are appropriately selected according to the application of the temperature sensor element 100. Further, the thickness of the electrode 10 is also appropriately selected depending on the application of the temperature sensor element 100 and the like, but is usually preferably about 0.1 to 30 μm, more preferably about 0.3 to 20 μm. When the thickness of the electrode 10 is within this range, the thickness of the temperature sensor element 100 becomes thin, and its flexibility is increased. However, if it becomes too thin, the resistance may increase or the wire may break.
 なお、図1に示す態様では、基板1上に、一対の電極10が一つのみ配置されている。ただし、基板1上には、複数の電極10が2つ以上配置されていてもよい。 In the embodiment shown in FIG. 1, only one pair of electrodes 10 is arranged on the substrate 1. However, two or more electrodes 10 may be arranged on the substrate 1.
 当該電極10を構成する材料は、十分な電気伝導性を有する材料であればよく、導電性ペーストとして、銀やカーボンが分散された市販のインクを使用することができる。 The material constituting the electrode 10 may be any material having sufficient electrical conductivity, and a commercially available ink in which silver or carbon is dispersed can be used as the conductive paste.
 また、樹脂抵抗部20は、上述の樹脂組成物の固化物であり、一対の電極10を電気的に橋渡しする役割を果たす。樹脂抵抗部20を配置する位置は、温度センサー用素子100の種類や用途、電極10の形状によって適宜選択されるが、図1に示す温度センサー用素子100では、対向する櫛歯状の一対の電極10の間に、これらの間隙を埋めるように配置される。 Further, the resin resistance portion 20 is a solidified product of the above-mentioned resin composition, and plays a role of electrically bridging the pair of electrodes 10. The position where the resin resistance portion 20 is arranged is appropriately selected depending on the type and application of the temperature sensor element 100 and the shape of the electrode 10, but in the temperature sensor element 100 shown in FIG. 1, a pair of opposing comb-shaped elements It is arranged between the electrodes 10 so as to fill these gaps.
 樹脂抵抗部20の厚みは、1~50μmが好ましく、1~25μmがより好ましい。固化物20の厚みが50μm以下であると、温度センサー用素子100のフレキシブル性が高まりやすい。一方、固化物の厚みが1μm以上であると、温度センサー用素子の素子安定性が高まりやすい。 The thickness of the resin resistance portion 20 is preferably 1 to 50 μm, more preferably 1 to 25 μm. When the thickness of the solidified product 20 is 50 μm or less, the flexibility of the temperature sensor element 100 tends to increase. On the other hand, when the thickness of the solidified product is 1 μm or more, the element stability of the temperature sensor element tends to increase.
 また、温度センサー用素子100の総厚みは、100μm以下が好ましく、50μm以下がより好ましい。温度センサー用素子100の総厚みが100μm以下であると、フレキシブル性が高まりやすい。 Further, the total thickness of the temperature sensor element 100 is preferably 100 μm or less, more preferably 50 μm or less. When the total thickness of the temperature sensor element 100 is 100 μm or less, the flexibility tends to increase.
 上述の温度センサー素子100は、一対の電極10の端子を、抵抗計(図示せず)に接続して温度センサーとして使用される。当該温度センサーでは、外部の温度変化により、樹脂抵抗部20の電気抵抗が変化する。そして、当該電気抵抗に応じた信号を外部に出力することで、温度センサー用素子100の外部温度が特定される。 The temperature sensor element 100 described above is used as a temperature sensor by connecting the terminals of a pair of electrodes 10 to an ohmmeter (not shown). In the temperature sensor, the electrical resistance of the resin resistance portion 20 changes due to an external temperature change. Then, by outputting a signal corresponding to the electric resistance to the outside, the external temperature of the temperature sensor element 100 is specified.
 なお、温度センサー(温度センサー素子100)の動作温度は30℃以上50℃以下が好ましい。なお、動作温度の調整は、上述の樹脂抵抗部20中の重合体の種類や構造によって行うことができる。温度センサー(温度センサー素子100)の動作温度が上記範囲であると、人体の体温測定等が可能であり、例えば温度センサーを腕や足等に接触させるだけで、体温を特定できる。 The operating temperature of the temperature sensor (temperature sensor element 100) is preferably 30 ° C. or higher and 50 ° C. or lower. The operating temperature can be adjusted according to the type and structure of the polymer in the resin resistance portion 20 described above. When the operating temperature of the temperature sensor (temperature sensor element 100) is within the above range, it is possible to measure the body temperature of the human body, and for example, the body temperature can be specified only by bringing the temperature sensor into contact with the arm, foot, or the like.
 以下において、実施例を参照して本発明をより詳細に説明する。これらの実施例によって、本発明の範囲は限定して解釈されない。 Hereinafter, the present invention will be described in more detail with reference to Examples. These examples do not limit the scope of the invention.
 [実施例1]
 (1)重合体の調製
 スチレン6.0gと、2-フェノキシエチルメタクリレート6.0gと、4-メチル-2-ペンタノン(以下、「MIBK」とも称する)24.0gとを十分に混合した。その後、重合開始剤である1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン0.25gを加え、さらに混合した。当該混合物について、窒素気流下で撹拌しながら30分脱酸素した。そして、70℃で4時間、80℃で2時間、90℃で2時間、100℃で1.5時間、昇温しながら重合を行った。重合後、ロータリーエバポレーターを用い、80℃、減圧下で、MIBKを留去した。得られた重合体をトルエン12.0gで溶解し、ポリマー濃度50質量%のポリマー溶液を得た。
[Example 1]
(1) Preparation of Polymer 6.0 g of styrene, 6.0 g of 2-phenoxyethyl methacrylate and 24.0 g of 4-methyl-2-pentanone (hereinafter, also referred to as "MIBK") were sufficiently mixed. Then, 0.25 g of 1,1-bis (t-hexyl peroxy) cyclohexane as a polymerization initiator was added and further mixed. The mixture was deoxidized for 30 minutes with stirring under a nitrogen stream. Then, polymerization was carried out at 70 ° C. for 4 hours, 80 ° C. for 2 hours, 90 ° C. for 2 hours, and 100 ° C. for 1.5 hours while raising the temperature. After the polymerization, MIBK was distilled off under reduced pressure at 80 ° C. using a rotary evaporator. The obtained polymer was dissolved in 12.0 g of toluene to obtain a polymer solution having a polymer concentration of 50% by mass.
 (2)温度センサー用樹脂組成物の調製
 上記調製により得られた50質量%のポリマー溶液1.2gと、グラファイト(日本黒鉛工業株式会社製SP-5090)0.14gとを、50mlのサンプル瓶に入れて、あわとり練太郎ARE-310(シンキー社製)を用いて混合した。混合(攪拌)は、60℃に加温した状態で、5分ずつ、6回繰り返した。これにより、温度センサー用樹脂組成物を得た。
(2) Preparation of Resin Composition for Temperature Sensor A 50 ml sample bottle containing 1.2 g of the 50 mass% polymer solution obtained by the above preparation and 0.14 g of graphite (SP-5090 manufactured by Nippon Graphite Industry Co., Ltd.). Awatori Rentaro ARE-310 (manufactured by Shinky Co., Ltd.) was used for mixing. Mixing (stirring) was repeated 6 times for 5 minutes each while being heated to 60 ° C. As a result, a resin composition for a temperature sensor was obtained.
 (3)温度センサー用素子の作製
 図1に示す一対の電極10を有する、厚さ50μmのポリエチレンナフタレートフィルムを準備した。電極はスクリーン印刷法で作製し、電極部の厚さは3~6μmであった。電極10における、各櫛歯の長さは14mm、各櫛歯の幅は0.5~1mm、各櫛歯の間隔は1.0mm、図1おけるL1(各電極10の長さ)L1は42mm、図1におけるL2(櫛歯領域の長さ)は13.5mm、図1におけるW1(一対の櫛歯が対向する幅)は13mm、図1におけるW2(櫛歯領域の幅)は15mm、図1におけるW3(一対の電極の幅)は19mmとした。なお、電極10の端部にはそれぞれ、端子11を形成した。そして、当該電極10を覆うようにポリエチレンナフタレートフィルム製の厚さ50μmのPETマスクを配置した。そして、縦16mm×横20mmの範囲に、スクリーン印刷により温度センサー用樹脂組成物を塗布した。その後、80℃で2時間真空乾燥させて、温度センサー用樹脂組成物より溶媒を除去し、固化させた。得られた固化物(樹脂抵抗部20)の厚さは7~12μmであった。
(3) Preparation of Element for Temperature Sensor A polyethylene naphthalate film having a thickness of 50 μm having a pair of electrodes 10 shown in FIG. 1 was prepared. The electrode was produced by a screen printing method, and the thickness of the electrode portion was 3 to 6 μm. In the electrode 10, the length of each comb tooth is 14 mm, the width of each comb tooth is 0.5 to 1 mm, the distance between each comb tooth is 1.0 mm, and L1 (length of each electrode 10) L1 in FIG. 1 is 42 mm. L2 (length of comb tooth region) in FIG. 1 is 13.5 mm, W1 (width of a pair of comb teeth facing each other) in FIG. 1 is 13 mm, and W2 (width of comb tooth region) in FIG. 1 is 15 mm. W3 (width of the pair of electrodes) in 1 was 19 mm. Terminals 11 were formed at the ends of the electrodes 10. Then, a PET mask having a thickness of 50 μm made of a polyethylene naphthalate film was placed so as to cover the electrode 10. Then, the resin composition for a temperature sensor was applied to a range of 16 mm in length × 20 mm in width by screen printing. Then, it was vacuum dried at 80 degreeC for 2 hours, the solvent was removed from the resin composition for a temperature sensor, and it solidified. The thickness of the obtained solidified product (resin resistance portion 20) was 7 to 12 μm.
 (4)評価
 (ヒステリシス評価)
 上述の方法で得られた温度センサー用素子100を、ホットプレート上にテープを用いて貼り付けた。そして、各電極10の両端子と、抵抗計RM-3545(日置電機社製)とを、ミノムシクリップを用いて接続した。そして、両端子間の抵抗値を、ホットプレートの温度を変えながら測定した。また、電極10の温度は、フィルム状の熱電対を温度センサー用素子に貼り付けて実測した。
(4) Evaluation (hysteresis evaluation)
The temperature sensor element 100 obtained by the above method was attached on a hot plate using a tape. Then, both terminals of each electrode 10 and a resistance meter RM-3545 (manufactured by Hioki Electric Co., Ltd.) were connected using a bagworm clip. Then, the resistance value between both terminals was measured while changing the temperature of the hot plate. The temperature of the electrode 10 was measured by attaching a film-shaped thermocouple to the temperature sensor element.
 温度センサー用素子の温度を、30℃から40℃まで1℃刻みで昇温させた。各温度において2分経過した後の抵抗値を図2に示す。また、温度センサー用素子100の温度を40℃から30℃に1℃刻みで降温させ、各温度において2分経過した後の抵抗値も図2に示す。さらに、昇温および降温を1サイクルとして、3サイクル同様の測定を行ったときの結果も示す。 The temperature of the temperature sensor element was raised from 30 ° C to 40 ° C in 1 ° C increments. The resistance value after 2 minutes at each temperature is shown in FIG. Further, FIG. 2 also shows the resistance value after the temperature of the temperature sensor element 100 is lowered from 40 ° C. to 30 ° C. in 1 ° C. increments and 2 minutes have passed at each temperature. Further, the results when the same measurement is performed for 3 cycles with the temperature rise and fall as one cycle are also shown.
 (オーバーシュート評価)
 温度センサー用素子の温度を10℃~40℃まで、5℃刻みで昇温させた。各温度では、20分~30分間温度を維持した。このときの温度センサー用素子の抵抗値の履歴を示す。結果を図3に示す。また、オーバーシュートの大きさを評価する指標として、以下の数値も算出した。温度センサー用素子の温度を40℃としてから20~30分保持した後、これを30℃に降温させた。このとき、40℃における最高抵抗値、および30℃に降温させる直前の抵抗値を特定した。そして、以下の式に基づき、オーバーシュート評価値(以下、「OS値」とも称する)を算出した。
 OS値=(40℃における最高抵抗値(Ω)-30℃への降温直前の抵抗値(Ω))/30℃への降温直前の抵抗値(Ω))
 上記温度センサー用素子のOS値は、0.0051であった。
(Overshoot evaluation)
The temperature of the temperature sensor element was raised from 10 ° C. to 40 ° C. in 5 ° C. increments. At each temperature, the temperature was maintained for 20 to 30 minutes. The history of the resistance value of the temperature sensor element at this time is shown. The results are shown in FIG. In addition, the following numerical values were also calculated as indexes for evaluating the size of the overshoot. After the temperature of the temperature sensor element was set to 40 ° C. and held for 20 to 30 minutes, the temperature was lowered to 30 ° C. At this time, the maximum resistance value at 40 ° C. and the resistance value immediately before the temperature was lowered to 30 ° C. were specified. Then, an overshoot evaluation value (hereinafter, also referred to as “OS value”) was calculated based on the following formula.
OS value = (maximum resistance value at 40 ° C. (Ω) resistance value immediately before temperature reduction to -30 ° C (Ω)) / resistance value immediately before temperature reduction to 30 ° C. (Ω))
The OS value of the temperature sensor element was 0.0051.
 (結果)
 図2に示されるように、上述の温度センサー用素子では、ヒステリシス評価において、昇温および降温時に抵抗値に差がなかった。さらに、3サイクル繰返し昇温および降温を行っても、昇温時および降温時ともに抵抗値が同等であった。つまり、当該温度センサー用素子によれば、昇温時および降温時に抵抗値にずれが生じ難く、さらに繰返し測定を行っても同等の抵抗値が得られる。したがって正確な温度の測定が可能である。
(result)
As shown in FIG. 2, in the above-mentioned temperature sensor element, there was no difference in resistance value between temperature rise and temperature decrease in the hysteresis evaluation. Further, even when the temperature was repeatedly raised and lowered for 3 cycles, the resistance values were the same both when the temperature was raised and when the temperature was lowered. That is, according to the temperature sensor element, the resistance value is unlikely to deviate when the temperature rises and falls, and the same resistance value can be obtained even if repeated measurements are performed. Therefore, accurate temperature measurement is possible.
 また、図3に示されるように、各温度において、一定時間保持した場合に、一時的な温度の跳ね上がり(オーバーシュート)が見られず、略一定であった。つまり、このことからも、短時間での温度測定が可能であり、各種温度測定に有用であるといえる。 Further, as shown in FIG. 3, at each temperature, when the temperature was maintained for a certain period of time, no temporary temperature jump (overshoot) was observed, and the temperature was substantially constant. That is, from this, it can be said that the temperature can be measured in a short time and is useful for various temperature measurements.
 [実施例2]
 (1)重合体の調製
 2-フェノキシエチルメタクリレート12.0gと、トルエン24.0gと十分に混合した。その後、重合開始剤である2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.25gを添加し、混合した。当該混合物を、窒素気流下で撹拌しながら30分脱酸素した。そして、45℃で4時間、55℃で2時間、65℃で2時間、80℃で1.5時間、昇温しながら重合を行った。重合後、ロータリーエバポレーターを用い、減圧下、80℃でトルエンを留去した。得られた重合体に再度トルエン12.0gを加えて溶解させ、ポリマー濃度50質量%のポリマー溶液を得た。
[Example 2]
(1) Preparation of Polymer 12.0 g of 2-phenoxyethyl methacrylate and 24.0 g of toluene were sufficiently mixed. Then, 0.25 g of 2,2'-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator was added and mixed. The mixture was deoxidized for 30 minutes with stirring under a nitrogen stream. Then, polymerization was carried out at 45 ° C. for 4 hours, 55 ° C. for 2 hours, 65 ° C. for 2 hours, and 80 ° C. for 1.5 hours while raising the temperature. After the polymerization, toluene was distilled off at 80 ° C. under reduced pressure using a rotary evaporator. Toluene (12.0 g) was added again to the obtained polymer and dissolved to obtain a polymer solution having a polymer concentration of 50% by mass.
 (2)温度センサー用樹脂組成物の調製
 上記調製により得られた50質量%のポリマー溶液1.2gと、グラファイト(日本黒鉛工業株式会社製SP-5090)0.11gとを、50mlのサンプル瓶に入れて、あわとり練太郎ARE-310(シンキー社製)を用いて混合した。混合(攪拌)は、60℃に加温した状態で、5分ずつ、6回繰り返した。これにより、温度センサー用樹脂組成物をえた。
(2) Preparation of Resin Composition for Temperature Sensor 1.2 g of 50% by mass polymer solution obtained by the above preparation and 0.11 g of graphite (SP-5090 manufactured by Nippon Graphite Industry Co., Ltd.) are placed in a 50 ml sample bottle. Awatori Rentaro ARE-310 (manufactured by Shinky Co., Ltd.) was used for mixing. Mixing (stirring) was repeated 6 times for 5 minutes each while being heated to 60 ° C. As a result, a resin composition for a temperature sensor was obtained.
 (3)温度センサー用素子の作製
 実施例1と同様の電極を有するフィルム上に、温度センサー用樹脂組成物を塗布し、温度センサー用素子を得た。
(3) Preparation of Temperature Sensor Element A temperature sensor element was obtained by applying a temperature sensor resin composition on a film having the same electrodes as in Example 1.
 (4)評価
 実施例1と同様にヒステリシス評価、およびオーバーシュート評価を行った。ヒステリシス評価では、昇温時および降温時ともに略同様の抵抗値を示し、ヒステリシスが見られなかった。また、オーバーシュート評価におけるOS値は0.0058であった。
(4) Evaluation Hysteresis evaluation and overshoot evaluation were performed in the same manner as in Example 1. In the hysteresis evaluation, almost the same resistance value was shown both when the temperature was raised and when the temperature was lowered, and no hysteresis was observed. The OS value in the overshoot evaluation was 0.0058.
 [実施例3]
 (1)重合体の調製
 2-フェノキシエチルメタクリレート6.0gと、t-ブチルメタクリレート6.0gと、MIBK24.0gと、を混合した。その後、重合開始剤である1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン0.25gを添加し、混合した。そして、実施例1同様に重合や後処理を行い、ポリマー濃度50質量%のポリマー溶液を得た。
[Example 3]
(1) Preparation of Polymer: 6.0 g of 2-phenoxyethyl methacrylate, 6.0 g of t-butyl methacrylate, and 24.0 g of MIBK were mixed. Then, 0.25 g of 1,1-bis (t-hexyl peroxy) cyclohexane as a polymerization initiator was added and mixed. Then, polymerization and post-treatment were carried out in the same manner as in Example 1 to obtain a polymer solution having a polymer concentration of 50% by mass.
 (2)温度センサー用樹脂組成物の調製
 上記調製により得られた50質量%のポリマー溶液1.2gと、グラファイト(日本黒鉛工業株式会社製SP-5090)0.12gとを、50mlのサンプル瓶に入れ、あわとり練太郎ARE-310(シンキー社製)を用いて混合した。混合(攪拌)は、60℃に加温した状態で、5分ずつ、6回繰り返した。これにより、温度センサー用樹脂組成物を得た。
(2) Preparation of Resin Composition for Temperature Sensor A 50 ml sample bottle containing 1.2 g of a 50 mass% polymer solution obtained by the above preparation and 0.12 g of graphite (SP-5090 manufactured by Nippon Graphite Industry Co., Ltd.). And mixed using Awatori Rentaro ARE-310 (manufactured by Shinky). Mixing (stirring) was repeated 6 times for 5 minutes each while being heated to 60 ° C. As a result, a resin composition for a temperature sensor was obtained.
 (3)温度センサー用素子の作製
 実施例1と同様の電極を有するフィルム上に、温度センサー用樹脂組成物を塗布し、温度センサー用素子を得た。
(3) Preparation of Temperature Sensor Element A temperature sensor element was obtained by applying a temperature sensor resin composition on a film having the same electrodes as in Example 1.
 (4)評価
 実施例1と同様にヒステリシス評価、およびオーバーシュート評価を行った。ヒステリシス評価では、昇温時および降温時ともに略同様の抵抗値を示し、ヒステリシスが見られなかった。また、オーバーシュート評価におけるOS値は0.0060であった。
(4) Evaluation Hysteresis evaluation and overshoot evaluation were performed in the same manner as in Example 1. In the hysteresis evaluation, almost the same resistance value was shown both when the temperature was raised and when the temperature was lowered, and no hysteresis was observed. The OS value in the overshoot evaluation was 0.0060.
 [実施例4~8]
 重合体の調製時に、表1に示すモノマーおよび導電性フィラーを用いた以外は、実施例1と同様に温度センサー用素子を作製した。なお、表における導電性フィラーCGB-5は、粒状黒鉛(日本黒鉛工業社製)を表す。各実施例について、実施例1と同様にヒステリシス評価、およびオーバーシュート評価を行った。ヒステリシス評価では、いずれも昇温時および降温時ともに略同様の抵抗値を示し、ヒステリシスが見られなかった。さらに、オーバーシュート評価におけるOS値もいずれも0.035以下であり、オーバーシュートが生じなかった。具体的な数値は、表1に示す。
[Examples 4 to 8]
An element for a temperature sensor was produced in the same manner as in Example 1 except that the monomers and conductive fillers shown in Table 1 were used when preparing the polymer. The conductive filler CGB-5 in the table represents granular graphite (manufactured by Nippon Graphite Industry Co., Ltd.). For each example, hysteresis evaluation and overshoot evaluation were performed in the same manner as in Example 1. In the hysteresis evaluation, almost the same resistance value was shown both when the temperature was raised and when the temperature was lowered, and no hysteresis was observed. Furthermore, the OS values in the overshoot evaluation were all 0.035 or less, and no overshoot occurred. Specific numerical values are shown in Table 1.
 [比較例1]
 (1)重合体の調製
 ステアリルメタクリレート12.0gと、トルエン24.0gとを混合した。その後、重合開始剤であるアゾビス(2,4-バレロニトリル)0.25gを加え、さらに混合した。当該混合物について、窒素気流下で撹拌しながら30分脱酸素した。その後、45℃で4時間、55℃で2時間、65℃で2時間、80℃で1.5時間、昇温しながら重合を行った。重合後、ロータリーエバポレーターを用い、80℃、減圧下で、トルエンを一度留去した。そして、重合体に再度トルエン12.0gを加えて溶解させ、ポリマー濃度50質量%のポリマー溶液を得た。
[Comparative Example 1]
(1) Preparation of Polymer 12.0 g of stearyl methacrylate and 24.0 g of toluene were mixed. Then, 0.25 g of azobis (2,4-valeronitrile) as a polymerization initiator was added and further mixed. The mixture was deoxidized for 30 minutes with stirring under a nitrogen stream. Then, polymerization was carried out at 45 ° C. for 4 hours, 55 ° C. for 2 hours, 65 ° C. for 2 hours, and 80 ° C. for 1.5 hours while raising the temperature. After the polymerization, toluene was once distilled off at 80 ° C. under reduced pressure using a rotary evaporator. Then, 12.0 g of toluene was added to the polymer again and dissolved to obtain a polymer solution having a polymer concentration of 50% by mass.
 (2)温度センサー用樹脂組成物の調製
 上記調製により得られた50質量%のポリマー溶液2.4gと、グラファイト(日本黒鉛工業株式会社製SP-5090)0.20gとを、50mlのサンプル瓶に入れ、あわとり練太郎ARE-310(シンキー社製)を用いて混合した。混合(攪拌)は、60℃に加温した状態で、5分ずつ、6回繰り返した。これにより、温度センサー用樹脂組成物をえた。
(2) Preparation of Resin Composition for Temperature Sensor A 50 ml sample bottle containing 2.4 g of the 50 mass% polymer solution obtained by the above preparation and 0.20 g of graphite (SP-5090 manufactured by Nippon Graphite Industry Co., Ltd.). And mixed using Awatori Rentaro ARE-310 (manufactured by Shinky). Mixing (stirring) was repeated 6 times for 5 minutes each while being heated to 60 ° C. As a result, a resin composition for a temperature sensor was obtained.
 (3)温度センサー用素子の作製
 実施例1と同様の電極を有するフィルム上に、温度センサー用樹脂組成物を塗布し、温度センサー用素子を得た。
(3) Preparation of Temperature Sensor Element A temperature sensor element was obtained by applying a temperature sensor resin composition on a film having the same electrodes as in Example 1.
 (4)評価
 実施例1と同様にヒステリシス評価を行った。ヒステリシス評価の結果を図4に示す。表4に示されるように、昇温時および降温時において、抵抗値にバラツキ(5℃程度のずれ)があった。さらに、昇温および降温を繰り返した場合、1サイクル目の抵抗値と、2回目、3回目の抵抗値との間に差が生じた。
(4) Evaluation Hysteresis evaluation was performed in the same manner as in Example 1. The result of the hysteresis evaluation is shown in FIG. As shown in Table 4, there was a variation (deviation of about 5 ° C.) in the resistance value between the temperature rise and the temperature drop. Further, when the temperature was raised and lowered repeatedly, a difference was generated between the resistance value in the first cycle and the resistance value in the second and third cycles.
 [比較例2]
 (1)重合体の調製
 n-ヘキシルメタクリレート12.0gと、トルエン24.0gとを混合した。その後、重合開始剤であるアゾビス(2,4-バレロニトリル)0.25gをさらに加え、混合した。混合物を窒素気流下で撹拌しながら30分脱酸素した。そして、45℃で4時間、55℃で2時間、65℃で2時間、80℃で1.5時間、昇温しながら重合を行った。重合後、ロータリーエバポレーターを用い、80℃、減圧下で、トルエンを一度留去した。そして、重合体に2-ブタノン12.0gを加えて溶解させ、ポリマー濃度50質量%のポリマー溶液を得た。
[Comparative Example 2]
(1) Preparation of Polymer 12.0 g of n-hexyl methacrylate and 24.0 g of toluene were mixed. Then, 0.25 g of azobis (2,4-valeronitrile) as a polymerization initiator was further added and mixed. The mixture was deoxidized for 30 minutes with stirring under a nitrogen stream. Then, polymerization was carried out at 45 ° C. for 4 hours, 55 ° C. for 2 hours, 65 ° C. for 2 hours, and 80 ° C. for 1.5 hours while raising the temperature. After the polymerization, toluene was once distilled off at 80 ° C. under reduced pressure using a rotary evaporator. Then, 12.0 g of 2-butanone was added to the polymer and dissolved to obtain a polymer solution having a polymer concentration of 50% by mass.
 (2)温度センサー用樹脂組成物の調製
 上記で調製した50質量%のポリマー溶液1.2gとグラファイト(日本黒鉛工業株式会社製SP-5090)0.21gとを50mlのサンプル瓶に入れ、あわとり練太郎ARE-310(シンキー社製)を用いて混合した。混合(攪拌)は、60℃に加温した状態で、5分ずつ、6回繰り返した。これにより、温度センサー用樹脂組成物をえた。
(2) Preparation of resin composition for temperature sensor 1.2 g of the 50 mass% polymer solution prepared above and 0.21 g of graphite (SP-5090 manufactured by Nippon Graphite Industry Co., Ltd.) were placed in a 50 ml sample bottle and fluffed. Mixing was performed using Tori Rentaro ARE-310 (manufactured by Shinky). Mixing (stirring) was repeated 6 times for 5 minutes each while being heated to 60 ° C. As a result, a resin composition for a temperature sensor was obtained.
 (3)温度センサー用素子の作製
 実施例1と同様の電極を有するフィルム上に、温度センサー用樹脂組成物を塗布し、温度センサー用素子を得た。
(3) Preparation of Temperature Sensor Element A temperature sensor element was obtained by applying a temperature sensor resin composition on a film having the same electrodes as in Example 1.
 (4)評価
 実施例1と同様にヒステリシス評価を行った。ヒステリシス評価では、昇温時および降温時ともに略同様の抵抗値を示し、ヒステリシスが殆ど見られなかった。一方、オーバーシュート評価の結果を図5に示す。図5から明らかなように、当該温度センサー用素子では、昇温によって抵抗値が大きく上昇し、時間の経過と共に抵抗値が低下した。すなわち、オーバーシュート現象が見られた。また、OS値は、抵抗計が振り切れたため、正確な値は算出できなかったが、1以上であった。
(4) Evaluation Hysteresis evaluation was performed in the same manner as in Example 1. In the hysteresis evaluation, almost the same resistance value was shown both when the temperature was raised and when the temperature was lowered, and almost no hysteresis was observed. On the other hand, the result of the overshoot evaluation is shown in FIG. As is clear from FIG. 5, in the temperature sensor element, the resistance value greatly increased due to the temperature rise, and the resistance value decreased with the passage of time. That is, an overshoot phenomenon was observed. In addition, the OS value was 1 or more, although an accurate value could not be calculated because the resistance meter had run out.
 [比較例3]
 (1)重合体の調製
 ヘキシルメタクリレート12.0gの代わりに、イソステアリルメタクリレート12.0gを用いた以外は比較例2と同じ方法で、ポリマー濃度50質量%のポリマー溶液を得た。
[Comparative Example 3]
(1) Preparation of Polymer A polymer solution having a polymer concentration of 50% by mass was obtained by the same method as in Comparative Example 2 except that 12.0 g of isostearyl methacrylate was used instead of 12.0 g of hexyl methacrylate.
 (2)温度センサー用樹脂組成物の調製
 上記で調製した50質量%のポリマー溶液1.2gとグラファイト(日本黒鉛工業株式会社製SP-5090)0.22gとを50mlのサンプル瓶に入れ、あわとり練太郎ARE-310(シンキー社製)を用いて混合した。混合(攪拌)は、60℃に加温した状態で、5分ずつ、6回繰り返した。これにより、温度センサー用樹脂組成物を得た。
(2) Preparation of resin composition for temperature sensor 1.2 g of the 50 mass% polymer solution prepared above and 0.22 g of graphite (SP-5090 manufactured by Nippon Graphite Industry Co., Ltd.) were placed in a 50 ml sample bottle and fluffed. Mixing was performed using Tori Rentaro ARE-310 (manufactured by Shinky). Mixing (stirring) was repeated 6 times for 5 minutes each while being heated to 60 ° C. As a result, a resin composition for a temperature sensor was obtained.
 (3)温度センサー用素子の作製
 実施例1と同様の電極を有するフィルム上に、温度センサー用樹脂組成物を塗布し、温度センサー用素子を得た。
(3) Preparation of Temperature Sensor Element A temperature sensor element was obtained by applying a temperature sensor resin composition on a film having the same electrodes as in Example 1.
 (4)評価
 実施例1と同様にヒステリシス評価を行った。ヒステリシス評価では、昇温時および降温時ともに略同様の抵抗値を示し、ヒステリシスが見られなかった。一方、オーバーシュート評価の結果を図6に示す。図6から明らかなように、当該温度センサー用素子では、昇温によって抵抗値が上昇し、時間の経過と共に抵抗値が低下した。すなわち、オーバーシュート現象が見られた。また、OS値は2.3であった。
(4) Evaluation Hysteresis evaluation was performed in the same manner as in Example 1. In the hysteresis evaluation, almost the same resistance value was shown both when the temperature was raised and when the temperature was lowered, and no hysteresis was observed. On the other hand, the result of the overshoot evaluation is shown in FIG. As is clear from FIG. 6, in the temperature sensor element, the resistance value increased due to the temperature rise, and the resistance value decreased with the passage of time. That is, an overshoot phenomenon was observed. The OS value was 2.3.
 [比較例4]
 (1)重合体の調製
 ヘキシルメタクリレート12.0gの代わりに2-エチルヘキシルメタクリレート12.0gを用いた以外は比較例2と同じ方法で、ポリマー濃度50質量%のポリマー溶液を得た。
[Comparative Example 4]
(1) Preparation of Polymer A polymer solution having a polymer concentration of 50% by mass was obtained by the same method as in Comparative Example 2 except that 12.0 g of 2-ethylhexyl methacrylate was used instead of 12.0 g of hexyl methacrylate.
 (2)温度センサー用樹脂組成物の調製
 上記で調製した50質量%のマトリックス用ポリマー溶液1.2gと、グラファイト(日本黒鉛工業株式会社製SP-5090)0.12gとを50mlのサンプル瓶に入れ、あわとり練太郎ARE-310(シンキー社製)を用いて混合した。混合(攪拌)は、60℃に加温した状態で、5分ずつ、6回繰り返した。これにより、温度センサー用樹脂組成物を得た。
(2) Preparation of resin composition for temperature sensor 1.2 g of the 50 mass% polymer solution for matrix prepared above and 0.12 g of graphite (SP-5090 manufactured by Nippon Graphite Industry Co., Ltd.) were placed in a 50 ml sample bottle. It was added and mixed using Awatori Rentaro ARE-310 (manufactured by Shinky). Mixing (stirring) was repeated 6 times for 5 minutes each while being heated to 60 ° C. As a result, a resin composition for a temperature sensor was obtained.
 (3)温度センサー用素子の作製
 実施例1と同様の電極を有するフィルム上に、温度センサー用樹脂組成物を塗布し、温度センサー用素子を得た。
(3) Preparation of Temperature Sensor Element A temperature sensor element was obtained by applying a temperature sensor resin composition on a film having the same electrodes as in Example 1.
 (4)評価
 実施例1と同様にヒステリシス評価、およびオーバーシュート評価を行った。ヒステリシス評価では、昇温時および降温時ともに略同様の抵抗値を示し、ヒステリシスが見られなかった。一方、オーバーシュート評価におけるOS値は2.8であった。
(4) Evaluation Hysteresis evaluation and overshoot evaluation were performed in the same manner as in Example 1. In the hysteresis evaluation, almost the same resistance value was shown both when the temperature was raised and when the temperature was lowered, and no hysteresis was observed. On the other hand, the OS value in the overshoot evaluation was 2.8.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1に示されるように、脂肪族(メタ)アクリル酸エステル構造単位のみを含む重合体と、導電性フィラーと、を含む温度センサー用樹脂組成物を用いて温度センサー用素子を作製した場合、ヒステリシスが生じたり(比較例1)、オーバーシュートが生じたりした(比較例2~4)。つまり、これらの両方を抑制することは困難であった。 As shown in Table 1 above, when a temperature sensor element is produced using a temperature sensor resin composition containing a polymer containing only an aliphatic (meth) acrylic acid ester structural unit and a conductive filler. , Hysteresis occurred (Comparative Example 1), and overshoot occurred (Comparative Examples 2 to 4). That is, it was difficult to suppress both of them.
 これに対し、芳香族ビニル構造単位および(メタ)アクリル酸エステル構造単位の少なくとも一方を含む重合体と、導電性フィラーと、を含む温度センサー用樹脂組成物を用いて、温度センサー用素子を作製した場合、ヒステリシスが生じ難く、さらにはオーバーシュート共に生じ難くなった(実施例1~8)。また特にOS値を比較すると、比較例2~4と比較して、2桁以上値が小さくなった。 On the other hand, a temperature sensor element is manufactured by using a temperature sensor resin composition containing a polymer containing at least one of an aromatic vinyl structural unit and a (meth) acrylic acid ester structural unit and a conductive filler. In this case, hysteresis is less likely to occur, and both overshoot and overshoot are less likely to occur (Examples 1 to 8). Further, especially when the OS values were compared, the values were smaller by two digits or more as compared with Comparative Examples 2 to 4.
 本出願は、2019年7月23日出願の特願2019-135397号に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2019-135397 filed on July 23, 2019. All the contents described in the application specification and drawings are incorporated herein by reference.
 本発明の温度センサー用樹脂組成物によれば、ヒステリシスおよびオーバーシュートが生じ難い、温度センサー用素子が得られる。また、当該温度センサー用素子は、30℃~50℃の範囲で十分に温度が変化する。したがって、体温測定用のデバイス等として非常に有用である。 According to the resin composition for a temperature sensor of the present invention, an element for a temperature sensor that is less likely to cause hysteresis and overshoot can be obtained. Further, the temperature of the temperature sensor element changes sufficiently in the range of 30 ° C. to 50 ° C. Therefore, it is very useful as a device for measuring body temperature.
 1 基板
 10 電極
 11 端子
 20 樹脂抵抗部
 100 温度センサー用素子
1 Substrate 10 Electrodes 11 Terminals 20 Resin resistor 100 Temperature sensor element

Claims (10)

  1.  芳香族ビニル構造単位および芳香族(メタ)アクリル酸エステル構造単位のうち少なくとも一方を含む重合体と、
     導電性フィラーと、
     を含む、温度センサー用樹脂組成物。
    A polymer containing at least one of an aromatic vinyl structural unit and an aromatic (meth) acrylic acid ester structural unit,
    With conductive filler
    A resin composition for a temperature sensor, including.
  2.  前記重合体を構成する構成単位の総質量に対し、前記芳香族ビニル構造単位および前記芳香族(メタ)アクリル酸エステル構造単位の合計質量が、40質量%以上である、
     請求項1に記載の温度センサー用樹脂組成物。
    The total mass of the aromatic vinyl structural unit and the aromatic (meth) acrylic acid ester structural unit is 40% by mass or more with respect to the total mass of the structural units constituting the polymer.
    The resin composition for a temperature sensor according to claim 1.
  3.  前記重合体が、脂肪族(メタ)アクリル酸エステル構造単位をさらに含む、
     請求項1または2に記載の温度センサー用樹脂組成物。
    The polymer further comprises an aliphatic (meth) acrylic acid ester structural unit.
    The resin composition for a temperature sensor according to claim 1 or 2.
  4.  前記重合体が、芳香族(メタ)アクリル酸エステル構造単位を少なくとも含む、
     請求項1~3のいずれか一項に記載の温度センサー用樹脂組成物。
    The polymer comprises at least an aromatic (meth) acrylic acid ester structural unit.
    The resin composition for a temperature sensor according to any one of claims 1 to 3.
  5.  前記芳香族ビニル構造単位が、スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン、p-エチルスチレン、o-tert-ブチルスチレン、m-tert-ブチルスチレン、p-tert-ブチルスチレン、o-クロロルスチレン、クロロメチルスチレン、ジブロムスチレン、メトキシスチレン、ビニル安息香酸、ヒドロキシメチルスチレン、ビニルナフタレンからなる群から選ばれる芳香族ビニル化合物由来の構造単位である、
     請求項1~3のいずれか一項に記載の温度センサー用樹脂組成物。
    The aromatic vinyl structural unit is styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene, p-ethylstyrene, o-tert-butylstyrene, m-tert-butylstyrene, p-tert-butylstyrene. , O-Chlorol styrene, chloromethyl styrene, dibrom styrene, methoxy styrene, vinyl benzoic acid, hydroxymethyl styrene, vinyl naphthalene, which is a structural unit derived from an aromatic vinyl compound selected from the group.
    The resin composition for a temperature sensor according to any one of claims 1 to 3.
  6.  前記芳香族(メタ)アクリル酸エステル構造単位が、ベンジル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メチルフェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、エトキシ化ノニルフェニル(メタ)アクリレート、ノニルフェノールEO付加物(メタ)アクリレート、3-フェノキシ―2-ヒドロキシプロピル(メタ)アクリレートからなる群から選ばれる芳香族(メタ)アクリル酸エステル化合物由来の構造単位である、
     請求項1~4のいずれか一項に記載の温度センサー用樹脂組成物。
    The aromatic (meth) acrylic acid ester structural unit is benzyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, methylphenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxybenzyl (meth) acrylate, A structural unit derived from an aromatic (meth) acrylic acid ester compound selected from the group consisting of ethoxylated nonylphenyl (meth) acrylate, nonylphenol EO adduct (meth) acrylate, and 3-phenoxy-2-hydroxypropyl (meth) acrylate. is there,
    The resin composition for a temperature sensor according to any one of claims 1 to 4.
  7.  前記導電性フィラーが、黒鉛、カーボンブラック、炭素繊維、カーボンナノチューブ、および金属粒子からなる群から選ばれるフィラーである、
     請求項1~6のいずれか一項に記載の温度センサー用樹脂組成物。
    The conductive filler is a filler selected from the group consisting of graphite, carbon black, carbon fibers, carbon nanotubes, and metal particles.
    The resin composition for a temperature sensor according to any one of claims 1 to 6.
  8.  基板と、
     前記基板上に配置された一対の電極と、
     前記基板上、かつ前記一対の電極間に配置された樹脂抵抗部と、
     を含み、
     前記樹脂抵抗部が、請求項1~7のいずれか一項に記載の温度センサー用樹脂組成物の固化物である、
     温度センサー用素子。
    With the board
    A pair of electrodes arranged on the substrate and
    A resin resistance portion arranged on the substrate and between the pair of electrodes,
    Including
    The resin resistance portion is a solidified product of the resin composition for a temperature sensor according to any one of claims 1 to 7.
    Element for temperature sensor.
  9.  前記各電極が櫛歯状の構造を有する、
     請求項8に記載の温度センサー用素子。
    Each of the electrodes has a comb-like structure.
    The temperature sensor element according to claim 8.
  10.  動作温度が30℃以上、50℃以下である、
     請求項8または9に記載の温度センサー用素子。
     
     
    The operating temperature is 30 ° C or higher and 50 ° C or lower.
    The element for a temperature sensor according to claim 8 or 9.

PCT/JP2020/010178 2019-07-23 2020-03-10 Resin composition for temperature sensor, and element for temperature sensor WO2021014671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019135397A JP2021019148A (en) 2019-07-23 2019-07-23 Resin composition for temperature sensor and element for temperature sensor
JP2019-135397 2019-07-23

Publications (1)

Publication Number Publication Date
WO2021014671A1 true WO2021014671A1 (en) 2021-01-28

Family

ID=74192729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010178 WO2021014671A1 (en) 2019-07-23 2020-03-10 Resin composition for temperature sensor, and element for temperature sensor

Country Status (2)

Country Link
JP (1) JP2021019148A (en)
WO (1) WO2021014671A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337419A (en) * 1998-05-22 1999-12-10 Matsushita Electric Ind Co Ltd Temperature-sensitive sensor and electronic apparatus using the same
JP2011003612A (en) * 2009-06-16 2011-01-06 Kyocera Chemical Corp Electronic component and method of manufacturing the same
JP2016225451A (en) * 2015-05-29 2016-12-28 株式会社タムラ製作所 Temperature sensor material and temperature sensor using the same, and temperature strain sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337419A (en) * 1998-05-22 1999-12-10 Matsushita Electric Ind Co Ltd Temperature-sensitive sensor and electronic apparatus using the same
JP2011003612A (en) * 2009-06-16 2011-01-06 Kyocera Chemical Corp Electronic component and method of manufacturing the same
JP2016225451A (en) * 2015-05-29 2016-12-28 株式会社タムラ製作所 Temperature sensor material and temperature sensor using the same, and temperature strain sensor

Also Published As

Publication number Publication date
JP2021019148A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6589219B2 (en) Resin composition for temperature sensor, element for temperature sensor, temperature sensor, and method for producing element for temperature sensor
Wu et al. Screen-printed flexible temperature sensor based on FG/CNT/PDMS composite with constant TCR
CN111399682A (en) Nano composite force sensing material
CN102374910B (en) Carbon nanotube / polymer composite membrane array type flexible force sensor and manufacturing method thereof
EP2297262B1 (en) Silver coated flaky material filled conductive curable composition and the application in die attach
Sun et al. Ultrastretchable conductive elastomers with a low percolation threshold for printed soft electronics
US20120073388A1 (en) Force sensing compositions, devices and methods
CN102083899B (en) Thixotropic conductive composition
Tran Hoang et al. Engineering crack formation in carbon nanotube-silver nanoparticle composite films for sensitive and durable piezoresistive sensors
Tsotra et al. Short carbon fiber reinforced epoxy resin/polyaniline blends: their electrical and mechanical properties
KR102552797B1 (en) adhesive composition
Go et al. High resolution screen-printing of carbon black/carbon nanotube composite for stretchable and wearable strain sensor with controllable sensitivity
TW201903000A (en) Resin particles, conductive particles, conductive materials, adhesives, connection structures, and liquid crystal display elements
KR101738490B1 (en) Photosensitive paste with low temperature hardening and method for forming electrode using the same
KR101435307B1 (en) Anisotropic conductive film
WO2021014671A1 (en) Resin composition for temperature sensor, and element for temperature sensor
US10390698B2 (en) Conductive and stretchable polymer composite
Guan et al. A novel composite material for flexible wearable devices based on eutectic gallium indium (EGaIn), multi-walled carbon nanotubes (MWCNTs) and polydimethylsiloxane (PDMS)
JP6270778B2 (en) Temperature sensor material, and temperature sensor and temperature strain sensor using the same
Jafarzadeh et al. Direct measurement of colloidal interactions between Polyaniline surfaces in a UV-curable coating formulation: the effect of surface Hydrophilicity/hydrophobicity and resin composition
JP2005290241A (en) Film-like adhesive
WO2021235095A1 (en) Temperature-sensor resin composition and method for manufacturing same, and temperature-sensor element
JP6161657B2 (en) Strain sensor material and strain sensor using the same
CN112996873A (en) UV curable conductive adhesive
JPS63230768A (en) Electrically conductive silicone resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844031

Country of ref document: EP

Kind code of ref document: A1