JP2011001993A - Liquefied hydrogen storage supply equipment - Google Patents

Liquefied hydrogen storage supply equipment Download PDF

Info

Publication number
JP2011001993A
JP2011001993A JP2009144259A JP2009144259A JP2011001993A JP 2011001993 A JP2011001993 A JP 2011001993A JP 2009144259 A JP2009144259 A JP 2009144259A JP 2009144259 A JP2009144259 A JP 2009144259A JP 2011001993 A JP2011001993 A JP 2011001993A
Authority
JP
Japan
Prior art keywords
liquefied hydrogen
liquefied
storage tank
hydrogen storage
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009144259A
Other languages
Japanese (ja)
Inventor
Susumu Tomita
進 富田
Tsutomu Oi
勉 多井
Masaru Yatabe
勝 矢田部
Masashi Yurugi
正史 万木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Industrial Gases Corp
Iwatani International Corp
Original Assignee
Iwatani Industrial Gases Corp
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Industrial Gases Corp, Iwatani International Corp filed Critical Iwatani Industrial Gases Corp
Priority to JP2009144259A priority Critical patent/JP2011001993A/en
Publication of JP2011001993A publication Critical patent/JP2011001993A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide technology relating to liquefied hydrogen storage supply equipment keeping pressure rise in a liquefied hydrogen storage tank small when liquefied hydrogen is filled into the liquefied hydrogen storage tank by keep degree of over-heat of hydrogen gas in the liquefied hydrogen storage tank low by cooling over-heated hydrogen gas passing through an inside of a return pipe of a pressurized evaporation line by liquefied hydrogen in the liquefied hydrogen storage tank.SOLUTION: The return pipe 4c to the liquefied hydrogen storage tank 2 in the pressurized evaporation line 4 of the liquefied hydrogen storage supply equipment 1 is erectly provided in a vertically upward direction in the liquefied hydrogen storage tank 2 from a lower part of the liquefied hydrogen storage tank 2, and opens to a gas phase of liquefied hydrogen at an upper position in the liquefied hydrogen tank 2. Degree of over-heat of hydrogen gas in the liquefied hydrogen storage tank 2 is kept small by cooling over-heated hydrogen gas flowing through the inside of the return pipe 4c by liquefied hydrogen. Consequently, pressure rise in the liquefied hydrogen storage tank 2 is kept small when liquefied hydrogen is filled into the liquefied hydrogen storage tank 2.

Description

本発明は、液化水素貯蔵供給設備に係り、加圧蒸発ラインにおける液化水素貯槽への戻り管を、液化水素貯槽内の下方位置の液化水素の液相を通って液化水素貯槽内の上方位置における液化水素のガス相に開口することにより、液化水素貯槽内の水素ガスの過熱度を小さくして、液化水素貯槽内への液化水素充填時に槽内圧力の上昇を小さくするようにした液化水素貯蔵供給設備に関する技術である。   The present invention relates to a liquefied hydrogen storage and supply facility, and a return pipe to a liquefied hydrogen storage tank in a pressurized evaporation line passes through a liquid phase of a liquefied hydrogen in a lower position in the liquefied hydrogen storage tank at an upper position in the liquefied hydrogen storage tank. Liquefied hydrogen storage by opening the gas phase of liquefied hydrogen to reduce the degree of superheating of the hydrogen gas in the liquefied hydrogen storage tank and reducing the pressure in the tank when filling the liquefied hydrogen storage tank with liquefied hydrogen This is technology related to supply equipment.

従来、図3に示す低温液化ガス貯蔵供給設備が知られている(例えば、特許文献1参照)。
図3において、21は天然ガス等の低温液化ガスを貯蔵するとともに使用ポイントに供給するようにした液化ガス貯槽であり、液化ガス貯槽21の底部に液化ガスを供給する液化ガス供給ライン22が接続されている。
Conventionally, a low-temperature liquefied gas storage and supply facility shown in FIG. 3 is known (see, for example, Patent Document 1).
In FIG. 3, reference numeral 21 denotes a liquefied gas storage tank for storing a low-temperature liquefied gas such as natural gas and supplying it to a point of use. A liquefied gas supply line 22 for supplying the liquefied gas is connected to the bottom of the liquefied gas storage tank 21. Has been.

液化ガス供給ライン22には、供給用開閉弁23及び低温液化ガスを蒸発させる供給用蒸発器24を設けて、液化ガス貯槽21内に貯蔵されている低温液化ガスを供給用蒸発器24で蒸発させて使用ポイントに供給するようにしている。
液化ガス供給ライン22から液化ガス貯槽21内の液化ガスが供給されることにより、液化ガス貯槽21内の液化ガスの液面が下降する。
The liquefied gas supply line 22 is provided with a supply opening / closing valve 23 and a supply evaporator 24 for evaporating the low-temperature liquefied gas, and the low-temperature liquefied gas stored in the liquefied gas storage tank 21 is evaporated by the supply evaporator 24. It is made to supply to the point of use.
When the liquefied gas in the liquefied gas storage tank 21 is supplied from the liquefied gas supply line 22, the liquid level of the liquefied gas in the liquefied gas storage tank 21 is lowered.

液化ガス貯槽21内の液化ガスの液面が下降したときに液化ガス貯槽21内の圧力が低下しないように補償し、液化ガス貯槽21内の圧力を所定値に保持するために、加圧蒸発器25及び加圧調節弁26を介設した加圧蒸発ライン27を備えている。
加圧蒸発ライン27は、液化ガス貯槽21の底部に一端を接続し途中に外気を熱源とする加圧蒸発器25及び加圧調節弁26を介設するとともに液化ガス貯槽21内の上方位置におけるガス相に他端を開口することにより構成している。
In order to compensate so that the pressure in the liquefied gas storage tank 21 does not decrease when the liquid level of the liquefied gas in the liquefied gas storage tank 21 falls, in order to maintain the pressure in the liquefied gas storage tank 21 at a predetermined value, pressurized evaporation is performed. And a pressure evaporation line 27 provided with a vessel 25 and a pressure control valve 26.
The pressurized evaporation line 27 is connected to the bottom of the liquefied gas storage tank 21 and is provided with a pressurized evaporator 25 and a pressure control valve 26 that use outside air as a heat source in the middle, and at an upper position in the liquefied gas storage tank 21. The other end is opened in the gas phase.

加圧蒸発ライン27の加圧調節弁26は加圧調節弁26の出口側の圧力が設定値となるように弁開度を調節することにより、液化ガス貯槽21内の液化ガスの液面が低下したときに液化ガス貯槽21内にガスを押し込むことにより液化ガス貯槽21内の圧力を所定値に保持して、液化ガス供給ライン22から供給する使用ポイントにおけるガス圧が一定となるようにしている。
なお、図3において、28は圧力逃し弁28aを設けた圧力逃しライン、29は開閉弁29aを設けた液化ガスを液化ガス貯槽21内に充填する充填ラインである。
The pressure control valve 26 of the pressure evaporation line 27 adjusts the valve opening so that the pressure on the outlet side of the pressure control valve 26 becomes a set value, whereby the liquid level of the liquefied gas in the liquefied gas storage tank 21 is adjusted. The pressure in the liquefied gas storage tank 21 is maintained at a predetermined value by pushing the gas into the liquefied gas storage tank 21 when the gas pressure decreases, so that the gas pressure at the point of use supplied from the liquefied gas supply line 22 becomes constant. Yes.
In FIG. 3, 28 is a pressure relief line provided with a pressure relief valve 28a, and 29 is a filling line for filling the liquefied gas storage tank 21 with liquefied gas provided with an on-off valve 29a.

特開平10−252994号公報JP-A-10-252994

特許文献1に記載された従来技術について、低温液化ガスの一例を液化水素としてその課題を以下に説明する。
水素ガスは、ガスのなかで最も軽く、拡散性、還元性に優れ、有機化合物の不飽和結合部分に浸透して飽和させる性質を持っていることから、これらの性質を活かして、電子、化学、油脂、金属、硝子、食品など広汎な分野に使用され、さらに、クリーンエネルギーとして企業、研究機関で研究活動が活発に行われている。
About the prior art described in patent document 1, the problem is demonstrated below as an example of low temperature liquefied gas liquefied hydrogen.
Hydrogen gas is the lightest of all gases, has excellent diffusibility and reducibility, and has the property of penetrating and saturating unsaturated bonds in organic compounds. It is used in a wide range of fields such as oils and fats, metals, glass, foods, and research activities are actively conducted by companies and research institutions as clean energy.

このように、水素ガスの需要は増大しているが、水素ガスは密度が小さいため、液化水素にして貯蔵や輸送されている。
そして、図3に示すように、使用ポイントにおいて、水素ガスを使用するときには、液化ガス貯槽21内の圧力を所定値に保持するために、液化ガス貯槽21内の液化水素を加圧蒸発ライン27の加圧蒸発器25で外気と熱交換して蒸発させ水素ガスとして、加圧調節弁26の開度調節により液化ガス貯槽21に押し込むのである。
Thus, although the demand for hydrogen gas is increasing, since hydrogen gas has a low density, it is stored and transported as liquefied hydrogen.
As shown in FIG. 3, when hydrogen gas is used at the point of use, the liquefied hydrogen in the liquefied gas storage tank 21 is maintained at a predetermined value in order to maintain the pressure in the liquefied gas storage tank 21 at a predetermined value. The pressure evaporator 25 exchanges heat with the outside air to evaporate it into the liquefied gas storage tank 21 by adjusting the opening of the pressurizing control valve 26 as hydrogen gas.

加圧蒸発ライン27を流通する液化水素流量は、加圧蒸発ライン27を流通する際の圧力損失と液化ガス貯槽21内の液化水素ヘッドとが等しくなる値であり、液化ガス貯槽21内の圧力を所定値に保持するために加圧蒸発ライン27を流通する液化水素流量を加圧調節弁26の開度調節による圧力損失の調節で行っているのである。
また、液化ガス貯槽21内の圧力を所定値に保持するために加圧蒸発ライン27を流通する液化水素流量と液化ガス供給ライン22から供給される液化水素流量とは、下記(1)式で示す関係がある。
M=Wρg/(ρl−ρg) …(1)
ここで、
M:加圧蒸発ライン27の液化水素流量(kg/s)
W:液化ガス供給ライン22の液化水素流量(kg/s)
ρl:液化水素の密度(kg/m3
ρg:水素ガスの密度(kg/m3
なお、上記(1)式は下記のようにして導くことができる。
液化ガス供給ライン22の液化水素流量W(kg/s)と、W(kg/s)に起因する液化ガス貯槽21内の液化水素容積の減少量V1(m3/s)とは、下記(2)式で示す関係がある。
1=W/ρl …(2)
液化ガス貯槽21内の液化水素容積の減少量V1(m3/s)と、V1(m3/s)を補充するために必要な水素ガス量N1(kg/s)とは、下記(3)式で示す関係がある。
1=ρg1=Wρg/ρl …(3)
水素ガス量N1(kg/s)に起因する液化ガス貯槽21内の液化水素容積の減少量V2(m3/s)は下記(4)式で表わされる。
2=N1/ρl=Wρg/ρl 2 …(4)
液化ガス貯槽21内の液化水素容積の減少量V2(m3/s)と、V2(m3/s)を補充するために必要な水素ガス量N2(kg/s)とは、下記(5)式で示す関係がある。
2=ρg2=Wρg 2/ρl 2 …(5)
上記(3)〜(5)式と同様にして、加圧蒸発ライン27の液化水素流量M(kg/s)と、液化ガス供給ライン22の液化水素流量W(kg/s)とは、下記(6)式で表わされる。
M=N1+N2+N3+・・・+Nn+・・・=(Wρg/ρl)(1+ρg/ρl+(ρg/ρl2+・・・(ρg/ρl(n-1)+・・・)=(Wρg/ρl)(1/(1−ρg/ρl)=Wρg/(ρl−ρg) …(6)
The flow rate of liquefied hydrogen flowing through the pressurized evaporation line 27 is a value at which the pressure loss when flowing through the pressurized evaporation line 27 is equal to the liquefied hydrogen head in the liquefied gas storage tank 21, and the pressure in the liquefied gas storage tank 21. In order to maintain a predetermined value, the flow rate of liquefied hydrogen flowing through the pressurized evaporation line 27 is adjusted by adjusting the pressure loss by adjusting the opening of the pressurizing control valve 26.
The flow rate of liquefied hydrogen flowing through the pressurized evaporation line 27 and the flow rate of liquefied hydrogen supplied from the liquefied gas supply line 22 in order to maintain the pressure in the liquefied gas storage tank 21 at a predetermined value are expressed by the following equation (1). There is a relationship to show.
M = Wρ g / (ρ l -ρ g) ... (1)
here,
M: Liquid hydrogen flow rate (kg / s) of the pressurized evaporation line 27
W: Liquefied hydrogen flow rate (kg / s) in the liquefied gas supply line 22
ρ l : density of liquefied hydrogen (kg / m 3 )
ρ g : density of hydrogen gas (kg / m 3 )
The above equation (1) can be derived as follows.
The liquefied hydrogen flow rate W (kg / s) in the liquefied gas supply line 22 and the decrease amount V 1 (m 3 / s) of the liquefied hydrogen volume in the liquefied gas storage tank 21 due to W (kg / s) are as follows: There is a relationship represented by equation (2).
V 1 = W / ρ l (2)
The decrease amount V 1 (m 3 / s) of the liquefied hydrogen volume in the liquefied gas storage tank 21 and the hydrogen gas amount N 1 (kg / s) necessary to replenish V 1 (m 3 / s) are: There is a relationship represented by the following formula (3).
N 1 = ρ g V 1 = Wρ g / ρ l (3)
The decrease amount V 2 (m 3 / s) of the liquefied hydrogen volume in the liquefied gas storage tank 21 due to the hydrogen gas amount N 1 (kg / s) is expressed by the following equation (4).
V 2 = N 1 / ρ l = Wρ g / ρ l 2 (4)
The decrease amount V 2 (m 3 / s) of the liquefied hydrogen volume in the liquefied gas storage tank 21 and the hydrogen gas amount N 2 (kg / s) necessary for replenishing V 2 (m 3 / s) are: There is a relationship represented by the following formula (5).
N 2 = ρ g V 2 = Wρ g 2 / ρ l 2 (5)
Similarly to the above formulas (3) to (5), the liquefied hydrogen flow rate M (kg / s) of the pressurized evaporation line 27 and the liquefied hydrogen flow rate W (kg / s) of the liquefied gas supply line 22 are as follows. (6) It represents with Formula.
M = N 1 + N 2 + N 3 + ··· + N n + ··· = (Wρ g / ρ l) (1 + ρ g / ρ l + (ρ g / ρ l) 2 + ··· (ρ g / ρ l ) (n-1) + ...) = (W [rho] g / [rho] l ) (1 / (1- [rho] g / [rho] l ) = W [rho] g / ([rho] l- [ rho] g ) (6)

そして、加圧蒸発ライン27における液化水素流量M(kg/s)は、上記(1)式((6)式)で示されるように、液化ガス供給ライン22の液化水素流量W(kg/s)と、液化水素の密度ρl(kg/m3)と、水素ガスの密度ρg(kg/m3)とで定まるのであり、外気を熱源とする加圧蒸発器25で蒸発した水素ガスは、例えば0℃(273K)程度の過熱(スーパーヒート)状態となって、液化ガス貯槽21内に押し込まれるのである。
また、供給用蒸発器24からユーザーの使用ポイントまでの配管による圧力損失を考慮して、液化ガス貯槽21内を例えば0.7MPaGに保持するように加圧蒸発ライン27の加圧調節弁26が設定されてその開度調節を行うようになっている。
The liquefied hydrogen flow rate M (kg / s) in the pressurized evaporation line 27 is equal to the liquefied hydrogen flow rate W (kg / s) in the liquefied gas supply line 22 as shown in the above equation (1) (equation (6)). ), And the density ρ l (kg / m 3 ) of the liquefied hydrogen and the density ρ g (kg / m 3 ) of the hydrogen gas, and the hydrogen gas evaporated by the pressurized evaporator 25 using the outside air as a heat source Is, for example, overheated (superheated) at about 0 ° C. (273 K) and pushed into the liquefied gas storage tank 21.
Further, in consideration of pressure loss due to the piping from the supply evaporator 24 to the user's point of use, the pressurization control valve 26 of the pressurization evaporation line 27 is configured to keep the inside of the liquefied gas storage tank 21 at, for example, 0.7 MPaG. It is set and the opening degree is adjusted.

液化水素の大気圧における飽和液温度は20.3Kであり、上記液化ガス貯槽21内が0.7MPaGである場合の液化水素の飽和温度は約30Kであるから、加圧蒸発ライン27から液化ガス貯槽21の上部に押し込まれる水素ガスの密度と、液化ガス貯槽21の液面近くの水素ガスの密度とは、上部の過熱水素ガスの密度が下部の飽和水素ガスの密度の十数分の一と、非常に小さい(軽い)のである。
したがって、液化ガス貯槽21内の液化水素が使用ポイントで使用されて液化水素の液面が低下すると、液化水素供給用のタンクローリーから液化水素を充填するのであるが、液化ガス貯槽21内の水素ガスの温度は上方が高く、下方が低いという大きな温度勾配、すなわち、水素ガスの密度は上方が小さく、下方が大きいという密度勾配がついており、水素ガスの対流が生じ難い状態である。
Since the saturated liquid temperature at the atmospheric pressure of liquefied hydrogen is 20.3K, and when the inside of the liquefied gas storage tank 21 is 0.7 MPaG, the saturated temperature of liquefied hydrogen is about 30K. The density of the hydrogen gas pushed into the upper part of the storage tank 21 and the density of the hydrogen gas near the liquid surface of the liquefied gas storage tank 21 are one tenths of the density of the superheated hydrogen gas in the upper part and the density of the saturated hydrogen gas in the lower part. It is very small (light).
Therefore, when the liquefied hydrogen in the liquefied gas storage tank 21 is used at the point of use and the liquid level of the liquefied hydrogen is lowered, the liquefied hydrogen is filled from the liquefied hydrogen supply tank truck, but the hydrogen gas in the liquefied gas storage tank 21 is filled. The hydrogen gas has a large temperature gradient in which the upper portion is high and the lower portion is low, that is, the density of hydrogen gas is small in the upper portion and large in the lower portion, so that convection of hydrogen gas is difficult to occur.

液化ガス貯槽21に液化水素をタンクローリーから充填するには、充填ライン29に液化水素供給用のタンクローリーの充填ホース(図示せず)を接続し、充填ホース内の空気を水素ガスに置換した後に開閉弁29aを開いて液化水素を液化ガス貯槽21内に充填するのである。
この充填の初期に、液化水素を充填するため液化水素の充填容積に起因する液化ガス貯槽21内の圧力上昇要因と、充填ホースが外気温度であり、タンクローリーからの液化水素が蒸発すること、液化ガス貯槽21内の水素ガスの温度が高いことによる充填液化水素の蒸発などにより、液化ガス貯槽21内の圧力が上昇して圧力逃しライン28の圧力逃し弁28aの設定圧以上となり、圧力逃し弁28aが開いて水素ガスを大気に放出することが生ずるのである。
In order to fill the liquefied gas storage tank 21 with liquefied hydrogen from a tank lorry, a tank lorry filling hose (not shown) for supplying liquefied hydrogen is connected to the filling line 29, and the air in the filling hose is replaced with hydrogen gas before opening and closing. The valve 29a is opened and liquefied hydrogen is filled into the liquefied gas storage tank 21.
In the initial stage of the filling, the pressure increase factor in the liquefied gas storage tank 21 due to the filling volume of the liquefied hydrogen to fill the liquefied hydrogen, the filling hose is at the outside air temperature, the liquefied hydrogen from the tank truck evaporates, The pressure in the liquefied gas storage tank 21 increases due to the evaporation of the charged liquefied hydrogen due to the high temperature of the hydrogen gas in the gas storage tank 21 and exceeds the set pressure of the pressure relief valve 28a in the pressure relief line 28, and the pressure relief valve. It occurs that 28a opens and releases hydrogen gas to the atmosphere.

また、液化ガス貯槽21の下部より液化水素を充填することもあるが、充填の初期に、液化ガス貯槽21の上部より液化水素を充填する場合と同様に、液化水素を充填するため液化水素の充填容積に起因する液化ガス貯槽21内の圧力上昇要因と、液化ガス貯槽21内の水素ガスの温度が高いこと、タンクローリーから送られた液化水素が充填ホース等で気化し、高温になった水素ガスが液化水素と混合して液化水素が沸騰することなどにより、液化ガス貯槽21内の圧力が圧力逃し弁28aの設定圧力以上となり、圧力逃し弁28aが開いて水素ガスを大気に放出することが生ずるのである。
このため、特許文献1に記載の従来の低温液化ガス供給設備においては、製造に費用のかかった水素ガスを大気に放出するという大きな損失が生じるという課題があり、また、水素は可燃性であるため、大気に放出することは好ましくないなどの課題があったのである。
In addition, liquefied hydrogen may be filled from the lower part of the liquefied gas storage tank 21, but in the initial stage of filling, the liquefied hydrogen is filled to fill the liquefied hydrogen in the same manner as when liquefied hydrogen is filled from the upper part of the liquefied gas storage tank 21. Causes of pressure increase in the liquefied gas storage tank 21 due to the filling volume, the temperature of the hydrogen gas in the liquefied gas storage tank 21 being high, and liquefied hydrogen sent from the tank lorry is vaporized by a filling hose or the like, resulting in high temperature hydrogen. When the gas is mixed with liquefied hydrogen and the liquefied hydrogen boils, the pressure in the liquefied gas storage tank 21 becomes equal to or higher than the set pressure of the pressure relief valve 28a, and the pressure relief valve 28a opens to release hydrogen gas to the atmosphere. Will occur.
For this reason, in the conventional low-temperature liquefied gas supply facility described in Patent Document 1, there is a problem that a large loss occurs in which hydrogen gas, which is expensive to manufacture, is released to the atmosphere, and hydrogen is combustible. Therefore, there is a problem that it is not preferable to release it to the atmosphere.

本発明は、このような従来の構成が有していた課題を解決しようとするものであり、液化水素貯蔵供給設備の加圧蒸発ラインにおける液化水素貯槽への戻り管を、液化水素貯槽内の下方位置の液化水素の液相を通って液化水素貯槽内の上方位置における液化水素のガス相に開口して戻り管内を流通する過熱水素ガスを液化水素で冷却することにより、液化水素貯槽内の水素ガスの過熱度を小さくして、液化水素貯槽内への液化水素充填時に槽内圧力の上昇を小さくすることを目的としている。   The present invention intends to solve the problems of such a conventional configuration, and the return pipe to the liquefied hydrogen storage tank in the pressurized evaporation line of the liquefied hydrogen storage and supply equipment is connected to the liquefied hydrogen storage tank. The superheated hydrogen gas that passes through the liquid phase of the liquefied hydrogen in the lower position and opens in the gas phase of the liquefied hydrogen in the upper position in the liquefied hydrogen storage tank and circulates in the return pipe is cooled with liquefied hydrogen. An object of the present invention is to reduce the degree of superheating of the hydrogen gas so as to reduce the rise in the pressure in the tank when the liquefied hydrogen storage tank is filled with liquefied hydrogen.

請求項1に係る本発明の液化水素貯蔵供給設備は、液化水素を貯蔵するとともに使用ポイントに供給するようにした液化水素貯槽と、前記液化水素貯槽の下部に接続した液化水素を使用ポイントに供給する液化水素供給ラインと、前記液化水素貯槽の下部に一端を接続し途中に外気を熱源とする加圧蒸発器及び加圧調節弁を設けるとともに前記液化水素貯槽内の上方位置における液化水素のガス相に他端を開口した加圧蒸発ラインと、前記液化水素貯槽の上部に接続し圧力逃し弁を設けた圧力逃しラインとを備えた液化水素貯蔵供給設備において、
前記加圧蒸発ラインにおける前記液化水素貯槽への戻り管を、前記液化水素貯槽内の下方位置の液化水素の液相を通って前記ガス相に開口したものである。
The liquefied hydrogen storage and supply facility of the present invention according to claim 1 stores the liquefied hydrogen and supplies the liquefied hydrogen storage tank supplied to the use point and the liquefied hydrogen connected to the lower part of the liquefied hydrogen storage tank to the use point. A liquefied hydrogen supply line, a pressure evaporator connected to one end of the liquefied hydrogen storage tank and a pressure control valve using the outside air as a heat source in the middle, and a gas of liquefied hydrogen at an upper position in the liquefied hydrogen storage tank In a liquefied hydrogen storage and supply facility comprising a pressurized evaporation line with the other end opened in the phase, and a pressure relief line connected to the top of the liquefied hydrogen storage tank and provided with a pressure relief valve,
A return pipe to the liquefied hydrogen storage tank in the pressurized evaporation line is opened to the gas phase through a liquid phase of liquefied hydrogen at a lower position in the liquefied hydrogen storage tank.

請求項2に係る本発明の液化水素貯蔵供給設備は、請求項1に係る本発明の構成に加え、前記加圧蒸発ラインにおける前記液化水素貯槽への戻り管は、前記液化水素貯槽の下部から液化水素貯槽内を上方に垂直に立設して液化水素のガス相に開口したものである。   The liquefied hydrogen storage and supply facility of the present invention according to claim 2 has the configuration of the present invention according to claim 1, and a return pipe to the liquefied hydrogen storage tank in the pressurized evaporation line is provided from a lower portion of the liquefied hydrogen storage tank. The interior of the liquefied hydrogen storage tank is vertically erected vertically and opened to the gas phase of liquefied hydrogen.

請求項3に係る本発明の液化水素貯蔵供給設備は、請求項1に係る本発明の構成に加え、前記加圧蒸発ラインにおける前記液化水素貯槽への戻り管は、前記液化水素貯槽の上部から液化水素貯槽内にU字状に配設して液化水素のガス相に開口したものである。   The liquefied hydrogen storage and supply facility of the present invention according to claim 3 is the configuration of the present invention according to claim 1, and the return pipe to the liquefied hydrogen storage tank in the pressurized evaporation line is provided from the upper part of the liquefied hydrogen storage tank. It is disposed in a liquefied hydrogen storage tank in a U-shape and opens to the gas phase of liquefied hydrogen.

請求項1に係る本発明の液化水素貯蔵供給設備は、加圧蒸発ラインにおける液化水素貯槽への戻り管を、液化水素貯槽内の下方位置の液化水素の液相を通って液化水素貯槽内の上方位置における液化水素のガス相に開口し、戻り管内を流通する過熱水素ガスを液化水素で冷却することにより、液化水素貯槽内の水素ガスの過熱度を小さくすることができるのである。
したがって、液化水素供給用のタンクローリーや移動式の液化水素供給用のコンテナから、液化水素貯槽内に液化水素を充填する際に、液化水素貯槽内の水素ガスの温度が例えば100Kであるから、液化水素の充填に伴う液化水素貯槽内の圧力上昇が圧力逃し弁の設定圧力を超えることがないようにしたり、あるいは、充填初期に少量の水素ガスを放出する程度の圧力上昇としたりすることができ、液化水素貯蔵供給設備の液化水素貯槽に液化水素を充填する際に、水素ガスの放出を無くしたり、あるいは、少なくしたりすることができ、その結果、可燃性の水素ガスを大気に放出するという危険性の低減及び経済的損失の回避ができるのである。
In the liquefied hydrogen storage and supply facility according to the first aspect of the present invention, the return pipe to the liquefied hydrogen storage tank in the pressurized evaporation line passes through the liquid phase of the liquefied hydrogen at a lower position in the liquefied hydrogen storage tank. The degree of superheat of the hydrogen gas in the liquefied hydrogen storage tank can be reduced by opening the gas phase of liquefied hydrogen at the upper position and cooling the superheated hydrogen gas flowing through the return pipe with liquefied hydrogen.
Therefore, when the liquefied hydrogen storage tank is filled with liquefied hydrogen from a tank lorry for supplying liquefied hydrogen or a mobile liquefied hydrogen supply container, the temperature of the hydrogen gas in the liquefied hydrogen storage tank is, for example, 100K. It is possible to prevent the pressure increase in the liquefied hydrogen storage tank due to hydrogen filling from exceeding the set pressure of the pressure relief valve, or to increase the pressure so that a small amount of hydrogen gas is released at the beginning of filling. When filling the liquefied hydrogen storage tank of the liquefied hydrogen storage and supply facility with liquefied hydrogen, the release of hydrogen gas can be eliminated or reduced. As a result, flammable hydrogen gas is released to the atmosphere. This reduces the risk and avoids economic losses.

請求項2に係る本発明の液化水素貯蔵供給設備は、請求項1に係る本発明の効果に加え、加圧蒸発ラインにおける前記液化水素貯槽への戻り管は、前記液化水素貯槽の下部から液化水素貯槽内を上方に垂直に立設して液化水素のガス相に開口したから、簡単な構成で戻り管内を流通する水素ガスを液化水素で冷却することができるのである。   The liquefied hydrogen storage and supply facility of the present invention according to claim 2 is liquefied from the lower part of the liquefied hydrogen storage tank, in addition to the effect of the present invention according to claim 1, the return pipe to the liquefied hydrogen storage tank in the pressurized evaporation line Since the inside of the hydrogen storage tank is erected vertically and opened to the gas phase of liquefied hydrogen, the hydrogen gas flowing through the return pipe can be cooled with liquefied hydrogen with a simple configuration.

請求項3に係る本発明の液化水素貯蔵供給設備は、加圧蒸発ラインにおける前記液化水素貯槽への戻り管は、前記液化水素貯槽の上部から液化水素貯槽内にU字状に配設して液化水素のガス相に開口したから、液化水素供給ラインから使用ポイントに供給する液化水素の流量が多い場合に、戻り管内を流通する水素ガスの流量が多くなるが、戻り管の熱交換面積、特に、液化水素貯槽内の液化水素の液相と熱交換する戻り管の熱交換面積を大きくして、多い流量の過熱水素ガスを液化水素で確実に冷却することができるのである。   In the liquefied hydrogen storage and supply facility of the present invention according to claim 3, the return pipe to the liquefied hydrogen storage tank in the pressurized evaporation line is disposed in a U-shape from the upper part of the liquefied hydrogen storage tank into the liquefied hydrogen storage tank. Since the gas phase of liquefied hydrogen is opened, when the flow rate of liquefied hydrogen supplied from the liquefied hydrogen supply line to the point of use is large, the flow rate of hydrogen gas flowing through the return pipe increases, but the heat exchange area of the return pipe, In particular, the heat exchange area of the return pipe that exchanges heat with the liquid phase of liquefied hydrogen in the liquefied hydrogen storage tank can be increased, and a large amount of superheated hydrogen gas can be reliably cooled with liquefied hydrogen.

本発明の第一の実施の形態に係る液化水素貯蔵供給設備の概略図である。It is the schematic of the liquefied hydrogen storage supply equipment concerning a first embodiment of the present invention. 本発明の第二の実施の形態に係る液化水素貯蔵供給設備の概略図である。It is the schematic of the liquefied hydrogen storage supply equipment concerning a second embodiment of the present invention. 従来の低温液化ガス貯蔵供給設備の概略図である。It is the schematic of the conventional low temperature liquefied gas storage supply equipment.

以下、本発明の実施の形態を添付した図面により詳細に説明する。
図1は、本発明の第一の実施の形態に係る液化水素貯蔵供給設備の配管系統などを示す概略図である。
図1において、1は、液化水素貯蔵供給設備であり、液化水素貯槽2と、液化水素供給ライン3と、加圧蒸発ライン4とを備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing a piping system of a liquefied hydrogen storage and supply facility according to the first embodiment of the present invention.
In FIG. 1, reference numeral 1 denotes a liquefied hydrogen storage and supply facility, which includes a liquefied hydrogen storage tank 2, a liquefied hydrogen supply line 3, and a pressurized evaporation line 4.

前記液化水素貯槽2は、内部に液化水素を貯蔵するとともに液化水素を使用ポイントに供給する内槽2aと断熱用真空を保持する外槽2bとから形成した二重殻断熱構造としており、図示しないが、前記内槽2aは低熱伝導率で高強度のFRPからなるバンド状荷重支持体を用いて前記外槽2bの中央部に支持するとともに前記内槽2aの外周部を断熱層により囲繞している。
前記液化水素供給ライン3は前記液化水素貯槽2の内槽2aの下部(底部)に接続して供給用開閉弁3a及び外気を熱源とする供給用蒸発器3bを介設し水素ガスの使用ポイントに延びている。
The liquefied hydrogen storage tank 2 has a double shell insulation structure formed by an inner tank 2a for storing liquefied hydrogen and supplying the liquefied hydrogen to a use point, and an outer tank 2b for holding a heat insulating vacuum, not shown. However, the inner tub 2a is supported by a central portion of the outer tub 2b using a band-shaped load support made of FRP having low thermal conductivity and high strength, and the outer peripheral portion of the inner tub 2a is surrounded by a heat insulating layer. Yes.
The liquefied hydrogen supply line 3 is connected to the lower part (bottom part) of the inner tank 2a of the liquefied hydrogen storage tank 2 and is provided with a supply on / off valve 3a and a supply evaporator 3b using the outside air as a heat source to use hydrogen gas. It extends to.

前記加圧蒸発ライン4は、一端を前記液化水素貯槽2の内槽2aの下部(底部)に接続し途中に外気を熱源とする加圧蒸発器4a及び加圧調節弁4bを設けるとともに、他端を前記液化水素貯槽2の内槽2a内の上方位置における液化水素のガス相に開口するのである。
そして、前記加圧蒸発ライン4における前記液化水素貯槽2の内槽2aへの戻り管4cは、前記液化水素貯槽2内の内槽2aの下部(底部)から内槽2a内を上方に垂直に立設して液化水素のガス相に開口することにより、簡単な構成で戻り管4c内を流通する過熱水素ガスを内槽2a内の液相の液化水素で冷却することができるのである。
The pressure evaporation line 4 has one end connected to the lower part (bottom) of the inner tank 2a of the liquefied hydrogen storage tank 2, and provided with a pressure evaporator 4a and a pressure control valve 4b that use outside air as a heat source in the middle. The end is opened to the gas phase of liquefied hydrogen at an upper position in the inner tank 2a of the liquefied hydrogen storage tank 2.
The return pipe 4c to the inner tank 2a of the liquefied hydrogen storage tank 2 in the pressurized evaporation line 4 extends vertically from the lower part (bottom) of the inner tank 2a in the liquefied hydrogen storage tank 2 upward in the inner tank 2a. By standing and opening to the gas phase of liquefied hydrogen, the superheated hydrogen gas flowing through the return pipe 4c can be cooled with liquid liquefied hydrogen in the inner tank 2a with a simple configuration.

また、前記加圧蒸発ライン4における前記加圧蒸発器4aの入口側に第一開閉弁4dを設けている。
前記加圧蒸発ライン4の第一開閉弁4dの入口側には第二開閉弁4eを設け、前記加圧調節弁4bの出口側には第三開閉弁4f及び第四開閉弁4gを設け、前記第一開閉弁4dの入口側から分岐して液化水素を前記液化水素貯槽2の内槽2aに充填する充填ライン5を設けている。
A first on-off valve 4d is provided on the inlet side of the pressurized evaporator 4a in the pressurized evaporation line 4.
A second on-off valve 4e is provided on the inlet side of the first on-off valve 4d of the pressurized evaporation line 4, and a third on-off valve 4f and a fourth on-off valve 4g are provided on the outlet side of the pressurization control valve 4b. A filling line 5 is provided which branches from the inlet side of the first on-off valve 4d and fills the inner tank 2a of the liquefied hydrogen storage tank 2 with liquefied hydrogen.

前記充填ライン5の端部には、液化水素充填用の第五開閉弁5aを設け、前記第一開閉弁4dと前記第二開閉弁4eとの中間と、前記第三開閉弁4fと前記第四開閉弁4gとの中間とを結ぶ液化水素の充填ライン5bに液化水素充填用の第六開閉弁5cを設けている。
前記第一開閉弁4d、前記第二開閉弁4e、前記第三開閉弁4f、前記第四開閉弁4g、前記第五開閉弁5a及び前記第六開閉弁5cは、纏めて前記液化水素貯槽2の外槽2bの下方に配設するのであるが、図示の関係から、一点鎖線6で示す枠内に拡大して示している。
The end of the filling line 5 is provided with a fifth on-off valve 5a for filling liquefied hydrogen, intermediate between the first on-off valve 4d and the second on-off valve 4e, the third on-off valve 4f, and the third on-off valve 5a. A liquefied hydrogen filling sixth on-off valve 5c is provided in a liquefied hydrogen filling line 5b connecting the middle of the four on-off valves 4g.
The first on-off valve 4d, the second on-off valve 4e, the third on-off valve 4f, the fourth on-off valve 4g, the fifth on-off valve 5a, and the sixth on-off valve 5c are collectively combined with the liquefied hydrogen storage tank 2. Although it is disposed below the outer tub 2b, it is shown enlarged in a frame indicated by a one-dot chain line 6 because of the illustrated relationship.

前記充填ライン5の端部に設けた前記第五開閉弁5aには、充填ホース5dを接続して液化水素供給用のタンクローリー7からの液化水素を前記液化水素貯槽2の内槽2a内に充填するようにしている。
また、前記液化水素貯槽2の内槽2aの上部(頂部)に、圧力逃し弁8を介設した圧力逃しライン8aと、内槽安全弁8bを介設した安全弁ライン8cとを接続している。
The fifth open / close valve 5a provided at the end of the filling line 5 is connected to a filling hose 5d to fill liquefied hydrogen from a tank lorry 7 for supplying liquefied hydrogen into the inner tank 2a of the liquefied hydrogen storage tank 2. Like to do.
In addition, a pressure relief line 8 a having a pressure relief valve 8 and a safety valve line 8 c having an inner tank safety valve 8 b are connected to the upper part (top) of the inner tank 2 a of the liquefied hydrogen storage tank 2.

前記圧力逃し弁8の弁体が開く設定圧力を前記内槽安全弁8bの吹出圧力よりも低く、かつ、前記液化水素貯槽2の内槽2a内の圧力よりも高くしており、前記圧力逃し弁8の弁体が開いたときの水素ガス吹出量は前記内槽安全弁8bの弁体が開いたときの水素ガス吹出量よりも非常に少ない値としており、仮に、圧力逃し弁8が作動しても前記内槽2a内の圧力の急激な低下が生じないようにしている。
前記圧力逃し弁8を設けているので、連休等の長期間にわたり前記液化水素貯槽2の内槽2a内の液化水素を使用ポイントで使用しない場合でも、前記内槽2a内の圧力が侵入熱により上昇して前記圧力逃し弁8の弁体が開く設定圧力となれば自動的に弁体が開いて前記内槽2a内の圧力上昇を防いで、安全性を確保しているのである。
The set pressure at which the valve body of the pressure relief valve 8 opens is lower than the blowing pressure of the inner tank safety valve 8b and higher than the pressure in the inner tank 2a of the liquefied hydrogen storage tank 2, and the pressure relief valve The hydrogen gas blowing amount when the valve body 8 is opened is much smaller than the hydrogen gas blowing amount when the inner tank safety valve 8b is opened, and the pressure relief valve 8 is activated. Also, the pressure in the inner tank 2a is not suddenly reduced.
Since the pressure relief valve 8 is provided, even when the liquefied hydrogen in the inner tank 2a of the liquefied hydrogen storage tank 2 is not used at the point of use for a long period of time such as consecutive holidays, the pressure in the inner tank 2a is caused by intrusion heat. When the pressure rises and reaches the set pressure at which the valve body of the pressure relief valve 8 is opened, the valve body is automatically opened to prevent the pressure in the inner tank 2a from increasing, thereby ensuring safety.

前記内槽安全弁8bは、通常作動することはないのであるが、前記圧力逃し弁8の万一の作動不良があっても、この内槽安全弁8bが作動して前記内槽2aの破壊を防止している。
なお、9a、9b及び9cはコンクリート製の床であり、床9cは図1において床10a、10bよりも下方に位置しているが、これら床9a、9b、9cは面一である。
Although the inner tank safety valve 8b does not normally operate, even if the pressure relief valve 8 malfunctions, the inner tank safety valve 8b operates to prevent the destruction of the inner tank 2a. is doing.
9a, 9b and 9c are concrete floors, and the floor 9c is located below the floors 10a and 10b in FIG. 1, but these floors 9a, 9b and 9c are flush with each other.

次に、上記のように構成した液化水素貯蔵供給設備1の作用について説明する。
液化水素貯槽2の内槽2a内の液化水素は、液化水素供給ライン3から出て供給用蒸発器3bに入り外気で加熱されて蒸発し、水素ガスの状態で使用ポイントに供給されるのである。
Next, the operation of the liquefied hydrogen storage and supply equipment 1 configured as described above will be described.
The liquefied hydrogen in the inner tank 2a of the liquefied hydrogen storage tank 2 exits from the liquefied hydrogen supply line 3, enters the supply evaporator 3b, is heated and evaporated by the outside air, and is supplied to the point of use in the state of hydrogen gas. .

液化水素貯槽2の内槽2a内の液化水素が使用ポイントに供給されるに伴い、液化水素貯槽2の内槽2a内の圧力を所定の圧力に保つために、「発明が解決しようとする課題」の欄で説明した(1)式に示す流量関係で、加圧蒸発ライン4を液化水素が流れるのである。
使用ポイントにおいて水素ガスを使用中は、液化水素供給ライン3の供給用開閉弁3aを開き、加圧蒸発ライン4の第一開閉弁4d、第二開閉弁4e、第三開閉弁4f及び第四開閉弁4gを開くのである。
In order to maintain the pressure in the inner tank 2a of the liquefied hydrogen storage tank 2 at a predetermined pressure as the liquefied hydrogen in the inner tank 2a of the liquefied hydrogen storage tank 2 is supplied to the point of use, “the problem to be solved by the invention” The liquefied hydrogen flows through the pressurized evaporation line 4 in accordance with the flow rate relationship shown in the equation (1) described in the column “.”
While hydrogen gas is being used at the point of use, the supply on-off valve 3a of the liquefied hydrogen supply line 3 is opened, and the first on-off valve 4d, the second on-off valve 4e, the third on-off valve 4f and the fourth on the pressurized evaporation line 4 are opened. The on-off valve 4g is opened.

そして、加圧蒸発ライン4を流通する液化水素は、液化水素貯槽2の内槽2aから第二開閉弁4e、第一開閉弁4dを通って加圧蒸発器4aで外気により加熱され、200Kから300Kの過熱状態の水素ガスとなり、加圧調節弁4b、第三開閉弁4f及び第四開閉弁4gを通って、液化水素貯槽2の内槽2aの下部(底部)から内槽2a内を上方に垂直に立設された戻り管4c内を通って内槽2a内の上方位置におけるガス相に噴出するのである。
液化水素貯槽2の内槽2aに戻った過熱水素ガスは、戻り管4c内で液化水素の液相で冷却されて、例えば100Kとなるのである。
And the liquefied hydrogen which distribute | circulates the pressurized evaporation line 4 is heated with external air by the pressurized evaporator 4a through the 2nd on-off valve 4e and the 1st on-off valve 4d from the inner tank 2a of the liquefied hydrogen storage tank 2, and from 200K It becomes hydrogen gas in an overheated state of 300K, passes through the pressurizing control valve 4b, the third on-off valve 4f, and the fourth on-off valve 4g, and moves upward in the inner tank 2a from the lower part (bottom part) of the inner tank 2a of the liquefied hydrogen storage tank 2 The gas is ejected to the gas phase in the upper position in the inner tank 2a through the return pipe 4c erected vertically.
The superheated hydrogen gas that has returned to the inner tank 2a of the liquefied hydrogen storage tank 2 is cooled in the liquid phase of liquefied hydrogen in the return pipe 4c and becomes, for example, 100K.

また、液化水素貯槽2の内槽2a内の圧力は、加圧調節弁4cの弁開度が自動的に所定の圧力、例えば0.7MPaGとなるように調節されて、使用ポイントでの水素ガスの必要圧力を確保するようにしている。
使用ポイントでの水素ガスの利用により、液化水素貯槽2の内槽2a内の液化水素の液面が低下してくるが、液化水素貯蔵供給設備1の監視者又はオペレータにより、液化水素の液面が所定位置まで低下すると、液化水素の販売者に液化水素の充填の要求がなされる。
The pressure in the inner tank 2a of the liquefied hydrogen storage tank 2 is adjusted so that the valve opening degree of the pressurizing control valve 4c is automatically set to a predetermined pressure, for example, 0.7 MPaG, so that hydrogen gas at the point of use is obtained. The necessary pressure is ensured.
The liquid level of the liquefied hydrogen in the inner tank 2a of the liquefied hydrogen storage tank 2 decreases due to the use of hydrogen gas at the point of use, but the liquid level of the liquefied hydrogen is monitored by a monitor or operator of the liquefied hydrogen storage and supply facility 1. Is lowered to a predetermined position, the liquid hydrogen vendor is requested to fill the liquid hydrogen.

液化水素の販売者は、液化水素の充填要求を受けると、水素液化装置を設置した液化水素の製造所において液化水素供給用のタンクローリー7に液化水素を充填した後に、タンクローリー7を液化水素貯蔵供給設備1の設置場所に走行させる。
液化水素貯蔵供給設備1の設置場所においては、充填ホース5dを第五開閉弁5aに接続し、充填ホース5d内を水素ガスで置換する。
Upon receiving a request for filling with liquefied hydrogen, the liquefied hydrogen seller fills the liquefied hydrogen into the liquefied hydrogen supply tank lorry 7 at the liquefied hydrogen manufacturing plant where the hydrogen liquefier is installed, and then supplies the tank lorry 7 to the liquefied hydrogen storage supply. Drive to the installation location of equipment 1.
At the installation location of the liquefied hydrogen storage and supply facility 1, the filling hose 5d is connected to the fifth on-off valve 5a, and the inside of the filling hose 5d is replaced with hydrogen gas.

液化水素貯槽2の内槽2a内の圧力が例えば0.7MPaGの場合、内槽2a内の水素ガスによりタンクローリー7の液化水素供給槽内の圧力を0.7MPaGに昇圧し、さらに、タンクローリー7の加圧蒸発ラインに介設した開閉弁の操作により、タンクローリー7の液化水素供給槽内の圧力を0.95MPaGに保持するのである。
第六開閉弁5cを開、第二開閉弁4eを閉、第五開閉弁5aを開にすると、タンクローリー7の液化水素は液化水素貯槽2の内槽2aに充填される。
When the pressure in the inner tank 2a of the liquefied hydrogen storage tank 2 is 0.7 MPaG, for example, the pressure in the liquefied hydrogen supply tank of the tank lorry 7 is increased to 0.7 MPaG by the hydrogen gas in the inner tank 2a. The pressure in the liquefied hydrogen supply tank of the tank lorry 7 is maintained at 0.95 MPaG by operating an on-off valve provided in the pressurized evaporation line.
When the sixth on-off valve 5c is opened, the second on-off valve 4e is closed, and the fifth on-off valve 5a is opened, the liquefied hydrogen in the tank lorry 7 is filled into the inner tank 2a of the liquefied hydrogen storage tank 2.

液化水素の充填が始まると、液化水素貯槽2の内槽2aのガス相の圧力は0.7MPaGよりも高くなるため、加圧調節弁4bは自動的に閉になり、加圧蒸発ライン4への液化水素の流れは止まる。しかし液化水素貯槽2の内槽2aのガス相の圧力は0.7MPaGよりも高いため、液化水素供給ライン3への液化水素の供給は停止しない。すなわち、使用ポイントでの水素ガスの利用には支障はない。
タンクローリー7から液化水素貯槽2の内槽2aに液化水素を充填するときに、内槽2a内の水素ガスの温度は、例えば100Kにしているため、液化水素の充填に伴う液化水素貯槽2の内槽2a内の圧力上昇が圧力逃し弁9の設定圧力を超えることがない状態、あるいは、充填初期に少量の水素ガスを放出する程度の圧力上昇の状態にでき、液化水素貯槽2の内槽2aに液化水素を充填する際に、水素ガスの放出を無くしたり、あるいは、少なくしたりすることができるのである。
When the filling of liquefied hydrogen starts, the pressure of the gas phase in the inner tank 2a of the liquefied hydrogen storage tank 2 becomes higher than 0.7 MPaG, so that the pressurizing control valve 4b is automatically closed, and the pressure evaporating line 4 is moved to. The flow of liquefied hydrogen stops. However, since the pressure of the gas phase in the inner tank 2a of the liquefied hydrogen storage tank 2 is higher than 0.7 MPaG, the supply of liquefied hydrogen to the liquefied hydrogen supply line 3 is not stopped. That is, there is no problem in using hydrogen gas at the point of use.
When filling the inner tank 2a of the liquefied hydrogen storage tank 2 from the tank lorry 7, the temperature of the hydrogen gas in the inner tank 2a is, for example, 100K. The pressure rise in the tank 2a does not exceed the set pressure of the pressure relief valve 9, or the pressure rises so as to release a small amount of hydrogen gas at the initial stage of filling, and the inner tank 2a of the liquefied hydrogen storage tank 2 When liquefied hydrogen is charged into the gas, the release of hydrogen gas can be eliminated or reduced.

以上の第一の実施の形態では、液化水素供給ライン3に供給用蒸発器3bを設けているが、使用ポイントにおいて液化水素を利用する場合には供給用蒸発器3bを無くして直接液化水素を使用ポイントに供給するようにするのである。
また、第一の実施の形態では、液化水素貯蔵供給設備1への液化水素の充填を液化水素供給用のタンクローリー7により行ったが、液化水素供給用のコンテナにより行ってもよい。
In the first embodiment described above, the supply evaporator 3b is provided in the liquefied hydrogen supply line 3. However, when liquefied hydrogen is used at the point of use, the supply evaporator 3b is eliminated and the liquefied hydrogen is directly supplied. Supply to the point of use.
In the first embodiment, liquefied hydrogen is charged into the liquefied hydrogen storage and supply facility 1 by the tank lorry 7 for supplying liquefied hydrogen, but may be performed by a container for supplying liquefied hydrogen.

次に、本発明の第二の実施の形態に係る液化水素貯蔵供給設備について、図2に基づき説明する。
第二の実施の形態は、第一の実施の形態における液化水素貯槽への戻り管の構成を垂直に立設していたものに替えて、U字状に配設したものである。
Next, a liquefied hydrogen storage and supply facility according to a second embodiment of the present invention will be described with reference to FIG.
In the second embodiment, the configuration of the return pipe to the liquefied hydrogen storage tank in the first embodiment is changed to a vertically standing structure and is arranged in a U shape.

以下、第一の実施の形態と同様な構成については、同一の符号を付して説明を省略ないし簡略にして説明する。
図2は、本発明の第二の実施の形態に係る液化水素貯蔵供給設備の配管系統などを示す概略図である。
Hereinafter, the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
FIG. 2 is a schematic diagram showing a piping system of a liquefied hydrogen storage and supply facility according to the second embodiment of the present invention.

図2において、11は、加圧蒸発ライン4における液化水素貯槽2の内槽2aへの戻り管である。
戻り管11は、前記液化水素貯槽2内の内槽2aの上部(頂部)から内槽2a内を下方に垂直に下降する下降部11aと、内槽2a内の下方位置の液化水素の液相において水平に延びる水平部11bと、上方に垂直に上昇するとともに上端が内槽2a内の上方位置における液化水素のガス相に開口する上昇部11cとから形成しており、これら下降部11a、水平部11b及び上昇部11cは、内槽2内にU字状に配設している。
In FIG. 2, reference numeral 11 denotes a return pipe to the inner tank 2 a of the liquefied hydrogen storage tank 2 in the pressurized evaporation line 4.
The return pipe 11 includes a descending part 11a that vertically descends downward from the upper part (top) of the inner tank 2a in the liquefied hydrogen storage tank 2 and a liquid phase of liquefied hydrogen at a lower position in the inner tank 2a. The horizontal portion 11b extends horizontally, and the rising portion 11c rises vertically upward and the upper end opens to the gas phase of liquefied hydrogen at the upper position in the inner tank 2a. The part 11b and the ascending part 11c are arranged in a U shape in the inner tank 2.

そして、液化水素貯槽2の内槽2aにおける戻り管11内の過熱水素ガスは、戻り管11の下降部11a内を下降し、水平部11b内を通って、上昇部11c内を上昇して上端の開口部から内槽2a内の上方位置における液化水素のガス相に噴出されるのである。
この実施の形態では、戻り管11をU字状に内槽2a内に配設しているので、内槽2a内の液化水素の液面が低下した際に、水平部11b並びに水平部11b近傍の下降部11a及び上昇部11cを過熱水素ガスが流通するときに液化水素の液相で冷却されて、液化水素の液面低下による過熱水素ガスの冷却能力低下を少なくすることができるのである。
Then, the superheated hydrogen gas in the return pipe 11 in the inner tank 2a of the liquefied hydrogen storage tank 2 descends in the descending part 11a of the return pipe 11, passes through the horizontal part 11b, rises in the ascending part 11c, and reaches the upper end. It is ejected from the opening of the gas to the gas phase of liquefied hydrogen at the upper position in the inner tank 2a.
In this embodiment, since the return pipe 11 is arranged in a U shape in the inner tank 2a, when the liquid level of liquefied hydrogen in the inner tank 2a is lowered, the horizontal portion 11b and the vicinity of the horizontal portion 11b When the superheated hydrogen gas flows through the descending part 11a and the ascending part 11c, the supercooled hydrogen gas is cooled in the liquid phase of the liquefied hydrogen, and the cooling capacity of the superheated hydrogen gas due to the lowered liquid level of the liquefied hydrogen can be reduced.

以上の第一の実施の形態及び第二の実施の形態の技術上の差異は、第一の実施の形態が簡単な戻り管の構成であり使用ポイントにおける水素ガスの使用量が少ない場合に適するのであり、第二の実施の形態がU字状にして過熱水素ガスの冷却面積を大きくして使用ポイントにおける水素ガスの使用量が多い場合に適するのである。
また、以上の第一の実施の形態及び第二の実施の形態において、液化水素貯槽2の内槽2a内の下方位置における液化水素の液相内に、環状又は渦巻状の水平部を設けてもよく、このようにすれば、内槽2a内の液面低下による冷却能力の低下を軽減できるのである。
The technical difference between the first embodiment and the second embodiment described above is suitable when the first embodiment has a simple return pipe configuration and the amount of hydrogen gas used at the point of use is small. This is suitable when the second embodiment is U-shaped and the cooling area of the superheated hydrogen gas is increased so that the amount of hydrogen gas used at the point of use is large.
In the first embodiment and the second embodiment described above, an annular or spiral horizontal portion is provided in the liquid phase of liquefied hydrogen at a lower position in the inner tank 2a of the liquefied hydrogen storage tank 2. If it does in this way, the fall of the cooling capability by the liquid level fall in the inner tank 2a can be reduced.

1 液化水素貯蔵供給設備
2 液化水素貯槽
2a 内槽
3 液化水素供給ライン
3a 供給用開閉弁
3b 供給用蒸発器
4 加圧蒸発ライン
4a 加圧蒸発器
4b 加圧調節弁
4c 戻り管
8 圧力逃し弁
8a 圧力逃しライン
11 戻り管
DESCRIPTION OF SYMBOLS 1 Liquefied hydrogen storage supply equipment 2 Liquefied hydrogen storage tank 2a Inner tank 3 Liquefied hydrogen supply line 3a Supply on-off valve 3b Supply evaporator 4 Pressurization evaporation line 4a Pressurization evaporator 4b Pressurization control valve 4c Return pipe 8 Pressure relief valve 8a Pressure relief line 11 Return pipe

Claims (3)

液化水素を貯蔵するとともに使用ポイントに供給するようにした液化水素貯槽と、前記液化水素貯槽の下部に接続した液化水素を使用ポイントに供給する液化水素供給ラインと、前記液化水素貯槽の下部に一端を接続し途中に外気を熱源とする加圧蒸発器及び加圧調節弁を設けるとともに前記液化水素貯槽内の上方位置における液化水素のガス相に他端を開口した加圧蒸発ラインと、前記液化水素貯槽の上部に接続し圧力逃し弁を設けた圧力逃しラインとを備えた液化水素貯蔵供給設備において、
前記加圧蒸発ラインにおける前記液化水素貯槽への戻り管を、前記液化水素貯槽内の下方位置の液化水素の液相を通って前記ガス相に開口したことを特徴とする液化水素貯蔵供給設備。
A liquefied hydrogen storage tank for storing liquefied hydrogen and supplying it to the use point, a liquefied hydrogen supply line for supplying liquefied hydrogen connected to the lower part of the liquefied hydrogen storage tank to the use point, and a lower end of the liquefied hydrogen storage tank A pressurized evaporator and a pressurized control valve that use outside air as a heat source in the middle, and a pressurized evaporation line that opens the other end to the gas phase of liquefied hydrogen at an upper position in the liquefied hydrogen storage tank, and the liquefaction In a liquefied hydrogen storage and supply facility equipped with a pressure relief line connected to the upper part of the hydrogen storage tank and provided with a pressure relief valve,
A liquefied hydrogen storage and supply facility, wherein a return pipe to the liquefied hydrogen storage tank in the pressurized evaporation line is opened to the gas phase through a liquid phase of liquefied hydrogen at a lower position in the liquefied hydrogen storage tank.
前記加圧蒸発ラインにおける前記液化水素貯槽への戻り管は、前記液化水素貯槽の下部から液化水素貯槽内を上方に垂直に立設して液化水素のガス相に開口したことを特徴とする請求項1に記載の液化水素貯蔵供給設備。   The return pipe to the liquefied hydrogen storage tank in the pressurized evaporation line is vertically opened in the liquefied hydrogen storage tank from the lower part of the liquefied hydrogen storage tank, and opens to the gas phase of liquefied hydrogen. Item 2. The liquefied hydrogen storage and supply facility according to Item 1. 前記加圧蒸発ラインにおける前記液化水素貯槽への戻り管は、前記液化水素貯槽の上部から液化水素貯槽内にU字状に配設して液化水素のガス相に開口したことを特徴とする請求項1に記載の液化水素貯蔵供給設備。   The return pipe to the liquefied hydrogen storage tank in the pressurized evaporation line is disposed in a U shape in the liquefied hydrogen storage tank from the upper part of the liquefied hydrogen storage tank, and opens to the gas phase of liquefied hydrogen. Item 2. The liquefied hydrogen storage and supply facility according to Item 1.
JP2009144259A 2009-06-17 2009-06-17 Liquefied hydrogen storage supply equipment Pending JP2011001993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009144259A JP2011001993A (en) 2009-06-17 2009-06-17 Liquefied hydrogen storage supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009144259A JP2011001993A (en) 2009-06-17 2009-06-17 Liquefied hydrogen storage supply equipment

Publications (1)

Publication Number Publication Date
JP2011001993A true JP2011001993A (en) 2011-01-06

Family

ID=43560119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144259A Pending JP2011001993A (en) 2009-06-17 2009-06-17 Liquefied hydrogen storage supply equipment

Country Status (1)

Country Link
JP (1) JP2011001993A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246981A (en) * 2011-05-26 2012-12-13 Taiyo Nippon Sanso Corp Liquefied hydrogen storage and supply facility
JP2012251606A (en) * 2011-06-03 2012-12-20 Taiyo Nippon Sanso Corp Liquefied hydrogen storage supply equipment
JP2016070301A (en) * 2014-09-26 2016-05-09 川崎重工業株式会社 Hydrogen fuel supply system
JP2020091016A (en) * 2018-12-07 2020-06-11 株式会社神戸製鋼所 Hydrogen station operation method and hydrogen station
US11137115B2 (en) 2018-01-22 2021-10-05 University Of Seoul Industry Cooperation Foundation Storage vessel for extremely low temperature material with cryogenic jacket
CN115264378A (en) * 2022-05-26 2022-11-01 合肥通用机械研究院有限公司 Liquid hydrogen energy island for full treatment of flash evaporation gas of liquid hydrogen storage tank and operation method
WO2023112913A1 (en) * 2021-12-14 2023-06-22 川崎重工業株式会社 Liquid hydrogen loading/unloading system, and boil-off gas transport system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246981A (en) * 2011-05-26 2012-12-13 Taiyo Nippon Sanso Corp Liquefied hydrogen storage and supply facility
JP2012251606A (en) * 2011-06-03 2012-12-20 Taiyo Nippon Sanso Corp Liquefied hydrogen storage supply equipment
JP2016070301A (en) * 2014-09-26 2016-05-09 川崎重工業株式会社 Hydrogen fuel supply system
US11137115B2 (en) 2018-01-22 2021-10-05 University Of Seoul Industry Cooperation Foundation Storage vessel for extremely low temperature material with cryogenic jacket
JP2020091016A (en) * 2018-12-07 2020-06-11 株式会社神戸製鋼所 Hydrogen station operation method and hydrogen station
US11079071B2 (en) 2018-12-07 2021-08-03 Kobe Steel, Ltd. Hydrogen station operation method and hydrogen station
WO2023112913A1 (en) * 2021-12-14 2023-06-22 川崎重工業株式会社 Liquid hydrogen loading/unloading system, and boil-off gas transport system
CN115264378A (en) * 2022-05-26 2022-11-01 合肥通用机械研究院有限公司 Liquid hydrogen energy island for full treatment of flash evaporation gas of liquid hydrogen storage tank and operation method
CN115264378B (en) * 2022-05-26 2024-01-26 合肥通用机械研究院有限公司 Liquid hydrogen energy island for liquid hydrogen storage tank flash vapor full treatment and operation method

Similar Documents

Publication Publication Date Title
JP2011001993A (en) Liquefied hydrogen storage supply equipment
JP4796491B2 (en) Controlled storage of liquefied gas
TWI343975B (en) A storage vessel for cryogenic liquid
JP5783801B2 (en) Liquefied hydrogen storage and supply equipment
JP4728601B2 (en) Cooling system for superconducting power equipment
US20150192249A1 (en) Equipment and method for filling pressurized gas cylinders from a liquefied gas tank
US3030780A (en) Refrigerated container for liquefied gases
US9383063B2 (en) Hydrogen dispensing system and method thereof
JP7346453B2 (en) Methods and equipment for storing and distributing liquefied hydrogen
JP4634231B2 (en) Low temperature liquefied gas storage device, power generation device having the same, and moving body
WO2010151118A1 (en) System and method for the delivery of lng
US5649433A (en) Cold evaporator
KR100899997B1 (en) Sloshing free cargo tank by re-liquefaction of boil off gas
JP2009127813A (en) Hydrogen gas supply method and hydrogen gas supply installation
JP5715498B2 (en) Liquefied hydrogen storage and supply equipment
WO2006103987A1 (en) Method for supplying hydrogen gas and car for transporting liquefied hydrogen
US20130327404A1 (en) Method for efficiently delivering liquid argon to a furnace
US20070214830A1 (en) Hydrogen tank system based on high-surface materials used for intermediate storage of excess hydrogen gas in stationary applications
JP2011001992A (en) Liquefied hydrogen supply equipment and tank lorry for liquefied hydrogen supply
JP2018105507A (en) Carbonic acid gas generating device
NO20201157A1 (en) Improved cryogenic storage tank with an integrated closed cooling system
JP2011127754A (en) Hydrogen gas cooling device
JP2007332989A (en) Liquefied gas feeder
US11649929B2 (en) Gas dispensing system with tank pressure and heat management
JP2008232258A (en) Gas hydrate re-gasifying device