WO2023112913A1 - Liquid hydrogen loading/unloading system, and boil-off gas transport system - Google Patents

Liquid hydrogen loading/unloading system, and boil-off gas transport system Download PDF

Info

Publication number
WO2023112913A1
WO2023112913A1 PCT/JP2022/045825 JP2022045825W WO2023112913A1 WO 2023112913 A1 WO2023112913 A1 WO 2023112913A1 JP 2022045825 W JP2022045825 W JP 2022045825W WO 2023112913 A1 WO2023112913 A1 WO 2023112913A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
seal
boil
hydrogen
cargo handling
Prior art date
Application number
PCT/JP2022/045825
Other languages
French (fr)
Japanese (ja)
Inventor
智教 高瀬
邦裕 山本
健太 木元
義亜 合志
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2023112913A1 publication Critical patent/WO2023112913A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present disclosure relates to a liquefied hydrogen cargo handling system for cargo handling of liquefied hydrogen and a boil-off gas transfer system for transferring boil-off gas.
  • the cargo handling system of Patent Literature 1 is provided, for example, at an LNG receiving terminal.
  • the cargo handling system includes cargo handling equipment.
  • LNG is discharged from a discharge side tank (for example, a tank of an LNG ship) to a receiving side tank (for example, a tank at a base) by cargo handling equipment.
  • the boil-off gas in the receiving side tank is returned to the dispensing side tank as the return gas when it is dispensed.
  • the discharge side tank is prevented from becoming negative pressure.
  • the cargo handling equipment provided in the cargo handling system of Patent Document 1 has various configurations. Each arrangement is provided with a sealing device to prevent gas from escaping between the parts. Sealing devices use seal gas together with mechanical seals such as gaskets. Nitrogen is used as the seal gas.
  • the liquefied gas that is loaded and unloaded in the cargo handling system of Patent Document 1 is LNG, but the liquefied gas that is loaded and unloaded includes hydrogen in addition to LNG.
  • the liquefaction temperature of hydrogen is lower than the solidification temperature of nitrogen. Therefore, when hydrogen is unloaded using the same cargo handling system as LNG, the nitrogen seal gas solidifies. Then, it is conceivable that the sealing device will not function.
  • a boil-off gas transfer system including transfer equipment for transferring boil-off gas it is conceivable that the sealing device of the transfer equipment will not function.
  • an object of the present disclosure is to provide a liquefied hydrogen cargo handling system and a boil-off gas transfer system that can prevent the solidification of the seal gas and the failure of the seal device to function.
  • a liquefied hydrogen cargo handling system includes a hydrogen tank for storing liquefied hydrogen, cargo handling equipment for cargo handling of the liquefied hydrogen in the hydrogen tank, and a cargo handling equipment provided in the cargo handling equipment to provide a second line between the inside of the cargo handling equipment and the atmosphere. and a seal gas supply system for supplying boil-off gas vaporized in the hydrogen tank as a first seal gas to the seal device.
  • the liquefaction of the seal gas can be suppressed by using the hydrogen, which is the boil-off gas, as the seal gas of the seal device.
  • the hydrogen which is the boil-off gas
  • the boil-off gas transfer system of the present disclosure includes a hydrogen tank when liquefied hydrogen is stored, a transfer facility for transferring the boil-off gas vaporized in the hydrogen tank, and a transfer facility provided in the transfer facility, between the transfer facility and the atmosphere. a sealing device for sealing with a first sealing gas, the sealing device being supplied with a boil-off gas as the first sealing gas.
  • the liquefaction of the seal gas can be suppressed by using hydrogen, which is the boil-off gas, as the seal gas of the seal device.
  • hydrogen which is the boil-off gas
  • FIG. 1 is a configuration diagram showing a liquefied hydrogen cargo handling system according to a first embodiment of the present disclosure
  • FIG. FIG. 2 is a cross-sectional view showing a seal device of the liquefied hydrogen cargo handling system of FIG. 1
  • FIG. 2 is a configuration diagram showing the flow of boil-off gas outside the cargo handling period in the liquefied hydrogen cargo handling system of FIG. 1
  • FIG. 2 is a configuration diagram showing the flow of boil-off gas during a cargo handling period in the liquefied hydrogen cargo handling system of FIG. 1
  • Fig. 2 is a configuration diagram showing a liquefied hydrogen cargo handling system according to a second embodiment of the present disclosure
  • FIG. 11 is a configuration diagram showing a liquefied hydrogen cargo handling system according to a third embodiment of the present disclosure
  • FIG. 11 is a configuration diagram showing a boil-off gas transfer system according to a fourth embodiment of the present disclosure;
  • the liquefied hydrogen cargo handling systems 1, 1A, and 1B of the first to third embodiments and the boil-off gas transfer system 1C of the fourth embodiment according to the present disclosure will be described with reference to the aforementioned drawings.
  • the concept of direction used in the following description is used for convenience of explanation, and does not limit the direction of the disclosed configuration.
  • the liquefied hydrogen cargo handling systems 1, 1A, 1B and the boil-off gas transfer system 1C described below are merely embodiments of the present disclosure. Therefore, the present disclosure is not limited to the embodiments, and additions, deletions, and modifications can be made without departing from the gist of the disclosure.
  • a liquefied hydrogen loading/unloading system 1 shown in FIG. 1 loads/unloads liquefied hydrogen to/from a tank 2 provided on a ship or land facility.
  • the liquefied hydrogen cargo handling system 1 is provided on land such as a port.
  • the tank 2 is provided on a vessel (eg, tanker) and can store liquefied hydrogen.
  • the liquefied hydrogen cargo handling system 1 performs cargo handling with the tank 2 of the ship.
  • the liquefied hydrogen cargo handling system 1 does not necessarily have to be provided on land.
  • the liquefied hydrogen cargo handling system 1 may be provided on a ship.
  • the liquefied hydrogen cargo handling system 1 will be described in more detail.
  • the liquefied hydrogen cargo handling system 1 includes a hydrogen tank 11, cargo handling equipment 12, a seal device 13, a seal gas supply system 14, and a discharge equipment 15. .
  • the hydrogen tank 11 can store liquefied hydrogen.
  • the hydrogen tank 11 has a heat insulating structure such as a vacuum heat insulating structure.
  • the hydrogen tank 11 keeps the temperature of the liquefied hydrogen stored therein below the boiling point of the liquefied hydrogen 11a. Also, in the hydrogen tank 11, part of the liquefied hydrogen is vaporized. A portion of the hydrogen tank 11 other than the liquefied hydrogen is filled with the boil-off gas 11b.
  • the tank 2 is also constructed in the same manner as the hydrogen tank 11 .
  • the cargo handling facility 12 loads and unloads liquefied hydrogen between the hydrogen tank 11 and the tank 2 . That is, the liquefied hydrogen stored in the hydrogen tank 11 is transported to the tank 2 , or the liquefied hydrogen stored in the tank 2 is transported to the hydrogen tank 11 . More specifically, the cargo handling equipment 12 has a liquefied hydrogen pipe 21 , a return gas pipe 22 , a hydraulic pump 23 and a return gas blower 24 .
  • the liquefied hydrogen pipe 21 is a pipe that connects the hydrogen tank 11 and the tank 2 . More specifically, the liquefied hydrogen pipe 21 is connected to the hydrogen tank 11 . Also, the liquefied hydrogen pipe 21 can be connected to the tank 2 via a joint (not shown). The liquefied hydrogen pipe 21 can flow liquefied hydrogen from the hydrogen tank 11 to the tank 2 or vice versa while being connected to the tank 2 .
  • the return gas pipe 22 is a pipe that connects the hydrogen tank 11 and the tank 2 . More specifically, the return gas pipe 22 is connected to the hydrogen tank 11, for example.
  • the return gas pipe 22 can be connected to the tank 2 via a joint (not shown) like the liquefied hydrogen pipe 21 . Further, the return gas pipe 22 can flow boil-off gas (return gas) from the hydrogen tank 11 to the tank 2 or vice versa.
  • the liquid pressure pump 23 is interposed in the liquefied hydrogen pipe 21 .
  • the hydraulic pump 23 can send liquefied hydrogen from the dispensing side tank (tank 2 in this embodiment) to the receiving side tank (hydrogen tank 11 in this embodiment). Thereby, liquefied hydrogen can be loaded and unloaded between the hydrogen tank 11 and the tank 2 .
  • the hydraulic pump 23 sends liquefied hydrogen in the direction opposite to the above-described direction.
  • the hydraulic pump 23 does not necessarily have to be provided in the cargo handling equipment 12, and may be provided in the cargo handling ship. Also, the hydraulic pump 23 may be provided inside the tank 2 or the hydrogen tank 11 .
  • the return gas blower 24 is interposed in the return gas pipe 22 . Then, the return gas blower 24 can send return gas from the receiving side tank (hydrogen tank 11 in this embodiment) to the payout side tank (tank 2 in this embodiment). When the dispensing side tank is the hydrogen tank 11, the return gas blower 24 sends the return gas in the direction opposite to the direction described above. Return gas blower 24 will be described in more detail.
  • Return gas blower 24 is, for example, a compressor. That is, the return gas blower 24 compresses and sends the return gas. More specifically, the return gas blower 24 has a casing 31 and an impeller 32 as shown in FIG.
  • the casing 31 is interposed in the return gas pipe 22 . More specifically, the casing 31 is formed with a flow path 31a and a shaft insertion hole 31b.
  • the flow path 31 a is interposed in the return gas pipe 22 . That is, one side and the other side of the flow path 31a are connected to the hydrogen tank 11 and the tank 2 via the return gas pipe 22, respectively.
  • the shaft insertion hole portion 31 b is a hole formed in the casing 31 . One side of the shaft insertion hole 31b opens to the flow path 31a, and the other side opens to the atmosphere.
  • the impeller 32 has a shaft portion 32a and an impeller portion 32b.
  • the shaft portion 32a is inserted through the shaft portion insertion hole portion 31b of the casing 31 and is rotatably supported there.
  • One axial end of the shaft portion 32a is connected to a prime mover such as an engine or an electric motor (not shown) provided outside the casing 31.
  • An impeller portion 32b is provided at the other axial end portion of the shaft portion 32a.
  • the impeller portion 32b is arranged in the flow path 31a.
  • the impeller portion 32b compresses the return gas in the flow path 31a when the shaft portion 32a is rotated by the prime mover.
  • the impeller portion 32b sends the return gas to either the hydrogen tank 11 or the tank 2 according to the rotation direction of the shaft portion 32a.
  • the cargo handling facility 12 configured in this manner operates as follows during the cargo handling period in which liquefied hydrogen is handled between the hydrogen tank 11 and the tank 2. That is, in the cargo handling equipment 12, when the liquefied hydrogen is loaded and unloaded, the hydraulic pressure pump 23 operates according to the transportation direction of the liquefied hydrogen.
  • the transportation direction is the direction from the dispensing side tank to the receiving side tank.
  • the receiving side tank is the hydrogen tank 11.
  • the receiving side tank is the tank 2.
  • the cargo handling equipment 12 when transporting liquefied hydrogen, operates the return gas blower 24 together with the hydraulic pump 23 according to the transportation direction. That is, the return gas blower 24 sends return gas in the direction opposite to the transportation direction. As a result, an excessive pressure drop in the dispensing side tank is suppressed, and an excessive pressure rise in the receiving side tank is suppressed.
  • the sealing device 13 is provided in the cargo handling equipment 12 .
  • the seal device 13 seals the space between the cargo handling facility 12 and the atmosphere with a seal gas. More specifically, the seal device 13 seals the space between the interior of the cargo handling facility 12 through which cryogenic hydrogen flows and the atmosphere with a seal gas.
  • “sealing” means that the gas flowing inside the cargo handling equipment 12, that is, the boil-off gas is not released to the atmosphere.
  • the term "extremely low temperature” means a temperature below the temperature at which nitrogen solidifies.
  • the sealing device 13 is provided in the return gas blower 24 of the cargo handling equipment 12 .
  • the seal device 13 seals the space between the inside of the return gas blower 24 and the atmosphere with a seal gas.
  • the return gas blower 24 is an example of a target on which the sealing device 13 is provided, and may be provided in piping or other equipment in the cargo handling facility 12 .
  • the sealing device 13 is particularly suitable for sealing between two members that move relative to each other. However, the sealing device 13 may be used to seal between two members that do not move relative to each other.
  • the sealing device 13 constitutes a boil-off gas transfer system 60 together with the hydrogen tank 11 and the return gas blower 24, which is an example of transfer equipment.
  • the boil-off gas transfer system 60 also includes a seal gas supply system 14, which will be described later. Describing the sealing device 13 in more detail, the sealing device 13 has three sealing members 13 a - 13 c , a first sealing gas space 34 and a second sealing gas space 35 .
  • the three sealing members 13a to 13c are provided between the casing 31 and the shaft portion 32a in the return gas blower 24. More specifically, the sealing members 13a-13c are formed in an annular shape. Each seal member 13a to 13c is composed of one or more seals. A first sealing member 13a, a second sealing member 13b, and a third sealing member 13c are mounted on the shaft portion 32a in order from the inside of the return gas blower 24 with a space therebetween. The sealing members 13a to 13c are interposed between the shaft insertion hole 31b and the shaft 32a of the casing 31 to seal the space between the shaft insertion hole 31b and the shaft 32a.
  • the first sealing gas space 34 and the second sealing gas space 35 are arranged between the inside of the return gas blower 24 and the atmosphere side.
  • the boil-off gas which is the first seal gas
  • the second seal gas space 35 is provided closer to the atmosphere than the first seal gas space 34 is.
  • a second seal gas which is nitrogen gas, is supplied from the nitrogen supply device 16 to the second seal gas space 35 .
  • the seal device 13 seals the space between the inside of the return gas blower 24 and the atmosphere with the first and second seal gases supplied to the two seal gas spaces 34 and 35, respectively.
  • the second seal gas is not limited to nitrogen gas, and may be other gas such as argon gas.
  • first seal gas space 34 and the second seal gas space 35 are formed in the shaft insertion hole 31b of the casing 31.
  • a first seal gas space 34 is formed between the first seal member 13a and the second seal member 13b
  • a second seal gas space 35 is formed between the second seal member 13b and the third seal member 13c.
  • the first seal gas space 34 and the second seal gas space 35 are formed along the entire circumference of the shaft insertion hole 31b and are recessed radially outward. That is, the first sealing gas space 34 and the second sealing gas space 35 are formed in an annular shape so as to surround the shaft portion 32a over the entire circumferential direction.
  • the sealing members 13a to 13c suppress the release of the return gas in the return gas blower 24 to the atmosphere.
  • the sealing device 13 captures by means of the first sealing gas space 34 the return gas that slightly escapes through the sealing member 13a.
  • the seal device 13 prevents the return gas from leaking into the atmosphere.
  • the second seal gas space 35 captures the first seal gas leaking from the first seal gas space 34 through the second seal member 13b.
  • the sealing device 13 suppresses the leakage of the first sealing gas.
  • the first sealing gas and the second sealing gas seal the space between the inside of the return gas blower 24 and the atmosphere.
  • the seal gas supply system 14 supplies the boil-off gas vaporized in the hydrogen tank 11 to the seal device 13 as the first seal gas. More specifically, the seal gas supply system 14 has a boil-off gas recovery line 41 , a compressor 42 , a boil-off gas storage tank 43 , and a supply line 44 .
  • a boil-off gas recovery line 41 is connected to the hydrogen tank 11 .
  • the boil-off gas of the hydrogen tank 11 is introduced to the boil-off gas recovery line 41 .
  • the boil-off gas recovery line 41 is connected to the return gas pipe 22 so as to branch.
  • the compressor 42 is interposed in the boil-off gas recovery line 41.
  • the compressor 42 sucks and compresses the boil-off gas guided to the boil-off gas recovery line 41 . Then, the compressor 42 sends it to the downstream side of the boil-off gas recovery line 41 .
  • the boil-off gas storage tank 43 stores the boil-off gas transferred by the compressor 42 . More specifically, the boil-off gas storage tank 43 is connected to the boil-off gas recovery line 41 . The boil-off gas (that is, compressed gas) compressed by the compressor 42 is sent to the boil-off gas storage tank 43 via the boil-off gas recovery line 41 . Then, the boil-off gas storage tank 43 stores therein the sent compressed gas. Further, the boil-off gas storage tank 43 holds the compressed gas at room temperature.
  • the boil-off gas that is, compressed gas
  • the supply line 44 is connected to the boil-off gas storage tank 43 . Also, the supply line 44 is connected to the sealing device 13 . That is, the boil-off gas storage tank 43 is connected to the sealing device 13 via the supply line 44 . More specifically, the supply line 44 is connected to the first sealing gas space 34 in the sealing device 13 .
  • the boil-off gas of the hydrogen tank 11 is stored in the boil-off gas storage tank 43 . More specifically, in the seal gas supply system 14 , the boil-off gas of the hydrogen tank 11 is stored in the boil-off gas storage tank 43 outside the cargo handling period when the cargo handling equipment 12 is not performing cargo handling work. That is, in the seal gas supply system 14, the compressor 42 is driven outside the cargo handling period. Thereby, the boil-off gas in the hydrogen tank 11 is sucked into the compressor 42 via the boil-off gas recovery line 41 . Further, the boil-off gas is compressed by the compressor 42 and sent to the boil-off gas storage tank 43 . As a result, the compressed gas is stored in the boil-off gas storage tank 43 .
  • the boil-off gas stored in the boil-off gas storage tank 43 is sent to the seal device 13 as the first seal gas during the cargo handling period. More specifically, in the seal gas supply system 14 , the first seal gas is supplied from the boil-off gas storage tank 43 to the first seal gas space 34 of the seal device 13 . A second seal gas is supplied from the nitrogen supply device 16 to the second seal gas space 35 . That is, the sealing device 13 is supplied with the first sealing gas and the second sealing gas. Thereby, the sealing device 13 seals between the inside of the return gas blower 24 and the atmosphere.
  • the exhaust facility 15 exhausts the first seal gas supplied to the first seal gas space 34 . More specifically, exhaust facility 15 communicates with first seal gas space 34 and the atmosphere. The discharge facility 15 then discharges the first seal gas supplied to the first seal gas space 34 to the atmosphere. The exhaust facility 15 is also connected to a second seal gas space 35 in addition to the first seal gas space 34 . The exhaust facility 15 also vents the second seal gas space 35 to the atmosphere. More specifically, the discharge facility 15 discharges a mixed gas containing the first seal gas and the second seal gas to the atmosphere.
  • the discharge equipment 15 has a vent line 51 and a valve 52 .
  • the vent line 51 is connected to the first seal gas space 34 and the second seal gas space 35 and to the atmosphere.
  • the vent line 51 is provided with a valve 52 . Then, the discharge facility 15 opens the valve 52 while the return gas blower 24 is being driven. As a result, the mixed gas containing the two seal gases supplied to the respective seal gas spaces 34 and 35 is discharged to the atmosphere through the vent line 51 .
  • the liquefied hydrogen cargo handling system 1 operates as follows during the cargo handling period. That is, in the liquefied hydrogen cargo handling system 1 , cargo handling of liquefied hydrogen is started by connecting the tank 2 to the cargo handling equipment 12 . In the following, as shown by the thick line in FIG. 4, the case where the dispensing side tank is the tank 2 and the receiving side tank is the hydrogen tank 11 will be described as an example. That is, in the liquefied hydrogen cargo handling system 1, the hydraulic pump 23 operates during the cargo handling period. Then, liquefied hydrogen is transported from the tank 2 to the hydrogen tank 11 . On the other hand, in the liquefied hydrogen cargo handling system 1, the return gas blower 24 also operates during the cargo handling period.
  • the return gas blower 24 sends the boil-off gas of the hydrogen tank 11 to the tank 2 as return gas.
  • the delivery side tank is the hydrogen tank 11 and the receiving side tank is the tank 2
  • each of the liquefied hydrogen and the return gas is sent in the direction opposite to the direction described above.
  • the compressed gas stored in the boil-off gas storage tank 43 is supplied as seal gas from the seal gas supply system 14 to the seal device 13 ( See the two-dot bold line in Fig. 4). More specifically, valve 52 is opened in exhaust facility 15 while return gas blower 24 is operating. Then, the compressed gas in the boil-off gas storage tank 43 is supplied to the supply line 44 of the seal gas supply system 14 as the seal gas. The seal gas then flows to the first seal gas space 34 of the seal device 13 via the supply line 44 . In the first seal gas space 34, the first seal gas captures the return gas that slightly leaks through the seal member 13a.
  • the second seal gas space 35 is supplied with a second seal gas, which is nitrogen gas, from a supply device (not shown).
  • a second seal gas which is nitrogen gas
  • the sealing device 13 seals between the inside of the return gas blower 24 and the atmosphere with the first sealing gas and the second sealing gas.
  • the first seal gas in the first seal gas space 34 is discharged to the atmosphere through the vent line 51 .
  • the first seal gas can be constantly supplied to the first seal gas space 34, it is possible to suppress a decrease in the temperature of the first seal gas.
  • the second seal gas is discharged to the atmosphere through the vent line 51 together with the first seal gas.
  • the second seal gas can be constantly supplied to and discharged from the second seal gas space 35, thereby suppressing a decrease in the temperature of the second seal gas. That is, the solidification of nitrogen, which is the second seal gas, is further suppressed.
  • the liquefied hydrogen cargo handling system 1 of the present embodiment by using hydrogen, which is boil-off gas, as the first seal gas of the seal device 13, liquefaction of the first seal gas can be suppressed. As a result, it is possible to prevent the sealing device 13 from failing to function due to solidification of the first sealing gas.
  • the second sealing gas space 35 through which nitrogen gas flows is arranged closer to the atmosphere than the first sealing gas space 34, so the nitrogen gas in the second sealing gas space 35 may not solidify. can be suppressed. Therefore, it is possible to prevent the sealing device 13 from failing to function due to solidification of the nitrogen gas, which is the sealing gas. Further, by interposing nitrogen gas between the boil-off gas and the atmosphere, it is possible to suppress the first seal gas from being discharged to the atmosphere as it is.
  • boil gas is stored in the boil-off gas storage tank 43 outside the cargo handling period. Then, during the cargo handling period, the stored boil-off gas can be supplied to the seal device 13 as the seal gas. Thereby, a large amount of seal gas can be supplied to the seal device 13 .
  • the boil-off gas is compressed and supplied to the boil-off gas storage tank 43, so more boil-off can be stored in the boil-off gas storage tank 43. As a result, more seal gas can be supplied to the seal device 13 during the period.
  • the first seal gas in the first seal gas space 34 is discharged from the discharge equipment 15 .
  • the first seal gas can be continuously supplied from the seal gas supply system 14 to the first seal gas space 34, the first seal gas stays in the first seal gas space 34 and is cooled by the return gas. can be suppressed. That is, it is possible to suppress the temperature drop of the first seal gas. As a result, it is possible to suppress the temperature drop of the second sealing gas, so that it is possible to further suppress the non-functioning of the sealing device 13 due to the solidification of the nitrogen gas.
  • the sealing device 13 is provided in the return gas blower 24 included in the cargo handling equipment 12 . Therefore, it is possible to prevent the return gas blower 24 from becoming stuck due to solidification of the seal gas.
  • the boil-off gas transfer system 60 by using hydrogen, which is the boil-off gas, as the first seal gas of the seal device 13, liquefaction of the first seal gas can be suppressed. As a result, it is possible to prevent the sealing device 13 from failing to function due to solidification of the first sealing gas.
  • a liquefied hydrogen cargo handling system 1A of the second embodiment is similar in configuration to the liquefied hydrogen cargo handling system 1 of the first embodiment. Therefore, with regard to the configuration of the liquefied hydrogen cargo handling system 1A of the second embodiment, differences from the liquefied hydrogen cargo handling system 1 of the first embodiment will be mainly described, and the same configurations will be assigned the same reference numerals. Omitted.
  • the discharge facility 15A returns the discharged first seal gas to the seal gas supply system 14 . More specifically, the first seal gas is discharged from the first seal gas space 34 to the discharge facility 15A. Then, the discharge equipment 15A returns the discharged first seal gas to the seal gas supply system 14 . More specifically, the discharge facility 15A has a mixed gas recovery line 53, a mixed gas blower 54, a hydrogen regeneration device 55, a hydrogen recovery line 56, a vent line 51A, and a valve 52.
  • the mixed gas recovery line 53 is connected to the first sealing gas space 34 and the second sealing gas space 35 . Seal gas is discharged from each of the first seal gas space 34 and the second seal gas space 35 to the mixed gas recovery line 53 .
  • a mixed gas in which the two seal gases are mixed flows through the mixed gas recovery line 53 .
  • a mixed gas blower 54 is interposed in the mixed gas recovery line 53 . Then, the mixed gas blower 54 sends the mixed gas flowing through the mixed gas recovery line 53 to its downstream side (specifically, the hydrogen regeneration device 55 described in detail later).
  • the hydrogen regeneration device 55 is connected to the first seal gas space 34 and the second seal gas space 35. More specifically, the hydrogen regeneration device 55 is connected to the first seal gas space 34 and the second seal gas space 35 via a mixed gas recovery line 53 . The hydrogen regeneration device 55 separates the first seal gas and the second seal gas from the mixed gas. Then, the hydrogen regeneration device 55 separates the first seal gas (that is, hydrogen) from the mixed gas and returns it to the seal gas supply system 14 .
  • the hydrogen regeneration device 55 separates the first seal gas and the second seal gas from the mixed gas, for example, as follows. That is, the return gas pipe 22 is passed through the hydrogen regeneration device 55 . In the hydrogen regeneration device 55, heat is exchanged between the return gas flowing through the return gas pipe 22 and the mixed gas. Thereby, the hydrogen regeneration device 55 liquefies or solidifies the second seal gas (that is, nitrogen) of the mixed gas. On the other hand, the first seal gas, which is hydrogen, is maintained in a gaseous state. Therefore, in the hydrogen regeneration unit 55, the first seal gas and the second seal gas are separated from the mixed gas.
  • the separation method is not limited to the above-described method using cold heat, and other methods (for example, pressure swing adsorption method (PSA method)) may be used.
  • PSA method pressure swing adsorption method
  • the hydrogen regeneration device 55 re-vaporizes nitrogen, which is the second seal gas that has been liquefied or solidified outside the cargo handling period. More specifically, the nitrogen is liquefied or solidified by the return gas as described above. Therefore, when the flow of the return gas in the return gas pipe 22 stops, such as outside the cargo handling period, the liquefied or solidified nitrogen evaporates again.
  • the hydrogen recovery line 56 returns the first seal gas separated by the hydrogen regeneration device 55, ie hydrogen, to the seal gas supply system 14. More specifically, hydrogen recovery line 56 is connected to hydrogen regenerator 55 and compressor 42 . Hydrogen separated by the hydrogen regeneration device 55 is introduced into the hydrogen recovery line 56 . Hydrogen introduced to the hydrogen recovery line 56 is sucked into the compressor 42 and compressed. The compressed gas is sent to the boil-off gas storage tank 43 via the boil-off gas recovery line 41 . In this way, the hydrogen separated by the hydrogen regeneration device 55 is stored in the boil-off gas storage tank 43 as compressed gas. An opening/closing valve 56 a is interposed in the hydrogen recovery line 56 . The open/close valve 56a closes the hydrogen recovery line 56 during the cargo handling period. This prevents the boil-off gas from flowing back into the hydrogen regeneration device 55 .
  • vent line 51A discharges the gas flowing through the hydrogen recovery line 56. More specifically, vent line 51A is connected to hydrogen recovery line 56 and the atmosphere. A valve 52 is provided in the vent line 51A. The valve 52 is opened when the vaporized nitrogen is discharged outside the cargo handling period, and the valve 52 is closed during the cargo handling period. Thereby, the second seal gas separated by the hydrogen regeneration device 55 can be discharged to the atmosphere.
  • liquefied hydrogen cargo handling system 1A cargo handling is performed between the hydrogen tank 11 and the tank 2 during the cargo handling period, similar to the liquefied hydrogen cargo handling system 1 of the first embodiment.
  • the first seal gas is supplied from the seal gas supply system 14 to the seal device 13 (see the two-dot bold line in FIG. 5).
  • the mixed gas containing the sealing gas discharged from each of the first sealing gas space 34 and the second sealing gas space 35 is guided to the mixed gas recovery line 53. Further, the mixed gas is sent to the hydrogen regeneration device 55 by the mixed gas blower 54 . Then, the hydrogen regeneration device 55 separates the first seal gas and the second seal gas from the mixed gas. Also, the separated first seal gas, that is, hydrogen is sucked into the compressor 42 via the hydrogen recovery line 56 and compressed. The compressed hydrogen is stored in a boil-off gas storage tank 43 . The hydrogen stored in the boil-off gas storage device is again supplied to the first seal gas space 34 through the seal gas supply system 14 as the first seal gas. That is, the separated first seal gas is regenerated as the first seal gas.
  • the first seal gas discharged by the discharge equipment 15A is returned to the seal gas supply system 14, so the first seal gas can be reused.
  • hydrogen can be regenerated from the mixed gas discharged from the seal device 13 .
  • the liquefied hydrogen cargo handling system 1A of the second embodiment has the same effects as the liquefied hydrogen cargo handling system 1 of the first embodiment.
  • the liquefied hydrogen cargo handling system 1B includes, as shown in FIG.
  • the seal device 13B is provided in a compressor 42, which is an example of transfer equipment in this embodiment.
  • the sealing device 13B is connected to the supply line 44 of the sealing gas supply system 14 and the discharge facility 15 so as to be parallel to the sealing device 13 .
  • the sealing device 13B may be connected to the discharging equipment 15 connected to the sealing device 13 and another discharging equipment 15 .
  • a boil-off gas is supplied as the first seal gas from the seal gas supply system 14 to the seal device 13B.
  • the seal device 13B seals the space between the inside of the compressor 42 and the atmosphere with the first seal gas.
  • the structure of the sealing device 13B is similar to that of the sealing device 13. More specifically, the compressor 42 of the present embodiment transfers the boil-off gas 11b with an impeller, like the return gas blower 24 does. Therefore, the structure of the sealing device 13B is similar to that of the sealing device 13. As shown in FIG. Therefore, for the sealing device 13B, the description of the sealing device 13 is referred to, and detailed description of the sealing device 13B is omitted.
  • the seal device 13B constitutes a boil-off gas transfer system 60B together with the hydrogen tank 11 and the compressor 42 (more specifically, the seal gas supply system 14).
  • the boil-off gas transfer system 60B by using hydrogen, which is the boil-off gas 11b, as the first seal gas of the seal device 13B, liquefaction of the first seal gas can be suppressed. As a result, it is possible to prevent the sealing device 13B from failing to function due to solidification of the first sealing gas.
  • the compressor 42 that sends the boil-off gas 11b to the boil-off gas storage tank 43 is provided with the seal device 13B. Therefore, it is possible to prevent the seal gas from solidifying and causing the compressor 42 to stop working. Thereby, the boil-off gas 11b can be continuously sent to the boil-off gas storage tank 43 .
  • the liquefied hydrogen cargo handling system 1B and the boil-off gas transfer system 60B have the same effects as the liquefied hydrogen cargo handling system 1 and the boil-off gas transfer system 60 of the first embodiment.
  • the boil-off gas transfer system 60C shown in FIG. 7 transfers the boil-off gas 11b from the tank 2 to the land facility 3.
  • the land facility 3 is a facility that uses the boil-off gas 11b as a fuel or raw material, and is a power plant, a factory, or the like.
  • the land facility 3 is a power plant that generates power using hydrogen. Note that the land facility 3 does not necessarily have to include the tank 2 as described above.
  • the boil-off gas transfer system 60C includes a hydrogen tank 11, a transfer facility 12C, a seal device 13C, a seal gas supply system 14, and a discharge facility 15.
  • the transfer equipment 12C transfers the boil-off gas 11b vaporized in the hydrogen tank 11. More specifically, transfer facility 12C is connected to hydrogen tank 11 and land facility 3 . In this embodiment, the transfer facility 12C is connected to the hydrogen tank 11 so as to be parallel to the seal gas supply system 14 . Further, the transfer facility 12C compresses the boil-off gas 11b vaporized in the hydrogen tank 11 and transfers it to the land facility 3. In this embodiment, the transfer facility 12C is a compressor. It should be noted that the transfer facility 12C is similar in structure to the compressor 42 and the return gas blower 24 . Therefore, the structure of the sealing device 13C is also similar to the structure of the sealing device 13C. Therefore, for the structures of the transfer equipment 12C and the sealing device 13C, refer to the description of the structures of the return gas blower 24 and the sealing device 13, and detailed description thereof will be omitted.
  • the transfer facility 12C is a compressor that compresses the boil-off gas 11b and transfers it to the land facility 3. Therefore, it is possible to prevent the seal gas from solidifying and jamming the transfer equipment 12C. Thereby, the boil-off gas 11b can be continuously sent to the land facility 3.
  • boil-off gas transfer system 60C has the same effects as the boil-off gas transfer system 60 of the first embodiment.
  • the liquefied hydrogen cargo handling systems 1, 1A, and 1B are facilities for loading and unloading liquefied hydrogen with a cargo handling vessel (not shown). It may be a facility for loading and unloading liquefied hydrogen between.
  • the tanks mounted on the cargo handling vessel are hydrogen tanks.
  • the liquefied hydrogen cargo handling systems 1, 1A, and 1B may perform cargo handling between land facilities and transport vehicles.
  • the object to be sealed by the sealing device 13 is the return gas blower 24;
  • the above-described structures are merely examples. However, other structures are also possible.
  • the sealing device 13 may have, for example, only the first sealing gas space 34 without the second sealing gas space 35, so that at least the first sealing gas seals between the cargo handling equipment 12 and the atmosphere. Anything that does.
  • the seal gas supply system 14 has the boil-off gas storage tank 43, but it does not necessarily have to have it.
  • part of the boil-off gas may be supplied to the seal device 13 as the first seal gas during cargo handling.
  • the boil-off gas stored in the boil-off gas storage tank 43 does not necessarily have to be supplied only to the sealing devices 13, 13B, and 13C, and even if it is supplied to the land facility 3 good.
  • the return gas blower 24 and the compressor 42 are given as an example of transfer equipment in the boil-off gas transfer systems 60, 60B, and 60C of the first to fourth embodiments, pumps may also be used.
  • the transfer equipment can transfer the boil-off gas 11b, and in particular, any device that can pressurize the boil-off gas 11b to be transferred.
  • the boil-off gas transfer system 60C of the fourth embodiment includes one transfer facility 12C, it may be provided with a plurality of transfer facilities 12C.
  • a sealing device 13C is provided in all of the plurality of transfer facilities 12C or in at least one or more of the transfer facilities 12C.
  • the compressor of the transfer facility 12C is not limited to a centrifugal compressor having an impeller, and may be another type of compressor such as a reciprocating compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

This liquid hydrogen loading/unloading system comprises: a hydrogen tank for storing liquid hydrogen; loading/unloading equipment with which the loading/unloading of liquid hydrogen to/from the hydrogen tank is carried out; a sealing device that is provided to the loading/unloading equipment and that, using a first sealing gas, creates a seal between the inside of the loading/unloading equipment and atmospheric air; and a sealing gas supply system that supplies, to the sealing device as the first sealing gas, a boil-off gas which was vaporized in the hydrogen tank.

Description

液化水素荷役システム、及びボイルオフガス移送システムLiquefied hydrogen cargo handling system and boil-off gas transfer system
 本開示は、液化水素の荷役を行う液化水素荷役システム、及びボイルオフガスを移送するボイルオフガス移送システムに関する。 The present disclosure relates to a liquefied hydrogen cargo handling system for cargo handling of liquefied hydrogen and a boil-off gas transfer system for transferring boil-off gas.
 液化ガスの荷役を行う荷役システムがあり、その一例として例えば特許文献1に記載される荷役システムが知られている。特許文献1の荷役システムは、例えばLNG受け入れ基地に備わっている。そして、荷役システムは、荷役設備を備えている。そして、荷役設備によって払出側タンク(例えばLNG船のタンク)から受入側タンク(例えば基地のタンク)にLNGが払出される。他方、払出される際に受入側タンクのボイルオフガスがリターンガスとして払出側タンクに戻される。これにより、払出側タンクが負圧となることが抑制されている。 There are cargo handling systems that handle cargo handling of liquefied gas, and for example, the cargo handling system described in Patent Document 1 is known. The cargo handling system of Patent Literature 1 is provided, for example, at an LNG receiving terminal. The cargo handling system includes cargo handling equipment. Then, LNG is discharged from a discharge side tank (for example, a tank of an LNG ship) to a receiving side tank (for example, a tank at a base) by cargo handling equipment. On the other hand, the boil-off gas in the receiving side tank is returned to the dispensing side tank as the return gas when it is dispensed. As a result, the discharge side tank is prevented from becoming negative pressure.
特開2011―99500号公報Japanese Unexamined Patent Application Publication No. 2011-99500
 特許文献1の荷役システムに備わる荷役設備には、様々な構成が備わっている。各構成には、部品の間からガスが漏れることを防ぐべくシール装置が設けられている。シール装置では、ガスケット等によるメカニカルシールと共にシールガスが利用されている。そして、シールガスとしては、窒素が用いられている。 The cargo handling equipment provided in the cargo handling system of Patent Document 1 has various configurations. Each arrangement is provided with a sealing device to prevent gas from escaping between the parts. Sealing devices use seal gas together with mechanical seals such as gaskets. Nitrogen is used as the seal gas.
 特許文献1の荷役システムで荷役される液化ガスは、LNGであるが、荷役される液化ガスとしてはLNGの他に水素がある。水素の液化温度は、窒素の固化温度より低温である。それ故、LNGと同じ荷役システムを用いて水素を荷役すると、シールガスである窒素が固化する。そうすると、シール装置が機能しなくなることが考えられる。なお、ボイルオフガスを移送する移送設備を備えるボイルオフガス移送システムにおいても同様に、移送設備のシール装置が機能しなくなることが考えられる。 The liquefied gas that is loaded and unloaded in the cargo handling system of Patent Document 1 is LNG, but the liquefied gas that is loaded and unloaded includes hydrogen in addition to LNG. The liquefaction temperature of hydrogen is lower than the solidification temperature of nitrogen. Therefore, when hydrogen is unloaded using the same cargo handling system as LNG, the nitrogen seal gas solidifies. Then, it is conceivable that the sealing device will not function. Similarly, in a boil-off gas transfer system including transfer equipment for transferring boil-off gas, it is conceivable that the sealing device of the transfer equipment will not function.
 そこで本開示の目的は、シールガスが固化してシール装置が機能しなくなることを抑制できる液化水素荷役システム、及びボイルオフガス移送システムを提供することを目的としている。 Therefore, an object of the present disclosure is to provide a liquefied hydrogen cargo handling system and a boil-off gas transfer system that can prevent the solidification of the seal gas and the failure of the seal device to function.
 本開示の液化水素荷役システムは、液化水素を貯留すると水素タンクと、前記水素タンクに対する液化水素の荷役を行う荷役設備と、前記荷役設備に設けられ、前記荷役設備内と大気との間を第1シールガスによって密封するシール装置と、前記水素タンクで気化したボイルオフガスを第1シールガスとして前記シール装置に供給するシールガス供給系統と、を備えているものである。 A liquefied hydrogen cargo handling system according to the present disclosure includes a hydrogen tank for storing liquefied hydrogen, cargo handling equipment for cargo handling of the liquefied hydrogen in the hydrogen tank, and a cargo handling equipment provided in the cargo handling equipment to provide a second line between the inside of the cargo handling equipment and the atmosphere. and a seal gas supply system for supplying boil-off gas vaporized in the hydrogen tank as a first seal gas to the seal device.
 本開示の液化水素荷役システムに従えば、ボイルオフガスである水素をシール装置のシールガスとして用いることによって、シールガスが液化することを抑制できる。これにより、シールガスが固化してシール装置が機能しなくなることを抑制できる。 According to the liquefied hydrogen cargo handling system of the present disclosure, the liquefaction of the seal gas can be suppressed by using the hydrogen, which is the boil-off gas, as the seal gas of the seal device. As a result, it is possible to prevent the sealing device from failing to function due to the solidification of the sealing gas.
 本開示のボイルオフガス移送システムは、液化水素を貯留すると水素タンクと、前記水素タンクで気化したボイルオフガスを移送する移送設備と、前記移送設備に設けられ、前記移送設備内と大気との間を第1シールガスによって密封するシール装置と、を備え、前記シール装置には、第1シールガスとしてボイルオフガスが供給されるものである。 The boil-off gas transfer system of the present disclosure includes a hydrogen tank when liquefied hydrogen is stored, a transfer facility for transferring the boil-off gas vaporized in the hydrogen tank, and a transfer facility provided in the transfer facility, between the transfer facility and the atmosphere. a sealing device for sealing with a first sealing gas, the sealing device being supplied with a boil-off gas as the first sealing gas.
 本開示のボイルオフガス移送システムに従えば、ボイルオフガスである水素をシール装置のシールガスとして用いることによって、シールガスが液化することを抑制できる。これにより、シールガスが固化してシール装置が機能しなくなることを抑制できる。 According to the boil-off gas transfer system of the present disclosure, the liquefaction of the seal gas can be suppressed by using hydrogen, which is the boil-off gas, as the seal gas of the seal device. As a result, it is possible to prevent the sealing device from failing to function due to the solidification of the sealing gas.
 本開示によれば、シールガスが固化してシール装置が機能しなくなることを抑制できる。 According to the present disclosure, it is possible to prevent the seal gas from solidifying and the sealing device from failing to function.
 本開示の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present disclosure will be made clear from the following detailed description of preferred embodiments with reference to the accompanying drawings.
本開示の第1実施形態に係る液化水素荷役システムを示す構成図である。1 is a configuration diagram showing a liquefied hydrogen cargo handling system according to a first embodiment of the present disclosure; FIG. 図1の液化水素荷役システムのシール装置を示す断面図である。FIG. 2 is a cross-sectional view showing a seal device of the liquefied hydrogen cargo handling system of FIG. 1; 図1の液化水素荷役システムにおける荷役期間外のボイルオフガスの流れを示す構成図である。FIG. 2 is a configuration diagram showing the flow of boil-off gas outside the cargo handling period in the liquefied hydrogen cargo handling system of FIG. 1; 図1の液化水素荷役システムにおける荷役期間のボイルオフガスの流れを示す構成図である。FIG. 2 is a configuration diagram showing the flow of boil-off gas during a cargo handling period in the liquefied hydrogen cargo handling system of FIG. 1; 本開示の第2実施形態に係る液化水素荷役システムを示す構成図である。Fig. 2 is a configuration diagram showing a liquefied hydrogen cargo handling system according to a second embodiment of the present disclosure; 本開示の第3実施形態に係る液化水素荷役システムを示す構成図である。FIG. 11 is a configuration diagram showing a liquefied hydrogen cargo handling system according to a third embodiment of the present disclosure; 本開示の第4実施形態に係るボイルオフガス移送システムを示す構成図である。FIG. 11 is a configuration diagram showing a boil-off gas transfer system according to a fourth embodiment of the present disclosure;
 以下、本開示に係る第1乃至第3実施形態の液化水素荷役システム1,1A,1B、及び第4実施形態のボイルオフガス移送システム1Cについて前述する図面を参照しながら説明する。なお、以下の説明で用いる方向の概念は、説明する上で便宜上使用するものであって、開示の構成の向き等をその方向に限定するものではない。また、以下に説明する液化水素荷役システム1,1A,1B及びボイルオフガス移送システム1Cは、本開示の一実施形態に過ぎない。従って、本開示は実施形態に限定されず、開示の趣旨を逸脱しない範囲で追加、削除、変更が可能である。 Hereinafter, the liquefied hydrogen cargo handling systems 1, 1A, and 1B of the first to third embodiments and the boil-off gas transfer system 1C of the fourth embodiment according to the present disclosure will be described with reference to the aforementioned drawings. It should be noted that the concept of direction used in the following description is used for convenience of explanation, and does not limit the direction of the disclosed configuration. Also, the liquefied hydrogen cargo handling systems 1, 1A, 1B and the boil-off gas transfer system 1C described below are merely embodiments of the present disclosure. Therefore, the present disclosure is not limited to the embodiments, and additions, deletions, and modifications can be made without departing from the gist of the disclosure.
 [第1実施形態]
 <液化水素荷役システム>
 図1に示す液化水素荷役システム1は、船舶又は陸上設備に備わるタンク2との間で液化水素を荷役する。本実施形態において、液化水素荷役システム1は、港湾等の陸上に設けられている。また、タンク2は、船舶(例えば、タンカー)に備わり且つ液化水素を貯留することができる。そして、液化水素荷役システム1は、船舶のタンク2との間で荷役する。但し、液化水素荷役システム1は、必ずしも陸上に設けられている必要はない。例えば、液化水素荷役システム1は、船舶に設けられてもよい。液化水素荷役システム1についてより詳細に説明すると、液化水素荷役システム1は、水素タンク11と、荷役設備12と、シール装置13と、シールガス供給系統14と、排出設備15と、を備えている。
[First embodiment]
<Liquefied hydrogen cargo handling system>
A liquefied hydrogen loading/unloading system 1 shown in FIG. 1 loads/unloads liquefied hydrogen to/from a tank 2 provided on a ship or land facility. In this embodiment, the liquefied hydrogen cargo handling system 1 is provided on land such as a port. Also, the tank 2 is provided on a vessel (eg, tanker) and can store liquefied hydrogen. The liquefied hydrogen cargo handling system 1 performs cargo handling with the tank 2 of the ship. However, the liquefied hydrogen cargo handling system 1 does not necessarily have to be provided on land. For example, the liquefied hydrogen cargo handling system 1 may be provided on a ship. The liquefied hydrogen cargo handling system 1 will be described in more detail. The liquefied hydrogen cargo handling system 1 includes a hydrogen tank 11, cargo handling equipment 12, a seal device 13, a seal gas supply system 14, and a discharge equipment 15. .
 <水素タンク>
 水素タンク11は、液化水素を貯留することができる。水素タンク11は、真空断熱構造等の断熱構造を有している。そして、水素タンク11は、その中に貯留される液化水素の温度を液化水素11aの沸点未満に保持している。また、水素タンク11では、液化水素の一部が気化している。そして、水素タンク11において、液化水素を除いた部分がボイルオフガス11bによって満たされている。なお、タンク2もまた、水素タンク11と同様に構成されている。
<Hydrogen tank>
The hydrogen tank 11 can store liquefied hydrogen. The hydrogen tank 11 has a heat insulating structure such as a vacuum heat insulating structure. The hydrogen tank 11 keeps the temperature of the liquefied hydrogen stored therein below the boiling point of the liquefied hydrogen 11a. Also, in the hydrogen tank 11, part of the liquefied hydrogen is vaporized. A portion of the hydrogen tank 11 other than the liquefied hydrogen is filled with the boil-off gas 11b. The tank 2 is also constructed in the same manner as the hydrogen tank 11 .
 <荷役設備>
 荷役設備12は、水素タンク11とタンク2との間で液化水素を荷役する。即ち、水素タンク11に貯留される液化水素がタンク2に輸送され、又はタンク2に貯留される液化水素が水素タンク11に輸送される。より詳細に説明すると、荷役設備12は、液化水素用配管21と、リターンガス用配管22と、液圧ポンプ23と、リターンガスブロワ24とを有している。
<Cargo handling equipment>
The cargo handling facility 12 loads and unloads liquefied hydrogen between the hydrogen tank 11 and the tank 2 . That is, the liquefied hydrogen stored in the hydrogen tank 11 is transported to the tank 2 , or the liquefied hydrogen stored in the tank 2 is transported to the hydrogen tank 11 . More specifically, the cargo handling equipment 12 has a liquefied hydrogen pipe 21 , a return gas pipe 22 , a hydraulic pump 23 and a return gas blower 24 .
 液化水素用配管21は、水素タンク11とタンク2とを繋ぐ配管である。より詳細に説明すると、液化水素用配管21は、水素タンク11に繋がっている。また、液化水素用配管21は、図示しないジョイントを介してタンク2に接続することができる。そして、液化水素用配管21は、タンク2に接続されている状態において、水素タンク11からタンク2又はその逆方向に液化水素を流すことができる。 The liquefied hydrogen pipe 21 is a pipe that connects the hydrogen tank 11 and the tank 2 . More specifically, the liquefied hydrogen pipe 21 is connected to the hydrogen tank 11 . Also, the liquefied hydrogen pipe 21 can be connected to the tank 2 via a joint (not shown). The liquefied hydrogen pipe 21 can flow liquefied hydrogen from the hydrogen tank 11 to the tank 2 or vice versa while being connected to the tank 2 .
 リターンガス用配管22は、水素タンク11とタンク2とを繋ぐ配管である。より詳細に説明すると、リターンガス用配管22は、例えば水素タンク11に繋がっている。リターンガス用配管22は、液化水素用配管21と同様に図示しないジョイントを介してタンク2に接続することができる。また、リターンガス用配管22は、水素タンク11からタンク2又はその逆方向にボイルオフガス(リターンガス)を流すことができる。 The return gas pipe 22 is a pipe that connects the hydrogen tank 11 and the tank 2 . More specifically, the return gas pipe 22 is connected to the hydrogen tank 11, for example. The return gas pipe 22 can be connected to the tank 2 via a joint (not shown) like the liquefied hydrogen pipe 21 . Further, the return gas pipe 22 can flow boil-off gas (return gas) from the hydrogen tank 11 to the tank 2 or vice versa.
 液圧ポンプ23は、液化水素用配管21に介在している。そして、液圧ポンプ23は、払出側タンク(本実施形態においてタンク2)から受入側タンク(本実施形態において水素タンク11)に液化水素を送ることができる。これにより、水素タンク11とタンク2との間で液化水素を荷役することができる。なお、払出側タンクが水素タンク11の場合、液圧ポンプ23は、前述する方向と逆方向に液化水素を送る。また、液圧ポンプ23は、必ずしも荷役設備12に備わっている必要はなく、荷役船に設けられていてもよい。また、液圧ポンプ23は、タンク2又は水素タンク11の内部に設けられてもよい。 The liquid pressure pump 23 is interposed in the liquefied hydrogen pipe 21 . The hydraulic pump 23 can send liquefied hydrogen from the dispensing side tank (tank 2 in this embodiment) to the receiving side tank (hydrogen tank 11 in this embodiment). Thereby, liquefied hydrogen can be loaded and unloaded between the hydrogen tank 11 and the tank 2 . When the dispensing side tank is the hydrogen tank 11, the hydraulic pump 23 sends liquefied hydrogen in the direction opposite to the above-described direction. Moreover, the hydraulic pump 23 does not necessarily have to be provided in the cargo handling equipment 12, and may be provided in the cargo handling ship. Also, the hydraulic pump 23 may be provided inside the tank 2 or the hydrogen tank 11 .
 リターンガスブロワ24は、リターンガス用配管22に介在している。そして、リターンガスブロワ24は、受入側タンク(本実施形態において水素タンク11)から払出側タンク(本実施形態においてタンク2)リターンガスを送ることができる。なお、払出側タンクが水素タンク11の場合、リターンガスブロワ24は、前述する方向と逆方向にリターンガスを送る。リターンガスブロワ24についてより詳細に説明すると、リターンガスブロワ24は、例えばコンプレッサである。即ち、リターンガスブロワ24は、リターンガスを圧縮して送る。更に詳細に説明すると、リターンガスブロワ24は、図2に示すようにケーシング31、インペラ32とを有している。 The return gas blower 24 is interposed in the return gas pipe 22 . Then, the return gas blower 24 can send return gas from the receiving side tank (hydrogen tank 11 in this embodiment) to the payout side tank (tank 2 in this embodiment). When the dispensing side tank is the hydrogen tank 11, the return gas blower 24 sends the return gas in the direction opposite to the direction described above. Return gas blower 24 will be described in more detail. Return gas blower 24 is, for example, a compressor. That is, the return gas blower 24 compresses and sends the return gas. More specifically, the return gas blower 24 has a casing 31 and an impeller 32 as shown in FIG.
 ケーシング31は、リターンガス用配管22に介在している。より詳細に説明すると、ケーシング31は、流路31a及び軸部挿通孔部31bが形成されている。流路31aは、リターンガス用配管22に介在している。即ち、流路31aでは、一方側及び他方側の各々がリターンガス用配管22を介して水素タンク11及びタンク2に接続されている。軸部挿通孔部31bは、ケーシング31に形成される孔である。そして、軸部挿通孔部31bは、その一方側が流路31aに開口し、且つ他方側が大気側に開口している。 The casing 31 is interposed in the return gas pipe 22 . More specifically, the casing 31 is formed with a flow path 31a and a shaft insertion hole 31b. The flow path 31 a is interposed in the return gas pipe 22 . That is, one side and the other side of the flow path 31a are connected to the hydrogen tank 11 and the tank 2 via the return gas pipe 22, respectively. The shaft insertion hole portion 31 b is a hole formed in the casing 31 . One side of the shaft insertion hole 31b opens to the flow path 31a, and the other side opens to the atmosphere.
 インペラ32は、軸部32aとインペラ部32bとを有している。軸部32aは、ケーシング31の軸部挿通孔部31bに挿通され且つそこで回動可能に支持されている。また、軸部32aの軸方向一端部には、ケーシング31外に設けられている図示しないエンジン又は電動機等の原動機が接続されている。また、軸部32aの軸線方向他端部には、インペラ部32bが設けられている。インペラ部32bは、流路31aに配置されている。インペラ部32bは、原動機によって軸部32aが回転させられると、流路31aのリターンガスを圧縮する。そして、インペラ部32bは、軸部32aの回転方向に応じてリターンガスを水素タンク11及びタンク2の何れかに送る。 The impeller 32 has a shaft portion 32a and an impeller portion 32b. The shaft portion 32a is inserted through the shaft portion insertion hole portion 31b of the casing 31 and is rotatably supported there. One axial end of the shaft portion 32a is connected to a prime mover such as an engine or an electric motor (not shown) provided outside the casing 31. As shown in FIG. An impeller portion 32b is provided at the other axial end portion of the shaft portion 32a. The impeller portion 32b is arranged in the flow path 31a. The impeller portion 32b compresses the return gas in the flow path 31a when the shaft portion 32a is rotated by the prime mover. The impeller portion 32b sends the return gas to either the hydrogen tank 11 or the tank 2 according to the rotation direction of the shaft portion 32a.
 このように構成されている荷役設備12は、液化水素を水素タンク11とタンク2との間で荷役する荷役期間において以下のように動作する。即ち、荷役設備12では、液化水素を荷役する際、液化水素を輸送する輸送方向に応じて液圧ポンプ23が作動する。ここで、輸送方向とは、払出側タンクから受入側タンクに向かう方向である。例えば、払出側タンクがタンク2の場合、受入側タンクは水素タンク11である。また、払出側タンクが水素タンク11の場合、受入側タンクはタンク2である。そして液圧ポンプ23を作動させることによって、払出側のタンクから受入側のタンクに液化水素が輸送される。また、荷役設備12は、液化水素を輸送する際、液圧ポンプ23と共に輸送方向に応じてリターンガスブロワ24を作動させる。即ち、リターンガスブロワ24は、輸送方向と逆の方向にリターンガスを送る。これにより、払出側タンク内において過度な圧力低下が生じることが抑制され、且つ受入側タンク内において過度な圧力上昇が生じることが抑制されている。 The cargo handling facility 12 configured in this manner operates as follows during the cargo handling period in which liquefied hydrogen is handled between the hydrogen tank 11 and the tank 2. That is, in the cargo handling equipment 12, when the liquefied hydrogen is loaded and unloaded, the hydraulic pressure pump 23 operates according to the transportation direction of the liquefied hydrogen. Here, the transportation direction is the direction from the dispensing side tank to the receiving side tank. For example, when the dispensing side tank is the tank 2, the receiving side tank is the hydrogen tank 11. Further, when the dispensing side tank is the hydrogen tank 11, the receiving side tank is the tank 2. By operating the hydraulic pump 23, the liquefied hydrogen is transported from the delivery side tank to the receiving side tank. In addition, when transporting liquefied hydrogen, the cargo handling equipment 12 operates the return gas blower 24 together with the hydraulic pump 23 according to the transportation direction. That is, the return gas blower 24 sends return gas in the direction opposite to the transportation direction. As a result, an excessive pressure drop in the dispensing side tank is suppressed, and an excessive pressure rise in the receiving side tank is suppressed.
 <シール装置>
 シール装置13は、荷役設備12に設けられている。そして、シール装置13は、荷役設備12内と大気との間をシールガスによって密封する。より詳細に説明すると、シール装置13は、極低温の水素が流れる荷役設備12内と大気との間をシールガスによって密封する。本発明において、「密封」とは、荷役設備12内を流れる気体、即ちボイルオフガスが大気に放出されないことである。また、本発明において、「極低温」とは、窒素が固化する温度以下である。本実施形態において、シール装置13は、荷役設備12のリターンガスブロワ24に設けられている。そして、シール装置13は、リターンガスブロワ24内と大気との間をシールガスによって密封する。なお、リターンガスブロワ24は、シール装置13が設けられる対象の一例であって、荷役設備12において配管やその他の機器に設けられてもよい。シール装置13は、互いに相対移動する2つの部材の間を密封する場合に特に好適である。但し、シール装置13は、互いに相対移動しない2つの部材の間を密封する場合に用いられてもよい。また、シール装置13は、水素タンク11と、移送設備の一例であるリターンガスブロワ24と共にボイルオフガス移送システム60を構成している。なお、本実施形態において、ボイルオフガス移送システム60は、後述するシールガス供給系統14も備えている。シール装置13についてより詳細に説明すると、シール装置13は、3つのシール部材13a~13cと、第1シールガス空間34と、第2シールガス空間35とを有している。
<Seal device>
The sealing device 13 is provided in the cargo handling equipment 12 . The seal device 13 seals the space between the cargo handling facility 12 and the atmosphere with a seal gas. More specifically, the seal device 13 seals the space between the interior of the cargo handling facility 12 through which cryogenic hydrogen flows and the atmosphere with a seal gas. In the present invention, "sealing" means that the gas flowing inside the cargo handling equipment 12, that is, the boil-off gas is not released to the atmosphere. Further, in the present invention, the term "extremely low temperature" means a temperature below the temperature at which nitrogen solidifies. In this embodiment, the sealing device 13 is provided in the return gas blower 24 of the cargo handling equipment 12 . The seal device 13 seals the space between the inside of the return gas blower 24 and the atmosphere with a seal gas. Note that the return gas blower 24 is an example of a target on which the sealing device 13 is provided, and may be provided in piping or other equipment in the cargo handling facility 12 . The sealing device 13 is particularly suitable for sealing between two members that move relative to each other. However, the sealing device 13 may be used to seal between two members that do not move relative to each other. In addition, the sealing device 13 constitutes a boil-off gas transfer system 60 together with the hydrogen tank 11 and the return gas blower 24, which is an example of transfer equipment. In this embodiment, the boil-off gas transfer system 60 also includes a seal gas supply system 14, which will be described later. Describing the sealing device 13 in more detail, the sealing device 13 has three sealing members 13 a - 13 c , a first sealing gas space 34 and a second sealing gas space 35 .
 3つのシール部材13a~13cは、リターンガスブロワ24においてケーシング31と軸部32aとの間に設けられている。更に詳細に説明すると、シール部材13a~13cは、円環状に形成されている。なお、各シール部材13a~13cは、1つ又は複数のシールによって構成されている。そして、リターンガスブロワ24内から順に第1シール部材13a、第2シール部材13b、及び第3シール部材13cが互いに間隔をあけて軸部32aに外装されている。そして、シール部材13a~13cは、ケーシング31の軸部挿通孔部31bと軸部32aとの間に介在し、軸部挿通孔部31bと軸部32aとの間を密封する。 The three sealing members 13a to 13c are provided between the casing 31 and the shaft portion 32a in the return gas blower 24. More specifically, the sealing members 13a-13c are formed in an annular shape. Each seal member 13a to 13c is composed of one or more seals. A first sealing member 13a, a second sealing member 13b, and a third sealing member 13c are mounted on the shaft portion 32a in order from the inside of the return gas blower 24 with a space therebetween. The sealing members 13a to 13c are interposed between the shaft insertion hole 31b and the shaft 32a of the casing 31 to seal the space between the shaft insertion hole 31b and the shaft 32a.
 第1シールガス空間34及び第2シールガス空間35は、リターンガスブロワ24内と大気側との間に配置されている。第1シールガス空間34には、第1シールガスであるボイルオフガスが供給されている。第2シールガス空間35は、第1シールガス空間34より大気側に設けられている。また、第2シールガス空間35には、窒素供給装置16から窒素ガスである第2シールガスが供給されている。そして、シール装置13は、2つのシールガス空間34,35に夫々供給される第1シールガス及び第2シールガスによってリターンガスブロワ24内と大気との間を密封する。なお、第2シールガスは、窒素ガスに限定されずアルゴンガス等の他のガスであってもよい。 The first sealing gas space 34 and the second sealing gas space 35 are arranged between the inside of the return gas blower 24 and the atmosphere side. The boil-off gas, which is the first seal gas, is supplied to the first seal gas space 34 . The second seal gas space 35 is provided closer to the atmosphere than the first seal gas space 34 is. A second seal gas, which is nitrogen gas, is supplied from the nitrogen supply device 16 to the second seal gas space 35 . The seal device 13 seals the space between the inside of the return gas blower 24 and the atmosphere with the first and second seal gases supplied to the two seal gas spaces 34 and 35, respectively. The second seal gas is not limited to nitrogen gas, and may be other gas such as argon gas.
 より詳細に説明すると、第1シールガス空間34及び第2シールガス空間35は、ケーシング31の軸部挿通孔部31bに形成されている。そして、第1シールガス空間34は、第1シール部材13aと第2シール部材13bとの間に形成され、第2シールガス空間35は、第2シール部材13bと第3シール部材13cとの間に形成されている。更に詳細に説明すると、第1シールガス空間34及び第2シールガス空間35は、軸部挿通孔部31bにおいて周方向全周にわたって形成され且つ径方向外方に凹んでいる。即ち、第1シールガス空間34及び第2シールガス空間35は、軸部32aを周方向全周にわたって囲むように円環状に形成されている。 More specifically, the first seal gas space 34 and the second seal gas space 35 are formed in the shaft insertion hole 31b of the casing 31. A first seal gas space 34 is formed between the first seal member 13a and the second seal member 13b, and a second seal gas space 35 is formed between the second seal member 13b and the third seal member 13c. is formed in More specifically, the first seal gas space 34 and the second seal gas space 35 are formed along the entire circumference of the shaft insertion hole 31b and are recessed radially outward. That is, the first sealing gas space 34 and the second sealing gas space 35 are formed in an annular shape so as to surround the shaft portion 32a over the entire circumferential direction.
 このように構成されているシール装置13では、シール部材13a~13cによってリターンガスブロワ24内のリターンガスが大気に放出されることを抑制する。更に、シール装置13は、第1シールガス空間34によってシール部材13aを介して僅かに漏れ出るリターンガスを捕捉する。これにより、シール装置13は、リターンガスが大気に漏れ出ることを抑制している。更に、第2シールガス空間35によって第1シールガス空間34から第2シール部材13bを介して漏れ出る第1シールガスが捕捉される。これにより、シール装置13は、第1シールガスが漏れ出ることを抑制している。このようにして、シール装置13では、第1シールガス及び第2シールガスによって、リターンガスブロワ24内と大気との間が密封されている。 In the sealing device 13 configured in this way, the sealing members 13a to 13c suppress the release of the return gas in the return gas blower 24 to the atmosphere. In addition, the sealing device 13 captures by means of the first sealing gas space 34 the return gas that slightly escapes through the sealing member 13a. As a result, the seal device 13 prevents the return gas from leaking into the atmosphere. In addition, the second seal gas space 35 captures the first seal gas leaking from the first seal gas space 34 through the second seal member 13b. Thereby, the sealing device 13 suppresses the leakage of the first sealing gas. Thus, in the sealing device 13, the first sealing gas and the second sealing gas seal the space between the inside of the return gas blower 24 and the atmosphere.
 <シールガス供給系統>
 シールガス供給系統14は、水素タンク11で気化したボイルオフガスを第1シールガスとしてシール装置13に供給する。より詳細に説明すると、シールガス供給系統14は、ボイルオフガス回収ライン41と、圧縮機42と、ボイルオフガス用貯留槽43と、供給ライン44とを有している。ボイルオフガス回収ライン41は、水素タンク11に接続されている。そして、ボイルオフガス回収ライン41には、水素タンク11のボイルオフガスが導かれる。本実施形態において、ボイルオフガス回収ライン41は、リターンガス用配管22に分岐するように繋がっている。
<Seal gas supply system>
The seal gas supply system 14 supplies the boil-off gas vaporized in the hydrogen tank 11 to the seal device 13 as the first seal gas. More specifically, the seal gas supply system 14 has a boil-off gas recovery line 41 , a compressor 42 , a boil-off gas storage tank 43 , and a supply line 44 . A boil-off gas recovery line 41 is connected to the hydrogen tank 11 . The boil-off gas of the hydrogen tank 11 is introduced to the boil-off gas recovery line 41 . In this embodiment, the boil-off gas recovery line 41 is connected to the return gas pipe 22 so as to branch.
 圧縮機42は、ボイルオフガス回収ライン41に介在している。圧縮機42は、ボイルオフガス回収ライン41に導かれるボイルオフガスを吸引して圧縮する。そして、圧縮機42は、ボイルオフガス回収ライン41の下流側へと送る。 The compressor 42 is interposed in the boil-off gas recovery line 41. The compressor 42 sucks and compresses the boil-off gas guided to the boil-off gas recovery line 41 . Then, the compressor 42 sends it to the downstream side of the boil-off gas recovery line 41 .
 ボイルオフガス用貯留槽43は、圧縮機42によって移送されるボイルオフガスを貯留する。より詳細に説明すると、ボイルオフガス用貯留槽43は、ボイルオフガス回収ライン41に接続されている。ボイルオフガス用貯留槽43には、圧縮機42で圧縮されたボイルオフガス(即ち、圧縮ガス)がボイルオフガス回収ライン41を介して送られる。そして、ボイルオフガス用貯留槽43は、送られた圧縮ガスをその中に貯留する。また、ボイルオフガス用貯留槽43は、圧縮ガスを常温にて保持している。 The boil-off gas storage tank 43 stores the boil-off gas transferred by the compressor 42 . More specifically, the boil-off gas storage tank 43 is connected to the boil-off gas recovery line 41 . The boil-off gas (that is, compressed gas) compressed by the compressor 42 is sent to the boil-off gas storage tank 43 via the boil-off gas recovery line 41 . Then, the boil-off gas storage tank 43 stores therein the sent compressed gas. Further, the boil-off gas storage tank 43 holds the compressed gas at room temperature.
 供給ライン44は、ボイルオフガス用貯留槽43に接続されている。また、供給ライン44は、シール装置13に接続されている。即ち、ボイルオフガス用貯留槽43は、供給ライン44を介してシール装置13に接続されている。より詳細に説明すると、供給ライン44は、シール装置13における第1シールガス空間34に接続されている。 The supply line 44 is connected to the boil-off gas storage tank 43 . Also, the supply line 44 is connected to the sealing device 13 . That is, the boil-off gas storage tank 43 is connected to the sealing device 13 via the supply line 44 . More specifically, the supply line 44 is connected to the first sealing gas space 34 in the sealing device 13 .
 このように構成されているシールガス供給系統14では、水素タンク11のボイルオフガスがボイルオフガス用貯留槽43に貯留される。より詳細に説明すると、シールガス供給系統14では、荷役設備12で荷役作業が行われていない荷役期間外において水素タンク11のボイルオフガスがボイルオフガス用貯留槽43に貯留される。即ち、シールガス供給系統14では、荷役期間外において圧縮機42が駆動する。これにより、水素タンク11のボイルオフガスがボイルオフガス回収ライン41を介して圧縮機42に吸引される。更に、圧縮機42によってボイルオフガスが圧縮されてボイルオフガス用貯留槽43に送られる。これにより、ボイルオフガス用貯留槽43に圧縮ガスが貯留される。 In the seal gas supply system 14 configured in this manner, the boil-off gas of the hydrogen tank 11 is stored in the boil-off gas storage tank 43 . More specifically, in the seal gas supply system 14 , the boil-off gas of the hydrogen tank 11 is stored in the boil-off gas storage tank 43 outside the cargo handling period when the cargo handling equipment 12 is not performing cargo handling work. That is, in the seal gas supply system 14, the compressor 42 is driven outside the cargo handling period. Thereby, the boil-off gas in the hydrogen tank 11 is sucked into the compressor 42 via the boil-off gas recovery line 41 . Further, the boil-off gas is compressed by the compressor 42 and sent to the boil-off gas storage tank 43 . As a result, the compressed gas is stored in the boil-off gas storage tank 43 .
 他方、シールガス供給系統14では、荷役期間において、ボイルオフガス用貯留槽43に貯留されたボイルオフガスが第1シールガスとしてシール装置13に送られる。より詳細に説明すると、シールガス供給系統14では、シール装置13の第1シールガス空間34にボイルオフガス用貯留槽43から第1シールガスが供給される。また、第2シールガス空間35には、窒素供給装置16から第2シールガスが供給されている。即ち、シール装置13に第1シールガス及び第2シールガスが供給される。これにより、シール装置13は、リターンガスブロワ24内と大気との間を密封する。 On the other hand, in the seal gas supply system 14, the boil-off gas stored in the boil-off gas storage tank 43 is sent to the seal device 13 as the first seal gas during the cargo handling period. More specifically, in the seal gas supply system 14 , the first seal gas is supplied from the boil-off gas storage tank 43 to the first seal gas space 34 of the seal device 13 . A second seal gas is supplied from the nitrogen supply device 16 to the second seal gas space 35 . That is, the sealing device 13 is supplied with the first sealing gas and the second sealing gas. Thereby, the sealing device 13 seals between the inside of the return gas blower 24 and the atmosphere.
 <排出設備>
 排出設備15は、第1シールガス空間34に供給される第1シールガスを排出する。より詳細に説明すると、排出設備15は、第1シールガス空間34及び大気に繋がっている。そして、排出設備15は、第1シールガス空間34に供給される第1シールガスを大気に排出する。また、排出設備15は、第1シールガス空間34に加えて第2シールガス空間35に接続されている。排出設備15は、第2シールガス空間35もまた大気に排出する。より詳細に説明すると、排出設備15は、第1シールガス及び第2シールガスを含む混合ガスを大気に排出する。
<Emission equipment>
The exhaust facility 15 exhausts the first seal gas supplied to the first seal gas space 34 . More specifically, exhaust facility 15 communicates with first seal gas space 34 and the atmosphere. The discharge facility 15 then discharges the first seal gas supplied to the first seal gas space 34 to the atmosphere. The exhaust facility 15 is also connected to a second seal gas space 35 in addition to the first seal gas space 34 . The exhaust facility 15 also vents the second seal gas space 35 to the atmosphere. More specifically, the discharge facility 15 discharges a mixed gas containing the first seal gas and the second seal gas to the atmosphere.
 本実施形態において、排出設備15は、ベントライン51及びバルブ52を有している。また、ベントライン51は、第1シールガス空間34及び第2シールガス空間35に接続され、且つ大気に繋がっている。更に、ベントライン51には、バルブ52が設けられている。そして、排出設備15は、リターンガスブロワ24が駆動している間、バルブ52を開く。これにより、各シールガス空間34,35に夫々供給される2つのシールガスを含む混合ガスがベントライン51を介して大気へと放出される。 In this embodiment, the discharge equipment 15 has a vent line 51 and a valve 52 . Also, the vent line 51 is connected to the first seal gas space 34 and the second seal gas space 35 and to the atmosphere. Furthermore, the vent line 51 is provided with a valve 52 . Then, the discharge facility 15 opens the valve 52 while the return gas blower 24 is being driven. As a result, the mixed gas containing the two seal gases supplied to the respective seal gas spaces 34 and 35 is discharged to the atmosphere through the vent line 51 .
 <液化水素荷役システムの作用効果>
 液化水素荷役システム1では、荷役期間外において圧縮機42が作動する。そうすると、図3の太線で示すように水素タンク11内で気化するボイルオフガスがボイルオフガス回収ライン41を介して圧縮機42によって吸引されて圧縮される。そして、ボイルオフガスは、圧縮ガスとしてボイルオフガス用貯留槽43に送られる。これにより、圧縮ガスがボイルオフガス用貯留槽43に貯留される。
<Effects of liquefied hydrogen cargo handling system>
In the liquefied hydrogen cargo handling system 1, the compressor 42 operates outside the cargo handling period. Then, the boil-off gas vaporized in the hydrogen tank 11 is sucked and compressed by the compressor 42 via the boil-off gas recovery line 41, as indicated by the thick line in FIG. The boil-off gas is then sent to the boil-off gas storage tank 43 as a compressed gas. As a result, the compressed gas is stored in the boil-off gas storage tank 43 .
 また、液化水素荷役システム1は、荷役期間において以下のように動作する。即ち、液化水素荷役システム1では、荷役設備12にタンク2が接続されることによって液化水素の荷役が開始される。以下では、図4の太線で示すように払出側タンクがタンク2であり、受入側タンクが水素タンク11である場合を例に挙げて説明する。即ち、液化水素荷役システム1では、荷役期間において液圧ポンプ23が作動する。そうすると、タンク2から水素タンク11に液化水素が輸送される。他方、液化水素荷役システム1では、荷役期間においてリターンガスブロワ24も作動する。リターンガスブロワ24は、水素タンク11のボイルオフガスをリターンガスとしてタンク2に送る。なお、払出側タンクが水素タンク11であり、受入側タンクがタンク2である場合、液化水素及びリターンガスの各々が前述する方向と逆方向に送られる。 In addition, the liquefied hydrogen cargo handling system 1 operates as follows during the cargo handling period. That is, in the liquefied hydrogen cargo handling system 1 , cargo handling of liquefied hydrogen is started by connecting the tank 2 to the cargo handling equipment 12 . In the following, as shown by the thick line in FIG. 4, the case where the dispensing side tank is the tank 2 and the receiving side tank is the hydrogen tank 11 will be described as an example. That is, in the liquefied hydrogen cargo handling system 1, the hydraulic pump 23 operates during the cargo handling period. Then, liquefied hydrogen is transported from the tank 2 to the hydrogen tank 11 . On the other hand, in the liquefied hydrogen cargo handling system 1, the return gas blower 24 also operates during the cargo handling period. The return gas blower 24 sends the boil-off gas of the hydrogen tank 11 to the tank 2 as return gas. When the delivery side tank is the hydrogen tank 11 and the receiving side tank is the tank 2, each of the liquefied hydrogen and the return gas is sent in the direction opposite to the direction described above.
 また、液化水素荷役システム1では、リターンガスブロワ24が作動する間、ボイルオフガス用貯留槽43に貯留されている圧縮ガスがシールガスとしてシールガス供給系統14からシール装置13に供給されている(図4の二点太線参照)。より詳細に説明すると、リターンガスブロワ24が作動する間、排出設備15においてバルブ52が開けられる。そうすると、ボイルオフガス用貯留槽43の圧縮ガスがシールガスとしてシールガス供給系統14の供給ライン44に供給される。そして、シールガスは、供給ライン44を介してシール装置13の第1シールガス空間34に流れる。第1シールガス空間34では、シール部材13aを介して僅かに漏れ出るリターンガスが第1シールガスによって捕捉される。これにより、リターンガスがそのままの状態で大気に漏れ出ることを抑制できる。また、第2シールガス空間35には、図示しない供給装置から窒素ガスである第2シールガスが供給される。第2シールガス空間35では、第1シールガス空間34から第2シール部材13bを介して漏れ出る第1シールガスが捕捉される。これにより、第1シールガスがそのままの状態で大気に漏れ出ることを抑制できる。このようにして、シール装置13は、第1シールガス及び第2シールガスによって、リターンガスブロワ24内と大気との間を密封している。 In addition, in the liquefied hydrogen cargo handling system 1, while the return gas blower 24 is operating, the compressed gas stored in the boil-off gas storage tank 43 is supplied as seal gas from the seal gas supply system 14 to the seal device 13 ( See the two-dot bold line in Fig. 4). More specifically, valve 52 is opened in exhaust facility 15 while return gas blower 24 is operating. Then, the compressed gas in the boil-off gas storage tank 43 is supplied to the supply line 44 of the seal gas supply system 14 as the seal gas. The seal gas then flows to the first seal gas space 34 of the seal device 13 via the supply line 44 . In the first seal gas space 34, the first seal gas captures the return gas that slightly leaks through the seal member 13a. As a result, it is possible to prevent the return gas from leaking into the atmosphere as it is. The second seal gas space 35 is supplied with a second seal gas, which is nitrogen gas, from a supply device (not shown). In the second sealing gas space 35, the first sealing gas leaking from the first sealing gas space 34 through the second sealing member 13b is captured. As a result, it is possible to prevent the first seal gas from leaking into the atmosphere as it is. In this manner, the sealing device 13 seals between the inside of the return gas blower 24 and the atmosphere with the first sealing gas and the second sealing gas.
 また、第1シールガス空間34の第1シールガスは、ベントライン51を介して大気に排出される。これにより、第1シールガス空間34に第1シールガスが常時供給させることができるので、第1シールガスの温度が低下することを抑制できる。また、第2シールガスは、第1シールガスと共にベントライン51を介して大気に排出される。これにより、第2シールガス空間35に第2シールガスを常時供給して排出することができるので、第2シールガスの温度が低下することを抑制できる。即ち、第2シールガスである窒素の固化が更に抑制される。 Also, the first seal gas in the first seal gas space 34 is discharged to the atmosphere through the vent line 51 . As a result, since the first seal gas can be constantly supplied to the first seal gas space 34, it is possible to suppress a decrease in the temperature of the first seal gas. Also, the second seal gas is discharged to the atmosphere through the vent line 51 together with the first seal gas. As a result, the second seal gas can be constantly supplied to and discharged from the second seal gas space 35, thereby suppressing a decrease in the temperature of the second seal gas. That is, the solidification of nitrogen, which is the second seal gas, is further suppressed.
 本実施形態の液化水素荷役システム1では、ボイルオフガスである水素をシール装置13の第1シールガスとして用いることによって、第1シールガスが液化することを抑制できる。これにより、第1シールガスが固化してシール装置13が機能しなくなることを抑制できる。 In the liquefied hydrogen cargo handling system 1 of the present embodiment, by using hydrogen, which is boil-off gas, as the first seal gas of the seal device 13, liquefaction of the first seal gas can be suppressed. As a result, it is possible to prevent the sealing device 13 from failing to function due to solidification of the first sealing gas.
 また、液化水素荷役システム1では、窒素ガスが流れる第2シールガス空間35が第1シールガス空間34より大気側に配置されているので、第2シールガス空間35における窒素ガスが固化することが抑制できる。それ故、シールガスである窒素ガスが固化してシール装置13が機能しなくなることを抑制できる。また、ボイルオフガスと大気との間に窒素ガスを介在させることによって、第1シールガスがそのままの状態で大気に放出されることを抑制できる。 In addition, in the liquefied hydrogen cargo handling system 1, the second sealing gas space 35 through which nitrogen gas flows is arranged closer to the atmosphere than the first sealing gas space 34, so the nitrogen gas in the second sealing gas space 35 may not solidify. can be suppressed. Therefore, it is possible to prevent the sealing device 13 from failing to function due to solidification of the nitrogen gas, which is the sealing gas. Further, by interposing nitrogen gas between the boil-off gas and the atmosphere, it is possible to suppress the first seal gas from being discharged to the atmosphere as it is.
 更に、液化水素荷役システム1では、荷役期間外においてボイルガスがボイルオフガス用貯留槽43に貯留される。そして、荷役期間において、貯留したボイルオフガスをシールガスとしてシール装置13に供給することができる。これにより、大量のシールガスをシール装置13に供給することができる。 Furthermore, in the liquefied hydrogen cargo handling system 1, boil gas is stored in the boil-off gas storage tank 43 outside the cargo handling period. Then, during the cargo handling period, the stored boil-off gas can be supplied to the seal device 13 as the seal gas. Thereby, a large amount of seal gas can be supplied to the seal device 13 .
 また、液化水素荷役システム1では、ボイルオフガスを圧縮してボイルオフガス用貯留槽43に供給するので、より多くのボイルオフをボイルオフガス用貯留槽43に貯留することができる。これにより、期間中において、より多くのシールガスをシール装置13に供給することができる。 In addition, in the liquefied hydrogen cargo handling system 1, the boil-off gas is compressed and supplied to the boil-off gas storage tank 43, so more boil-off can be stored in the boil-off gas storage tank 43. As a result, more seal gas can be supplied to the seal device 13 during the period.
 更に、液化水素荷役システム1では、排出設備15から第1シールガス空間34の第1シールガスが排出される。これにより、シールガス供給系統14から第1シールガス空間34に第1シールガスを供給し続けることができるので、第1シールガスが第1シールガス空間34に滞留してリターンガスによって冷却されることを抑制できる。即ち、第1シールガスの温度低下を抑制することができる。これにより、第2シールガスの温度低下も抑制することができるので、窒素ガスが固化してシール装置13が機能しなくなることを更に抑制できる。 Furthermore, in the liquefied hydrogen cargo handling system 1 , the first seal gas in the first seal gas space 34 is discharged from the discharge equipment 15 . As a result, since the first seal gas can be continuously supplied from the seal gas supply system 14 to the first seal gas space 34, the first seal gas stays in the first seal gas space 34 and is cooled by the return gas. can be suppressed. That is, it is possible to suppress the temperature drop of the first seal gas. As a result, it is possible to suppress the temperature drop of the second sealing gas, so that it is possible to further suppress the non-functioning of the sealing device 13 due to the solidification of the nitrogen gas.
 液化水素荷役システム1において、シール装置13は、荷役設備12に含まれるリターンガスブロワ24に設けられている。それ故、シールガスが固化してリターンガスブロワ24が動かなくなることを防ぐことができる。 In the liquefied hydrogen cargo handling system 1 , the sealing device 13 is provided in the return gas blower 24 included in the cargo handling equipment 12 . Therefore, it is possible to prevent the return gas blower 24 from becoming stuck due to solidification of the seal gas.
 ボイルオフガス移送システム60では、ボイルオフガスである水素をシール装置13の第1シールガスとして用いることによって、第1シールガスが液化することを抑制できる。これにより、第1シールガスが固化してシール装置13が機能しなくなることを抑制できる。 In the boil-off gas transfer system 60, by using hydrogen, which is the boil-off gas, as the first seal gas of the seal device 13, liquefaction of the first seal gas can be suppressed. As a result, it is possible to prevent the sealing device 13 from failing to function due to solidification of the first sealing gas.
 [第2実施形態]
 第2実施形態の液化水素荷役システム1Aは、第1実施形態の液化水素荷役システム1と構成が類似している。従って、第2実施形態の液化水素荷役システム1Aの構成については、主に第1実施形態の液化水素荷役システム1と異なる点が説明され、同一の構成については同一の符号を付して説明が省略される。
[Second embodiment]
A liquefied hydrogen cargo handling system 1A of the second embodiment is similar in configuration to the liquefied hydrogen cargo handling system 1 of the first embodiment. Therefore, with regard to the configuration of the liquefied hydrogen cargo handling system 1A of the second embodiment, differences from the liquefied hydrogen cargo handling system 1 of the first embodiment will be mainly described, and the same configurations will be assigned the same reference numerals. Omitted.
 第2実施形態の液化水素荷役システム1Aは、図5に示すように、水素タンク11と、荷役設備12と、シール装置13と、シールガス供給系統14と、排出設備15Aと、を備えている。排出設備15Aは、排出される第1シールガスをシールガス供給系統14に戻す。より詳細に説明すると、排出設備15Aには、第1シールガスが第1シールガス空間34から排出される。そして、排出設備15Aは、排出させた第1シールガスをシールガス供給系統14に戻す。更に詳細に説明すると、排出設備15Aは、混合ガス回収ライン53と、混合ガスブロワ54と、水素再生装置55と、水素回収ライン56と、ベントライン51A、バルブ52、を有している。 A liquefied hydrogen cargo handling system 1A of the second embodiment, as shown in FIG. . The discharge facility 15A returns the discharged first seal gas to the seal gas supply system 14 . More specifically, the first seal gas is discharged from the first seal gas space 34 to the discharge facility 15A. Then, the discharge equipment 15A returns the discharged first seal gas to the seal gas supply system 14 . More specifically, the discharge facility 15A has a mixed gas recovery line 53, a mixed gas blower 54, a hydrogen regeneration device 55, a hydrogen recovery line 56, a vent line 51A, and a valve 52.
 混合ガス回収ライン53は、第1シールガス空間34及び第2シールガス空間35に接続されている。そして、混合ガス回収ライン53には、第1シールガス空間34及び第2シールガス空間35の各々からシールガスが排出される。そして、混合ガス回収ライン53には、2つのシールガスが混合した混合ガスが流される。混合ガスブロワ54は、混合ガス回収ライン53に介在している。そして、混合ガスブロワ54は、混合ガス回収ライン53を流れる混合ガスをその下流側(詳しくは、後で詳述する水素再生装置55)に送る。 The mixed gas recovery line 53 is connected to the first sealing gas space 34 and the second sealing gas space 35 . Seal gas is discharged from each of the first seal gas space 34 and the second seal gas space 35 to the mixed gas recovery line 53 . A mixed gas in which the two seal gases are mixed flows through the mixed gas recovery line 53 . A mixed gas blower 54 is interposed in the mixed gas recovery line 53 . Then, the mixed gas blower 54 sends the mixed gas flowing through the mixed gas recovery line 53 to its downstream side (specifically, the hydrogen regeneration device 55 described in detail later).
 水素再生装置55は、第1シールガス空間34及び第2シールガス空間35に接続されている。より詳細には、水素再生装置55は、混合ガス回収ライン53を介して第1シールガス空間34及び第2シールガス空間35に接続されている。水素再生装置55は、混合ガスから第1シールガスと第2シールガスとを分離する。そして、水素再生装置55は、混合ガスから第1シールガス(即ち、水素)を分離してシールガス供給系統14に戻す。 The hydrogen regeneration device 55 is connected to the first seal gas space 34 and the second seal gas space 35. More specifically, the hydrogen regeneration device 55 is connected to the first seal gas space 34 and the second seal gas space 35 via a mixed gas recovery line 53 . The hydrogen regeneration device 55 separates the first seal gas and the second seal gas from the mixed gas. Then, the hydrogen regeneration device 55 separates the first seal gas (that is, hydrogen) from the mixed gas and returns it to the seal gas supply system 14 .
 本実施形態において、水素再生装置55は、例えば以下のようにして混合ガスから第1シールガスと第2シールガスとを分離する。即ち、水素再生装置55には、リターンガス用配管22が通されている。そして、水素再生装置55では、リターンガス用配管22を流れるリターンガスと、混合ガスとの間で熱交換が行われる。これにより、水素再生装置55は、混合ガスの第2シールガス(即ち、窒素)を液化又は固化させる。他方、水素である第1シールガスは、気体の状態にて維持される。それ故、水素再生装置55において、混合ガスから第1シールガスと第2シールガスとが分離される。なお、分離する方法は、前述する冷熱を用いた方法に限定されず、その他の方法(例えば、プレッシャースイング吸着方式(PSA方式))が用いられてもよい。 In this embodiment, the hydrogen regeneration device 55 separates the first seal gas and the second seal gas from the mixed gas, for example, as follows. That is, the return gas pipe 22 is passed through the hydrogen regeneration device 55 . In the hydrogen regeneration device 55, heat is exchanged between the return gas flowing through the return gas pipe 22 and the mixed gas. Thereby, the hydrogen regeneration device 55 liquefies or solidifies the second seal gas (that is, nitrogen) of the mixed gas. On the other hand, the first seal gas, which is hydrogen, is maintained in a gaseous state. Therefore, in the hydrogen regeneration unit 55, the first seal gas and the second seal gas are separated from the mixed gas. The separation method is not limited to the above-described method using cold heat, and other methods (for example, pressure swing adsorption method (PSA method)) may be used.
 また、水素再生装置55は、荷役期間外において液化又は固化した第2シールガスである窒素を再び気化させる。より詳細に説明すると、窒素は、前述するようにリターンガスによって液化又は固化される。それ故、荷役期間外のようにリターンガス用配管22におけるリターンガスの流れが止まると、液化又は固化した窒素が再び気化する。 In addition, the hydrogen regeneration device 55 re-vaporizes nitrogen, which is the second seal gas that has been liquefied or solidified outside the cargo handling period. More specifically, the nitrogen is liquefied or solidified by the return gas as described above. Therefore, when the flow of the return gas in the return gas pipe 22 stops, such as outside the cargo handling period, the liquefied or solidified nitrogen evaporates again.
 水素回収ライン56は、水素再生装置55で分離された第1シールガス、即ち水素をシールガス供給系統14に戻す。より詳細に説明すると、水素回収ライン56は、水素再生装置55と、圧縮機42に接続されている。水素回収ライン56は、水素再生装置55で分離された水素が導かれる。水素回収ライン56に導かれる水素は、圧縮機42に吸引されて圧縮される。そして、圧縮されたガスは、ボイルオフガス回収ライン41を介してボイルオフガス用貯留槽43に送られる。このようにして、水素再生装置55で分離された水素は、圧縮ガスとしてボイルオフガス用貯留槽43に貯留される。なお、水素回収ライン56には、開閉バルブ56aが介在している。そして、開閉バルブ56aは、荷役期間において水素回収ライン56を閉じている。これにより、水素再生装置55にボイルオフガスが逆流しないようになっている。 The hydrogen recovery line 56 returns the first seal gas separated by the hydrogen regeneration device 55, ie hydrogen, to the seal gas supply system 14. More specifically, hydrogen recovery line 56 is connected to hydrogen regenerator 55 and compressor 42 . Hydrogen separated by the hydrogen regeneration device 55 is introduced into the hydrogen recovery line 56 . Hydrogen introduced to the hydrogen recovery line 56 is sucked into the compressor 42 and compressed. The compressed gas is sent to the boil-off gas storage tank 43 via the boil-off gas recovery line 41 . In this way, the hydrogen separated by the hydrogen regeneration device 55 is stored in the boil-off gas storage tank 43 as compressed gas. An opening/closing valve 56 a is interposed in the hydrogen recovery line 56 . The open/close valve 56a closes the hydrogen recovery line 56 during the cargo handling period. This prevents the boil-off gas from flowing back into the hydrogen regeneration device 55 .
 ベントライン51Aは、水素回収ライン56に流れる気体を排出する。より詳細に説明すると、ベントライン51Aは、水素回収ライン56及び大気に接続されている。また、ベントライン51Aには、バルブ52が設けられている。そして、バルブ52は、荷役期間外であって気化した窒素を排出する際に開かれ、且つ荷役期間においてバルブ52が閉じられている。これにより、水素再生装置55で分離した第2シールガスを大気に排出することができる。 The vent line 51A discharges the gas flowing through the hydrogen recovery line 56. More specifically, vent line 51A is connected to hydrogen recovery line 56 and the atmosphere. A valve 52 is provided in the vent line 51A. The valve 52 is opened when the vaporized nitrogen is discharged outside the cargo handling period, and the valve 52 is closed during the cargo handling period. Thereby, the second seal gas separated by the hydrogen regeneration device 55 can be discharged to the atmosphere.
 <液化水素荷役システムの作用効果>
 液化水素荷役システム1Aでは、荷役期間において、第1実施形態の液化水素荷役システム1と同様に、水素タンク11とタンク2との間で荷役が行われる。また、液化水素荷役システム1Aでは、シールガス供給系統14からシール装置13に第1シールガスが供給される(図5の二点太線参照)。
<Effects of liquefied hydrogen cargo handling system>
In the liquefied hydrogen cargo handling system 1A, cargo handling is performed between the hydrogen tank 11 and the tank 2 during the cargo handling period, similar to the liquefied hydrogen cargo handling system 1 of the first embodiment. In addition, in the liquefied hydrogen cargo handling system 1A, the first seal gas is supplied from the seal gas supply system 14 to the seal device 13 (see the two-dot bold line in FIG. 5).
 他方、液化水素荷役システム1Aでは、第1シールガス空間34及び第2シールガス空間35の各々から排出されるシールガスを含む混合ガスが混合ガス回収ライン53に導かれる。更に、混合ガスは、混合ガスブロワ54によって水素再生装置55に送られる。そして、水素再生装置55は、混合ガスにおける第1シールガスと第2シールガスとを分離する。また、分離された第1シールガス、即ち水素は、水素回収ライン56を介して圧縮機42に吸引されて圧縮される。そして、圧縮された水素は、に貯留されボイルオフガス用貯留槽43る。ボイルオフガス貯留装置に貯留された水素は、第1シールガスとして再びシールガス供給系統14を介して第1シールガス空間34に供給される。即ち、分離された第1シールガスが第1シールガスとして再生される。 On the other hand, in the liquefied hydrogen cargo handling system 1A, the mixed gas containing the sealing gas discharged from each of the first sealing gas space 34 and the second sealing gas space 35 is guided to the mixed gas recovery line 53. Further, the mixed gas is sent to the hydrogen regeneration device 55 by the mixed gas blower 54 . Then, the hydrogen regeneration device 55 separates the first seal gas and the second seal gas from the mixed gas. Also, the separated first seal gas, that is, hydrogen is sucked into the compressor 42 via the hydrogen recovery line 56 and compressed. The compressed hydrogen is stored in a boil-off gas storage tank 43 . The hydrogen stored in the boil-off gas storage device is again supplied to the first seal gas space 34 through the seal gas supply system 14 as the first seal gas. That is, the separated first seal gas is regenerated as the first seal gas.
 本実施形態の液化水素荷役システム1Aでは、排出設備15Aが排出される第1シールガスをシールガス供給系統14に戻すので、第1シールガスを再利用できる。また、液化水素荷役システム1Aでは、シール装置13から排出される混合ガスから水素を再生することができる。 In the liquefied hydrogen cargo handling system 1A of this embodiment, the first seal gas discharged by the discharge equipment 15A is returned to the seal gas supply system 14, so the first seal gas can be reused. In addition, in the liquefied hydrogen cargo handling system 1A, hydrogen can be regenerated from the mixed gas discharged from the seal device 13 .
 その他、第2実施形態の液化水素荷役システム1Aは、第1実施形態の液化水素荷役システム1と同様作用効果を奏する。 In addition, the liquefied hydrogen cargo handling system 1A of the second embodiment has the same effects as the liquefied hydrogen cargo handling system 1 of the first embodiment.
 [第3実施形態]
 液化水素荷役システム1Bは、図6に示すように、水素タンク11と、荷役設備12と、シール装置13,13Bと、シールガス供給系統14と、排出設備15と、を備えている。シール装置13Bは、本実施形態における移送設備の一例である圧縮機42に設けられている。また、シール装置13Bは、シール装置13に並列するようにシールガス供給系統14の供給ライン44及び排出設備15に接続されている。なお、シール装置13Bは、シール装置13に接続される排出設備15と別の排出設備15に接続されてもよい。シール装置13Bには、シールガス供給系統14から第1シールガスとしてボイルオフガスが供給される。そして、シール装置13Bは、圧縮機42内と大気との間を第1シールガスによって密閉する。
[Third embodiment]
The liquefied hydrogen cargo handling system 1B includes, as shown in FIG. The seal device 13B is provided in a compressor 42, which is an example of transfer equipment in this embodiment. Also, the sealing device 13B is connected to the supply line 44 of the sealing gas supply system 14 and the discharge facility 15 so as to be parallel to the sealing device 13 . The sealing device 13B may be connected to the discharging equipment 15 connected to the sealing device 13 and another discharging equipment 15 . A boil-off gas is supplied as the first seal gas from the seal gas supply system 14 to the seal device 13B. The seal device 13B seals the space between the inside of the compressor 42 and the atmosphere with the first seal gas.
 なお、シール装置13Bの構造は、シール装置13の構造と類似している。より詳細に説明すると、本実施形態の圧縮機42は、リターンガスブロワ24と同じくインペラによってボイルオフガス11bを移送するようになっている。それ故、シール装置13Bの構造は、シール装置13の構造と類似している。従って、シール装置13Bについては、シール装置13の説明を参照し、シール装置13Bの詳しい説明は省略される。また、液化水素荷役システム1Bでは、シール装置13Bが水素タンク11及び圧縮機42(より詳細に説明するとシールガス供給系統14)と共にボイルオフガス移送システム60Bを構成している。 The structure of the sealing device 13B is similar to that of the sealing device 13. More specifically, the compressor 42 of the present embodiment transfers the boil-off gas 11b with an impeller, like the return gas blower 24 does. Therefore, the structure of the sealing device 13B is similar to that of the sealing device 13. As shown in FIG. Therefore, for the sealing device 13B, the description of the sealing device 13 is referred to, and detailed description of the sealing device 13B is omitted. In the liquefied hydrogen cargo handling system 1B, the seal device 13B constitutes a boil-off gas transfer system 60B together with the hydrogen tank 11 and the compressor 42 (more specifically, the seal gas supply system 14).
 ボイルオフガス移送システム60Bでは、ボイルオフガス11bである水素をシール装置13Bの第1シールガスとして用いることによって、第1シールガスが液化することを抑制できる。これにより、第1シールガスが固化してシール装置13Bが機能しなくなることを抑制できる。 In the boil-off gas transfer system 60B, by using hydrogen, which is the boil-off gas 11b, as the first seal gas of the seal device 13B, liquefaction of the first seal gas can be suppressed. As a result, it is possible to prevent the sealing device 13B from failing to function due to solidification of the first sealing gas.
 ボイルオフガス移送システム60Bでは、ボイルオフガス用貯留槽43にボイルオフガス11bを送る圧縮機42にシール装置13Bが設けられている。それ故、シールガスが固化して圧縮機42が動かなくなることを防ぐことができる。これにより、ボイルオフガス用貯留槽43にボイルオフガス11bを送り続けることができる。 In the boil-off gas transfer system 60B, the compressor 42 that sends the boil-off gas 11b to the boil-off gas storage tank 43 is provided with the seal device 13B. Therefore, it is possible to prevent the seal gas from solidifying and causing the compressor 42 to stop working. Thereby, the boil-off gas 11b can be continuously sent to the boil-off gas storage tank 43 .
 その他、液化水素荷役システム1B及びボイルオフガス移送システム60Bは、第1実施形態の液化水素荷役システム1及びボイルオフガス移送システム60と同様の作用効果を奏する。 In addition, the liquefied hydrogen cargo handling system 1B and the boil-off gas transfer system 60B have the same effects as the liquefied hydrogen cargo handling system 1 and the boil-off gas transfer system 60 of the first embodiment.
 [第4実施形態]
 <ボイルオフガス移送システム>
 図7に示すボイルオフガス移送システム60Cは、タンク2から陸上設備3にボイルオフガス11bを移送する。陸上設備3は、ボイルオフガス11bを燃料又は原料等として使用する設備であり、発電プラント及び工場等である。本実施形態において、陸上設備3は、水素を用いて発電する発電プラントである。なお、陸上設備3は、必ずしも前述するようなタンク2を備えている必要はない。ボイルオフガス移送システム60Cは、水素タンク11と、移送設備12Cと、シール装置13Cと、シールガス供給系統14と、排出設備15と、を備えている。
[Fourth embodiment]
<Boil-off gas transfer system>
The boil-off gas transfer system 60C shown in FIG. 7 transfers the boil-off gas 11b from the tank 2 to the land facility 3. The land facility 3 is a facility that uses the boil-off gas 11b as a fuel or raw material, and is a power plant, a factory, or the like. In this embodiment, the land facility 3 is a power plant that generates power using hydrogen. Note that the land facility 3 does not necessarily have to include the tank 2 as described above. The boil-off gas transfer system 60C includes a hydrogen tank 11, a transfer facility 12C, a seal device 13C, a seal gas supply system 14, and a discharge facility 15.
 移送設備12Cは、水素タンク11で気化したボイルオフガス11bを移送する。より詳細に説明すると、移送設備12Cは、水素タンク11と陸上設備3とに接続されている。本実施形態において、移送設備12Cは、シールガス供給系統14に並列するように水素タンク11に接続されている。また、移送設備12Cは、水素タンク11で気化したボイルオフガス11bを圧縮して陸上設備3に移送する。本実施形態において、移送設備12Cは、圧縮機である。なお、移送設備12Cは、圧縮機42及びリターンガスブロワ24と構造が類似している。それ故、シール装置13Cの構造もまた、シール装置13の構造と類似している。従って、移送設備12C及びシール装置13Cの構造については、リターンガスブロワ24及びシール装置13の構造の説明を参照し、それらの詳しい説明は省略する。 The transfer equipment 12C transfers the boil-off gas 11b vaporized in the hydrogen tank 11. More specifically, transfer facility 12C is connected to hydrogen tank 11 and land facility 3 . In this embodiment, the transfer facility 12C is connected to the hydrogen tank 11 so as to be parallel to the seal gas supply system 14 . Further, the transfer facility 12C compresses the boil-off gas 11b vaporized in the hydrogen tank 11 and transfers it to the land facility 3. In this embodiment, the transfer facility 12C is a compressor. It should be noted that the transfer facility 12C is similar in structure to the compressor 42 and the return gas blower 24 . Therefore, the structure of the sealing device 13C is also similar to the structure of the sealing device 13C. Therefore, for the structures of the transfer equipment 12C and the sealing device 13C, refer to the description of the structures of the return gas blower 24 and the sealing device 13, and detailed description thereof will be omitted.
 ボイルオフガス移送システム60Cでは、移送設備12Cがボイルオフガス11bを圧縮して陸上設備3に移送する圧縮機である。それ故、シールガスが固化して移送設備12Cが動かなくなることを防ぐことができる。これにより、陸上設備3にボイルオフガス11bを送り続けることができる。 In the boil-off gas transfer system 60C, the transfer facility 12C is a compressor that compresses the boil-off gas 11b and transfers it to the land facility 3. Therefore, it is possible to prevent the seal gas from solidifying and jamming the transfer equipment 12C. Thereby, the boil-off gas 11b can be continuously sent to the land facility 3.
 その他、ボイルオフガス移送システム60Cは、第1実施形態のボイルオフガス移送システム60と同様の作用効果を奏する。 In addition, the boil-off gas transfer system 60C has the same effects as the boil-off gas transfer system 60 of the first embodiment.
 [その他の実施形態]
 第1乃至第3実施形態において液化水素荷役システム1,1A,1Bは、液化水素を荷役船(図示せず)との間で荷役するための設備であるが、荷役船に搭載され且つ陸上設備との間で液化水素を荷役するための設備であってもよい。この場合、荷役船に搭載されるタンクが水素タンクとなる。また、液化水素荷役システム1,1A,1Bは、陸上設備と搬送車両との間の荷役を行うものであってもよい。液化水素荷役システム1,1A,1Bにおいて、シール装置13が密封する対象がリターンガスブロワ24であるが、荷役設備12に含まれる配管やその他の機器であってもよい。
[Other embodiments]
In the first to third embodiments, the liquefied hydrogen cargo handling systems 1, 1A, and 1B are facilities for loading and unloading liquefied hydrogen with a cargo handling vessel (not shown). It may be a facility for loading and unloading liquefied hydrogen between. In this case, the tanks mounted on the cargo handling vessel are hydrogen tanks. Also, the liquefied hydrogen cargo handling systems 1, 1A, and 1B may perform cargo handling between land facilities and transport vehicles. In the liquefied hydrogen cargo handling systems 1, 1A, and 1B, the object to be sealed by the sealing device 13 is the return gas blower 24;
 また、第1乃至第3実施形態において液化水素荷役システム1,1A,1Bのシール装置13,13B及び第4実施形態のボイルオフガス移送システム60Cのシール装置13Cにおいて、前述する構造は、あくまで一例であって、その他の構造であってもよい。シール装置13は、例えば第2シールガス空間35を有さずに第1シールガス空間34だけを有するものであってもよく、少なくとも第1シールガスによって荷役設備12内と大気との間を密封するものであればよい。 Further, in the sealing devices 13, 13B of the liquefied hydrogen cargo handling systems 1, 1A, 1B in the first to third embodiments and the sealing device 13C of the boil-off gas transfer system 60C in the fourth embodiment, the above-described structures are merely examples. However, other structures are also possible. The sealing device 13 may have, for example, only the first sealing gas space 34 without the second sealing gas space 35, so that at least the first sealing gas seals between the cargo handling equipment 12 and the atmosphere. Anything that does.
 更に第1乃至第4実施形態において、シールガス供給系統14は、ボイルオフガス用貯留槽43を有しているが、必ずしも有している必要はない。例えば、荷役期間中にボイルオフガスの一部が第1シールガスとしてシール装置13に供給されてもよい。また、第1乃至第3実施形態において、ボイルオフガス用貯留槽43に貯留されるボイルオフガスは、必ずしもシール装置13,13B,13Cだけに供給される必要はなく、陸上設備3に供給されてもよい。 Furthermore, in the first to fourth embodiments, the seal gas supply system 14 has the boil-off gas storage tank 43, but it does not necessarily have to have it. For example, part of the boil-off gas may be supplied to the seal device 13 as the first seal gas during cargo handling. Further, in the first to third embodiments, the boil-off gas stored in the boil-off gas storage tank 43 does not necessarily have to be supplied only to the sealing devices 13, 13B, and 13C, and even if it is supplied to the land facility 3 good.
 また、第1乃至第4実施形態のボイルオフガス移送システム60,60B,60Cにおける移送設備の一例としてリターンガスブロワ24及び圧縮機42が挙げられているが、ポンプであってもよい。移送設備は、その他、ボイルオフガス11bを移送することができればよく、特に移送するボイルオフガス11bを昇圧できるものであればよい。また、第4実施形態のボイルオフガス移送システム60Cは、1つの移送設備12Cを備えているが、複数の移送設備12Cを備えていてもよい。そして、複数の移送設備12Cの全て又は少なくとも1つ以上の移送設備12Cにおいて、シール装置13Cが設けられる。移送設備12Cの圧縮機は、インペラを有するような遠心式圧縮機に限定されず、レシプロ圧縮機等の他の形式の圧縮機であってもよい。 Also, although the return gas blower 24 and the compressor 42 are given as an example of transfer equipment in the boil-off gas transfer systems 60, 60B, and 60C of the first to fourth embodiments, pumps may also be used. In addition, it is sufficient that the transfer equipment can transfer the boil-off gas 11b, and in particular, any device that can pressurize the boil-off gas 11b to be transferred. Moreover, although the boil-off gas transfer system 60C of the fourth embodiment includes one transfer facility 12C, it may be provided with a plurality of transfer facilities 12C. A sealing device 13C is provided in all of the plurality of transfer facilities 12C or in at least one or more of the transfer facilities 12C. The compressor of the transfer facility 12C is not limited to a centrifugal compressor having an impeller, and may be another type of compressor such as a reciprocating compressor.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the invention will be apparent to those skilled in the art. Accordingly, the above description is to be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Substantial details of construction and/or function may be changed without departing from the spirit of the invention.

Claims (11)

  1.  液化水素を貯留すると水素タンクと、
     前記水素タンクに対する液化水素の荷役を行う荷役設備と、
     前記荷役設備に設けられ、前記荷役設備内と大気との間を第1シールガスによって密封するシール装置と、
     前記水素タンクで気化したボイルオフガスを第1シールガスとして前記シール装置に供給するシールガス供給系統と、を備えている、液化水素荷役システム。
    When liquefied hydrogen is stored, a hydrogen tank,
    a loading and unloading facility for loading and unloading liquefied hydrogen into the hydrogen tank;
    a sealing device provided in the cargo handling equipment for sealing a space between the cargo handling equipment and the atmosphere with a first seal gas;
    a seal gas supply system that supplies boil-off gas vaporized in the hydrogen tank as a first seal gas to the seal device.
  2.  前記シール装置は、前記荷役設備内と大気側との間に配置される第1シールガス空間及び第2シールガス空間とを有し、
     前記第1シールガス空間は、前記シールガス供給系統から第1シールガスを供給され、
     前記第2シールガス空間は、前記第1シールガス空間に対して大気側に配置され、且つ第2シールガスを流している、請求項1に記載の液化水素荷役システム。
    The sealing device has a first sealing gas space and a second sealing gas space arranged between the inside of the cargo handling equipment and the atmosphere side,
    The first seal gas space is supplied with the first seal gas from the seal gas supply system,
    2. The liquefied hydrogen cargo handling system according to claim 1, wherein said second seal gas space is arranged on the atmosphere side with respect to said first seal gas space and flows a second seal gas.
  3.  前記シールガス供給系統は、ボイルオフガス用貯留槽を有し、
     前記ボイルオフガス用貯留槽は、ボイルオフガスを貯留し、且つ前記シール装置に接続されている、請求項1又は2に記載の液化水素荷役システム。
    The seal gas supply system has a boil-off gas storage tank,
    3. The liquefied hydrogen cargo handling system according to claim 1, wherein said boil-off gas storage tank stores boil-off gas and is connected to said seal device.
  4.  前記シールガス供給系統は、圧縮機とを有し、
     前記圧縮機は、前記ボイルオフガス用貯留槽に供給されるボイルオフガスを圧縮する、請求項3に記載の液化水素荷役システム。
    The seal gas supply system has a compressor,
    4. The liquefied hydrogen cargo handling system according to claim 3, wherein said compressor compresses the boil-off gas supplied to said boil-off gas storage tank.
  5.  排出設備を更に備え、
     前記シール装置は、前記荷役設備内と大気側との間に配置される第1シールガス空間を有し、
     前記第1シールガス空間は、前記シールガス供給系統から第1シールガスを供給され、
     前記排出設備は、前記第1シールガス空間に繋がり、且つ前記第1シールガス空間に供給される第1シールガスを排出する、請求項1乃至4の何れか1つに記載の液化水素荷役システム。
    Further equipped with discharge equipment,
    The sealing device has a first sealing gas space arranged between the inside of the cargo handling facility and the atmosphere side,
    The first seal gas space is supplied with the first seal gas from the seal gas supply system,
    The liquefied hydrogen cargo handling system according to any one of claims 1 to 4, wherein the discharge facility is connected to the first seal gas space and discharges the first seal gas supplied to the first seal gas space. .
  6.  前記排出設備は、排出される第1シールガスを前記シールガス供給系統に戻す、請求項5に記載の液化水素荷役システム。 The liquefied hydrogen cargo handling system according to claim 5, wherein the discharge facility returns the discharged first seal gas to the seal gas supply system.
  7.  前記シール装置は、前記荷役設備内と大気側との間に配置される前記第1シールガス空間及び第2シールガス空間とを有し、
     前記第1シールガス空間は、前記シールガス供給系統から第1シールガスを供給され、
     前記第2シールガス空間は、前記第1シールガス空間に対して大気側に配置され、且つ第2シールガスを流し、
     前記排出設備は、前記第1シールガス空間及び前記第2シールガス空間に繋がり且つ第1シールガスと第2シールガスとを分離する水素再生装置を有し、
     前記水素再生装置は、前記第1シールガス空間及び前記第2シールガス空間の各々から排出される第1シールガス及び第2シールガスの混合ガスが導かれ、混合ガスから第1シールガスを分離して前記シールガス供給系統に戻す、請求項6に記載の液化水素荷役システム。
    The sealing device has the first sealing gas space and the second sealing gas space arranged between the inside of the cargo handling equipment and the atmosphere side,
    The first seal gas space is supplied with the first seal gas from the seal gas supply system,
    the second seal gas space is arranged on the atmosphere side with respect to the first seal gas space and flows a second seal gas;
    the exhaust facility includes a hydrogen regeneration device communicating with the first seal gas space and the second seal gas space and separating the first seal gas and the second seal gas;
    The hydrogen regeneration device is guided by a mixed gas of a first sealing gas and a second sealing gas discharged from each of the first sealing gas space and the second sealing gas space, and separates the first sealing gas from the mixed gas. 7. The liquefied hydrogen cargo handling system according to claim 6, wherein the liquefied hydrogen is returned to the seal gas supply system.
  8.  前記荷役設備は、前記水素タンクに液化水素を払出す払出側タンクにボイルオフガスを送るリターンガスブロワを含み、
     前記シール装置は、前記リターンガスブロワに設けられている、請求項1乃至7の何れか1つに記載の液化水素荷役システム。
    The cargo handling equipment includes a return gas blower that sends boil-off gas to a delivery side tank that delivers liquefied hydrogen to the hydrogen tank,
    The liquefied hydrogen cargo handling system according to any one of claims 1 to 7, wherein said sealing device is provided in said return gas blower.
  9.  液化水素を貯留すると水素タンクと、
     前記水素タンクで気化したボイルオフガスを移送する移送設備と、
     前記移送設備に設けられ、前記移送設備内と大気との間を第1シールガスによって密封するシール装置と、を備え、
     前記シール装置には、第1シールガスとしてボイルオフガスが供給される、ボイルオフガス移送システム。
    When liquefied hydrogen is stored, a hydrogen tank,
    a transfer facility for transferring the boil-off gas vaporized in the hydrogen tank;
    a sealing device provided in the transfer equipment and sealing between the inside of the transfer equipment and the atmosphere with a first seal gas;
    A boil-off gas transfer system, wherein the seal device is supplied with a boil-off gas as a first seal gas.
  10.  前記移送設備及びボイルオフガス用貯留槽を含み、ボイルオフガスを第1シールガスとして前記シール装置に供給するシールガス供給系統を備え、
     前記ボイルオフガス用貯留槽は、前記移送設備によって移送されるボイルオフガスを貯留し、
     前記シールガス供給系統は、前記ボイルオフガス用貯留槽のボイルオフガスを第1シールガスとして前記シール装置に供給する、請求項9に記載のボイルオフガス移送システム。
    A seal gas supply system including the transfer equipment and a boil-off gas storage tank, and supplying the boil-off gas as a first seal gas to the seal device,
    The boil-off gas storage tank stores the boil-off gas transferred by the transfer equipment,
    10. The boil-off gas transfer system according to claim 9, wherein the seal gas supply system supplies the boil-off gas in the boil-off gas storage tank to the seal device as a first seal gas.
  11.  前記水素タンクで気化したボイルオフガスを第1シールガスとして前記シール装置に供給するシールガス供給系統を更に備え、
     前記移送設備は、ボイルオフガスを圧縮して陸上設備に移送する圧縮機である、請求項9に記載のボイルオフガス移送システム。
    further comprising a seal gas supply system that supplies boil-off gas vaporized in the hydrogen tank to the seal device as a first seal gas,
    10. The boil-off gas transfer system of claim 9, wherein the transfer facility is a compressor that compresses the boil-off gas and transfers it to an onshore facility.
PCT/JP2022/045825 2021-12-14 2022-12-13 Liquid hydrogen loading/unloading system, and boil-off gas transport system WO2023112913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021202902 2021-12-14
JP2021-202902 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023112913A1 true WO2023112913A1 (en) 2023-06-22

Family

ID=86774774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045825 WO2023112913A1 (en) 2021-12-14 2022-12-13 Liquid hydrogen loading/unloading system, and boil-off gas transport system

Country Status (2)

Country Link
TW (1) TW202342915A (en)
WO (1) WO2023112913A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957094A (en) * 1982-09-27 1984-04-02 Hitachi Zosen Corp Utilizing method of boil-off gas in lng carrying ship
JP2010196606A (en) * 2009-02-25 2010-09-09 Chugoku Electric Power Co Inc:The Coal gasification combined power generation plant
JP2011001993A (en) * 2009-06-17 2011-01-06 Iwatani Internatl Corp Liquefied hydrogen storage supply equipment
JP2013024376A (en) * 2011-07-25 2013-02-04 Air Liquide Japan Ltd Transfer device of low temperature material, and low temperature liquefied gas supply system using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957094A (en) * 1982-09-27 1984-04-02 Hitachi Zosen Corp Utilizing method of boil-off gas in lng carrying ship
JP2010196606A (en) * 2009-02-25 2010-09-09 Chugoku Electric Power Co Inc:The Coal gasification combined power generation plant
JP2011001993A (en) * 2009-06-17 2011-01-06 Iwatani Internatl Corp Liquefied hydrogen storage supply equipment
JP2013024376A (en) * 2011-07-25 2013-02-04 Air Liquide Japan Ltd Transfer device of low temperature material, and low temperature liquefied gas supply system using the same

Also Published As

Publication number Publication date
TW202342915A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
EP2212186B1 (en) Method and operating system for operating a lng fuelled marine vessel
KR101788750B1 (en) Offshore structure and it&#39;s loading/unloading method, and cool down method of lng storage tank
JP2013520365A (en) Floating LNG filling station
CN106715997A (en) Liquefied hydrogen transport system
US11441738B2 (en) Pressure vessel system for a motor vehicle
WO2023112913A1 (en) Liquid hydrogen loading/unloading system, and boil-off gas transport system
KR101637450B1 (en) Boil-Off Gas Treatment System For Ship
JP5894097B2 (en) Connection mechanism for liquefied gas supply
JP6557494B2 (en) Fluid transfer coupling device and fluid transfer method
JP7471674B2 (en) Evaporative gas compressor for LNG propelled ships
CN116624759A (en) Methanol filling system and inerting monitoring method
KR20190060743A (en) method and Apparatus for transferring liquid cargo
KR102297872B1 (en) Fuel gas supply system of ship
WO2022259936A1 (en) Vacuum evacuation device
JP2020532688A (en) Pressurized liquid cargo transfer device and method
CN113494845A (en) Cabin drying system and cabin drying method
KR100868856B1 (en) Apparatus and method for maintaining lng cargo tank of lng carrier
KR101984976B1 (en) method and Apparatus for transferring liquid cargo
Swanger et al. Vacuum Pump-Down of the Annular Insulation Space for Large Field-Erected Liquid Hydrogen Storage Tanks
JP2023086301A (en) Method and system of cargo handling for liquefied gas
KR102426720B1 (en) Cryogenic liquid pump using pneumatic motor and transfer method of cryogenic liquid using the same
KR20220021560A (en) A liquified gas carrier
JP2715271B2 (en) Inspection method for liquefied gas filled containers
CN118139781A (en) Liquid gas storage facility comprising a tank and a suction device for the separation of the tank
WO2024054147A1 (en) Coupling for liquified gases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907437

Country of ref document: EP

Kind code of ref document: A1