JP2009127813A - Hydrogen gas supply method and hydrogen gas supply installation - Google Patents

Hydrogen gas supply method and hydrogen gas supply installation Download PDF

Info

Publication number
JP2009127813A
JP2009127813A JP2007305952A JP2007305952A JP2009127813A JP 2009127813 A JP2009127813 A JP 2009127813A JP 2007305952 A JP2007305952 A JP 2007305952A JP 2007305952 A JP2007305952 A JP 2007305952A JP 2009127813 A JP2009127813 A JP 2009127813A
Authority
JP
Japan
Prior art keywords
storage tank
hydrogen
hydrogen gas
liquefied
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007305952A
Other languages
Japanese (ja)
Inventor
Noboru Watanabe
昇 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2007305952A priority Critical patent/JP2009127813A/en
Publication of JP2009127813A publication Critical patent/JP2009127813A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for supplying hydrogen gas to a use point in the state of reducing a temperature difference between the temperature of the hydrogen gas which applies pressure into a liquid hydrogen storage tank and the temperature of liquid hydrogen which is filled in the storage tank while keeping pressure in the storage tank in a proper pressure range, and to provide a hydrogen gas supply installation. <P>SOLUTION: To cool hydrogen gas which applies pressure into the liquid hydrogen storage tank 1, the hydrogen gas supply installation having a heat exchanger 10 using liquid hydrogen taken out of the storage tank 1, as refrigerant, is used for supplying to the use point the hydrogen gas obtained by taking the liquid hydrogen out of the storage tank 1 and evaporating it with an evaporator 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液化水素を気化して水素ガスとし、これをユースポイントへ供給する水素ガス供給方法および水素ガス供給設備に関し、液化水素貯槽に充填された液化水素を水素ガスに気化させ、ロスをなくし効率よく使用先に供給することを可能とするものである。   The present invention relates to a hydrogen gas supply method and a hydrogen gas supply facility that vaporizes liquefied hydrogen into hydrogen gas, and supplies the hydrogen gas to a use point, and relates to a method for vaporizing liquefied hydrogen filled in a liquefied hydrogen storage tank into hydrogen gas, thereby reducing loss. It can be efficiently supplied to the user.

例えば、大量に水素ガスを使用する工場などにおいては、その工場の敷地に、液化水素貯槽等を備えた水素ガス供給設備を設置し、その設置場所まで液化水素輸送車にて液化水素を移動させ、前記液化水素貯槽へ液化水素を充填することが行われている。このような従来の水素ガス供給設備を図3に示す。   For example, in a factory that uses a large amount of hydrogen gas, a hydrogen gas supply facility equipped with a liquefied hydrogen storage tank, etc. is installed on the site of the factory, and liquefied hydrogen is moved to the installation location by a liquefied hydrogen transport vehicle. The liquid hydrogen storage tank is filled with liquid hydrogen. Such a conventional hydrogen gas supply facility is shown in FIG.

以下、図3を参照しながら、従来の水素ガス供給方法および水素ガス供給設備を説明する。
図3に示した水素ガス供給設備は、液化水素貯槽1と蒸発器2とを主な構成要素とするものである。
液化水素貯槽1は、液化水素を貯蔵する容器であり、例えば金属製の内容器と金属製の外容器との間を断熱構造とした容器などが用いられる。蒸発器2は、大気中の熱や40℃程度の蒸気熱を加熱手段とし、熱交換により液化水素を気化させ水素ガスにする機器である。
Hereinafter, a conventional hydrogen gas supply method and hydrogen gas supply facility will be described with reference to FIG.
The hydrogen gas supply facility shown in FIG. 3 has a liquefied hydrogen storage tank 1 and an evaporator 2 as main components.
The liquefied hydrogen storage tank 1 is a container for storing liquefied hydrogen. For example, a container having a heat insulating structure between a metal inner container and a metal outer container is used. The evaporator 2 is a device that uses heat in the atmosphere or vapor heat of about 40 ° C. as a heating means, and vaporizes liquefied hydrogen by heat exchange to form hydrogen gas.

前記貯槽1内の液化水素からなる液相部9と前記蒸発器2とは供給ライン3で接続されており、前記貯槽1の下部から取り出された液化水素は、前記蒸発器2により気化されて水素ガスとなり、供給ライン3を流れ、最終的にユースポイントに供給される。   The liquid phase portion 9 made of liquefied hydrogen in the storage tank 1 and the evaporator 2 are connected by a supply line 3, and the liquefied hydrogen taken out from the lower part of the storage tank 1 is vaporized by the evaporator 2. It becomes hydrogen gas, flows through the supply line 3, and is finally supplied to the use point.

水素ガスをユースポイントが必要とする圧力、流量で供給するためには、水素ガス供給設備の供給圧力を一定に維持する必要がある。そのため、前記貯槽1の圧力が下がりすぎた場合のために、貯槽1の気相部8と蒸発器2と貯槽1の液相部9をつなぐ加圧ライン4が設けられている。この加圧ライン4には、弁20が設けられ、この弁20が開になると、前記貯槽1の液相部9から液化水素が取り出され、前記蒸発器2において加圧用水素ガスとして気化させ、この加圧用水素ガスを加圧ライン4から前記貯槽1内の水素ガスからなる気相部8に流入させて、この加圧用水素ガスにより液相部9を加圧するように構成されている。   In order to supply hydrogen gas at the pressure and flow rate required by the point of use, it is necessary to maintain the supply pressure of the hydrogen gas supply facility constant. Therefore, a pressurization line 4 that connects the vapor phase part 8 of the storage tank 1, the evaporator 2, and the liquid phase part 9 of the storage tank 1 is provided for the case where the pressure of the storage tank 1 is too low. The pressurization line 4 is provided with a valve 20, and when the valve 20 is opened, liquefied hydrogen is taken out from the liquid phase portion 9 of the storage tank 1, and vaporized as pressurization hydrogen gas in the evaporator 2, The pressurizing hydrogen gas is caused to flow from the pressurizing line 4 into the gas phase portion 8 made of hydrogen gas in the storage tank 1, and the liquid phase portion 9 is pressurized by the pressurizing hydrogen gas.

また、逆に前記貯槽1内の圧力が上がりすぎた場合、貯槽1を保護するため、圧力を下げる必要がある。そのため、前記貯槽1の気相部8と供給ライン3をつなぐ回収ライン5が設けられており、この回収ライン5に圧力コントロール弁21が設けられている。圧力コントロール弁21の一次側の圧力が設定圧力以上になった場合、貯槽1の気相部8の水素ガスを供給ライン3に流し、圧力を下げつつユースポイントに供給する。   Conversely, if the pressure in the storage tank 1 increases too much, it is necessary to reduce the pressure in order to protect the storage tank 1. Therefore, a recovery line 5 that connects the gas phase portion 8 of the storage tank 1 and the supply line 3 is provided, and a pressure control valve 21 is provided in the recovery line 5. When the pressure on the primary side of the pressure control valve 21 becomes equal to or higher than the set pressure, hydrogen gas in the gas phase portion 8 of the storage tank 1 is supplied to the supply line 3 and supplied to the use point while reducing the pressure.

さらに、回収ライン5を介し気相部8のガスを供給ライン3に逃がしたにもかかわらず、貯槽1内の圧力が上昇する場合にそなえ、前記回収ライン5には、前記回収用水素ガスを大気へ放出する放出ライン7が設けられている。この放出ライン7には大気放出弁22と安全弁23が設けられており、前記貯槽1内の圧力が設計された圧力を超えて上昇するのを防ぎ、前記貯槽1や付属機器の損傷・破壊を未然に防止するようになっている。
前記弁20、圧力コントロール弁21、大気放出弁22、安全弁23の設定圧力は、弁20、圧力コントロール弁21、大気放出弁22、安全弁23の順に高くなっており、貯槽1の圧力は弁20の設定圧力と安全弁23の設定圧力との間を維持するようになっている。
Furthermore, the recovery hydrogen gas is supplied to the recovery line 5 in case the pressure in the storage tank 1 rises even though the gas in the gas phase section 8 has escaped to the supply line 3 through the recovery line 5. A discharge line 7 for discharging to the atmosphere is provided. The discharge line 7 is provided with an atmospheric discharge valve 22 and a safety valve 23 to prevent the pressure in the storage tank 1 from rising beyond the designed pressure, and to damage or destroy the storage tank 1 or attached equipment. It comes to prevent it.
The set pressures of the valve 20, the pressure control valve 21, the atmospheric release valve 22, and the safety valve 23 increase in the order of the valve 20, the pressure control valve 21, the atmospheric release valve 22, and the safety valve 23. And the set pressure of the safety valve 23 are maintained.

前記貯槽1の気相部8と液相部9には充填ライン6が設けられ、図示しない液化水素輸送車に搭載された液化水素輸送容器からの液化水素が前記貯槽1内へ充填されるようになっている。
なお、上記構造の貯槽は、液化水素に限定されるものではなく、産業的に広く使われる液化窒素、液化酸素、液化アルゴンでも同様である。
The gas phase portion 8 and the liquid phase portion 9 of the storage tank 1 are provided with a filling line 6 so that liquefied hydrogen from a liquefied hydrogen transport container mounted on a liquefied hydrogen transport vehicle (not shown) is filled into the storage tank 1. It has become.
In addition, the storage tank of the said structure is not limited to liquefied hydrogen, It is the same also in liquefied nitrogen, liquefied oxygen, and liquefied argon widely used industrially.

液化水素輸送車は、液化水素輸送容器を加圧する機能を備えており、前記貯槽1への液化水素の充填は、前記輸送容器内の圧力を前記貯槽1内の圧力以上とし、圧力差を利用して行う。
充填方法は、(a)前記貯槽1内の前記気相部8から充填する方法と、(b)前記貯槽1内の液相部9から充填する方法とがある。
充填時には、(a)、(b)いずれの方法であっても前記貯槽1内の圧力は上昇する。
The liquefied hydrogen transport vehicle has a function of pressurizing the liquefied hydrogen transport container, and the filling of the liquefied hydrogen into the storage tank 1 makes the pressure in the transport container equal to or higher than the pressure in the storage tank 1, and uses the pressure difference. And do it.
The filling method includes (a) filling from the gas phase part 8 in the storage tank 1 and (b) filling from the liquid phase part 9 in the storage tank 1.
At the time of filling, the pressure in the storage tank 1 rises by either method (a) or (b).

それは、液化水素輸送容器の圧力が貯槽1内の圧力よりも高いことによる。特に、(a)の方法では配管の端部から貯槽1内に充填される際にはジュールトムソン効果により、液化水素の温度が上昇するためである。   This is because the pressure of the liquefied hydrogen transport container is higher than the pressure in the storage tank 1. In particular, in the method (a), when the storage tank 1 is filled from the end of the pipe, the temperature of the liquefied hydrogen rises due to the Joule-Thompson effect.

また、前記加圧用水素ガスの温度が、前記加圧ライン4に設置された図示しない複数のバルブを通過するたびにジュール‐トムソン効果により上昇した状態で、前記貯槽1内へ流入することもひとつの要因である。   In addition, the temperature of the pressurizing hydrogen gas may flow into the storage tank 1 in a state where it rises due to the Joule-Thomson effect every time it passes through a plurality of valves (not shown) installed in the pressurizing line 4. It is a factor.

一方、液化窒素、液化酸素、液化アルゴンのガスでは、液化水素と違いジュールトムソン効果により温度は下がる。したがって、充填時には(a)の方法により気相部8のガスを冷却し、液化して圧力を下げながら充填するため、充填に伴い圧力が上昇することはない。
また、液化水素の沸点は−252.8℃(1atm)であり、液化窒素の沸点−195.8℃(1atm)、液化酸素の沸点−183.0℃(1atm)、アルゴンの沸点−185.5℃(1atm)よりも低いため、液化水素は、液化窒素、液化酸素、液化アルゴンに比べ、ジュールトムソン効果の影響を受けやすい。
On the other hand, in liquefied nitrogen, liquefied oxygen, and liquefied argon gases, unlike liquefied hydrogen, the temperature decreases due to the Joule-Thompson effect. Therefore, at the time of filling, the gas in the gas phase portion 8 is cooled and liquefied by the method (a) and filled while lowering the pressure, so that the pressure does not increase with filling.
Further, the boiling point of liquefied hydrogen is −252.8 ° C. (1 atm), the boiling point of liquefied nitrogen is 195.8 ° C. (1 atm), the boiling point of liquefied oxygen is −183.0 ° C. (1 atm), and the boiling point of argon is −185. Since it is lower than 5 ° C. (1 atm), liquefied hydrogen is more susceptible to the Joule-Thompson effect compared to liquefied nitrogen, liquefied oxygen, and liquefied argon.

このように、水素ガスをユースポイントに供給するためには、前記貯槽1内の圧力を供給圧力に維持しつつ、前記貯槽1内を加圧する必要がある。適正な供給圧力範囲とは、ユースポイントで求められる水素ガス供給流量を確保できる前記貯槽1内の最低圧力から最高圧力のことで、弁20の設定圧力から大気放出弁22の作動圧力未満の範囲である。   Thus, in order to supply hydrogen gas to a use point, it is necessary to pressurize the storage tank 1 while maintaining the pressure in the storage tank 1 at the supply pressure. The appropriate supply pressure range is a range from the lowest pressure in the storage tank 1 to the highest pressure in which the hydrogen gas supply flow rate required at the use point can be secured, and a range from the set pressure of the valve 20 to less than the operating pressure of the atmospheric release valve 22. It is.

まず、供給適正範囲の最低圧力は、加圧ライン4に設けられた弁20の設定圧力となる。貯槽1の圧力が下がり、弁20の設定圧力以下になった場合、弁20は閉から開となり、貯槽1内を加圧する。
次に、貯槽1内の最高圧力を適正な圧力に収める方法として3段階による方策が採用されている。第1ステップは、液化水素充填などにより、前記貯槽1内の圧力が適正な供給圧力範囲の最大値である圧力コントロール弁21の設定値を超える場合、圧力コントロール弁21は閉から開となり、前記貯槽1内の水素ガスを前記回収ライン5と供給ライン3を経てユースポイントへ供給することで、前記貯槽1内の圧力を適正な供給圧力範囲内に収めるようにする。
First, the minimum pressure in the appropriate supply range is the set pressure of the valve 20 provided in the pressurization line 4. When the pressure in the storage tank 1 decreases and becomes equal to or lower than the set pressure of the valve 20, the valve 20 is opened from the closed state, and the inside of the storage tank 1 is pressurized.
Next, as a method for keeping the maximum pressure in the storage tank 1 at an appropriate pressure, a three-stage strategy is adopted. In the first step, when the pressure in the storage tank 1 exceeds the set value of the pressure control valve 21 which is the maximum value of the appropriate supply pressure range due to liquefied hydrogen filling or the like, the pressure control valve 21 is changed from closed to open, By supplying the hydrogen gas in the storage tank 1 to the use point through the recovery line 5 and the supply line 3, the pressure in the storage tank 1 is set within an appropriate supply pressure range.

前記第1ステップの圧力修正手段をもってしても、貯槽1内の圧力を適正な供給圧力範囲に維持できない場合がある。この時、第2ステップとして、大気放出弁22を閉から開とし、貯槽1内の水素ガスを前記放出ライン7を介して大気に放出して貯槽1内の圧力を適正な供給圧力範囲に収めるようにする。さらに、第2ステップでも圧力を下げることができない場合、第3ステップとして安全弁23が作動することになる。   Even with the pressure correcting means in the first step, the pressure in the storage tank 1 may not be maintained within an appropriate supply pressure range. At this time, as a second step, the atmospheric release valve 22 is closed to open, and the hydrogen gas in the storage tank 1 is released to the atmosphere via the release line 7 to keep the pressure in the storage tank 1 within an appropriate supply pressure range. Like that. Further, when the pressure cannot be lowered even in the second step, the safety valve 23 is operated as the third step.

圧力の上昇は、特に、液化水素輸送車から液化水素を前記貯槽1内へ充填する時、ユースポイントに水素ガスを供給する時、またこれを同時に行う場合に顕著である。
それは、液化水素輸送車からの液化水素の圧力が貯槽1内の圧力よりも高くなっていること、また加圧用水素ガスの圧力も高くなっていることによる。圧力が高くなるとジュールトムソン効果による温度上昇が大きくなる傾向がある。そのため、前記加圧用水素ガスの温度と充填される液化水素温度は高くなり、充填される液化水素が前記貯槽1内で水素ガスに気化し、また液相表面の液化水素を気化させ、第3ステップまで至り、高価な水素ガスを大気放出により、損失する問題がある。
The increase in pressure is particularly remarkable when liquefied hydrogen is filled into the storage tank 1 from the liquefied hydrogen transport vehicle, when hydrogen gas is supplied to the use point, and when this is performed simultaneously.
This is because the pressure of liquefied hydrogen from the liquefied hydrogen transport vehicle is higher than the pressure in the storage tank 1, and the pressure of the hydrogen gas for pressurization is also high. As the pressure increases, the temperature rise due to the Joule-Thompson effect tends to increase. Therefore, the temperature of the pressurizing hydrogen gas and the temperature of the liquefied hydrogen to be charged are increased, the liquefied hydrogen to be charged is vaporized into hydrogen gas in the storage tank 1, and the liquefied hydrogen on the surface of the liquid phase is vaporized. There is a problem in that expensive hydrogen gas is lost due to atmospheric release.

特開2007−32696号公報JP 2007-32696 A

しかしながら、従来の水素ガス供給設備における前述の3段階の前記貯槽1内の圧力を適正な供給圧力範囲に収める方法において、前記貯槽1へ流入する加圧用水素ガス温度と液化水素輸送車から前記貯槽1へ充填された液化水素温度が高ければ高いほど、該液化水素が水素ガスに気化して、前記貯槽1内の圧力が高くなり、前記貯槽1内の圧力を適正な供給圧力範囲内に維持しようとするため、前記放出ライン7を通じて大気へ放出される損失水素ガス量が多くなる。   However, in the method of keeping the pressure in the storage tank 1 in the above-described three stages in the conventional hydrogen gas supply equipment within an appropriate supply pressure range, the pressure of the pressurized hydrogen gas flowing into the storage tank 1 and the storage tank from the liquefied hydrogen transport vehicle The higher the temperature of the liquefied hydrogen charged to 1, the more the liquefied hydrogen is vaporized into hydrogen gas, and the pressure in the storage tank 1 increases, and the pressure in the storage tank 1 is maintained within an appropriate supply pressure range. Therefore, the amount of hydrogen gas lost to the atmosphere through the discharge line 7 increases.

本発明では、前記加圧用水素ガス温度と液化水素輸送車から前記貯槽1へ充填された液化水素温度を下げ、該液化水素の気化を最小限にとどめ、前記貯槽1内を適正な供給圧力範囲に維持する水素ガス供給方法および水素ガス供給設備を提供することを目的とする。   In the present invention, the hydrogen gas temperature for pressurization and the temperature of liquefied hydrogen charged into the storage tank 1 from the liquefied hydrogen transport vehicle are lowered to minimize vaporization of the liquefied hydrogen, and the inside of the storage tank 1 is in an appropriate supply pressure range. It is an object of the present invention to provide a hydrogen gas supply method and a hydrogen gas supply facility that are maintained at the same time.

請求項1に記載の発明は、液化水素貯槽内の液化水素を取り出して気化し、ユースポイントに供給するとともに、前記貯槽から液化水素を取り出して気化し、加圧用水素として前記貯槽内の気相部に送って、この加圧用水素ガスにより、前記貯槽内の液化水素を加圧する水素ガスの供給方法であって、前記加圧用水素ガスを冷却したのち、前記貯槽内の気相部に送ることを特徴とする水素ガス供給方法である。   According to the first aspect of the present invention, the liquefied hydrogen in the liquefied hydrogen storage tank is taken out and vaporized and supplied to the use point, and the liquefied hydrogen is taken out from the storage tank and vaporized, and used as pressurized hydrogen in the gas phase in the storage tank. The hydrogen gas supply method pressurizes the liquefied hydrogen in the storage tank using the hydrogen gas for pressurization, and the hydrogen gas for pressurization is cooled and then sent to the gas phase section in the storage tank. A hydrogen gas supply method characterized by the above.

請求項2に記載の発明は、前記加圧用水素ガスの冷却が、前記貯槽から取り出される液化水素との熱交換によるものであることを特徴とする請求項1に記載の水素ガス供給方法である。   The invention according to claim 2 is the hydrogen gas supply method according to claim 1, wherein the cooling of the hydrogen gas for pressurization is by heat exchange with liquefied hydrogen taken out from the storage tank. .

請求項3に記載の発明は、請求項1または2に記載の水素ガス供給方法を使用する水素ガス供給設備であって、
液化水素を貯留する液化水素貯槽と、前記貯槽内から取り出された液化水素を加熱する蒸発器と、前記貯槽内から取り出された液化水素を冷媒とする熱交換器とを備え、
前記貯槽内から取り出した液化水素が前記熱交換器から前記蒸発器の順に流れて気化し水素ガスとなり、この水素ガスがユースポイントに供給される水素ガス供給ラインと、
前記貯槽内から取り出した液化水素が前記蒸発器から前記熱交換器の順に流れて気化し冷却されたのち、前記貯槽内の気相部へ流れる加圧ラインを有することを特徴とする水素ガス供給設備である。
Invention of Claim 3 is hydrogen gas supply equipment which uses the hydrogen gas supply method of Claim 1 or 2, Comprising:
A liquefied hydrogen storage tank for storing liquefied hydrogen, an evaporator for heating the liquefied hydrogen taken out from the storage tank, and a heat exchanger using the liquefied hydrogen taken out from the storage tank as a refrigerant,
Liquid hydrogen taken out from the storage tank flows in the order from the heat exchanger to the evaporator to vaporize hydrogen gas, and a hydrogen gas supply line for supplying this hydrogen gas to a use point;
A hydrogen gas supply comprising a pressurization line which flows into the vapor phase portion in the storage tank after the liquefied hydrogen taken out from the storage tank flows in the order from the evaporator to the heat exchanger and is vaporized and cooled. Equipment.

本発明によれば、液体水素貯槽から取り出され蒸発器で気化され加圧ラインを流れる加圧用水素ガスを前記貯槽内へ流入させる前に冷却することで、加圧用水素ガスの温度を下げ、貯槽へ供給した際の温度を低く設定することができるため、液化水素輸送車から前記貯槽へ充填された液化水素温度との温度差を小さくすることにより、前記加圧用水素ガスが前記液化水素への冷却能力を増大させることができ、前記液化水素の気化による前記貯槽内の圧力の上昇をできる限り抑えることができる。   According to the present invention, the temperature of the pressurized hydrogen gas is lowered by cooling the pressurized hydrogen gas taken out of the liquid hydrogen storage tank and vaporized by the evaporator before flowing into the storage tank before flowing into the storage tank. Since the temperature at the time of supply to the storage tank can be set low, by reducing the temperature difference from the temperature of liquid hydrogen charged into the storage tank from the liquid hydrogen transport vehicle, the pressurized hydrogen gas is supplied to the liquid hydrogen. The cooling capacity can be increased, and an increase in pressure in the storage tank due to vaporization of the liquefied hydrogen can be suppressed as much as possible.

前記加圧用水素ガスを冷却する方法として、前記貯槽から取り出され供給ライン流れる液化水素を冷流体とし、前記貯槽から取り出され蒸発器で気化され加圧ラインを流れる加圧用水素ガスを温流体として熱交換させるものでは、水素ガス供給設備に冷流体として液化窒素や液化アルゴンを用いた熱交換器を新たに設置する必要がなくなる。   As a method for cooling the pressurized hydrogen gas, liquefied hydrogen taken out from the storage tank and flowing through the supply line is used as a cold fluid, and heated under the pressure hydrogen gas taken out from the storage tank and vaporized by an evaporator and flowing through the pressurized line as a hot fluid. In the replacement, it is not necessary to newly install a heat exchanger using liquefied nitrogen or liquefied argon as a cold fluid in the hydrogen gas supply facility.

前記液化水素が気化されて水素ガスになり、前記貯槽内の圧力が上昇する場合、前記貯槽内の圧力を適正な供給圧力範囲内に維持しようとするため、前記貯槽内へ接続する回収ラインを経て放出ラインから大気放出されるとともにユースポイントに供給されない損失水素ガス量が増加するが、前記熱交換方法を導入することで、前記損失水素ガス量を最小限にしつつ、水素ガスをユースポイントに安定に供給することができるものである。   When the liquefied hydrogen is vaporized into hydrogen gas and the pressure in the storage tank rises, in order to maintain the pressure in the storage tank within an appropriate supply pressure range, a recovery line connected to the storage tank is provided. After that, the amount of lost hydrogen gas that is released from the release line to the atmosphere and not supplied to the point of use increases, but by introducing the heat exchange method, the amount of lost hydrogen gas is minimized and the point of use of hydrogen gas becomes the point of use. It can be supplied stably.

以下、本発明の実施形態を、図1〜図2を参照しながら説明する。
図1は本発明の水素ガス供給設備の一実施形態を示すもので、図3に示した従来の水素ガス供給設備と同一構成部分には同一符号を付してその説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 shows an embodiment of the hydrogen gas supply facility of the present invention. The same components as those of the conventional hydrogen gas supply facility shown in FIG.

図1に示した水素ガス供給設備と図3に示した水素ガス供給設備と異なるところは、図1に示した水素ガス供給設備には、加圧ライン4を流れる水素ガスを冷却する熱交換器10が設けられている点である。   The hydrogen gas supply facility shown in FIG. 1 differs from the hydrogen gas supply facility shown in FIG. 3 in that the hydrogen gas supply facility shown in FIG. 1 has a heat exchanger that cools the hydrogen gas flowing through the pressurization line 4. 10 is provided.

この熱交換器10は、供給ライン3の液化水素貯槽1と蒸発器2との間に設けられ、この供給ライン3を流れる液化水素を冷流体とし、液化水素貯槽1から加圧ライン4に導出され、蒸発器2で気化した水素ガスを温流体とするものである。   The heat exchanger 10 is provided between the liquefied hydrogen storage tank 1 and the evaporator 2 in the supply line 3, and the liquefied hydrogen flowing through the supply line 3 is used as a cold fluid and is led out from the liquefied hydrogen storage tank 1 to the pressurization line 4. Then, the hydrogen gas vaporized by the evaporator 2 is used as a warm fluid.

図1に示す水素ガス供給設備において、水素ガスをユースポイントに供給するためには、前記貯槽1内から取り出された液化水素を前記熱交換器10に通して加熱して、次に、前記蒸発器2を通して水素ガスに気化し、ユースポイントに供給する。   In the hydrogen gas supply facility shown in FIG. 1, in order to supply hydrogen gas to a use point, liquefied hydrogen taken out from the storage tank 1 is heated through the heat exchanger 10, and then the evaporation is performed. It vaporizes into hydrogen gas through the vessel 2 and supplies it to the point of use.

また、前記貯槽1内の圧力を供給圧力に維持しつつ、前記貯槽1内を加圧するためには、前記貯槽1内から取り出された液体水素を前記蒸発器2を通して加圧用水素ガスとして気化して、次に、前記熱交換器10を通して冷却して、再び液体水素貯槽1へ流入させる。   In order to pressurize the storage tank 1 while maintaining the pressure in the storage tank 1 at the supply pressure, liquid hydrogen taken out from the storage tank 1 is vaporized as pressurized hydrogen gas through the evaporator 2. Next, the liquid is cooled through the heat exchanger 10 and again flows into the liquid hydrogen storage tank 1.

図2は前記熱交換器10の一例を示すものである。
この熱交換器10は、二重管11により構成され、断面形状が円状である内側の流路14を液化水素が流れ、その外側にある断面形状がドーナツ状である流路15を水素ガスが流れるものであり、前記液化水素の流れAの方向と前記水素ガスの流れBの方向が互いに反対向きの向流式の熱交換器である。なお、流路14に水素ガスを流し、流路15に液化水素を流してもよい。
FIG. 2 shows an example of the heat exchanger 10.
This heat exchanger 10 is constituted by a double tube 11, and liquefied hydrogen flows through an inner flow path 14 having a circular cross-sectional shape, and hydrogen gas flows through a flow path 15 having a cross-sectional shape outside the donut shape. Is a countercurrent heat exchanger in which the direction of the liquid hydrogen flow A and the direction of the hydrogen gas flow B are opposite to each other. Note that hydrogen gas may flow through the flow path 14 and liquefied hydrogen flow through the flow path 15.

流路14に流れる液化水素は、前記貯槽1から取り出されたものであり、その温度は約−250℃程度であるため、前記熱交換器10では冷流体として使用されたのち、蒸発器2で水素ガスに気化され、ユースポイントに供給される。   The liquefied hydrogen flowing in the flow path 14 is taken out from the storage tank 1 and has a temperature of about −250 ° C. Therefore, after being used as a cold fluid in the heat exchanger 10, Vaporized by hydrogen gas and supplied to the point of use.

流路15に流れる水素ガスは、前記貯槽1から取り出され、蒸発器2で水素ガスに気化されたものであり、そのガス温度は20〜40℃程度であるため、熱交換器10では温流体として使用されて冷却されたのち、加圧用水素ガスとして前記貯槽1内へ流入する。   The hydrogen gas flowing in the flow path 15 is taken out from the storage tank 1 and vaporized into hydrogen gas in the evaporator 2, and the gas temperature is about 20 to 40 ° C. After being used and cooled, it flows into the storage tank 1 as pressurized hydrogen gas.

従来例の説明で述べたように、前記加圧用水素ガスの温度は、加圧ライン4に設置された図示しない複数のバルブを通過するたびにジュール‐トムソン効果により上昇し、前記貯槽1内へ流入するが、熱交換器10に流入させることにより、前記加圧用水素ガスの温度を前記貯槽1内へ流入する前に温度下降させることが可能である。   As described in the description of the conventional example, the temperature of the hydrogen gas for pressurization rises by the Joule-Thomson effect every time it passes through a plurality of valves (not shown) installed in the pressurization line 4 and enters the storage tank 1. Although it flows in, it is possible to lower the temperature of the pressurizing hydrogen gas before flowing into the storage tank 1 by flowing it into the heat exchanger 10.

特に、液化水素輸送車から液化水素を前記貯槽1内へ充填する時、水素ガスをユースポイントに供給している時、熱交換器10で冷却された前記加圧用水素ガスが液化水素を冷却することができ、充填される液化水素が前記貯槽1内で水素ガスに気化する量を減少させることができる。   In particular, when filling the storage tank 1 with liquefied hydrogen from a liquefied hydrogen transport vehicle, when supplying hydrogen gas to the use point, the pressurized hydrogen gas cooled by the heat exchanger 10 cools the liquefied hydrogen. It is possible to reduce the amount of liquefied hydrogen to be vaporized into hydrogen gas in the storage tank 1.

その結果、前記貯槽1の気相部8に接続された回収ライン5による供給により圧力変動を小さくし、放出ライン7から大気放出される量を減少させ、ユースポイントに供給されない損失水素ガス量を減少させることができる。   As a result, the pressure fluctuation is reduced by the supply by the recovery line 5 connected to the gas phase section 8 of the storage tank 1, the amount released to the atmosphere from the discharge line 7 is reduced, and the amount of lost hydrogen gas not supplied to the use point is reduced. Can be reduced.

なお、上記の実施形態の説明では、熱交換器10として二重管式熱交換器を例に挙げたが、金属板を一定間隔で積重ねる構成になっているプレート式熱交換器、容器内にコイル管を配した熱交換器などを使用してもよい。   In the above description of the embodiment, a double-pipe heat exchanger is used as an example of the heat exchanger 10, but a plate-type heat exchanger configured to stack metal plates at regular intervals, the inside of the container A heat exchanger with a coiled tube may be used.

本発明によれば、水素ガスを用いる各種産業分野、例えば、石油産業、化学産業、半導体産業、ガラス産業、金属産業および自動車産業などにおいて、液化水素貯槽に充填された液化水素を経済性が高く使用できる水素ガスの供給方法を提供できる。   According to the present invention, in various industrial fields using hydrogen gas, such as petroleum industry, chemical industry, semiconductor industry, glass industry, metal industry and automobile industry, liquefied hydrogen filled in a liquefied hydrogen storage tank is highly economical. A supply method of hydrogen gas that can be used can be provided.

本発明の水素ガス供給設備の一例を示す概略図である。It is the schematic which shows an example of the hydrogen gas supply equipment of this invention. 本発明の水素ガス供給設備に設けられた熱交換器の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the heat exchanger provided in the hydrogen gas supply equipment of this invention. 従来の水素ガス供給設備の一例を示す概略図である。It is the schematic which shows an example of the conventional hydrogen gas supply equipment.

符号の説明Explanation of symbols

1・・・液化水素貯槽、2・・・蒸発器、3・・・供給ライン、4・・・加圧ライン、5・・・回収ライン、6・・・充填ライン、7・・・放出ライン、8・・・気相部、9・・・液相部、10・・・熱交換器、11・・・二重管、12・・・液化水素の流れ、13・・・水素ガスの流れ DESCRIPTION OF SYMBOLS 1 ... Liquefied hydrogen storage tank, 2 ... Evaporator, 3 ... Supply line, 4 ... Pressure line, 5 ... Recovery line, 6 ... Filling line, 7 ... Release line 8 ... gas phase part, 9 ... liquid phase part, 10 ... heat exchanger, 11 ... double pipe, 12 ... flow of liquefied hydrogen, 13 ... flow of hydrogen gas

Claims (3)

液化水素貯槽内の液化水素を取り出して気化し、ユースポイントに供給するとともに、前記貯槽から液化水素を取り出して気化し、加圧用水素として前記貯槽内の気相部に送って、この加圧用水素ガスにより、前記貯槽内の液化水素を加圧する水素ガスの供給方法であって、前記加圧用水素ガスを冷却したのち、前記貯槽内の気相部に送ることを特徴とする水素ガス供給方法。   The liquefied hydrogen in the liquefied hydrogen storage tank is taken out and vaporized and supplied to the use point, and the liquefied hydrogen is taken out from the storage tank and vaporized, and sent to the gas phase portion in the storage tank as pressurized hydrogen. A hydrogen gas supply method for pressurizing liquefied hydrogen in the storage tank with a gas, wherein the pressurization hydrogen gas is cooled and then sent to a gas phase portion in the storage tank. 前記加圧用水素ガスの冷却が、前記貯槽から取り出される液化水素との熱交換によるものであることを特徴とする請求項1に記載の水素ガス供給方法。   The method for supplying hydrogen gas according to claim 1, wherein the cooling of the hydrogen gas for pressurization is by heat exchange with liquefied hydrogen taken out from the storage tank. 請求項1または2に記載の水素ガス供給方法を使用する水素ガス供給設備であって、
液化水素を貯留する液化水素貯槽と、前記貯槽内から取り出された液化水素を加熱する蒸発器と、前記貯槽内から取り出された液化水素を冷媒とする熱交換器とを備え、
前記貯槽内から取り出した液化水素が前記熱交換器から前記蒸発器の順に流れて気化し水素ガスとなり、この水素ガスがユースポイントに供給される水素ガス供給ラインと、
前記貯槽内から取り出した液化水素が前記蒸発器から前記熱交換器の順に流れて気化し冷却されたのち、前記貯槽内の気相部へ流れる加圧ラインを有することを特徴とする水素ガス供給設備。
A hydrogen gas supply facility using the hydrogen gas supply method according to claim 1 or 2,
A liquefied hydrogen storage tank for storing liquefied hydrogen, an evaporator for heating the liquefied hydrogen taken out from the storage tank, and a heat exchanger using the liquefied hydrogen taken out from the storage tank as a refrigerant,
Liquid hydrogen taken out from the storage tank flows in the order from the heat exchanger to the evaporator to vaporize hydrogen gas, and a hydrogen gas supply line for supplying this hydrogen gas to a use point;
A hydrogen gas supply comprising a pressurization line which flows into the vapor phase portion in the storage tank after the liquefied hydrogen taken out from the storage tank flows in the order from the evaporator to the heat exchanger and is vaporized and cooled. Facility.
JP2007305952A 2007-11-27 2007-11-27 Hydrogen gas supply method and hydrogen gas supply installation Pending JP2009127813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305952A JP2009127813A (en) 2007-11-27 2007-11-27 Hydrogen gas supply method and hydrogen gas supply installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305952A JP2009127813A (en) 2007-11-27 2007-11-27 Hydrogen gas supply method and hydrogen gas supply installation

Publications (1)

Publication Number Publication Date
JP2009127813A true JP2009127813A (en) 2009-06-11

Family

ID=40818948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305952A Pending JP2009127813A (en) 2007-11-27 2007-11-27 Hydrogen gas supply method and hydrogen gas supply installation

Country Status (1)

Country Link
JP (1) JP2009127813A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043308A1 (en) 2009-10-05 2011-04-14 独立行政法人産業技術総合研究所 Hydrogen heat exchanger for a hydrogen filling system
JP2013527385A (en) * 2009-07-22 2013-06-27 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Hydrogen distribution system and method
CN103644450A (en) * 2013-11-20 2014-03-19 北京宇航系统工程研究所 High pressure heat exchange helium gas storage tank at liquid hydrogen temperature
JP2017020440A (en) * 2015-07-13 2017-01-26 株式会社Ihi Liquefied gas injection device
KR102363202B1 (en) * 2021-08-22 2022-02-16 권기진 Generation and storage system for high purity hydrogen
US11971142B2 (en) * 2022-07-04 2024-04-30 Toyota Jidosha Kabushiki Kaisha Hydrogen supplying device and hydrogen engine vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527385A (en) * 2009-07-22 2013-06-27 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Hydrogen distribution system and method
US9291309B2 (en) 2009-07-22 2016-03-22 Shell Oil Company Hydrogen dispensing system and method thereof
US9383063B2 (en) 2009-07-22 2016-07-05 Shell Oil Company Hydrogen dispensing system and method thereof
WO2011043308A1 (en) 2009-10-05 2011-04-14 独立行政法人産業技術総合研究所 Hydrogen heat exchanger for a hydrogen filling system
US20120216915A1 (en) * 2009-10-05 2012-08-30 National Institute Of Advanced Industrial Science And Technology Hydrogen heat exchanger for a hydrogen filling system
CN103644450A (en) * 2013-11-20 2014-03-19 北京宇航系统工程研究所 High pressure heat exchange helium gas storage tank at liquid hydrogen temperature
JP2017020440A (en) * 2015-07-13 2017-01-26 株式会社Ihi Liquefied gas injection device
KR102363202B1 (en) * 2021-08-22 2022-02-16 권기진 Generation and storage system for high purity hydrogen
US11971142B2 (en) * 2022-07-04 2024-04-30 Toyota Jidosha Kabushiki Kaisha Hydrogen supplying device and hydrogen engine vehicle

Similar Documents

Publication Publication Date Title
CA2917035C (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
JP2009127813A (en) Hydrogen gas supply method and hydrogen gas supply installation
US10781975B2 (en) Liquefied-fluid storage tank
JP6738642B2 (en) System that combines gas supply equipment and cooling equipment
US10006697B2 (en) Station and method for supplying a flammable fluid fuel
US20080209917A1 (en) Storage Tank For Cryogenic Media
US20150219391A1 (en) Method and apparatus for recovery of condensable gases from liquid storage tanks
CN110651151B (en) Liquefied gas supply backup system and liquefied gas backup supply method
JP2008505297A (en) Method and system for supplying carbon dioxide
JP3123020B2 (en) Method and apparatus for boosting high purity gas to ultra high pressure
US11493175B2 (en) Method for filling tanks of hydrogen-fueled vehicles
JP4634231B2 (en) Low temperature liquefied gas storage device, power generation device having the same, and moving body
US20210198095A1 (en) Station for filling tanks of hydrogen-fuelled vehicles
TW201730475A (en) Method and heat exchanger for recovering cold during the re-gasification of cryogenic liquids
JP2011001993A (en) Liquefied hydrogen storage supply equipment
US20130327404A1 (en) Method for efficiently delivering liquid argon to a furnace
US20170191621A1 (en) Liquid cryogen vaporizer method and system
WO2011019284A1 (en) A plant comprising a tank for storing of liquid natural gas (lng) as marine fuel
WO2015045992A1 (en) Liquefied gas vaporization system and liquefied gas vaporization method
JP2009192004A (en) Liquefied gas vaporizing equipment
CN110809691A (en) Station and method for filling a pressurized gas tank
US20170191620A1 (en) Liquid cryogen vaporizer method and system
JP6492546B2 (en) Low temperature liquefied gas equipment
JP2009204040A (en) Transfer device for solid-liquid two-phase fluid
KR101330276B1 (en) Air separating apparatus and operating method for thereof