JP2009204040A - Transfer device for solid-liquid two-phase fluid - Google Patents

Transfer device for solid-liquid two-phase fluid Download PDF

Info

Publication number
JP2009204040A
JP2009204040A JP2008045446A JP2008045446A JP2009204040A JP 2009204040 A JP2009204040 A JP 2009204040A JP 2008045446 A JP2008045446 A JP 2008045446A JP 2008045446 A JP2008045446 A JP 2008045446A JP 2009204040 A JP2009204040 A JP 2009204040A
Authority
JP
Japan
Prior art keywords
liquid
container
solid
phase fluid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008045446A
Other languages
Japanese (ja)
Inventor
Seiichiro Kimura
誠一郎 木村
Kenji Nakamichi
憲治 中道
Yuichi Kihara
勇一 木原
Akira Nakamura
亮 中村
Takanobu Kamiya
卓伸 神谷
Takashi Maemura
孝志 前村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008045446A priority Critical patent/JP2009204040A/en
Publication of JP2009204040A publication Critical patent/JP2009204040A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transfer device for solid-liquid two-phase fluid, wherein negative pressure countermeasures are applied during transfer. <P>SOLUTION: A feed side container T<SB>1</SB>, a reception side container T<SB>2</SB>and a transfer pipe 1 are formed adaptable to vacuum. A vacuum pump 6 and a vacuum pump 7 are provided for controlling a degree of vacuum in the feed side container T<SB>1</SB>and for controlling a degree of vacuum in the reception side container T<SB>2</SB>, respectively. When transferring the solid-liquid two-phase fluid S<SB>1</SB>, the vacuum pumps 6, 7 are used for setting negative pressure in both the feed side container T<SB>1</SB>and the reception side container T<SB>2</SB>and pressure in the feed side container T<SB>1</SB>to be certain differential pressure higher than pressure in the reception side container T<SB>2</SB>to forcibly feed the solid-liquid two-phase fluid into the reception side container T<SB>2</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、スラッシュ水素等、固体と液体とを混合した固液二相流体の移送装置に関する。   The present invention relates to a solid-liquid two-phase fluid transfer device in which a solid and a liquid such as slush hydrogen are mixed.

将来の水素利用社会における水素利用形態として、高密度での保存が可能であることから、液体水素は有力な候補の一つである。この液体水素は、沸点が20K(一253℃)であることから、蒸発によりボイルオフガス(以下、BOGと呼ぶ。)が発生し、ロスの発生が考えられる。   Liquid hydrogen is one of the promising candidates because it can be stored at high density as a form of hydrogen utilization in the future hydrogen utilization society. Since this liquid hydrogen has a boiling point of 20K (1253 ° C.), boil-off gas (hereinafter referred to as “BOG”) is generated by evaporation, and loss can be considered.

一方、液体水素と固体水素を混合したスラッシュ水素は、同体積の大気圧沸点液体水素と比較して、密度が10%以上、保有寒冷量が30%以上増加するため、BOG発生の抑制と貯蔵密度の更なる向上が可能であり、液体水素より付加価値が高い媒体として、スラッシュ水素を利用する機器(製造装置、供給装置、貯蔵装置、移送装置等)の開発が現在進められている。   On the other hand, slush hydrogen, which is a mixture of liquid hydrogen and solid hydrogen, has an increase in density of 10% or more and the amount of cold held by 30% or more compared to the same volume of atmospheric pressure boiling liquid hydrogen. Development of equipment (manufacturing apparatus, supply apparatus, storage apparatus, transfer apparatus, etc.) that uses slush hydrogen as a medium that can further increase the density and has higher added value than liquid hydrogen is currently underway.

特開平8−74773号公報Japanese Patent Laid-Open No. 8-74773 特開2002−189024号公報JP 2002-189024 A 特開2006−153208号公報JP 2006-153208 A

水素の物性上、固体、液体、気体の三状態が共存できる点は三重点(13.8K/0.007Mpa(≒53Torr))のみである。そのため、三重点以外の条件下で、気体水素と固体水素が接触した場合、接触点付近では、気体水素の凝縮による圧力の低下と固体水素の融解が発生する。   Due to the physical properties of hydrogen, the triple point (13.8 K / 0.007 Mpa (≈53 Torr)) is the only point where the three states of solid, liquid, and gas can coexist. Therefore, when gaseous hydrogen and solid hydrogen are in contact under conditions other than the triple point, pressure drop due to condensation of gaseous hydrogen and melting of solid hydrogen occur near the contact point.

そして、液体水素と固体水素を混合したスラッシュ水素を移送装置により移送する際には、固体水素と気体水素とが接触する可能性があるため、上述した理由により、容器及び配管内が負圧になるおそれがある。スラッシュ水素の移送には、ポンプ等の使用が困難であるため、移送には容器間の差圧を利用しているが、容器及び配管内が負圧になると、移送時の流量制御を失い、移送装置の運用を困難にしていた。   Then, when transferring slush hydrogen mixed with liquid hydrogen and solid hydrogen by a transfer device, there is a possibility that solid hydrogen and gaseous hydrogen come into contact with each other. There is a risk. Since it is difficult to use a pump or the like for the transfer of slush hydrogen, the pressure difference between the containers is used for the transfer, but when the container and the piping become negative pressure, the flow control during the transfer is lost, Operation of the transfer device was difficult.

これを、図9を参照して説明する、なお、図9(a)は、従来の移送装置における移送前の状態を示す図であり、図9(b)は、従来の移送装置における移送時の状態を示す図である。   This will be described with reference to FIG. 9. FIG. 9 (a) is a diagram showing a state before transfer in the conventional transfer device, and FIG. 9 (b) is a diagram showing the state during transfer in the conventional transfer device. It is a figure which shows the state of.

図9(a)に示すように、従来の移送装置において、移送前には、送り側容器T1にスラッシュ水素S1が貯蔵されており、送り側容器T1は、空気等が混入しないように、大気圧以上の圧力P1の気体水素G1で加圧されている。又、受け側容器T2も、空気等が混入しないように、大気圧以上の圧力P2の気体水素G2で加圧されている。そして、送り側容器T1と受け側容器T2との間は、バルブ82を有する移送配管81で接続されている。送り側容器T1の圧力P1は、受け側容器T2の圧力P2より大きいことから、バルブ82を開くと、その差圧により、移送配管81を介して、スラッシュ水素S1が受け側容器T2に移送されることになる。 As shown in FIG. 9 (a), in the conventional transfer apparatus, prior to transfer, the feed side container T 1 are stored the slush hydrogen S 1, feed side container T 1 is such that the air or the like is not mixed Furthermore, it is pressurized with gaseous hydrogen G 1 having a pressure P 1 equal to or higher than atmospheric pressure. The receiving container T 2 is also pressurized with gaseous hydrogen G 2 having a pressure P 2 equal to or higher than atmospheric pressure so that air or the like does not enter. The sending container T 1 and the receiving container T 2 are connected by a transfer pipe 81 having a valve 82. Since the pressure P 1 of the sending side container T 1 is higher than the pressure P 2 of the receiving side container T 2 , when the valve 82 is opened, the slush hydrogen S 1 is received via the transfer pipe 81 due to the differential pressure. It will be transferred to the container T 2.

ところが、スラッシュ水素S1が受け側容器T2に移送されると、図9(b)に示すように、送り側容器T2にスラッシュ水素S2が移送されると共に、移送されたスラッシュ水素S2中の固体水素と受け側容器T2中の気体水素G2とが接触することになる。三重点以外の条件下で気体水素G2と固体水素が接触すると、気体水素G2の凝縮Cが発生し、それに伴い、受け側容器T2の圧力P2が低下してしまう。このとき、受け側容器T2の圧力P2は大気圧以下、つまり、負圧になるまで(三重点の圧力0.007Mpaまで)低下してしまい、その場合、受け側容器T1の圧力P1との差圧が大きくなりすぎて、流量制御が失われてしまう問題が発生していた。 However, when the slush hydrogen S 1 is transferred to the receiving vessel T 2 , as shown in FIG. 9B, the slush hydrogen S 2 is transferred to the sending vessel T 2 and the transferred slush hydrogen S is transferred. a solid hydrogen in 2 and receiving side gaseous hydrogen G 2 in the container T 2 are brought into contact. When gaseous hydrogen G 2 and solid hydrogen come into contact under conditions other than the triple point, condensation C of gaseous hydrogen G 2 occurs, and the pressure P 2 of the receiving side container T 2 decreases accordingly. At this time, the pressure P 2 in the receiving container T 2 is reduced to an atmospheric pressure or lower, that is, until it becomes a negative pressure (to a triple point pressure of 0.007 Mpa). In that case, the pressure P 2 in the receiving container T 1 There was a problem that the flow rate control was lost because the differential pressure with 1 was too large.

又、従来の移送装置においては、送り側容器T1、受け側容器T2、移送配管81、バルブ82等は、負圧(真空)に対応したものではなく、受け側容器T2が負圧になった場合には、接続部分等から空気が混入する問題も発生していた。 Further, in the conventional transfer device, the feed side container T 1 , the receive side container T 2 , the transfer pipe 81, the valve 82, etc. do not correspond to negative pressure (vacuum), but the receive side container T 2 has negative pressure. In such a case, there is a problem that air is mixed in from the connection portion.

このような問題は、例えば、受け側容器T2が負圧にならないように、水素より沸点が低いヘリウムガスにより加圧してやれば解消可能である。しかしながら、燃料電池自動車、液体水素−酸素ロケット等において水素を利用する場合、燃料の液体水素に水素以外の不純物が混入することは好ましくなく、水素単体の利用が求められている。従って、移送装置における負圧対策として、ヘリウムガス等の不純物を用いることは望ましくない。 Such a problem can be solved, for example, by pressurizing with a helium gas having a boiling point lower than that of hydrogen so that the receiving container T 2 does not become negative pressure. However, when hydrogen is used in a fuel cell vehicle, a liquid hydrogen-oxygen rocket, etc., it is not preferable that impurities other than hydrogen are mixed in the liquid hydrogen of the fuel, and the use of hydrogen alone is required. Therefore, it is not desirable to use impurities such as helium gas as a countermeasure against negative pressure in the transfer device.

このように、スラッシュ水素等の固液二相流体の移送装置においては、移送時に負圧が発生する問題があり、負圧対策を施した上で、移送することが望まれている。   As described above, in a transfer device for a solid-liquid two-phase fluid such as slush hydrogen, there is a problem that a negative pressure is generated at the time of transfer, and it is desired to transfer after taking measures against the negative pressure.

本発明は上記課題に鑑みなされたもので、移送の際の負圧対策が施された固液二相流体の移送装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a solid-liquid two-phase fluid transfer device in which measures against negative pressure during transfer are taken.

上記課題を解決する第1の発明に係る固液二相流体の移送装置は、
固液二相流体を貯蔵する第1の容器から第2の容器に移送配管を通して前記固液二相流体を移送する固液二相流体の移送装置において、
前記第1の容器、前記第2の容器及び前記移送配管を真空に対応したものから構成し、
前記第1の容器の真空度を制御する第1の真空制御手段と、
前記第2の容器の真空度を制御する第2の真空制御手段とを設け、
前記固液二相流体を移送する際には、前記第1の真空制御手段及び前記第2の真空制御手段により、前記第1の容器及び前記第2の容器を共に負圧とすると共に、一定の差圧で前記第1の容器の圧力を前記第2の容器の圧力より大きくして、前記第2の容器に前記固液二相流体を移送することを特徴とする。
The solid-liquid two-phase fluid transfer device according to the first invention for solving the above-mentioned problems is as follows.
In the solid-liquid two-phase fluid transfer device for transferring the solid-liquid two-phase fluid from the first container for storing the solid-liquid two-phase fluid to the second container through the transfer pipe,
The first container, the second container, and the transfer pipe are configured from one corresponding to vacuum,
First vacuum control means for controlling the degree of vacuum of the first container;
Providing a second vacuum control means for controlling the degree of vacuum of the second container,
When transferring the solid-liquid two-phase fluid, both the first container and the second container are set to a negative pressure by the first vacuum control unit and the second vacuum control unit, and are constant. The pressure of the first container is made larger than the pressure of the second container by the differential pressure of the above, and the solid-liquid two-phase fluid is transferred to the second container.

上記課題を解決する第2の発明に係る固液二相流体の移送装置は、
固液二相流体を貯蔵する第1の容器から第2の容器に移送配管を通して前記固液二相流体を移送する固液二相流体の移送装置において、
前記第1の容器内部の前記固液二相流体を、前記固液二相流体と同種の液体の下層に貯蔵しておくと共に、前記固液二相流体が移送される前記第2の容器内部にも、前記固液二相流体と同種の液体を貯蔵しておき、
前記移送配管を前記第1の容器及び前記第2の容器の底部に接続し、
前記第1の容器を加圧する加圧制御手段と、
前記第2の容器の圧力を制御する圧力制御手段とを設け、
前記固液二相流体を移送する際には、前記加圧制御手段により前記第1の容器を加圧すると共に、前記加圧制御手段及び前記圧力制御手段により、一定の差圧で前記第1の容器の圧力を前記第2の容器の圧力より大きくして、前記第2の容器内部に貯蔵された前記固液二相流体と同種の液体の下層側に前記固液二相流体を移送することを特徴とする。
A solid-liquid two-phase fluid transfer device according to a second invention for solving the above-mentioned problems is as follows.
In the solid-liquid two-phase fluid transfer device for transferring the solid-liquid two-phase fluid from the first container for storing the solid-liquid two-phase fluid to the second container through the transfer pipe,
The solid-liquid two-phase fluid inside the first container is stored in a lower layer of the same kind of liquid as the solid-liquid two-phase fluid, and the second container inside the solid-liquid two-phase fluid is transferred In addition, the same kind of liquid as the solid-liquid two-phase fluid is stored,
Connecting the transfer pipe to the bottom of the first container and the second container;
Pressurization control means for pressurizing the first container;
Pressure control means for controlling the pressure of the second container,
When transferring the solid-liquid two-phase fluid, the first container is pressurized by the pressurization control means, and the first control is performed with a constant differential pressure by the pressurization control means and the pressure control means. The pressure of the container is made larger than the pressure of the second container, and the solid-liquid two-phase fluid is transferred to the lower layer side of the same kind of liquid as the solid-liquid two-phase fluid stored in the second container. It is characterized by.

上記課題を解決する第3の発明に係る固液二相流体の移送装置は、
上記第2の発明に記載の固液二相流体の移送装置において、
前記第2の容器内部に、前記第2の容器内部に貯蔵された前記固液二相流体と同種の液体の対流を防止する対流防止板を設けたことを特徴とする。
A solid-liquid two-phase fluid transfer device according to a third invention for solving the above-mentioned problems is as follows.
In the solid-liquid two-phase fluid transfer device according to the second invention,
A convection prevention plate for preventing convection of the same kind of liquid as the solid-liquid two-phase fluid stored in the second container is provided inside the second container.

上記課題を解決する第4の発明に係る固液二相流体の移送装置は、
固液二相流体を貯蔵する第1の容器から第2の容器に移送配管を通して前記固液二相流体を移送する固液二相流体の移送装置において、
前記固液二相流体と同種の低温の気体を生成する低温気体生成手段と、
前記低温気体生成手段で生成された気体を用いて、前記第1の容器を加圧する第1の加圧制御手段と、
前記低温気体生成手段で生成された気体を用いて、前記第2の容器を加圧する第2の加圧制御手段とを設け、
前記固液二相流体を移送する際には、前記第1の加圧制御手段及び前記第2の加圧制御手段により、前記第1の容器及び前記第2の容器を加圧すると共に、一定の差圧で前記第1の容器の圧力を前記第2の容器の圧力より大きくして、前記第2の容器に前記固液二相流体を移送することを特徴とする。
A solid-liquid two-phase fluid transfer device according to a fourth invention for solving the above-described problems is
In the solid-liquid two-phase fluid transfer device for transferring the solid-liquid two-phase fluid from the first container for storing the solid-liquid two-phase fluid to the second container through the transfer pipe,
Low-temperature gas generating means for generating a low-temperature gas of the same kind as the solid-liquid two-phase fluid;
First pressurizing control means for pressurizing the first container using the gas generated by the low temperature gas generating means;
Using a gas generated by the low temperature gas generating means, and a second pressurizing control means for pressurizing the second container,
When transferring the solid-liquid two-phase fluid, the first container and the second container are pressurized by the first pressure control unit and the second pressure control unit, The solid-liquid two-phase fluid is transferred to the second container by making the pressure of the first container larger than the pressure of the second container with a differential pressure.

上記課題を解決する第5の発明に係る固液二相流体の移送装置は、
上記第4の発明に記載の固液二相流体の移送装置において、
前記低温気体生成手段は、
前記固液二相流体と同種の気体を冷却して低温の気体を生成する熱交換器、又は、前記固液二相流体と同種の液体を気化して低温の気体を生成する熱交換器から構成したことを特徴とする。
A solid-liquid two-phase fluid transfer device according to a fifth invention for solving the above-mentioned problems
In the solid-liquid two-phase fluid transfer device according to the fourth invention,
The low temperature gas generating means includes:
From a heat exchanger that cools the same type of gas as the solid-liquid two-phase fluid to generate a low-temperature gas, or a heat exchanger that generates a low-temperature gas by vaporizing the same type of liquid as the solid-liquid two-phase fluid It is characterized by comprising.

上記課題を解決する第6の発明に係る固液二相流体の移送装置は、
固液二相流体を貯蔵する第1の容器から第2の容器に移送配管を通して前記固液二相流体を移送する固液二相流体の移送装置において、
前記移送配管を分岐する分岐配管と、
前記分岐配管に流れる前記固液二相流体を気化して低温の気体を生成する低温気体生成手段と、
前記低温気体生成手段で生成された気体を用いて、前記第1の容器を加圧する第1の加圧制御手段と、
前記低温気体生成手段で生成された気体を用いて、前記第2の容器を加圧する第2の加圧制御手段とを設け、
前記固液二相流体を移送する際には、前記第1の加圧制御手段及び前記第2の加圧制御手段により、前記第1の容器及び前記第2の容器を加圧すると共に、一定の差圧で前記第1の容器の圧力を前記第2の容器の圧力より大きくして、前記第2の容器に前記固液二相流体を移送することを特徴とする。
A solid-liquid two-phase fluid transfer device according to a sixth invention for solving the above-mentioned problems is as follows.
In the solid-liquid two-phase fluid transfer device for transferring the solid-liquid two-phase fluid from the first container for storing the solid-liquid two-phase fluid to the second container through the transfer pipe,
A branch pipe for branching the transfer pipe;
A low-temperature gas generating means for generating a low-temperature gas by vaporizing the solid-liquid two-phase fluid flowing in the branch pipe;
First pressurizing control means for pressurizing the first container using the gas generated by the low temperature gas generating means;
Using a gas generated by the low temperature gas generating means, and a second pressurizing control means for pressurizing the second container,
When transferring the solid-liquid two-phase fluid, the first container and the second container are pressurized by the first pressure control unit and the second pressure control unit, The solid-liquid two-phase fluid is transferred to the second container by making the pressure of the first container larger than the pressure of the second container with a differential pressure.

上記課題を解決する第7の発明に係る固液二相流体の移送装置は、
上記第4から第6のいずれか1つの発明に記載の固液二相流体の移送装置において、
前記移送配管を前記第1の容器及び前記第2の容器の底部に接続し、
前記第1の容器内部の前記固液二相流体を、前記固液二相流体と同種の液体の下層に貯蔵しておくと共に、前記固液二相流体が移送される前記第2の容器内部にも、前記固液二相流体と同種の液体を貯蔵しておき、
前記固液二相流体を移送する際には、前記第2の容器内部に貯蔵された前記固液二相流体と同種の液体の下層側に前記固液二相流体を移送することを特徴とする。
A solid-liquid two-phase fluid transfer device according to a seventh invention for solving the above-mentioned problems is
In the solid-liquid two-phase fluid transfer device according to any one of the fourth to sixth inventions,
Connecting the transfer pipe to the bottom of the first container and the second container;
The solid-liquid two-phase fluid inside the first container is stored in a lower layer of the same kind of liquid as the solid-liquid two-phase fluid, and the second container inside the solid-liquid two-phase fluid is transferred In addition, the same kind of liquid as the solid-liquid two-phase fluid is stored,
When transferring the solid-liquid two-phase fluid, the solid-liquid two-phase fluid is transferred to a lower layer side of the same kind of liquid as the solid-liquid two-phase fluid stored in the second container. To do.

上記課題を解決する第8の発明に係る固液二相流体の移送装置は、
固液二相流体を貯蔵する第1の容器から第2の容器に移送配管を通して前記固液二相流体を移送する固液二相流体の移送装置において、
前記第1の容器内部及び前記第2の容器内部を2つに分離して、前記第1の容器内部の分離された一方側に前記固液二相流体と同種の液体を貯蔵し、前記第1の容器内部の分離された他方側に前記固液二相流体を貯蔵し、前記第2の容器内部の分離された一方側に前記固液二相流体と同種の液体を貯蔵しておき、
前記第1の容器内部の分離された一方側に貯蔵された前記固液二相流体と同種の液体を気化する第1の加熱手段と、
前記第1の加熱手段で気化された気体を用いて、前記第1の容器を加圧する第1の加圧制御手段と、
前記第2の容器内部の分離された一方側に貯蔵された前記固液二相流体と同種の液体を気化する第2の加熱手段と、
前記第2の加熱手段で気化された気体を用いて、前記第2の容器を加圧する第2の圧力制御手段とを設けて、
前記固液二相流体を移送する際には、前記第1の加圧制御手段及び前記第2の加圧制御手段により、前記第1の容器及び前記第2の容器を加圧すると共に、一定の差圧で前記第1の容器の圧力を前記第2の容器の圧力より大きくして、前記第2の容器内部の分離された他方側に前記固液二相流体を移送することを特徴とする。
A solid-liquid two-phase fluid transfer device according to an eighth invention for solving the above-mentioned problems is as follows.
In the solid-liquid two-phase fluid transfer device for transferring the solid-liquid two-phase fluid from the first container for storing the solid-liquid two-phase fluid to the second container through the transfer pipe,
The inside of the first container and the inside of the second container are separated into two, and the same kind of liquid as the solid-liquid two-phase fluid is stored on one side separated inside the first container. Storing the solid-liquid two-phase fluid on the other side separated inside the one container, and storing the same kind of liquid as the solid-liquid two-phase fluid on the one separated side inside the second container;
First heating means for vaporizing a liquid of the same type as the solid-liquid two-phase fluid stored on one side separated from the inside of the first container;
First pressurizing control means for pressurizing the first container using the gas vaporized by the first heating means;
A second heating means for vaporizing a liquid of the same type as the solid-liquid two-phase fluid stored on one side separated from the inside of the second container;
A second pressure control unit configured to pressurize the second container using the gas vaporized by the second heating unit;
When transferring the solid-liquid two-phase fluid, the first container and the second container are pressurized by the first pressure control unit and the second pressure control unit, The pressure of the first container is made larger than the pressure of the second container with a differential pressure, and the solid-liquid two-phase fluid is transferred to the other separated side of the second container. .

上記課題を解決する第9の発明に係る固液二相流体の移送装置は、
上記第8の発明に記載の固液二相流体の移送装置において、
前記移送配管を、前記第1の容器内部の分離された他方側の底部と前記第2の容器内部の分離された他方側の底部に接続し、
前記第1の容器内部の分離された他方側の前記固液二相流体を、前記固液二相流体と同種の液体の下層に貯蔵しておくと共に、前記固液二相流体が移送される前記第2の容器内部の分離された他方側にも、前記固液二相流体と同種の液体を貯蔵しておき、
前記固液二相流体を移送する際には、前記第2の容器内部の分離された他方側に貯蔵された前記固液二相流体と同種の液体の下層側に前記固液二相流体を移送することを特徴とする。
A solid-liquid two-phase fluid transfer device according to a ninth invention for solving the above-mentioned problems is as follows.
In the solid-liquid two-phase fluid transfer device according to the eighth invention,
Connecting the transfer pipe to the separated bottom portion inside the first container and the separated bottom portion inside the second container;
The separated solid-liquid two-phase fluid inside the first container is stored in a lower layer of the same kind of liquid as the solid-liquid two-phase fluid, and the solid-liquid two-phase fluid is transferred. The same kind of liquid as the solid-liquid two-phase fluid is stored on the other separated side of the second container,
When transferring the solid-liquid two-phase fluid, the solid-liquid two-phase fluid is placed on the lower layer side of the same kind of liquid as the solid-liquid two-phase fluid stored on the other separated side inside the second container. It is transported.

上記課題を解決する第10の発明に係る固液二相流体の移送装置は、
固液二相流体を貯蔵する第1の容器から第2の容器に移送配管を通して前記固液二相流体を移送する固液二相流体の移送装置において、
前記第1の容器内部の前記固液二相流体を、前記固液二相流体と同種の液体の下層に貯蔵しておくと共に、前記固液二相流体が移送される前記第2の容器内部にも、前記固液二相流体と同種の液体を貯蔵しておき、
前記移送配管を、前記第1の容器の底部と前記第2の容器の底部に接続し、
前記第1の容器を加圧する加圧制御手段と、
前記第2の容器内部に貯蔵された前記固液二相流体と同種の液体の上層を気化する局所加熱手段と、
前記局所加熱手段で気化された気体を用いて、前記第2の容器の圧力を制御する圧力制御手段とを設け、
前記固液二相流体を移送する際には、前記加圧制御手段により前記第1の容器を加圧すると共に、前記加圧制御手段及び前記圧力制御手段により、一定の差圧で前記第1の容器の圧力を前記第2の容器の圧力より大きくして、前記第2の容器内部に貯蔵された前記固液二相流体と同種の液体の下層側に前記固液二相流体を移送することを特徴とする。
A solid-liquid two-phase fluid transfer device according to a tenth invention for solving the above-mentioned problems is
In the solid-liquid two-phase fluid transfer device for transferring the solid-liquid two-phase fluid from the first container for storing the solid-liquid two-phase fluid to the second container through the transfer pipe,
The solid-liquid two-phase fluid inside the first container is stored in a lower layer of the same kind of liquid as the solid-liquid two-phase fluid, and the second container inside the solid-liquid two-phase fluid is transferred In addition, the same kind of liquid as the solid-liquid two-phase fluid is stored,
Connecting the transfer pipe to the bottom of the first container and the bottom of the second container;
Pressurization control means for pressurizing the first container;
A local heating means for vaporizing an upper layer of the same liquid as the solid-liquid two-phase fluid stored in the second container;
A pressure control means for controlling the pressure of the second container using the gas vaporized by the local heating means;
When transferring the solid-liquid two-phase fluid, the first container is pressurized by the pressurization control means, and the first control is performed with a constant differential pressure by the pressurization control means and the pressure control means. The pressure of the container is made larger than the pressure of the second container, and the solid-liquid two-phase fluid is transferred to the lower layer side of the same kind of liquid as the solid-liquid two-phase fluid stored in the second container. It is characterized by.

上記課題を解決する第11の発明に係る固液二相流体の移送装置は、
上記第10の発明に記載の固液二相流体の移送装置において、
前記局所加熱手段として、超電導体からなるヒータを用いたことを特徴とする。
A solid-liquid two-phase fluid transfer device according to an eleventh invention for solving the above-mentioned problems is
In the solid-liquid two-phase fluid transfer device according to the tenth invention,
A heater made of a superconductor is used as the local heating means.

本発明によれば、固液二相流体、例えば、スラッシュ水素の移送中に負圧が発生しても、安定して移送を行うことができる。   According to the present invention, even if a negative pressure is generated during the transfer of a solid-liquid two-phase fluid, for example, slush hydrogen, the transfer can be performed stably.

以下、図1〜図8を参照して、本発明に係る固液二相流体の移送装置の実施形態のいくつかを説明する。   Hereinafter, some embodiments of the solid-liquid two-phase fluid transfer device according to the present invention will be described with reference to FIGS.

図1は、本発明に係る固液二相流体の移送装置の実施形態の一例を示す概略構成図である。
図1に示すように、本実施例の固液二相流体の移送装置は、固液二相流体であるスラッシュ水素S1を気体水素G1の雰囲気下で貯蔵する送り側容器T1(第1の容器)と、移送されたスラッシュ水素S2を気体水素G2の雰囲気下で貯蔵する受け側容器T2(第2の容器)と、送り側容器T1と受け側容器T2との間を接続する移送配管1と、移送配管1に設けられたバルブ2とを有しており、更に、送り側容器T1の上部に接続された配管3及び配管3に設けられたバルブ4を介して、送り側容器T1に気体水素を供給する水素ボンベ5と、送り側容器T1を負圧の圧力に制御する真空ポンプ6(第1の真空制御手段)と、受け側容器T2を負圧の圧力に制御する真空ポンプ7(第2の真空制御手段)とを有する。そして、送り側容器T1、受け側容器T2、移送配管1、バルブ2等は、負圧(真空)に対応したものから構成している。なお、送り側容器T1、受け側容器T2等は、断熱構造となっており、これは、後述の実施例2〜8でも同様である。
FIG. 1 is a schematic configuration diagram showing an example of an embodiment of a solid-liquid two-phase fluid transfer device according to the present invention.
As shown in FIG. 1, the transfer device of the solid-liquid two-phase fluid of the present embodiment, the feed side container T 1 slush hydrogen S 1 is a solid-liquid two-phase fluid is stored under an atmosphere of gaseous hydrogen G 1 (first 1 container), a receiving container T 2 (second container) for storing the transferred slush hydrogen S 2 in an atmosphere of gaseous hydrogen G 2 , and a sending container T 1 and a receiving container T 2 . A transfer pipe 1 for connecting the two and a valve 2 provided in the transfer pipe 1, and further, a pipe 3 connected to the upper part of the feed side container T 1 and a valve 4 provided in the pipe 3. through, a hydrogen cylinder 5 for supplying gaseous hydrogen to the feed side container T 1, the vacuum pump 6 to control the feeding side container T 1 to a pressure of negative pressure (the first vacuum control means), receiving side container T 2 And a vacuum pump 7 (second vacuum control means) for controlling the pressure to a negative pressure. The sending side container T 1 , the receiving side container T 2 , the transfer pipe 1, the valve 2, etc. are configured from those corresponding to negative pressure (vacuum). The sending side container T 1 , the receiving side container T 2 and the like have a heat insulating structure, and this is the same in Examples 2 to 8 described later.

移送配管1は、送り側容器T1においては、送り側容器T1の上部に接続されて、送り側容器T1の底部の方まで延設されており、その供給口が、送り側容器T1に貯蔵されたスラッシュ水素S1中に配置されている。又、移送配管1は、受け側容器T2においては、送り側容器T2の上部に接続されて、その排出口が、受け側容器T2を満たす気体水素G2中に配置されている。 Transfer pipe 1, in the feed-side tube T 1, connected to an upper portion of the feed side container T 1, which extends to towards the bottom of the feed side container T 1, the supply port, the feed side container T 1 is disposed in slush hydrogen S 1 stored in 1 . Moreover, transfer pipe 1, in the receiving side container T 2, connected to an upper portion of the feed side container T 2, the outlet is arranged in the gas hydrogen G 2 satisfying receiving side container T 2.

そして、移送時には、図示しない制御装置の制御下において、送り側容器T1は、圧力センサ、真空ポンプ6により、内部の圧力P1が大気圧以下の所定圧力(0.007Mpa以上0.1Mpa(≒760torr)以下の範囲)となるように制御され、受け側容器T2も、圧力センサ、真空ポンプ7により、内部の圧力P2が大気圧以下の所定圧力(0.007Mpa以上0.1Mpa以下の範囲)となるように制御され、更に、送り側容器T1の圧力P1が受け側容器T2の圧力P2より一定の差圧で大きくなるように制御されている。例えば、受け側容器T2の圧力P2が三重点の圧力0.007Mpa程度まで低下することを想定する場合には、圧力P1を0.027Mpa(≒200torr)程度に制御すればよい。 At the time of transfer is under the control of a control device (not shown), the feed side container T 1, the pressure sensor, the vacuum pump 6, the pressure P 1 is subatmospheric predetermined pressure (0.007 MPa or higher 0.1 Mpa ( ≈760 torr) or less), and the receiving vessel T 2 is also controlled by the pressure sensor and the vacuum pump 7 so that the internal pressure P 2 is a predetermined pressure (0.007 Mpa or more and 0.1 Mpa or less). Further, the pressure P 1 of the sending side container T 1 is controlled to be larger than the pressure P 2 of the receiving side container T 2 with a constant differential pressure. For example, when the pressure P 2 of the receiving side container T 2 is supposed to be lowered to a pressure of about 0.007Mpa triple point it may control the pressure P 1 in 0.027Mpa (≒ 200torr) degree.

従って、バルブ2を開くと、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧により、移送配管1を介して、スラッシュ水素S1が受け側容器T2に移送されることになる。このとき、送り側容器T1の圧力P1と受け側容器T2の圧力P2とを大気圧以下の所定圧力に制御すると共に、圧力P1と圧力P2との差圧を一定に維持するように制御しているため、従来のように、差圧が大きくなりすぎて、流量制御が失われることはない。更に、受け側容器T2の圧力P2を三重点の圧力0.007Mpaに制御する場合には、三重点に近い条件下で、気体水素G2と固体水素が接触することになり、気体水素G2が凝縮しても、凝縮による圧力低下の影響は小さくなる。 Therefore, when opening the valve 2, the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the feed side container T 1, via a transfer pipe 1, slush hydrogen S 1 is received side container T 2 Will be transferred. Maintaining this time, the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the feed side container T 1 controls below a predetermined atmospheric pressure, the pressure difference between the pressure P 1 and the pressure P 2 at a constant Therefore, the flow rate control is not lost because the differential pressure becomes too large as in the prior art. Further, when the pressure P 2 of the receiving vessel T 2 is controlled to a triple point pressure of 0.007 Mpa, the gaseous hydrogen G 2 and the solid hydrogen are in contact with each other under conditions close to the triple point. Even if G 2 is condensed, the influence of the pressure drop due to the condensation is reduced.

このように、本実施例の固液二相流体の移送装置では、移送時に送り側容器T1の圧力P1と受け側容器T2の圧力P2を大気圧以下の負圧とし、負圧状況下において、圧力P1と圧力P2との間に一定の差圧を設けて、移送を行うので、移送流量の制御を失うことなく、安定して移送を行うことができる。 Thus, in the transfer apparatus of the solid-liquid two-phase fluid of the present embodiment, the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the feed side container T 1 during transport and following negative pressure atmospheric, negative pressure Under the circumstances, since the transfer is performed by providing a certain differential pressure between the pressure P 1 and the pressure P 2 , the transfer can be performed stably without losing control of the transfer flow rate.

図2は、本発明に係る固液二相流体の移送装置の実施形態の他の一例を示す概略構成図である。
図2に示すように、本実施例の固液二相流体の移送装置は、スラッシュ水素S1を気体水素G1の雰囲気下で液体水素L1の下層に貯蔵する送り側容器T1(第1の容器)と、移送されたスラッシュ水素S2を気体水素G2の雰囲気下で液体水素L2の下層に貯蔵する受け側容器T2(第2の容器)と、送り側容器T1と受け側容器T2との間を接続する移送配管11と、移送配管11に設けられたバルブ12とを有しており、更に、送り側容器T1の上部に接続された配管13及び配管13に設けられたバルブ14を介して、送り側容器T1に気体水素を供給する水素ボンベ13(加圧制御手段)と、送り側容器T2の上部に接続された配管16と、配管16に設けられ、受け側容器T2内の気体水素G2を放出して、内部の圧力P2を制御するバルブ17(圧力制御手段)とを有する。なお、本実施例において、送り側容器T1、受け側容器T2、移送配管11、バルブ12等は、負圧に対応したものでなくてもよい。
FIG. 2 is a schematic configuration diagram illustrating another example of the embodiment of the solid-liquid two-phase fluid transfer device according to the present invention.
As shown in FIG. 2, the transfer device of the solid-liquid two-phase fluid of the present embodiment, the feed side container T 1 is stored in a lower layer of liquid hydrogen L 1 slush hydrogen S 1 in an atmosphere of gaseous hydrogen G 1 (first 1 container), a receiving container T 2 (second container) for storing the transferred slush hydrogen S 2 in the lower layer of liquid hydrogen L 2 under the atmosphere of gaseous hydrogen G 2 , and a sending container T 1 It has a transfer pipe 11 for connecting the receiving side container T 2 and a valve 12 provided in the transfer pipe 11, and further, a pipe 13 and a pipe 13 connected to the upper part of the feed side container T 1. A hydrogen cylinder 13 (pressure control means) for supplying gaseous hydrogen to the feed side container T 1 via the valve 14 provided in the pipe, a pipe 16 connected to the upper part of the feed side container T 2 , and a pipe 16 Bal to provided, gaseous hydrogen G 2 in the receiving side container T 2 by releasing, to control the internal pressure P 2 And 17 (pressure control means). In this embodiment, the sending side container T 1 , the receiving side container T 2 , the transfer pipe 11, the valve 12, etc. may not correspond to negative pressure.

移送配管11は、送り側容器T1においては、送り側容器T1の底部に接続されて、その供給口が、送り側容器T1に貯蔵されたスラッシュ水素S1中に配置されている。又、移送配管11は、受け側容器T2においては、送り側容器T2の底部に接続されて、その排出口が、受け側容器T2に移送されるスラッシュ水素S2中に位置するようにしている。 The transfer pipe 11 is connected to the bottom of the feed side container T 1 in the feed side container T 1 , and its supply port is disposed in the slush hydrogen S 1 stored in the feed side container T 1 . Moreover, transfer pipe 11, in the receiving side container T 2, it is connected to the bottom part of the feed side container T 2, so that its outlet is located in the slush hydrogen S 2 to be transferred to the receiving side container T 2 I have to.

更に、送り側容器T1においては、液体水素L1の下層にスラッシュ水素S1を貯蔵しており、又、送り側容器T2においても、液体水素L2の下層に移送されるスラッシュ水素S2を貯蔵するようにしている。この液体水素L1、L2は、自然に、上層から下層に向かって20.3Kから13.8Kへ温度変化(温度成層化)しており、この温度成層化した液体水素L1、L2が、スラッシュ水素S1、S2と気体水素G1、G2との間に存在することによって、スラッシュ水素S1、S2中の固体水素と気体水素G1、G2との接触を避けるようにしている。 Further, the slush hydrogen S 1 is stored in the lower layer of the liquid hydrogen L 1 in the sending side container T 1 , and the slush hydrogen S transferred to the lower layer of the liquid hydrogen L 2 in the sending side container T 2 . 2 is stored. The liquid hydrogen L 1, L 2 is naturally, the temperature changes from 20.3K to 13.8K from the upper layer toward the lower layer has (thermal stratification), liquid hydrogen L 1 that the temperature stratification, L 2 there, the presence between the slush hydrogen S 1, S 2 and gaseous hydrogen G 1, G 2, avoid contact with the slush hydrogen S 1, S 2 in solid hydrogen and gaseous hydrogen G 1, G 2 I am doing so.

そして、移送時には、図示しない制御装置の制御下において、送り側容器T1は、圧力センサ、配管13、バルブ14及び水素ボンベ15により、内部の圧力P1が大気圧以上の所定圧力となるように制御され、受け側容器T2も、圧力センサ、配管16及びバルブ17により、内部の圧力P2が大気圧以上の所定圧力となるように制御され、更に、送り側容器T1の圧力P1が受け側容器T2の圧力P2より一定の差圧で大きくなるように制御されている。このとき、圧力P1と圧力P2との差圧を大きくしないように制御して、液体水素L2を対流させないようにすることが望ましい。 At the time of transfer, under the control of a control device (not shown), the feed side container T 1 is set so that the internal pressure P 1 becomes a predetermined pressure equal to or higher than atmospheric pressure by the pressure sensor, the pipe 13, the valve 14 and the hydrogen cylinder 15. The receiving side container T 2 is also controlled by the pressure sensor, the pipe 16 and the valve 17 so that the internal pressure P 2 becomes a predetermined pressure equal to or higher than the atmospheric pressure, and the pressure P of the feeding side container T 1 is further controlled. 1 is controlled so than the pressure P 2 of the receiving side container T 2 increases at constant differential pressure. At this time, it is desirable to prevent the liquid hydrogen L 2 from being convected by controlling so as not to increase the differential pressure between the pressure P 1 and the pressure P 2 .

従って、バルブ12を開くと、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧により、移送配管11を介して、スラッシュ水素S1が受け側容器T2に移送されることになる。このとき、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧を一定に維持するように制御しているため、従来のように、差圧が大きくなりすぎて、流量制御が失われることはない。又、圧力P1と圧力P2との差圧を大きくしないように制御しているので、温度成層化した液体水素L2を維持したままで、スラッシュ水素S1が受け側容器T2へゆっくり移送されることになる。従って、移送されたスラッシュ水素S2中の固体水素が気体水素G2と接触する可能性は小さく、従来のように、凝縮による圧力低下が起こる可能性も小さくなる。 Therefore, when opening the valve 12, the feed side due to the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the container T 1, through a transfer pipe 11, slush hydrogen S 1 is received side container T 2 Will be transferred. At this time, since the control to maintain the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the feed side container T 1 constant, as in the prior art, the differential pressure is too large Thus, flow control is not lost. In addition, since the pressure difference between the pressure P 1 and the pressure P 2 is controlled so as not to increase, the slush hydrogen S 1 is slowly transferred to the receiving vessel T 2 while maintaining the temperature-stratified liquid hydrogen L 2. Will be transported. Therefore, the possibility that the solid hydrogen in the transferred slush hydrogen S 2 comes into contact with the gaseous hydrogen G 2 is small, and the possibility that the pressure drop due to condensation occurs as in the conventional case is also small.

このように、本実施例の固液二相流体の移送装置では、温度成層化した液体水素L2を、スラッシュ水素S2と気体水素G2との間に介在させ、圧力P1と圧力P2との間に一定の差圧を設けて、移送を行うので、従来のように、負圧になることはなく、又、移送流量の制御を失うこともなく、安定して移送を行うことができる。 Thus, in the solid-liquid two-phase fluid transfer device of this embodiment, the temperature-stratified liquid hydrogen L 2 is interposed between the slush hydrogen S 2 and the gaseous hydrogen G 2, and the pressure P 1 and the pressure P Since the transfer is performed with a certain differential pressure between the two , it does not become negative pressure as before, and the transfer is stably performed without losing control of the transfer flow rate. Can do.

図3は、本発明に係る固液二相流体の移送装置の実施形態の他の一例を示す概略構成図である。
図3に示すように、本実施例の固液二相流体の移送装置は、スラッシュ水素S1を気体水素G1の雰囲気下で液体水素L1の下層に貯蔵する送り側容器T1(第1の容器)と、移送されたスラッシュ水素S2を気体水素G2の雰囲気下で液体水素L2の下層に貯蔵する受け側容器T2(第2の容器)と、送り側容器T1と受け側容器T2との間を接続する移送配管21と、移送配管21に設けられたバルブ22とを有しており、更に、送り側容器T1の上部に接続された配管23及び配管23に設けられたバルブ24を介して、送り側容器T1に気体水素を供給する水素ボンベ23(加圧制御手段)と、送り側容器T2の上部に接続された配管26と、配管26に設けられ、受け側容器T2内の気体水素G2を放出して、内部の圧力P2を制御するバルブ27(圧力制御手段)と、受け側容器T2内部に設けられた複数枚のバッフル板28(対流防止板)を有する。なお、本実施例においても、送り側容器T1、受け側容器T2、移送配管21、バルブ22等は、負圧に対応したものでなくてもよい。
FIG. 3 is a schematic configuration diagram showing another example of the embodiment of the solid-liquid two-phase fluid transfer device according to the present invention.
As shown in FIG. 3, the transfer device of the solid-liquid two-phase fluid of the present embodiment, the feed side container T 1 is stored in a lower layer of liquid hydrogen L 1 slush hydrogen S 1 in an atmosphere of gaseous hydrogen G 1 (first 1 container), a receiving container T 2 (second container) for storing the transferred slush hydrogen S 2 in the lower layer of liquid hydrogen L 2 under the atmosphere of gaseous hydrogen G 2 , and a sending container T 1 It has a transfer pipe 21 connecting between the receiving side container T 2 and a valve 22 provided on the transfer pipe 21, and further, a pipe 23 and a pipe 23 connected to the upper part of the sending side container T 1. A hydrogen cylinder 23 (pressurization control means) for supplying gaseous hydrogen to the feed side container T 1 via a valve 24 provided on the pipe, a pipe 26 connected to the upper part of the feed side container T 2 , and a pipe 26 Bal to provided, gaseous hydrogen G 2 in the receiving side container T 2 by releasing, to control the internal pressure P 2 A Bed 27 (pressure control means), receiving side container T 2 of the plurality is provided inside the baffle plate 28 (convection preventing plate). Also in this embodiment, the feeding side container T 1 , the receiving side container T 2 , the transfer pipe 21, the valve 22, etc. may not correspond to negative pressure.

移送配管21は、実施例2と同様に、送り側容器T1においては、送り側容器T1の底部に接続されて、その供給口が、送り側容器T1に貯蔵されたスラッシュ水素S1中に配置されており、又、受け側容器T2においては、送り側容器T2の底部に接続されて、その排出口が、受け側容器T2に移送されるスラッシュ水素S2中に位置するようにしている。 Transfer pipe 21, in the same manner as in Example 2, in the feed side container T 1, is connected to the bottom part of the feed side container T 1, the supply port, slush hydrogen S 1 stored in the feed side container T 1 In the receiving container T 2, it is connected to the bottom of the sending container T 2 and its outlet is located in the slush hydrogen S 2 transferred to the receiving container T 2. Like to do.

更に、実施例2と同様に、送り側容器T1においては、温度成層化された液体水素L1の下層にスラッシュ水素S1を貯蔵しており、又、送り側容器T2においても、温度成層化された液体水素L2の下層に移送されるスラッシュ水素S2を貯蔵するようにしており、液体水素L1、L2により、スラッシュ水素S1、S2中の固体水素と気体水素G1、G2との接触を避けるようにしている。 Further, as in Example 2, the slush hydrogen S 1 is stored in the lower layer of the temperature-stratified liquid hydrogen L 1 in the feed side container T 1 , and the temperature in the feed side container T 2 is also The slush hydrogen S 2 transferred to the lower layer of the stratified liquid hydrogen L 2 is stored, and the solid hydrogen and the gaseous hydrogen G in the slush hydrogen S 1 and S 2 are stored by the liquid hydrogen L 1 and L 2. 1, and to avoid contact with G 2.

加えて、受け側容器T2内部に設けられたバッフル板28は、複数の開口部28aを有し、その面が水平方向に平行に配置されたものであり、又、受け側容器T2の深さ方向に沿って、複数段配置されている。このバッフル板28は、温度成層化された液体水素L2の対流を防止するものであり、特に、スラッシュ水素移送時における液体水素L2の対流を防止することにより、温度成層化された液体水素L2を維持して、スラッシュ水素S2中の固体水素と気体水素G2との接触を効果的に避けるようにしている。 In addition, receiving side container T 2 baffle plate 28 provided on the inside, has a plurality of openings 28a, are those that surface disposed parallel to the horizontal direction, also, the receiving side container T 2 A plurality of stages are arranged along the depth direction. This baffle plate 28 prevents the convection of the temperature-stratified liquid hydrogen L 2 , and in particular prevents the convection of the liquid hydrogen L 2 during the slush hydrogen transfer, thereby providing the temperature-stratified liquid hydrogen L 2. L 2 is maintained to effectively avoid contact between solid hydrogen in slush hydrogen S 2 and gaseous hydrogen G 2 .

そして、移送時には、実施例2と同様に、図示しない制御装置の制御下において、送り側容器T1内部の圧力P1が大気圧以上の所定圧力となるように制御され、受け側容器T2内部の圧力P2が大気圧以上の所定圧力となるように制御され、更に、送り側容器T1の圧力P1が受け側容器T2の圧力P2より一定の差圧で大きくなるように制御されている。このとき、圧力P1と圧力P2との差圧を大きくしないように制御して、液体水素L2を対流させないようにすることが望ましい。 At the time of transfer, as in the second embodiment, under the control of a control device (not shown), the pressure P 1 inside the sending side container T 1 is controlled to become a predetermined pressure equal to or higher than the atmospheric pressure, and the receiving side container T 2. The internal pressure P 2 is controlled to be a predetermined pressure equal to or higher than the atmospheric pressure, and further, the pressure P 1 of the sending side container T 1 becomes larger than the pressure P 2 of the receiving side container T 2 with a constant differential pressure. It is controlled. At this time, it is desirable to prevent the liquid hydrogen L 2 from being convected by controlling so as not to increase the differential pressure between the pressure P 1 and the pressure P 2 .

従って、バルブ22を開くと、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧により、移送配管21を介して、スラッシュ水素S1が受け側容器T2に移送されることになる。このとき、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧を一定に維持するように制御しているため、従来のように、差圧が大きくなりすぎて、流量制御が失われることはない。又、圧力P1と圧力P2との差圧を大きくしないように制御するので、温度成層化した液体水素L2を維持したままで、スラッシュ水素S1が受け側容器T2へゆっくり移送されることになる。更に、バッフル板28が存在するので、温度成層化された液体水素L2を維持することができる。従って、移送されたスラッシュ水素S2中の固体水素が気体水素G2と接触する可能性は小さく、従来のように、凝縮による圧力低下が起こる可能性もより小さくなる。 Therefore, when opening the valve 22, the feed side due to the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the container T 1, through a transfer pipe 21, slush hydrogen S 1 is received side container T 2 Will be transferred to. At this time, since the control to maintain the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the feed side container T 1 constant, as in the prior art, the differential pressure is too large Thus, flow control is not lost. In addition, since the pressure difference between the pressure P 1 and the pressure P 2 is controlled so as not to increase, the slush hydrogen S 1 is slowly transferred to the receiving vessel T 2 while maintaining the temperature-stratified liquid hydrogen L 2. Will be. Further, since the baffle plate 28 exists, the temperature-stratified liquid hydrogen L 2 can be maintained. Therefore, the possibility of the solid hydrogen in the transferred slush hydrogen S 2 coming into contact with the gaseous hydrogen G 2 is small, and the possibility of a pressure drop due to condensation is reduced as in the prior art.

このように、本実施例の固液二相流体の移送装置では、温度成層化した液体水素L2を、スラッシュ水素S2と気体水素G2との間に介在させると共に、温度成層化した液体水素L2をバッフル板28により維持しており、このような状態で、圧力P1と圧力P2との間に一定の差圧を設けて、移送を行うので、従来のように、負圧になることはなく、又、移送流量の制御を失うこともなく、より安定して移送を行うことができる。 As described above, in the solid-liquid two-phase fluid transfer device of this embodiment, the temperature-stratified liquid hydrogen L 2 is interposed between the slush hydrogen S 2 and the gaseous hydrogen G 2 and the temperature-stratified liquid. The hydrogen L 2 is maintained by the baffle plate 28. In such a state, a constant differential pressure is provided between the pressure P 1 and the pressure P 2 and the transfer is performed. The transfer can be performed more stably without losing control of the transfer flow rate.

図4は、本発明に係る固液二相流体の移送装置の実施形態の他の一例を示す概略構成図である。
図4に示すように、本実施例の固液二相流体の移送装置は、スラッシュ水素S1を気体水素G1の雰囲気下で液体水素L1の下層に貯蔵する送り側容器T1(第1の容器)と、移送されたスラッシュ水素S2を気体水素G2の雰囲気下で液体水素L2の下層に貯蔵する受け側容器T2(第2の容器)と、送り側容器T1と受け側容器T2との間を接続する移送配管31と、移送配管31に設けられたバルブ32とを有しており、更に、気体水素を供給する水素ボンベ33と、水素ボンベ33からの気体水素を冷却して供給する熱交換器34(低温気体生成手段)と、送り側容器T1の上部に接続されて、熱交換器34で冷却された気体水素を送り側容器T1へ供給する配管35と、配管35に設けられ、送り側容器T1内部の圧力P1を制御するバルブ36(第1の加圧制御手段)と、受け側容器T2の上部に接続されて、熱交換器34で冷却された気体水素を受け側容器T2へ供給する配管37と、配管37に設けられ、受け側容器T2内部の圧力P2を制御するバルブ38(第2の加圧制御手段)とを有する。なお、本実施例においても、送り側容器T1、受け側容器T2、移送配管31、バルブ32等は、負圧に対応したものでなくてもよい。
FIG. 4 is a schematic configuration diagram showing another example of the embodiment of the solid-liquid two-phase fluid transfer device according to the present invention.
As shown in FIG. 4, the transfer device of the solid-liquid two-phase fluid of the present embodiment, the feed side container T 1 is stored in a lower layer of liquid hydrogen L 1 slush hydrogen S 1 in an atmosphere of gaseous hydrogen G 1 (first 1 container), a receiving container T 2 (second container) for storing the transferred slush hydrogen S 2 in the lower layer of liquid hydrogen L 2 under the atmosphere of gaseous hydrogen G 2 , and a sending container T 1 It has a transfer pipe 31 that connects the receiving side container T 2 , a valve 32 provided in the transfer pipe 31, a hydrogen cylinder 33 that supplies gaseous hydrogen, and a gas from the hydrogen cylinder 33. A heat exchanger 34 (low-temperature gas generating means) for cooling and supplying hydrogen and an upper portion of the feed side container T 1 are connected to supply the gaseous hydrogen cooled by the heat exchanger 34 to the feed side container T 1 . a pipe 35, provided in the piping 35, Val for controlling the feed side container T 1 the pressure P 1 36 (first pressure control means), and the receiving side is connected to the upper container T 2, the pipe 37 and supplies the cooled gaseous hydrogen in the heat exchanger 34 to the receiving side container T 2, the pipe 37 provided, the valve 38 (second pressure control means) for controlling the receiving side container T 2 the pressure P 2 and a. Also in this embodiment, the feeding side container T 1 , the receiving side container T 2 , the transfer pipe 31, the valve 32, etc. may not correspond to negative pressure.

移送配管31は、実施例2、3と同様に、送り側容器T1においては、送り側容器T1の底部に接続されて、その供給口が、送り側容器T1に貯蔵されたスラッシュ水素S1中に配置されており、又、受け側容器T2においては、送り側容器T2の底部に接続されて、その排出口が、受け側容器T2に移送されるスラッシュ水素S2中に位置するようにしている。 As in the second and third embodiments, the transfer pipe 31 is connected to the bottom of the feed side container T 1 in the feed side container T 1 , and the supply port thereof is the slush hydrogen stored in the feed side container T 1. are arranged in S 1, also, in the receiving side container T 2, it is connected to the bottom part of the feed side container T 2, the discharge port, receiving side container T 2 in slush hydrogen S 2 to be transferred to To be located.

更に、実施例2、3と同様に、送り側容器T1においては、温度成層化された液体水素L1の下層にスラッシュ水素S1を貯蔵しており、又、送り側容器T2においても、温度成層化された液体水素L2の下層に移送されるスラッシュ水素S2を貯蔵するようにしており、液体水素L1、L2により、スラッシュ水素S1、S2中の固体水素と気体水素G1、G2との接触を避けるようにしている。 Further, as in the second and third embodiments, the slush hydrogen S 1 is stored in the lower layer of the temperature-stratified liquid hydrogen L 1 in the sending side container T 1 , and also in the sending side container T 2 . The slush hydrogen S 2 transferred to the lower layer of the temperature-stratified liquid hydrogen L 2 is stored, and the solid hydrogen and gas in the slush hydrogen S 1 and S 2 are stored by the liquid hydrogen L 1 and L 2. Contact with hydrogen G 1 and G 2 is avoided.

加えて、熱交換器34は、水素ボンベ33からの気体水素を室温(≒300K)から、例えば、20Kまで冷却して、送り側容器T1、受け側容器T2へ供給するようにしている。これは、負圧防止を目的とするものであり、送り側容器T1、受け側容器T2の内部圧力を監視し、負圧になりそうな場合には、低温に冷却された気体水素を送り側容器T1、受け側容器T2へ供給することにより、負圧を防止している。又、低温に冷却された気体水素を用いることにより、スラッシュ水素S1、S2中の固体水素の溶解及び液体水素L1、L2の温度上昇を防止している。 In addition, the heat exchanger 34 cools the gaseous hydrogen from the hydrogen cylinder 33 from room temperature (≈300 K) to, for example, 20 K, and supplies it to the feeding side container T 1 and the receiving side container T 2 . . This is for the purpose of preventing negative pressure. The internal pressures of the sending side container T 1 and the receiving side container T 2 are monitored. If negative pressure is likely to occur, gaseous hydrogen cooled to a low temperature is removed. By supplying to the sending side container T 1 and the receiving side container T 2 , negative pressure is prevented. Further, by using gaseous hydrogen cooled to a low temperature, dissolution of solid hydrogen in slush hydrogen S 1 and S 2 and temperature rise of liquid hydrogen L 1 and L 2 are prevented.

そして、移送時には、図示しない制御装置の制御下において、送り側容器T1は、圧力センサ、水素ボンベ33、熱交換器34、配管35及びバルブ36により、内部の圧力P1が大気圧以上の所定圧力となるように制御され、受け側容器T2も、圧力センサ、水素ボンベ33、熱交換器34、配管37及びバルブ38により、内部の圧力P2が大気圧以上の所定圧力となるように制御され、更に、送り側容器T1の圧力P1が受け側容器T2の圧力P2より一定の差圧で大きくなるように制御されている。このとき、圧力P1と圧力P2との差圧を大きくしないように制御して、液体水素L2を対流させないようにすることが望ましい。 At the time of transfer, under the control of a control device (not shown), the sending side container T 1 has a pressure sensor, a hydrogen cylinder 33, a heat exchanger 34, a pipe 35 and a valve 36 so that the internal pressure P 1 is equal to or higher than atmospheric pressure. The receiving side container T 2 is controlled so as to have a predetermined pressure, and the internal pressure P 2 of the receiving vessel T 2 becomes a predetermined pressure equal to or higher than the atmospheric pressure by the pressure sensor, the hydrogen cylinder 33, the heat exchanger 34, the pipe 37 and the valve 38. It is controlled to are further controlled to increase at a constant differential pressure than the pressure P 2 of the pressure P 1 receives side container T 2 of the feed side container T 1. At this time, it is desirable to prevent the liquid hydrogen L 2 from being convected by controlling so as not to increase the differential pressure between the pressure P 1 and the pressure P 2 .

従って、バルブ32を開くと、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧により、移送配管31を介して、スラッシュ水素S1が受け側容器T2に移送されることになる。このとき、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧を一定に維持するように制御しているため、従来のように、差圧が大きくなりすぎて、流量制御が失われることはない。又、圧力P1と圧力P2との差圧を大きくしないように制御するので、温度成層化した液体水素L2を維持したままで、スラッシュ水素S1が受け側容器T2へゆっくり移送されることになる。従って、移送されたスラッシュ水素S2中の固体水素が気体水素G2と接触する可能性は小さく、従来のように、凝縮による圧力低下が起こる可能性も小さくなる。 Therefore, when opening the valve 32, the feed side due to the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the container T 1, through a transfer pipe 31, slush hydrogen S 1 is received side container T 2 Will be transferred. At this time, since the control to maintain the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the feed side container T 1 constant, as in the prior art, the differential pressure is too large Thus, flow control is not lost. In addition, since the pressure difference between the pressure P 1 and the pressure P 2 is controlled so as not to increase, the slush hydrogen S 1 is slowly transferred to the receiving vessel T 2 while maintaining the temperature-stratified liquid hydrogen L 2. Will be. Therefore, the possibility that the solid hydrogen in the transferred slush hydrogen S 2 comes into contact with the gaseous hydrogen G 2 is small, and the possibility that the pressure drop due to condensation occurs as in the conventional case is also small.

このように、本実施例の固液二相流体の移送装置では、温度成層化した液体水素L2を、スラッシュ水素S2と気体水素G2との間に介在させ、圧力P1と圧力P2との間に一定の差圧を設けて、移送を行うので、従来のように、負圧になることはなく、又、移送流量の制御を失うこともなく、安定して移送を行うことができる。 Thus, in the solid-liquid two-phase fluid transfer device of this embodiment, the temperature-stratified liquid hydrogen L 2 is interposed between the slush hydrogen S 2 and the gaseous hydrogen G 2, and the pressure P 1 and the pressure P Since the transfer is performed with a certain differential pressure between the two , it does not become negative pressure as before, and the transfer is stably performed without losing control of the transfer flow rate. Can do.

実施例2、3の場合は、負圧防止を液体水素L1、L2のみに頼っているが、本実施例の場合、液体水素L1、L2の対流が発生して、スラッシュ水素S1、S2中の固体水素と気体水素G1、G2との接触が起こったとしても、外部から低温に冷却された気体水素を供給することにより、負圧を確実に防止することができる。 In Examples 2 and 3, the prevention of negative pressure depends on only liquid hydrogen L 1 and L 2, but in this example, convection of liquid hydrogen L 1 and L 2 occurs and slash hydrogen S 1 , even if solid hydrogen in S 2 and gaseous hydrogen G 1 and G 2 contact, negative pressure can be reliably prevented by supplying gaseous hydrogen cooled to low temperature from the outside. .

なお、本実施例の場合には、実施例1(図1参照)に示す移送配管1のように、移送配管を、送り側容器T1、受け側容器T2の上部に接続した構成にも適用可能である。この場合、液体水素L1、L2は不要となる。 In the case of the present embodiment, as in the transfer pipe 1 shown in the first embodiment (see FIG. 1), the transfer pipe is also connected to the upper part of the feeding side container T 1 and the receiving side container T 2. Applicable. In this case, liquid hydrogen L 1 and L 2 are not necessary.

図5は、本発明に係る固液二相流体の移送装置の実施形態の他の一例を示す概略構成図である。
図5に示すように、本実施例の固液二相流体の移送装置は、スラッシュ水素S1を気体水素G1の雰囲気下で液体水素L1の下層に貯蔵する送り側容器T1(第1の容器)と、移送されたスラッシュ水素S2を気体水素G2の雰囲気下で液体水素L2の下層に貯蔵する受け側容器T2(第2の容器)と、送り側容器T1と受け側容器T2との間を接続する移送配管41と、移送配管41に設けられたバルブ42とを有しており、更に、液体水素L3を貯蔵する貯蔵容器43と、貯蔵容器43に貯蔵する液体水素L3を気化するヒータ44(低温気体生成手段)と、送り側容器T1の上部に接続されて、貯蔵容器43で気化された気体水素G3を送り側容器T1へ供給する配管45と、配管45に設けられ、送り側容器T1内部の圧力P1を制御するバルブ46(第1の加圧制御手段)と、受け側容器T2の上部に接続されて、貯蔵容器43で気化された気体水素G3を受け側容器T2へ供給する配管47と、配管47に設けられ、受け側容器T2内部の圧力P2を制御する圧力制御バルブ48(第2の加圧制御手段)とを有する。なお、本実施例においても、送り側容器T1、受け側容器T2、移送配管41、バルブ42等は、負圧に対応したものでなくてもよい。
FIG. 5 is a schematic configuration diagram showing another example of the embodiment of the solid-liquid two-phase fluid transfer device according to the present invention.
As shown in FIG. 5, the transfer device of the solid-liquid two-phase fluid of the present embodiment, the feed side container T 1 is stored in a lower layer of liquid hydrogen L 1 slush hydrogen S 1 in an atmosphere of gaseous hydrogen G 1 (first 1 container), a receiving container T 2 (second container) for storing the transferred slush hydrogen S 2 in the lower layer of liquid hydrogen L 2 under the atmosphere of gaseous hydrogen G 2 , and a sending container T 1 It has a transfer pipe 41 connecting the receiving side container T 2 and a valve 42 provided on the transfer pipe 41, and further includes a storage container 43 for storing liquid hydrogen L 3 , and a storage container 43. Connected to the heater 44 (low temperature gas generating means) for vaporizing the liquid hydrogen L 3 to be stored and the upper part of the feeding side container T 1 , the gaseous hydrogen G 3 vaporized in the storage container 43 is supplied to the feeding side container T 1 . a pipe 45 which is provided on the pipe 45, Val for controlling the feed side container T 1 the pressure P 1 46 (first pressure control means), and the receiving side container T is connected to a second top, pipe 47 for supplying gaseous hydrogen G 3 vaporized into the receiving side container T 2 in the storage container 43, the pipe 47 provided, and a pressure control valve 48 for controlling the receiving side container T 2 the pressure P 2 (second pressure control means). Also in this embodiment, the feeding side container T 1 , the receiving side container T 2 , the transfer pipe 41, the valve 42 and the like do not have to correspond to the negative pressure.

移送配管41は、実施例2〜4と同様に、送り側容器T1においては、送り側容器T1の底部に接続されて、その供給口が、送り側容器T1に貯蔵されたスラッシュ水素S1中に配置されており、又、受け側容器T2においては、送り側容器T2の底部に接続されて、その排出口が、受け側容器T2に移送されるスラッシュ水素S2中に位置するようにしている。 As in Examples 2 to 4, the transfer pipe 41 is connected to the bottom of the feed side container T 1 in the feed side container T 1 , and its supply port is a slush hydrogen stored in the feed side container T 1. are arranged in S 1, also, in the receiving side container T 2, it is connected to the bottom part of the feed side container T 2, the discharge port, receiving side container T 2 in slush hydrogen S 2 to be transferred to To be located.

更に、実施例2〜4と同様に、送り側容器T1においては、温度成層化された液体水素L1の下層にスラッシュ水素S1を貯蔵しており、又、送り側容器T2においても、温度成層化された液体水素L2の下層に移送されるスラッシュ水素S2を貯蔵するようにしており、液体水素L1、L2により、スラッシュ水素S1、S2中の固体水素と気体水素G1、G2との接触を避けるようにしている。 Further, as in Examples 2 to 4, in the feed side container T 1 , slush hydrogen S 1 is stored in the lower layer of the temperature-stratified liquid hydrogen L 1 , and also in the feed side container T 2 . The slush hydrogen S 2 transferred to the lower layer of the temperature-stratified liquid hydrogen L 2 is stored, and the solid hydrogen and gas in the slush hydrogen S 1 and S 2 are stored by the liquid hydrogen L 1 and L 2. Contact with hydrogen G 1 and G 2 is avoided.

加えて、ヒータ44は、貯蔵容器43に貯蔵された20.3Kの大気圧沸点の液体水素L3から気体水素G3を生成して、送り側容器T1、受け側容器T2へ供給するようにしている。これも、実施例4と同様に、負圧防止を目的とするものであり、送り側容器T1、受け側容器T2の内部圧力を監視し、負圧になりそうな場合には、ヒータ44により蒸発量を制御して、蒸発させた気体水素G3を送り側容器T1、受け側容器T2へ供給することにより、負圧を防止している。この蒸発させた気体水素G3は低温のままであり、低温の気体水素G3を用いることにより、スラッシュ水素S1、S2中の固体水素の溶解及び液体水素L1、L2の温度上昇を防止している。つまり、実施例4では、常温の気体水素を熱交換器により冷却することにより、低温の気体水素を得ていたが、本実施例では、液体水素を気化するだけで、低温の気体水素を得ることができる。特に、送り側容器T1がスラッシュ水素ステーションである場合には、液体水素を貯蔵する貯蔵容器が併用されるため、本実施例の構成機器を低減することができる。 In addition, the heater 44 generates gaseous hydrogen G 3 from the liquid hydrogen L 3 having an atmospheric boiling point of 20.3 K stored in the storage container 43 and supplies the gaseous hydrogen G 3 to the feeding side container T 1 and the receiving side container T 2 . I am doing so. This is also for the purpose of preventing negative pressure, similarly to the fourth embodiment, and the internal pressures of the feeding side container T 1 and the receiving side container T 2 are monitored, and if a negative pressure is likely to occur, a heater is used. By controlling the evaporation amount by 44 and supplying the evaporated gaseous hydrogen G 3 to the sending side container T 1 and the receiving side container T 2 , negative pressure is prevented. The vaporized gaseous hydrogen G 3 remains at a low temperature, and by using the low temperature gaseous hydrogen G 3 , the solid hydrogen dissolved in the slush hydrogen S 1 and S 2 and the temperature of the liquid hydrogen L 1 and L 2 increased. Is preventing. That is, in Example 4, low-temperature gaseous hydrogen was obtained by cooling gaseous hydrogen at room temperature with a heat exchanger, but in this example, low-temperature gaseous hydrogen is obtained simply by vaporizing liquid hydrogen. be able to. In particular, when the sending container T 1 is a slush hydrogen station, a storage container for storing liquid hydrogen is used in combination, so that the components of the present embodiment can be reduced.

そして、移送時には、図示しない制御装置の制御下において、送り側容器T1は、圧力センサ、貯蔵容器43、ヒータ44、配管45及びバルブ46により、内部の圧力P1が大気圧以上の所定圧力となるように制御され、受け側容器T2も、圧力センサ、貯蔵容器43、ヒータ44、配管47及びバルブ48により、内部の圧力P2が大気圧以上の所定圧力となるように制御され、更に、送り側容器T1の圧力P1が受け側容器T2の圧力P2より一定の差圧で大きくなるように制御されている。このとき、圧力P1と圧力P2との差圧を大きくしないように制御して、液体水素L2を対流させないようにすることが望ましい。 At the time of transfer, under the control of a control device (not shown), the feed side container T 1 is a predetermined pressure whose internal pressure P 1 is equal to or higher than atmospheric pressure by the pressure sensor, the storage container 43, the heater 44, the pipe 45 and the valve 46. The receiving container T 2 is also controlled by the pressure sensor, the storage container 43, the heater 44, the piping 47 and the valve 48 so that the internal pressure P 2 becomes a predetermined pressure equal to or higher than atmospheric pressure. Furthermore, and is controlled to increase at a constant differential pressure than the pressure P 2 of the feeding side container T 1 of the pressure P 1 receives side container T 2. At this time, it is desirable to prevent the liquid hydrogen L 2 from convection by controlling the pressure difference between the pressure P 1 and the pressure P 2 so as not to increase.

従って、バルブ42を開くと、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧により、移送配管41を介して、スラッシュ水素S1が受け側容器T2に移送されることになる。このとき、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧を一定に維持するように制御しているため、従来のように、差圧が大きくなりすぎて、流量制御が失われることはない。又、圧力P1と圧力P2との差圧を大きくしないように制御するので、温度成層化した液体水素L2を維持したままで、スラッシュ水素S1が受け側容器T2へゆっくり移送されることになる。従って、移送されたスラッシュ水素S2中の固体水素が気体水素G2と接触する可能性は小さく、従来のように、凝縮による圧力低下が起こる可能性も小さくなる。 Therefore, when opening the valve 42, the feed side due to the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the container T 1, through a transfer pipe 41, slush hydrogen S 1 is received side container T 2 Will be transferred. At this time, since the control to maintain the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the feed side container T 1 constant, as in the prior art, the differential pressure is too large Thus, flow control is not lost. In addition, since the pressure difference between the pressure P 1 and the pressure P 2 is controlled so as not to increase, the slush hydrogen S 1 is slowly transferred to the receiving vessel T 2 while maintaining the temperature-stratified liquid hydrogen L 2. Will be. Therefore, the possibility that the solid hydrogen in the transferred slush hydrogen S 2 comes into contact with the gaseous hydrogen G 2 is small, and the possibility that the pressure drop due to condensation occurs as in the conventional case is also small.

このように、本実施例の固液二相流体の移送装置では、温度成層化した液体水素L2を、スラッシュ水素S2と気体水素G2との間に介在させ、圧力P1と圧力P2との間に一定の差圧を設けて、移送を行うので、従来のように、負圧になることはなく、又、移送流量の制御を失うこともなく、安定して移送を行うことができる。 Thus, in the solid-liquid two-phase fluid transfer device of this embodiment, the temperature-stratified liquid hydrogen L 2 is interposed between the slush hydrogen S 2 and the gaseous hydrogen G 2, and the pressure P 1 and the pressure P Since the transfer is performed with a certain differential pressure between the two , it does not become negative pressure as before, and the transfer is stably performed without losing control of the transfer flow rate. Can do.

実施例2、3の場合は、負圧防止を液体水素L1、L2のみに頼っているが、本実施例の場合も、液体水素L1、L2の対流が発生して、スラッシュ水素S1、S2中の固体水素と気体水素G1、G2との接触が起こったとしても、外部から低温の気体水素を供給することにより、負圧を確実に防止することができる。 In Examples 2 and 3, the prevention of negative pressure depends only on liquid hydrogen L 1 and L 2, but also in this example, convection of liquid hydrogen L 1 and L 2 occurs and slush hydrogen is generated. Even if solid hydrogen in S 1 and S 2 contacts with gaseous hydrogen G 1 and G 2 , negative pressure can be reliably prevented by supplying low-temperature gaseous hydrogen from the outside.

なお、本実施例の場合にも、実施例1(図1参照)に示す移送配管1のように、移送配管を、送り側容器T1、受け側容器T2の上部から挿入した構成にも適用可能である。この場合も、液体水素L1、L2は不要となる。 In the case of the present embodiment as well, the transfer pipe is inserted from the upper part of the feed side container T 1 and the receiving side container T 2 as in the transfer pipe 1 shown in the first embodiment (see FIG. 1). Applicable. In this case, liquid hydrogen L 1 and L 2 are not necessary.

図6は、本発明に係る固液二相流体の移送装置の実施形態の他の一例を示す概略構成図である。
図6に示すように、本実施例の固液二相流体の移送装置は、スラッシュ水素S1を気体水素G1の雰囲気下で液体水素L1の下層に貯蔵する送り側容器T1(第1の容器)と、移送されたスラッシュ水素S2を気体水素G2の雰囲気下で液体水素L2の下層に貯蔵する受け側容器T2(第2の容器)と、送り側容器T1と受け側容器T2との間を接続する移送配管51と、移送配管51に設けられたバルブ52とを有しており、更に、移送配管51を分岐する分岐配管53と、分岐配管53に設けられたバルブ54と、分岐配管53に設けられ、バルブ54を通過してくるスラッシュ水素を気化して、低温の気体水素を生成する熱交換器55(低温気体生成手段)と、送り側容器T1の上部に接続されて、熱交換器55で気化された気体水素を送り側容器T1へ供給する配管56と、配管56に設けられ、送り側容器T1内部の圧力P1を制御するバルブ57(第1の加圧制御手段)と、受け側容器T2の上部に接続されて、熱交換器55で気化された気体水素を受け側容器T2へ供給する配管58と、配管58に設けられ、受け側容器T2内部の圧力P2を制御するバルブ59(第2の加圧制御手段)とを有する。なお、本実施例においても、送り側容器T1、受け側容器T2、移送配管51、バルブ52等は、負圧に対応したものでなくてもよい。
FIG. 6 is a schematic configuration diagram illustrating another example of the embodiment of the solid-liquid two-phase fluid transfer device according to the present invention.
As shown in FIG. 6, the transfer device of the solid-liquid two-phase fluid of the present embodiment, the feed side container T 1 is stored in a lower layer of liquid hydrogen L 1 slush hydrogen S 1 in an atmosphere of gaseous hydrogen G 1 (first 1 container), a receiving container T 2 (second container) for storing the transferred slush hydrogen S 2 in the lower layer of liquid hydrogen L 2 under the atmosphere of gaseous hydrogen G 2 , and a sending container T 1 It has a transfer pipe 51 connecting the receiving side container T 2 and a valve 52 provided on the transfer pipe 51, and further includes a branch pipe 53 that branches the transfer pipe 51, and a branch pipe 53. And a heat exchanger 55 (low temperature gas generating means) that vaporizes slush hydrogen passing through the valve 54 and generates low temperature gaseous hydrogen, and a feed side container T. is connected to one of the upper, feed the vaporized gaseous hydrogen in the heat exchanger 55 A pipe 56 for supplying to the vessel T 1, provided the pipe 56, a valve 57 for controlling the feed side container T 1 the pressure P 1 (first pressure control means), the receiving side container T 2 at the top A pipe 58 connected to supply gaseous hydrogen vaporized by the heat exchanger 55 to the receiving container T 2 and a valve 59 (first valve) provided in the pipe 58 for controlling the pressure P 2 inside the receiving container T 2 . 2 pressurizing control means). Also in this embodiment, the feeding side container T 1 , the receiving side container T 2 , the transfer pipe 51, the valve 52, etc. may not correspond to negative pressure.

移送配管51は、実施例2〜5と同様に、送り側容器T1においては、送り側容器T1の底部に接続されて、その供給口が、送り側容器T1に貯蔵されたスラッシュ水素S1中に配置されており、又、受け側容器T2においては、送り側容器T2の底部に接続されて、その排出口が、受け側容器T2に移送されるスラッシュ水素S2中に位置するようにしている。 As in Examples 2 to 5, the transfer pipe 51 is connected to the bottom of the feed side container T 1 in the feed side container T 1 , and its supply port is a slush hydrogen stored in the feed side container T 1. are arranged in S 1, also, in the receiving side container T 2, it is connected to the bottom part of the feed side container T 2, the discharge port, receiving side container T 2 in slush hydrogen S 2 to be transferred to To be located.

更に、実施例2〜5と同様に、送り側容器T1においては、温度成層化された液体水素L1の下層にスラッシュ水素S1を貯蔵しており、又、送り側容器T2においても、温度成層化された液体水素L2の下層に移送されるスラッシュ水素S2を貯蔵するようにしており、液体水素L1、L2により、スラッシュ水素S1、S2中の固体水素と気体水素G1、G2との接触を避けるようにしている。 Further, as in Examples 2-5, the slush hydrogen S 1 is stored in the lower layer of the temperature-stratified liquid hydrogen L 1 in the feed side container T 1 , and also in the feed side container T 2 . The slush hydrogen S 2 transferred to the lower layer of the temperature-stratified liquid hydrogen L 2 is stored, and the solid hydrogen and gas in the slush hydrogen S 1 and S 2 are stored by the liquid hydrogen L 1 and L 2. Contact with hydrogen G 1 and G 2 is avoided.

加えて、熱交換器55は、移送配管51から分岐したスラッシュ水素を蒸発させ、低温の気体水素を生成して、送り側容器T1、受け側容器T2へ供給するようにしている。これも、実施例4、5と同様に、負圧防止を目的とするものであり、送り側容器T1、受け側容器T2の内部圧力を監視し、負圧になりそうな場合には、バルブ54を開くと共に熱交換器55により低温の気体水素を生成して、生成した気体水素を送り側容器T1、受け側容器T2へ供給することにより、負圧を防止している。この蒸発させた気体水素は低温のままであり、低温の気体水素を用いることにより、スラッシュ水素S1、S2中の固体水素の溶解及び液体水素L1、L2の温度上昇を防止している。つまり、実施例4、5では、別途、気体水素、液体水素を用意する必要があったが、本実施例では、送り側容器T1から移送されるスラッシュ水素の一部を分岐し、分岐したスラッシュ水素を気化することで、低温の気体水素を得ることができ、構成機器を更に低減することができる。 In addition, the heat exchanger 55 evaporates the slush hydrogen branched from the transfer pipe 51 to generate low-temperature gaseous hydrogen and supply it to the sending side container T 1 and the receiving side container T 2 . Similar to the fourth and fifth embodiments, this is intended to prevent negative pressure, and the internal pressures of the feeding side container T 1 and the receiving side container T 2 are monitored. The valve 54 is opened and low-temperature gaseous hydrogen is produced by the heat exchanger 55, and the produced gaseous hydrogen is supplied to the sending side container T 1 and the receiving side container T 2 to prevent negative pressure. The evaporated gaseous hydrogen remains at a low temperature, and by using the gaseous hydrogen at a low temperature, dissolution of solid hydrogen in the slush hydrogen S 1 and S 2 and temperature rise of the liquid hydrogen L 1 and L 2 are prevented. Yes. That is, in Examples 4 and 5, separately, gaseous hydrogen, it has been necessary to prepare a liquid hydrogen, in the present embodiment, branches a part of the slush hydrogen is transferred from the feed side container T 1, branched By vaporizing slush hydrogen, low-temperature gaseous hydrogen can be obtained, and the number of components can be further reduced.

そして、移送時には、図示しない制御装置の制御下において、送り側容器T1は、圧力センサ、分岐配管53、バルブ54、熱交換器55、配管56及びバルブ57により、内部の圧力P1が大気圧以上の所定圧力となるように制御され、受け側容器T2も、圧力センサ、分岐配管53、バルブ54、熱交換器55、配管58及びバルブ59により、内部の圧力P2が大気圧以上の所定圧力となるように制御され、更に、送り側容器T1の圧力P1が受け側容器T2の圧力P2より一定の差圧で大きくなるように制御されている。このとき、圧力P1と圧力P2との差圧を大きくしないように制御して、液体水素L2を対流させないようにすることが望ましい。 At the time of transfer, the internal pressure P 1 of the feed side container T 1 is increased by the pressure sensor, the branch pipe 53, the valve 54, the heat exchanger 55, the pipe 56 and the valve 57 under the control of a control device (not shown). The receiving side container T 2 is also controlled to have a predetermined pressure equal to or higher than atmospheric pressure, and the internal pressure P 2 is also equal to or higher than atmospheric pressure by the pressure sensor, branch pipe 53, valve 54, heat exchanger 55, pipe 58 and valve 59. Further, the pressure P 1 of the feeding side container T 1 is controlled to be larger than the pressure P 2 of the receiving side container T 2 with a constant differential pressure. At this time, it is desirable to prevent the liquid hydrogen L 2 from being convected by controlling so as not to increase the differential pressure between the pressure P 1 and the pressure P 2 .

従って、バルブ52を開くと、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧により、移送配管51を介して、スラッシュ水素S1が受け側容器T2に移送されることになる。このとき、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧を一定に維持するように制御しているため、従来のように、差圧が大きくなりすぎて、流量制御が失われることはない。又、圧力P1と圧力P2との差圧を大きくしないように制御するので、温度成層化した液体水素L2を維持したままで、スラッシュ水素S1が受け側容器T2へゆっくり移送されることになる。従って、移送されたスラッシュ水素S2中の固体水素が気体水素G2と接触する可能性は小さく、従来のように、凝縮による圧力低下が起こる可能性も小さくなる。 Therefore, when opening the valve 52, the feed side due to the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the container T 1, through a transfer pipe 51, slush hydrogen S 1 is received side container T 2 Will be transferred. At this time, since the control to maintain the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the feed side container T 1 constant, as in the prior art, the differential pressure is too large Thus, flow control is not lost. In addition, since the pressure difference between the pressure P 1 and the pressure P 2 is controlled so as not to increase, the slush hydrogen S 1 is slowly transferred to the receiving vessel T 2 while maintaining the temperature-stratified liquid hydrogen L 2. Will be. Therefore, the possibility that the solid hydrogen in the transferred slush hydrogen S 2 comes into contact with the gaseous hydrogen G 2 is small, and the possibility that the pressure drop due to condensation occurs as in the conventional case is also small.

このように、本実施例の固液二相流体の移送装置では、温度成層化した液体水素L2を、スラッシュ水素S2と気体水素G2との間に介在させ、圧力P1と圧力P2との間に一定の差圧を設けて、移送を行うので、従来のように、負圧になることはなく、又、移送流量の制御を失うこともなく、安定して移送を行うことができる。 Thus, in the solid-liquid two-phase fluid transfer device of this embodiment, the temperature-stratified liquid hydrogen L 2 is interposed between the slush hydrogen S 2 and the gaseous hydrogen G 2, and the pressure P 1 and the pressure P Since the transfer is performed with a certain differential pressure between the two , it does not become negative pressure as before, and the transfer is stably performed without losing control of the transfer flow rate. Can do.

実施例2、3の場合は、負圧防止を液体水素L1、L2のみに頼っているが、本実施例の場合も、液体水素L1、L2の対流が発生して、スラッシュ水素S1、S2中の固体水素と気体水素G1、G2との接触が起こったとしても、外部から低温の気体水素を供給することにより、負圧を確実に防止することができる。 In Examples 2 and 3, the prevention of negative pressure depends only on liquid hydrogen L 1 and L 2, but also in this example, convection of liquid hydrogen L 1 and L 2 occurs and slush hydrogen is generated. Even if solid hydrogen in S 1 and S 2 contacts with gaseous hydrogen G 1 and G 2 , negative pressure can be reliably prevented by supplying low-temperature gaseous hydrogen from the outside.

なお、本実施例の場合にも、実施例1(図1参照)に示す移送配管1のように、移送配管を、送り側容器T1、受け側容器T2の上部から挿入した構成にも適用可能である。この場合も、液体水素L1、L2は不要となる。 In the case of the present embodiment as well, the transfer pipe is inserted from the upper part of the feed side container T 1 and the receiving side container T 2 as in the transfer pipe 1 shown in the first embodiment (see FIG. 1). Applicable. In this case, liquid hydrogen L 1 and L 2 are not necessary.

図7は、本発明に係る固液二相流体の移送装置の実施形態の他の一例を示す概略構成図である。
図7に示すように、本実施例の固液二相流体の移送装置において、送り側容器T1(第1の容器)の内部は壁63により分離されており、又、受け側容器T2(第2の容器)の内部も壁64により分離されている。そして、壁63により分離された送り側容器T1の一方側に液体水素L3を貯蔵しており、その他方側に、スラッシュ水素S1を気体水素G1の雰囲気下で液体水素L1の下層に貯蔵している。同様に、壁64により分離された受け側容器T2の一方側に液体水素L4を貯蔵しており、その他方側に、移送されたスラッシュ水素S2を気体水素G2の雰囲気下で液体水素L2の下層に貯蔵している。送り側容器T1の一方側には、ヒータ65(第1の加熱手段、第1の加圧制御手段)が設けられており、同様に、受け側容器T2の一方側にも、ヒータ66(第2の加熱手段、第2の加圧制御手段)が設けられている。又、送り側容器T1の他方側と受け側容器T2の他方側との間は、移送配管61により接続されており、この移送配管61にバルブ62が設けられている。なお、本実施例においても、送り側容器T1、受け側容器T2、移送配管61、バルブ62等は、負圧に対応したものでなくてもよい。
FIG. 7 is a schematic configuration diagram showing another example of the embodiment of the solid-liquid two-phase fluid transfer device according to the present invention.
As shown in FIG. 7, in the solid-liquid two-phase fluid transfer apparatus of this embodiment, the inside of the sending side container T 1 (first container) is separated by a wall 63 and the receiving side container T 2. The interior of the (second container) is also separated by the wall 64. The liquid hydrogen L 3 is stored on one side of the feed side container T 1 separated by the wall 63, and the slush hydrogen S 1 is stored on the other side of the liquid hydrogen L 1 in an atmosphere of gaseous hydrogen G 1 . Stored in the lower layer. Similarly, liquid hydrogen L 4 is stored on one side of the receiving vessel T 2 separated by the wall 64, and the transferred slush hydrogen S 2 is liquid on the other side in an atmosphere of gaseous hydrogen G 2. It is stored in the lower layer of hydrogen L 2. On one side of the feed side container T 1, heater 65 (first heating means, the first pressure control means) is provided, likewise, to one side of the receiving side container T 2, the heater 66 (Second heating means, second pressurization control means) are provided. Further, the other side of the feeding side container T 1 and the other side of the receiving side container T 2 are connected by a transfer pipe 61, and a valve 62 is provided in the transfer pipe 61. Also in this embodiment, the feeding side container T 1 , the receiving side container T 2 , the transfer pipe 61, the valve 62 and the like do not have to correspond to the negative pressure.

移送配管61は、実施例2〜6と同様に、送り側容器T1においては、送り側容器T1の他方側の底部に接続されて、その供給口が、送り側容器T1に貯蔵されたスラッシュ水素S1中に配置されており、又、受け側容器T2においては、送り側容器T2の他方側の底部に接続されて、その排出口が、受け側容器T2に移送されるスラッシュ水素S2中に位置するようにしている。 Transfer pipe 61, in the same manner as in Example 2-6, in the feed side container T 1, is connected to the bottom of the other side of the feed side container T 1, the supply port, stored in the feeding side container T 1 The slush hydrogen S 1 is disposed in the receiving side container T 2 and connected to the bottom of the other side of the sending side container T 2 , and its discharge port is transferred to the receiving side container T 2. and so as to be positioned in the slush hydrogen S 2 that.

更に、実施例2〜6と同様に、送り側容器T1においては、温度成層化された液体水素L1の下層にスラッシュ水素S1を貯蔵しており、又、送り側容器T2においても、温度成層化された液体水素L2の下層に移送されるスラッシュ水素S2を貯蔵するようにしており、液体水素L1、L2により、スラッシュ水素S1、S2中の固体水素と気体水素G1、G2との接触を避けるようにしている。 Further, as in Examples 2 to 6, in the feed side container T 1 , the slush hydrogen S 1 is stored in the lower layer of the temperature-stratified liquid hydrogen L 1 , and also in the feed side container T 2 . The slush hydrogen S 2 transferred to the lower layer of the temperature-stratified liquid hydrogen L 2 is stored, and the solid hydrogen and gas in the slush hydrogen S 1 and S 2 are stored by the liquid hydrogen L 1 and L 2. Contact with hydrogen G 1 and G 2 is avoided.

加えて、ヒータ65は、送り側容器T1の一方側に貯蔵された液体水素L4を蒸発させて、低温の気体水素を生成するものであり、送り側容器T1内部の圧力P1を監視し、負圧になりそうな場合には、ヒータ65により低温の気体水素を生成することにより、送り側容器T1の負圧を防止している。同様に、ヒータ66は、受け側容器T2の一方側に貯蔵された液体水素L5を蒸発させて、低温の気体水素を生成するものであり、受け側容器T2内部の圧力P2を監視し、負圧になりそうな場合には、ヒータ66により低温の気体水素を生成することにより、受け側容器T2の負圧を防止している。これも、実施例4〜6と同様に、負圧防止を目的とするものである。この蒸発させた気体水素は低温のままであり、低温の気体水素を用いることにより、スラッシュ水素S1、S2中の固体水素の溶解及び液体水素L1、L2の温度上昇を防止している。つまり、実施例4、5では、別途、気体水素、液体水素を用意する必要があったが、本実施例では、送り側容器T1の液体水素L4、受け側容器T2の液体水素L5を気化するだけで、低温の気体水素を得ることができ、構成機器を更に低減することができる。 In addition, the heater 65 evaporates the liquid hydrogen L 4 stored on one side of the feeding side container T 1 to generate low-temperature gaseous hydrogen, and the pressure P 1 inside the feeding side container T 1 is increased. When negative pressure is likely to be monitored, the heater 65 generates low-temperature gaseous hydrogen to prevent negative pressure in the feed side container T 1 . Similarly, the heater 66 evaporates the liquid hydrogen L 5 stored on one side of the receiving side container T 2 to generate low-temperature gaseous hydrogen, and the pressure P 2 inside the receiving side container T 2 is increased. monitoring, when it is likely to negative pressure, by generating a low-temperature gaseous hydrogen by the heater 66, to prevent a negative pressure in the receiving side container T 2. This is also intended to prevent negative pressure, as in Examples 4-6. The evaporated gaseous hydrogen remains at a low temperature, and by using the gaseous hydrogen at a low temperature, dissolution of solid hydrogen in the slush hydrogen S 1 and S 2 and temperature rise of the liquid hydrogen L 1 and L 2 are prevented. Yes. That is, in Examples 4 and 5, it was necessary to separately prepare gaseous hydrogen and liquid hydrogen, but in this example, liquid hydrogen L 4 in the feeding side container T 1 and liquid hydrogen L in the receiving side container T 2 are used. By simply vaporizing 5 , low-temperature gaseous hydrogen can be obtained, and the number of components can be further reduced.

そして、移送時には、図示しない制御装置の制御下において、送り側容器T1は、圧力センサ、ヒータ65により、内部の圧力P1が大気圧以上の所定圧力となるように制御され、受け側容器T2も、圧力センサ、ヒータ66により、内部の圧力P2が大気圧以上の所定圧力となるように制御され、更に、送り側容器T1の圧力P1が受け側容器T2の圧力P2より一定の差圧で大きくなるように制御されている。このとき、圧力P1と圧力P2との差圧を大きくしないように制御して、液体水素L2を対流させないようにすることが望ましい。 At the time of transfer, under the control of a control device (not shown), the sending side container T 1 is controlled by the pressure sensor and the heater 65 so that the internal pressure P 1 becomes a predetermined pressure equal to or higher than the atmospheric pressure. T 2 also by the pressure sensor, the heater 66 is controlled such that the internal pressure P 2 becomes a predetermined pressure above atmospheric pressure, further, the pressure P of the feed side container T 1 of the pressure P 1 receives side container T 2 It is controlled to be larger than 2 with a certain differential pressure. At this time, it is desirable to prevent the liquid hydrogen L 2 from being convected by controlling so as not to increase the differential pressure between the pressure P 1 and the pressure P 2 .

従って、バルブ62を開くと、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧により、移送配管61を介して、スラッシュ水素S1が受け側容器T2に移送されることになる。このとき、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧を一定に維持するように制御しているため、従来のように、差圧が大きくなりすぎて、流量制御が失われることはない。又、圧力P1と圧力P2との差圧を大きくしないように制御するので、温度成層化した液体水素L2を維持したままで、スラッシュ水素S1が受け側容器T2へゆっくり移送されることになる。従って、移送されたスラッシュ水素S2中の固体水素が気体水素G2と接触する可能性は小さく、従来のように、凝縮による圧力低下が起こる可能性も小さくなる。 Therefore, when opening the valve 62, the feed side due to the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the container T 1, through a transfer pipe 61, slush hydrogen S 1 is received side container T 2 Will be transferred. At this time, since the control to maintain the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the feed side container T 1 constant, as in the prior art, the differential pressure is too large Thus, flow control is not lost. In addition, since the pressure difference between the pressure P 1 and the pressure P 2 is controlled so as not to increase, the slush hydrogen S 1 is slowly transferred to the receiving vessel T 2 while maintaining the temperature-stratified liquid hydrogen L 2. Will be. Therefore, the possibility that the solid hydrogen in the transferred slush hydrogen S 2 comes into contact with the gaseous hydrogen G 2 is small, and the possibility that the pressure drop due to condensation occurs as in the conventional case is also small.

このように、本実施例の固液二相流体の移送装置では、温度成層化した液体水素L2を、スラッシュ水素S2と気体水素G2との間に介在させ、圧力P1と圧力P2との間に一定の差圧を設けて、移送を行うので、従来のように、負圧になることはなく、又、移送流量の制御を失うこともなく、安定して移送を行うことができる。 Thus, in the solid-liquid two-phase fluid transfer device of this embodiment, the temperature-stratified liquid hydrogen L 2 is interposed between the slush hydrogen S 2 and the gaseous hydrogen G 2, and the pressure P 1 and the pressure P Since the transfer is performed with a certain differential pressure between the two , it does not become negative pressure as before, and the transfer is stably performed without losing control of the transfer flow rate. Can do.

実施例2、3の場合は、負圧防止を液体水素L1、L2のみに頼っているが、本実施例の場合も、液体水素L1、L2の対流が発生して、スラッシュ水素S1、S2中の固体水素と気体水素G1、G2との接触が起こったとしても、容器内部で低温の気体水素を生成する、つまり、自己加圧することにより、負圧を確実に防止することができる。 In Examples 2 and 3, the prevention of negative pressure depends only on liquid hydrogen L 1 and L 2, but also in this example, convection of liquid hydrogen L 1 and L 2 occurs and slush hydrogen is generated. Even if contact between solid hydrogen in S 1 and S 2 and gaseous hydrogen G 1 and G 2 occurs, low-pressure gaseous hydrogen is generated inside the container, that is, self-pressurization ensures negative pressure. Can be prevented.

このように、本実施例では、各々の容器内で個別に自己加圧して、負圧に対応できるので、スラッシュ水素の取り扱いが容易になる。   As described above, in this embodiment, self-pressurization is individually performed in each container to cope with negative pressure, so that slush hydrogen can be handled easily.

なお、本実施例の場合にも、実施例1(図1参照)に示す移送配管1のように、移送配管を、送り側容器T1、受け側容器T2の上部から挿入した構成にも適用可能である。 In the case of the present embodiment as well, the transfer pipe is inserted from the upper part of the feed side container T 1 and the receiving side container T 2 as in the transfer pipe 1 shown in the first embodiment (see FIG. 1). Applicable.

図8は、本発明に係る固液二相流体の移送装置の実施形態の他の一例を示す概略構成図である。
図8に示すように、本実施例の固液二相流体の移送装置は、スラッシュ水素S1を気体水素G1の雰囲気下で液体水素L1の下層に貯蔵する送り側容器T1(第1の容器)と、移送されたスラッシュ水素S2を気体水素G2の雰囲気下で液体水素L2の下層に貯蔵する受け側容器T2(第2の容器)と、送り側容器T1と受け側容器T2との間を接続する移送配管71と、移送配管71に設けられたバルブ72とを有しており、更に、送り側容器T1の上部に接続された配管73及び配管73に設けられたバルブ74を介して、送り側容器T1に気体水素を供給する水素ボンベ73(加圧制御手段)と、受け側容器T2内部に設けられた局所発熱体76(局所加熱手段、圧力制御手段)とを有する。なお、本実施例においても、送り側容器T1、受け側容器T2、移送配管71、バルブ72等は、負圧に対応したものでなくてもよい。
FIG. 8 is a schematic configuration diagram showing another example of the embodiment of the solid-liquid two-phase fluid transfer device according to the present invention.
As shown in FIG. 8, the transfer device of the solid-liquid two-phase fluid of the present embodiment, the feed side container T 1 is stored in a lower layer of liquid hydrogen L 1 slush hydrogen S 1 in an atmosphere of gaseous hydrogen G 1 (first 1 container), a receiving container T 2 (second container) for storing the transferred slush hydrogen S 2 in the lower layer of liquid hydrogen L 2 under the atmosphere of gaseous hydrogen G 2 , and a sending container T 1 It has a transfer pipe 71 connecting between the receiving side container T 2 and a valve 72 provided on the transfer pipe 71, and further, a pipe 73 and a pipe 73 connected to the upper part of the sending side container T 1. A hydrogen cylinder 73 (pressurization control means) for supplying gaseous hydrogen to the feed side container T 1 via a valve 74 provided on the side, and a local heating element 76 (local heating means) provided inside the receiving side container T 2 Pressure control means). Also in this embodiment, the feeding side container T 1 , the receiving side container T 2 , the transfer pipe 71, the valve 72, etc. do not have to correspond to the negative pressure.

移送配管71は、実施例2〜7と同様に、送り側容器T1においては、送り側容器T1の底部に接続されて、その供給口が、送り側容器T1に貯蔵されたスラッシュ水素S1中に配置されており、又、受け側容器T2においては、送り側容器T2の底部に接続されて、その排出口が、受け側容器T2に移送されるスラッシュ水素S2中に位置するようにしている。 Similarly to Examples 2 to 7, the transfer pipe 71 is connected to the bottom of the feed side container T 1 in the feed side container T 1 , and the supply port thereof is the slush hydrogen stored in the feed side container T 1. are arranged in S 1, also, in the receiving side container T 2, it is connected to the bottom part of the feed side container T 2, the discharge port, receiving side container T 2 in slush hydrogen S 2 to be transferred to To be located.

更に、実施例2〜7と同様に、送り側容器T1においては、温度成層化された液体水素L1の下層にスラッシュ水素S1を貯蔵しており、又、送り側容器T2においても、温度成層化された液体水素L2の下層に移送されるスラッシュ水素S2を貯蔵するようにしており、液体水素L1、L2により、スラッシュ水素S1、S2中の固体水素と気体水素G1、G2との接触を避けるようにしている。 Further, as in Examples 2 to 7, in the feed side container T 1 , the slush hydrogen S 1 is stored in the lower layer of the temperature-stratified liquid hydrogen L 1 , and also in the feed side container T 2 . The slush hydrogen S 2 transferred to the lower layer of the temperature-stratified liquid hydrogen L 2 is stored, and the solid hydrogen and gas in the slush hydrogen S 1 and S 2 are stored by the liquid hydrogen L 1 and L 2. Contact with hydrogen G 1 and G 2 is avoided.

局所発熱体76は、液体水素L2の上層部分のみを加熱するものである。このような加熱を行うことにより、スラッシュ水素S2は加熱することなく、液体水素L2の上層部分のみを加熱し、気化して、受け側容器T2内部を自己加圧することができる。このような局所発熱体76としては、超伝導体や白金等が使用可能である。超伝導体、例えば、二ホウ化マグネシウム(MgB2;臨界温度Tc=39K)は、超伝導部分では発熱せず、常電導部分では発熱するものであり、スラッシュ水素S2、液体水素L2に冷却された部分は超伝導となり、発熱せず、気体水素G2の部分は冷却されず、常電導となり、発熱が起こり、その発熱が液体水素L2の上層部分のみを加熱し、気化することになる。白金も、その温度によって、発熱量が大きく変化し、超伝導体と同様に、気体水素G2の部分では、発熱が起こり、その発熱が液体水素L2の上層部分のみを加熱し、気化することになる。なお、通常のヒータを用いることも可能であるが、その場合には、ヒータを深さ方向に複数に分割しておき、液体水素L2の上層部分にあるヒータのみを加熱するようにすればよい。 Local heating element 76 is to heat only the upper layer portion of the liquid hydrogen L 2. By performing such heating, the upper portion of the liquid hydrogen L 2 can be heated and vaporized without heating the slush hydrogen S 2 , and the inside of the receiving vessel T 2 can be self-pressurized. As such a local heating element 76, a superconductor, platinum, or the like can be used. Superconductors, for example, magnesium diboride (MgB 2; critical temperature Tc = 39K) is not heating the superconducting portion, which generates heat in a normal conducting portion, slush hydrogen S 2, the liquid hydrogen L 2 The cooled portion becomes superconducting and does not generate heat, the portion of gaseous hydrogen G 2 is not cooled and becomes normal conducting, and heat is generated, and the generated heat heats and vaporizes only the upper layer portion of liquid hydrogen L 2. become. The amount of heat generated by platinum also varies greatly depending on the temperature. Like the superconductor, heat is generated in the gaseous hydrogen G 2 portion, and the generated heat heats and vaporizes only the upper layer portion of the liquid hydrogen L 2. It will be. Although a normal heater can be used, in that case, if the heater is divided into a plurality of portions in the depth direction, only the heater in the upper layer portion of the liquid hydrogen L 2 is heated. Good.

このような特性を利用して、局所発熱体76は、受け側容器T2の液体水素L2を蒸発させて、低温の気体水素を生成することができるものであり、受け側容器T2内部の圧力P2を監視し、負圧になりそうな場合には、局所発熱体76により低温の気体水素を生成することにより、受け側容器T2の負圧を防止している。これも、実施例4〜7と同様に、負圧防止を目的とするものである。この蒸発させた気体水素は低温のままであり、低温の気体水素を用いることにより、スラッシュ水素S2中の固体水素の溶解を防止している。つまり、実施例4、5では、別途、気体水素、液体水素を用意する必要があったが、本実施例でも、受け側容器T2の液体水素L2を気化するだけで、低温の気体水素を得ることができ、構成機器を更に低減することができる。 Utilizing such characteristics, the local heating element 76 can evaporate the liquid hydrogen L 2 in the receiving container T 2 to generate low-temperature gaseous hydrogen, and the inside of the receiving container T 2. When the pressure P 2 is monitored and a negative pressure is likely to be generated, the local heating element 76 generates low-temperature gaseous hydrogen to prevent the negative pressure in the receiving container T 2 . This is also intended to prevent negative pressure, as in Examples 4-7. The evaporated gaseous hydrogen remains at a low temperature, and by using the gaseous hydrogen at a low temperature, dissolution of solid hydrogen in the slush hydrogen S 2 is prevented. That is, in Examples 4 and 5, it was necessary to separately prepare gaseous hydrogen and liquid hydrogen. However, in this embodiment as well, low-temperature gaseous hydrogen can be obtained simply by vaporizing the liquid hydrogen L 2 in the receiving container T 2. And the number of components can be further reduced.

そして、移送時には、図示しない制御装置の制御下において、送り側容器T1は、圧力センサ、配管73、バルブ74及び水素ボンベ75により、内部の圧力P1が大気圧以上の所定圧力となるように制御され、受け側容器T2は、圧力センサ、局所発熱体76により、内部の圧力P2が大気圧以上の所定圧力となるように制御され、更に、送り側容器T1の圧力P1が受け側容器T2の圧力P2より一定の差圧で大きくなるように制御されている。このとき、圧力P1と圧力P2との差圧を大きくしないように制御して、液体水素L2を対流させないようにすることが望ましい。 At the time of transfer, under the control of a control device (not shown), the internal pressure P 1 of the feed side container T 1 becomes a predetermined pressure equal to or higher than the atmospheric pressure by the pressure sensor, the pipe 73, the valve 74 and the hydrogen cylinder 75. The receiving side container T 2 is controlled by the pressure sensor and the local heating element 76 so that the internal pressure P 2 becomes a predetermined pressure equal to or higher than the atmospheric pressure, and the pressure P 1 of the feeding side container T 1 is further controlled. It is controlled so as increase at constant differential pressure than the pressure P 2 of the receiving side container T 2. At this time, it is desirable to prevent the liquid hydrogen L 2 from convection by controlling the pressure difference between the pressure P 1 and the pressure P 2 so as not to increase.

従って、バルブ72を開くと、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧により、移送配管71を介して、スラッシュ水素S1が受け側容器T2に移送されることになる。このとき、送り側容器T1の圧力P1と受け側容器T2の圧力P2との差圧を一定に維持するように制御しているため、従来のように、差圧が大きくなりすぎて、流量制御が失われることはない。又、圧力P1と圧力P2との差圧を大きくしないように制御するので、温度成層化した液体水素L2を維持したままで、スラッシュ水素S1が受け側容器T2へゆっくり移送されることになる。従って、移送されたスラッシュ水素S2中の固体水素が気体水素G2と接触する可能性は小さく、従来のように、凝縮による圧力低下が起こる可能性も小さくなる。 Therefore, when opening the valve 72, the feed side due to the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the container T 1, through a transfer pipe 71, slush hydrogen S 1 is received side container T 2 Will be transferred. At this time, since the control to maintain the pressure difference between the pressure P 2 of the pressure P 1 and the receiving side container T 2 of the feed side container T 1 constant, as in the prior art, the differential pressure is too large Thus, flow control is not lost. In addition, since the pressure difference between the pressure P 1 and the pressure P 2 is controlled so as not to increase, the slush hydrogen S 1 is slowly transferred to the receiving vessel T 2 while maintaining the temperature-stratified liquid hydrogen L 2. Will be. Therefore, the possibility that the solid hydrogen in the transferred slush hydrogen S 2 comes into contact with the gaseous hydrogen G 2 is small, and the possibility that the pressure drop due to condensation occurs as in the conventional case is also small.

このように、本実施例の固液二相流体の移送装置では、温度成層化した液体水素L2を、スラッシュ水素S2と気体水素G2との間に介在させ、圧力P1と圧力P2との間に一定の差圧を設けて、移送を行うので、従来のように、負圧になることはなく、又、移送流量の制御を失うこともなく、安定して移送を行うことができる。 Thus, in the solid-liquid two-phase fluid transfer device of this embodiment, the temperature-stratified liquid hydrogen L 2 is interposed between the slush hydrogen S 2 and the gaseous hydrogen G 2, and the pressure P 1 and the pressure P Since the transfer is performed with a certain differential pressure between the two , it does not become negative pressure as before, and the transfer is stably performed without losing control of the transfer flow rate. Can do.

実施例2、3の場合は、負圧防止を液体水素L2のみに頼っているが、本実施例の場合も、液体水素L2の対流が発生して、スラッシュ水素S2中の固体水素と気体水素G2との接触が起こったとしても、容器内部で低温の気体水素を生成する、つまり、自己加圧することにより、負圧を確実に防止することができる。 In Examples 2 and 3, the prevention of negative pressure depends on only liquid hydrogen L 2, but also in this example, convection of liquid hydrogen L 2 occurs and solid hydrogen in slush hydrogen S 2 is produced. Even when the gas hydrogen G 2 comes into contact, negative pressure can be reliably prevented by generating low-temperature gaseous hydrogen inside the container, that is, by self-pressurization.

本発明は、スラッシュ水素等の固液二相流体を移送する際に好適なものであり、例えば、水素ステーションを送り側容器、車両やロケットのタンクを受け側容器として、スラッシュ水素を水素ステーションから車両やロケットのタンクへ移送する際に適用する。   The present invention is suitable for transferring a solid-liquid two-phase fluid such as slush hydrogen. For example, a hydrogen station is used as a sending side container, a vehicle or a rocket tank as a receiving side container, and slush hydrogen is supplied from the hydrogen station. Applicable when transferring to vehicle or rocket tank.

本発明に係る固液二相流体の移送装置の実施形態の一例(実施例1)を示す概略構成図である。It is a schematic block diagram which shows an example (Example 1) of embodiment of the transfer apparatus of the solid-liquid two-phase fluid which concerns on this invention. 本発明に係る固液二相流体の移送装置の実施形態の他の一例(実施例2)を示す概略構成図である。It is a schematic block diagram which shows another example (Example 2) of embodiment of the transfer apparatus of the solid-liquid two-phase fluid which concerns on this invention. 本発明に係る固液二相流体の移送装置の実施形態の他の一例(実施例3)を示す概略構成図である。It is a schematic block diagram which shows another example (Example 3) of embodiment of the transfer apparatus of the solid-liquid two-phase fluid which concerns on this invention. 本発明に係る固液二相流体の移送装置の実施形態の他の一例(実施例4)を示す概略構成図である。It is a schematic block diagram which shows another example (Example 4) of embodiment of the transfer apparatus of the solid-liquid two-phase fluid which concerns on this invention. 本発明に係る固液二相流体の移送装置の実施形態の他の一例(実施例5)を示す概略構成図である。It is a schematic block diagram which shows another example (Example 5) of embodiment of the transfer apparatus of the solid-liquid two-phase fluid which concerns on this invention. 本発明に係る固液二相流体の移送装置の実施形態の他の一例(実施例6)を示す概略構成図である。It is a schematic block diagram which shows another example (Example 6) of embodiment of the transfer apparatus of the solid-liquid two-phase fluid which concerns on this invention. 本発明に係る固液二相流体の移送装置の実施形態の他の一例(実施例7)を示す概略構成図である。It is a schematic block diagram which shows another example (Example 7) of embodiment of the transfer apparatus of the solid-liquid two-phase fluid which concerns on this invention. 本発明に係る固液二相流体の移送装置の実施形態の他の一例(実施例8)を示す概略構成図である。It is a schematic block diagram which shows another example (Example 8) of embodiment of the transfer apparatus of the solid-liquid two-phase fluid which concerns on this invention. (a)は、従来の移送装置における移送前の状態を示す図であり、(b)は、従来の移送装置における移送時の状態を示す図である。(A) is a figure which shows the state before the transfer in the conventional transfer apparatus, (b) is a figure which shows the state at the time of the transfer in the conventional transfer apparatus.

符号の説明Explanation of symbols

1、11、21、31、41、51、61、71 移送配管
5、15、25、33、75 ボンベ
6、7 真空ポンプ
17、27、36、38、46、48、57、59 バルブ
28 バッフル板
34、55 熱交換器
43 貯蔵容器
44、65、66 ヒータ
53 分岐配管
63、64 壁
76 局所発熱体
1、G2、G3 気体水素
1、L2、L3、L4、L5 液体水素
1、S2 スラッシュ水素
1 送り側容器
2 受け側容器
1, 11, 21, 31, 41, 51, 61, 71 Transfer piping 5, 15, 25, 33, 75 Cylinder 6, 7 Vacuum pump 17, 27, 36, 38, 46, 48, 57, 59 Valve 28 Baffle plate 34,55 heat exchanger 43 storage containers 44,65,66 heater 53 branch pipes 63, 64 walls 76 locally heating elements G 1, G 2, G 3 gaseous hydrogen L 1, L 2, L 3 , L 4, L 5 Liquid hydrogen S 1 , S 2 Slash hydrogen T 1 Feeding side container T 2 Receiving side container

Claims (11)

固液二相流体を貯蔵する第1の容器から第2の容器に移送配管を通して前記固液二相流体を移送する固液二相流体の移送装置において、
前記第1の容器、前記第2の容器及び前記移送配管を真空に対応したものから構成し、
前記第1の容器の真空度を制御する第1の真空制御手段と、
前記第2の容器の真空度を制御する第2の真空制御手段とを設け、
前記固液二相流体を移送する際には、前記第1の真空制御手段及び前記第2の真空制御手段により、前記第1の容器及び前記第2の容器を共に負圧とすると共に、一定の差圧で前記第1の容器の圧力を前記第2の容器の圧力より大きくして、前記第2の容器に前記固液二相流体を移送することを特徴とする固液二相流体の移送装置。
In the solid-liquid two-phase fluid transfer device for transferring the solid-liquid two-phase fluid from the first container for storing the solid-liquid two-phase fluid to the second container through the transfer pipe,
The first container, the second container, and the transfer pipe are configured from one corresponding to vacuum,
First vacuum control means for controlling the degree of vacuum of the first container;
Providing a second vacuum control means for controlling the degree of vacuum of the second container,
When transferring the solid-liquid two-phase fluid, both the first container and the second container are set to a negative pressure by the first vacuum control unit and the second vacuum control unit, and are constant. The solid-liquid two-phase fluid is transferred to the second container by making the pressure of the first container larger than the pressure of the second container by the differential pressure of Transfer device.
固液二相流体を貯蔵する第1の容器から第2の容器に移送配管を通して前記固液二相流体を移送する固液二相流体の移送装置において、
前記第1の容器内部の前記固液二相流体を、前記固液二相流体と同種の液体の下層に貯蔵しておくと共に、前記固液二相流体が移送される前記第2の容器内部にも、前記固液二相流体と同種の液体を貯蔵しておき、
前記移送配管を前記第1の容器及び前記第2の容器の底部に接続し、
前記第1の容器を加圧する加圧制御手段と、
前記第2の容器の圧力を制御する圧力制御手段とを設け、
前記固液二相流体を移送する際には、前記加圧制御手段により前記第1の容器を加圧すると共に、前記加圧制御手段及び前記圧力制御手段により、一定の差圧で前記第1の容器の圧力を前記第2の容器の圧力より大きくして、前記第2の容器内部に貯蔵された前記固液二相流体と同種の液体の下層側に前記固液二相流体を移送することを特徴とする固液二相流体の移送装置。
In the solid-liquid two-phase fluid transfer device for transferring the solid-liquid two-phase fluid from the first container for storing the solid-liquid two-phase fluid to the second container through the transfer pipe,
The solid-liquid two-phase fluid inside the first container is stored in a lower layer of the same kind of liquid as the solid-liquid two-phase fluid, and the second container inside the solid-liquid two-phase fluid is transferred In addition, the same kind of liquid as the solid-liquid two-phase fluid is stored,
Connecting the transfer pipe to the bottom of the first container and the second container;
Pressurization control means for pressurizing the first container;
Pressure control means for controlling the pressure of the second container,
When transferring the solid-liquid two-phase fluid, the first container is pressurized by the pressurization control means, and the first control is performed with a constant differential pressure by the pressurization control means and the pressure control means. The pressure of the container is made larger than the pressure of the second container, and the solid-liquid two-phase fluid is transferred to the lower layer side of the same kind of liquid as the solid-liquid two-phase fluid stored in the second container. A solid-liquid two-phase fluid transfer device.
請求項2に記載の固液二相流体の移送装置において、
前記第2の容器内部に、前記第2の容器内部に貯蔵された前記固液二相流体と同種の液体の対流を防止する対流防止板を設けたことを特徴とする固液二相流体の移送装置。
In the solid-liquid two-phase fluid transfer device according to claim 2,
A solid-liquid two-phase fluid characterized in that a convection prevention plate for preventing convection of the same kind of liquid as the solid-liquid two-phase fluid stored in the second container is provided inside the second container. Transfer device.
固液二相流体を貯蔵する第1の容器から第2の容器に移送配管を通して前記固液二相流体を移送する固液二相流体の移送装置において、
前記固液二相流体と同種の低温の気体を生成する低温気体生成手段と、
前記低温気体生成手段で生成された気体を用いて、前記第1の容器を加圧する第1の加圧制御手段と、
前記低温気体生成手段で生成された気体を用いて、前記第2の容器を加圧する第2の加圧制御手段とを設け、
前記固液二相流体を移送する際には、前記第1の加圧制御手段及び前記第2の加圧制御手段により、前記第1の容器及び前記第2の容器を加圧すると共に、一定の差圧で前記第1の容器の圧力を前記第2の容器の圧力より大きくして、前記第2の容器に前記固液二相流体を移送することを特徴とする固液二相流体の移送装置。
In the solid-liquid two-phase fluid transfer device for transferring the solid-liquid two-phase fluid from the first container for storing the solid-liquid two-phase fluid to the second container through the transfer pipe,
Low-temperature gas generating means for generating a low-temperature gas of the same kind as the solid-liquid two-phase fluid;
First pressurizing control means for pressurizing the first container using the gas generated by the low temperature gas generating means;
Using a gas generated by the low temperature gas generating means, and a second pressurizing control means for pressurizing the second container,
When transferring the solid-liquid two-phase fluid, the first container and the second container are pressurized by the first pressure control unit and the second pressure control unit, Transfer of the solid-liquid two-phase fluid, wherein the pressure of the first container is made larger than the pressure of the second container by a differential pressure, and the solid-liquid two-phase fluid is transferred to the second container. apparatus.
請求項4に記載の固液二相流体の移送装置において、
前記低温気体生成手段は、
前記固液二相流体と同種の気体を冷却して低温の気体を生成する熱交換器、又は、前記固液二相流体と同種の液体を気化して低温の気体を生成する熱交換器から構成したことを特徴とする固液二相流体の移送装置。
In the solid-liquid two-phase fluid transfer device according to claim 4,
The low temperature gas generating means includes:
From a heat exchanger that cools the same type of gas as the solid-liquid two-phase fluid to generate a low-temperature gas, or a heat exchanger that generates a low-temperature gas by vaporizing the same type of liquid as the solid-liquid two-phase fluid A solid-liquid two-phase fluid transfer device characterized in that it is configured.
固液二相流体を貯蔵する第1の容器から第2の容器に移送配管を通して前記固液二相流体を移送する固液二相流体の移送装置において、
前記移送配管を分岐する分岐配管と、
前記分岐配管に流れる前記固液二相流体を気化して低温の気体を生成する低温気体生成手段と、
前記低温気体生成手段で生成された気体を用いて、前記第1の容器を加圧する第1の加圧制御手段と、
前記低温気体生成手段で生成された気体を用いて、前記第2の容器を加圧する第2の加圧制御手段とを設け、
前記固液二相流体を移送する際には、前記第1の加圧制御手段及び前記第2の加圧制御手段により、前記第1の容器及び前記第2の容器を加圧すると共に、一定の差圧で前記第1の容器の圧力を前記第2の容器の圧力より大きくして、前記第2の容器に前記固液二相流体を移送することを特徴とする固液二相流体の移送装置。
In the solid-liquid two-phase fluid transfer device for transferring the solid-liquid two-phase fluid from the first container for storing the solid-liquid two-phase fluid to the second container through the transfer pipe,
A branch pipe for branching the transfer pipe;
A low-temperature gas generating means for generating a low-temperature gas by vaporizing the solid-liquid two-phase fluid flowing in the branch pipe;
First pressurizing control means for pressurizing the first container using the gas generated by the low temperature gas generating means;
Using a gas generated by the low temperature gas generating means, and a second pressurizing control means for pressurizing the second container,
When transferring the solid-liquid two-phase fluid, the first container and the second container are pressurized by the first pressure control unit and the second pressure control unit, Transfer of the solid-liquid two-phase fluid, wherein the pressure of the first container is made larger than the pressure of the second container by a differential pressure, and the solid-liquid two-phase fluid is transferred to the second container. apparatus.
請求項4乃至請求項6のいずれか1項に記載の固液二相流体の移送装置において、
前記移送配管を前記第1の容器及び前記第2の容器の底部に接続し、
前記第1の容器内部の前記固液二相流体を、前記固液二相流体と同種の液体の下層に貯蔵しておくと共に、前記固液二相流体が移送される前記第2の容器内部にも、前記固液二相流体と同種の液体を貯蔵しておき、
前記固液二相流体を移送する際には、前記第2の容器内部に貯蔵された前記固液二相流体と同種の液体の下層側に前記固液二相流体を移送することを特徴とする固液二相流体の移送装置。
In the transfer device of the solid-liquid two-phase fluid according to any one of claims 4 to 6,
Connecting the transfer pipe to the bottom of the first container and the second container;
The solid-liquid two-phase fluid inside the first container is stored in a lower layer of the same kind of liquid as the solid-liquid two-phase fluid, and the second container inside the solid-liquid two-phase fluid is transferred In addition, the same kind of liquid as the solid-liquid two-phase fluid is stored,
When transferring the solid-liquid two-phase fluid, the solid-liquid two-phase fluid is transferred to a lower layer side of the same kind of liquid as the solid-liquid two-phase fluid stored in the second container. A solid-liquid two-phase fluid transfer device.
固液二相流体を貯蔵する第1の容器から第2の容器に移送配管を通して前記固液二相流体を移送する固液二相流体の移送装置において、
前記第1の容器内部及び前記第2の容器内部を2つに分離して、前記第1の容器内部の分離された一方側に前記固液二相流体と同種の液体を貯蔵し、前記第1の容器内部の分離された他方側に前記固液二相流体を貯蔵し、前記第2の容器内部の分離された一方側に前記固液二相流体と同種の液体を貯蔵しておき、
前記第1の容器内部の分離された一方側に貯蔵された前記固液二相流体と同種の液体を気化する第1の加熱手段と、
前記第1の加熱手段で気化された気体を用いて、前記第1の容器を加圧する第1の加圧制御手段と、
前記第2の容器内部の分離された一方側に貯蔵された前記固液二相流体と同種の液体を気化する第2の加熱手段と、
前記第2の加熱手段で気化された気体を用いて、前記第2の容器を加圧する第2の圧力制御手段とを設けて、
前記固液二相流体を移送する際には、前記第1の加圧制御手段及び前記第2の加圧制御手段により、前記第1の容器及び前記第2の容器を加圧すると共に、一定の差圧で前記第1の容器の圧力を前記第2の容器の圧力より大きくして、前記第2の容器内部の分離された他方側に前記固液二相流体を移送することを特徴とする固液二相流体の移送装置。
In the solid-liquid two-phase fluid transfer device for transferring the solid-liquid two-phase fluid from the first container for storing the solid-liquid two-phase fluid to the second container through the transfer pipe,
The inside of the first container and the inside of the second container are separated into two, and the same kind of liquid as the solid-liquid two-phase fluid is stored on one side separated inside the first container. Storing the solid-liquid two-phase fluid on the other side separated inside the one container, and storing the same kind of liquid as the solid-liquid two-phase fluid on the one separated side inside the second container;
First heating means for vaporizing a liquid of the same type as the solid-liquid two-phase fluid stored on one side separated from the inside of the first container;
First pressurizing control means for pressurizing the first container using the gas vaporized by the first heating means;
A second heating means for vaporizing a liquid of the same type as the solid-liquid two-phase fluid stored on one side separated from the inside of the second container;
A second pressure control unit configured to pressurize the second container using the gas vaporized by the second heating unit;
When transferring the solid-liquid two-phase fluid, the first container and the second container are pressurized by the first pressure control unit and the second pressure control unit, The pressure of the first container is made larger than the pressure of the second container with a differential pressure, and the solid-liquid two-phase fluid is transferred to the other separated side of the second container. Solid-liquid two-phase fluid transfer device.
請求項8に記載の固液二相流体の移送装置において、
前記移送配管を、前記第1の容器内部の分離された他方側の底部と前記第2の容器内部の分離された他方側の底部に接続し、
前記第1の容器内部の分離された他方側の前記固液二相流体を、前記固液二相流体と同種の液体の下層に貯蔵しておくと共に、前記固液二相流体が移送される前記第2の容器内部の分離された他方側にも、前記固液二相流体と同種の液体を貯蔵しておき、
前記固液二相流体を移送する際には、前記第2の容器内部の分離された他方側に貯蔵された前記固液二相流体と同種の液体の下層側に前記固液二相流体を移送することを特徴とする固液二相流体の移送装置。
The solid-liquid two-phase fluid transfer device according to claim 8,
Connecting the transfer pipe to the separated bottom portion inside the first container and the separated bottom portion inside the second container;
The separated solid-liquid two-phase fluid inside the first container is stored in a lower layer of the same kind of liquid as the solid-liquid two-phase fluid, and the solid-liquid two-phase fluid is transferred. The same kind of liquid as the solid-liquid two-phase fluid is stored on the other separated side of the second container,
When transferring the solid-liquid two-phase fluid, the solid-liquid two-phase fluid is placed on the lower layer side of the same kind of liquid as the solid-liquid two-phase fluid stored on the other separated side inside the second container. A solid-liquid two-phase fluid transfer device characterized by transferring.
固液二相流体を貯蔵する第1の容器から第2の容器に移送配管を通して前記固液二相流体を移送する固液二相流体の移送装置において、
前記第1の容器内部の前記固液二相流体を、前記固液二相流体と同種の液体の下層に貯蔵しておくと共に、前記固液二相流体が移送される前記第2の容器内部にも、前記固液二相流体と同種の液体を貯蔵しておき、
前記移送配管を、前記第1の容器の底部と前記第2の容器の底部に接続し、
前記第1の容器を加圧する加圧制御手段と、
前記第2の容器内部に貯蔵された前記固液二相流体と同種の液体の上層を気化する局所加熱手段と、
前記局所加熱手段で気化された気体を用いて、前記第2の容器の圧力を制御する圧力制御手段とを設け、
前記固液二相流体を移送する際には、前記加圧制御手段により前記第1の容器を加圧すると共に、前記加圧制御手段及び前記圧力制御手段により、一定の差圧で前記第1の容器の圧力を前記第2の容器の圧力より大きくして、前記第2の容器内部に貯蔵された前記固液二相流体と同種の液体の下層側に前記固液二相流体を移送することを特徴とする固液二相流体の移送装置。
In the solid-liquid two-phase fluid transfer device for transferring the solid-liquid two-phase fluid from the first container for storing the solid-liquid two-phase fluid to the second container through the transfer pipe,
The solid-liquid two-phase fluid inside the first container is stored in a lower layer of the same kind of liquid as the solid-liquid two-phase fluid, and the second container inside the solid-liquid two-phase fluid is transferred In addition, the same kind of liquid as the solid-liquid two-phase fluid is stored,
Connecting the transfer pipe to the bottom of the first container and the bottom of the second container;
Pressurization control means for pressurizing the first container;
A local heating means for vaporizing an upper layer of the same liquid as the solid-liquid two-phase fluid stored in the second container;
A pressure control means for controlling the pressure of the second container using the gas vaporized by the local heating means;
When transferring the solid-liquid two-phase fluid, the first container is pressurized by the pressurization control means, and the first control is performed with a constant differential pressure by the pressurization control means and the pressure control means. The pressure of the container is made larger than the pressure of the second container, and the solid-liquid two-phase fluid is transferred to the lower layer side of the same kind of liquid as the solid-liquid two-phase fluid stored in the second container. A solid-liquid two-phase fluid transfer device.
請求項10に記載の固液二相流体の移送装置において、
前記局所加熱手段として、超電導体からなるヒータを用いたことを特徴とする固液二相流体の移送装置。
The solid-liquid two-phase fluid transfer device according to claim 10,
A solid-liquid two-phase fluid transfer apparatus using a heater made of a superconductor as the local heating means.
JP2008045446A 2008-02-27 2008-02-27 Transfer device for solid-liquid two-phase fluid Withdrawn JP2009204040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045446A JP2009204040A (en) 2008-02-27 2008-02-27 Transfer device for solid-liquid two-phase fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045446A JP2009204040A (en) 2008-02-27 2008-02-27 Transfer device for solid-liquid two-phase fluid

Publications (1)

Publication Number Publication Date
JP2009204040A true JP2009204040A (en) 2009-09-10

Family

ID=41146529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045446A Withdrawn JP2009204040A (en) 2008-02-27 2008-02-27 Transfer device for solid-liquid two-phase fluid

Country Status (1)

Country Link
JP (1) JP2009204040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132747A (en) * 2018-02-01 2019-08-08 株式会社住化分析センター Hydrogen gas analysis kit and hydrogen gas analysis method
JP2020533526A (en) * 2017-07-31 2020-11-19 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Evaporative gas reliquefaction system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020533526A (en) * 2017-07-31 2020-11-19 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Evaporative gas reliquefaction system
JP7402692B2 (en) 2017-07-31 2023-12-21 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Evaporated gas reliquefaction system
JP2019132747A (en) * 2018-02-01 2019-08-08 株式会社住化分析センター Hydrogen gas analysis kit and hydrogen gas analysis method
JP7007940B2 (en) 2018-02-01 2022-02-10 株式会社住化分析センター Hydrogen gas analysis kit and hydrogen gas analysis method

Similar Documents

Publication Publication Date Title
KR102053387B1 (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
JP6738642B2 (en) System that combines gas supply equipment and cooling equipment
US20080209917A1 (en) Storage Tank For Cryogenic Media
US7516752B2 (en) Boil-off compensating cryoadsorption container for liquid gas storage
US6732536B1 (en) Method for providing cooling to superconducting cable
NO333065B1 (en) Apparatus and method for keeping tanks for storing or transporting a liquid gas cold
CN110651151B (en) Liquefied gas supply backup system and liquefied gas backup supply method
US20140190187A1 (en) Cryogenic Liquid Conditioning and Delivery System
JP4634231B2 (en) Low temperature liquefied gas storage device, power generation device having the same, and moving body
US20130227967A1 (en) Lng vaporization equipment
US9853301B2 (en) Thermal conditioning fluids for an underwater cryogenic storage vessel
CN108700258B (en) Method for cooling a first cryogenic pressure vessel and motor vehicle having a pressure vessel system
JP2009127813A (en) Hydrogen gas supply method and hydrogen gas supply installation
JP2009204040A (en) Transfer device for solid-liquid two-phase fluid
US20230375136A1 (en) Fuel delivery system
KR100831946B1 (en) Liquefied natural gas regasification process and plant
KR20160112824A (en) Apparatus for supplying Forced Boil Off Gas
JP2009192004A (en) Liquefied gas vaporizing equipment
TW200928172A (en) Liquefied gas supply device and supply method
US20230266064A1 (en) Heat exchange device using seawater
JP2009103165A (en) Low temperature liquefied gas transport vehicle
WO2022084432A1 (en) Improved cryogenic storage tank with an integrated closed cooling system
JP2014199745A (en) Cooling system for superconductive cable
KR20220049030A (en) A system mounted on a ship for processing gases contained within tanks for storage and/or transport of gases in liquid and gaseous phases.
KR101751850B1 (en) LNG Unloading Method and Fuel Supply Operating System and Method the Same of Liquefied Gas Carrier

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510