NO333065B1 - Apparatus and method for keeping tanks for storing or transporting a liquid gas cold - Google Patents

Apparatus and method for keeping tanks for storing or transporting a liquid gas cold

Info

Publication number
NO333065B1
NO333065B1 NO20001980A NO20001980A NO333065B1 NO 333065 B1 NO333065 B1 NO 333065B1 NO 20001980 A NO20001980 A NO 20001980A NO 20001980 A NO20001980 A NO 20001980A NO 333065 B1 NO333065 B1 NO 333065B1
Authority
NO
Norway
Prior art keywords
liquid
gas
heat exchanger
tank
liquefied
Prior art date
Application number
NO20001980A
Other languages
Norwegian (no)
Other versions
NO20001980D0 (en
NO20001980L (en
Inventor
Jean-Christophe Raillard
Emmanuel Flesch
Henri Doyer
Original Assignee
Gdf Suez
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gdf Suez filed Critical Gdf Suez
Publication of NO20001980D0 publication Critical patent/NO20001980D0/en
Publication of NO20001980L publication Critical patent/NO20001980L/en
Publication of NO333065B1 publication Critical patent/NO333065B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0097Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/90Boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/34Hydrogen distribution

Abstract

Part of the liquefied gas is pumped out (18) and super-cooled in a heat exchange system (22) before it is re-injected into t tank (10). In addition, part of the evaporated gas (16) is extracted intermittently, compressed in a compressor (36) and injecte into the extracted liquid to form a mixture which is then fully liquefied and super-cooled in the heat exchange system. The heat exchanger is designed to treat a fluid that is mainly liquid on entry. The liquid/compressed gas mixture injected the heat exchanger is in molar ratio 50-100% liquid, preferably 70-100%. The system applies to several tanks, with the mixture b taken from at least one tank and re-injected into at least one tank after passing through the heat exchanger. The heat exchanger uses a cooling fluid such as gaseous nitrogen or the products from the tanks and cools the liquid/gas mixture by 1-20 degrees C, preferably 3-17 degrees C. An intermediate storage capacity for the super-cooled liquid (30) is placed betw the heat exchanger and a control valve (26). The super-cooled liquid is re-injected into the tank at the liquid level and/or the level. The liquefied gas is a gas which cannot be distributed in liquid form at 15 degrees C, whatever the pressure, such as liquefied natural gas (LNG) or hydrogen. Alternatively the liquefied gas is liquefied petroleum gas (LPG). The cooling liquid in heat exchanger can be polypropylene, a freon, an HCFC or the product in the tank.

Description

Den foreliggende oppfinnelsen vedrører generelt område med lagring og transport av flytendegjort eller kondensert gass, og vedrører mer spesielt en fremgangsmåte for å holde tanker som inneholder flytende gass kalde og til en samsvarende anordning for implementering av fremgangsmåten. The present invention generally relates to the area of storage and transport of liquefied or condensed gas, and relates more particularly to a method for keeping tanks containing liquefied gas cold and to a corresponding device for implementing the method.

KJENT TEKNIKK PRIOR ART

Det er kjent å lagre og transportere visse gasser i form av en væske ved svært lave temperaturer og ved trykk som er nær atmosfæretrykk. Uheldigvis, kan ikke tanker der slike flytende gasser lagres og transporterer, bli fullstendig og perfekt isolert, og blir derfor utsatt for varmelekkasje. Dette gjør at væske for-damper, og følgelig øker trykket innvendig i en slik tank slik at det kan raskt bli uakseptabelt høyt, og gjør det nødvendig å slippe ut fordampet gass. It is known to store and transport certain gases in the form of a liquid at very low temperatures and at pressures close to atmospheric pressure. Unfortunately, tanks where such liquefied gases are stored and transported cannot be completely and perfectly insulated, and are therefore exposed to heat leakage. This causes liquid to evaporate, and consequently increases the pressure inside such a tank so that it can quickly become unacceptably high, and makes it necessary to release evaporated gas.

Forskjellige løsninger på problemet med fordampning har følgelig blitt laget, særlig for transport av slik væskeformig gass. Følgelig, blir på metan-tankbåter utstyrt med dampdrift, den fordampede gassen tatt fra lagringstankene, varmet og brent i kjeler som leverer energi direkte til en dampkrets for å drive skipets propeller via passende giring. Various solutions to the problem of evaporation have consequently been devised, particularly for the transport of such liquefied gas. Accordingly, on methane tankers equipped with steam propulsion, the vaporized gas is taken from the storage tanks, heated and burned in boilers which supply energy directly to a steam circuit to drive the ship's propellers via suitable gearing.

Uheldigvis, blir dampdrift byttet ut i større og større grad med driftsmetoder som gir større energivirkningsgrad, eksempelvis dieseldrift. I tillegg finnes det forskjellige prosjekter som har som formål å prosessere unnsluppet gass uavhengig av skipsdriften ved hjelp av anordninger som tar sikte på å eliminere slik fordampning på andre måter. Unfortunately, steam operation is being replaced to a greater and greater extent by operating methods that provide greater energy efficiency, for example diesel operation. In addition, there are various projects whose purpose is to process escaped gas independently of the ship's operation using devices that aim to eliminate such evaporation in other ways.

Eksempelvis er det kjent å på ny gjøre dampen om til væske og på ny sprøyte den tilbake inn i tanken den kom fra. Imidlertid foreskriver denne teknikken bruk av en enhet som på ny flytendegjør eller kondenserer gassen som er svært kompleks og kostbar når de lagrede og transporterte flytendegjorte gasser ikke er rene, hvilket vanligvis er tilfelle, slik at gassen inneholder ukondenserbare komponenter som må bli utsatt for spesiell prosessering og må bli sluppet ut til atmosfæren, hvilket representerer ulemper i forbindelse med sikkerhet og miljø-beskyttelse. For example, it is known to re-convert the vapor into liquid and re-inject it back into the tank it came from. However, this technique prescribes the use of a device that re-liquefies or condenses the gas which is very complex and expensive when the stored and transported liquefied gases are not pure, which is usually the case, so that the gas contains non-condensable components that must be subjected to special processing and must be released into the atmosphere, which represents disadvantages in connection with safety and environmental protection.

En annen løsning består å ikke på ny flytendegjøre den fordampede gassen, men i en lett kjøling av den væskeformige gassen direkte. US patent 3 918 265 illustrerer anordninger som er passende for å holde tanker kalde på denne måten, som vist på figur 3. Med henvisning til figur 3, fremgår det et system der væskeformig gass blir pumpet ut fra en tank 50 og den væskeformige gassen blir ekstrahert på denne måten blir underkjølt i én eller flere varmevekslere 54 og 56, etter hvilket den blir på ny sprøytet inn i tanken 50 og muligens inn i andre tanker 52. Ventilene 58, 60, 62 og 64 tjener til å regulere de forskjellige fluidene som strømmer gjennom anordningen. Another solution consists in not re-liquefying the evaporated gas, but in a slight cooling of the liquid gas directly. US patent 3,918,265 illustrates devices suitable for keeping tanks cold in this way, as shown in figure 3. With reference to figure 3, there appears a system in which liquefied gas is pumped out from a tank 50 and the liquefied gas is extracted in this way is subcooled in one or more heat exchangers 54 and 56, after which it is re-injected into the tank 50 and possibly into other tanks 52. The valves 58, 60, 62 and 64 serve to regulate the various fluids which flows through the device.

Den løsningen kan være tilfredsstillende for styring av saktegående økninger i trykket av væskeformig gass, dvs. i det lange løp (der slike trykkhevninger kan evalueres i omtrent 10 mbar/time for LNG). Imidlertid viser dette seg å være utilstrekkelig for å imøtekomme mot raske økninger i trykk, pga. at den væskeformige gassen glir satt inn i tanken som i utgangspunktet har en dårlig tilstand i forbindelse med termodynamisk likevekt, eller at tanken ikke er skikkelig kjølt. Særlig, ved transportering av flytende gass på sjøen (for eksempel om bord på en LNG metan-tankbåt) kan vanskelige seilingsforhold føre til øyeblikkelig fordampning og forårsake at trykket øker med kanskje så mye som 10 mbar/min. i varigheter som varer opp til flere minutter. That solution can be satisfactory for managing slow increases in the pressure of liquefied gas, i.e. in the long run (where such pressure increases can be evaluated at approximately 10 mbar/hour for LNG). However, this proves to be insufficient to accommodate rapid increases in pressure, due to that the liquefied gas slips into the tank, which initially has a bad state in connection with thermodynamic equilibrium, or that the tank is not properly cooled. In particular, when transporting liquefied gas at sea (for example on board an LNG methane tanker), difficult sailing conditions can lead to instantaneous evaporation and cause the pressure to increase by perhaps as much as 10 mbar/min. for durations lasting up to several minutes.

FORMÅL OG DEFINISJON AV OPPFINNELSEN PURPOSE AND DEFINITION OF THE INVENTION

Den foreliggende oppfinnelsens forhold smelter sammen med de ovenfor nevnte ulempene ved å foreslå en fremgangsmåte for å holde tanker kalde for lagring og transport av flytendegjort gass, hvilken fremgangsmåte fremskaffer god styring av trykkøkinger, både raske og trege. Et formål med oppfinnelsen er også å foreslå en anordning for å implementere fremgangsmåten, hvilken anordning er enkelt og har lav kostnad og samsvarer bedre med dagens standarder i forbindelse med forurensning enn dagens kjente anordninger. The conditions of the present invention merge with the above-mentioned disadvantages by proposing a method for keeping tanks cold for the storage and transport of liquefied gas, which method provides good control of pressure increases, both fast and slow. An object of the invention is also to propose a device for implementing the method, which device is simple and has low cost and corresponds better to today's standards in connection with pollution than today's known devices.

Foreliggende oppfinnelse tilveiebringer en fremgangsmåte for å holde kaldt The present invention provides a method for keeping cold

i det minste én tank for lagring eller transport av flytende gass, i hvilket fremgangsmåten omfatter ekstrahering av en del av flytende gass i tanken ved å pumpe den og så blir den flytende gassen som blir ekstrahert på denne måten underkjølt i et varmevekslersystem og den flytendegjorte gassen som blir underkjølt på denne måten blir selektivt på ny innsprøytet inn i tanken, der fremgangsmåten erkarakterisert vedat en andel av dampen i tanken også blir ekstrahert intermittent, at least one tank for storing or transporting liquefied gas, in which the method comprises extracting a portion of liquefied gas in the tank by pumping it and then the liquefied gas thus extracted is subcooled in a heat exchanger system and the liquefied gas which is subcooled in this way is selectively re-injected into the tank, where the method is characterized by the fact that a proportion of the steam in the tank is also extracted intermittently,

der dampen som blir ekstrahert på denne måten blir komprimert i en kompressor, og den ekstraherte dampen som blir komprimert på denne måten blir sprøytet inn i den ekstraherte flytende gassen for å danne en blanding som så er gjort fullstendig flytende og underkjølt i varmevekslersystemet. wherein the vapor thus extracted is compressed in a compressor, and the extracted vapor thus compressed is injected into the extracted liquefied gas to form a mixture which is then completely liquefied and subcooled in the heat exchanger system.

I oppfinnelsen, blir det brukt en varmeveksler som er konstruert for å motta et fluid for kjøling som hovedsakelig er i væskeform. In the invention, a heat exchanger is used which is designed to receive a fluid for cooling which is mainly in liquid form.

Den komprimerte flytende gassblandingen som blir sprøytet inn i varmevekslersystemet har et væskeinnhold som er i området fra 50% til 100% molar og fortrinnsvis i området fra 70% til 100% molar. The compressed liquid gas mixture which is injected into the heat exchanger system has a liquid content which is in the range from 50% to 100% molar and preferably in the range from 70% to 100% molar.

Innsprøytning av gassen etter at den har blitt komprimert inn i strømmen av flytendegjort gass forbedrer styring over trykkhevninger, uavhengig av om de er raske eller trege. Injecting the gas after it has been compressed into the liquefied gas stream improves control over pressure surges, regardless of whether they are rapid or slow.

Fremgangsmåten i henhold til oppfinnelsen kan bli brukt til et sett som omfatter en rekke tanker. Under slike forhold eller omstendigheter, blir den komprimerte væske/gassblandingen tatt fra minst én av tankene, og etterpå blir den fullstendig væskegjort og underkjølt i varmevekslersystemet der det blir gjeninn-sprøytet inn i minst én av tankene. The method according to the invention can be used for a set comprising a number of tanks. Under such conditions or circumstances, the compressed liquid/gas mixture is taken from at least one of the tanks, and thereafter it is completely liquefied and subcooled in the heat exchanger system where it is re-injected into at least one of the tanks.

Oppfinnelsen fremskaffer også en anordning for implementering av fremgangsmåten som omfatter for det første minst én tank for flytende gass som inneholder en væske (LIQ) og en gass (BOG) og for det andre et varmevekslersystem hvis innløp kommuniserer med væskenivået i tanken via et pumpesystem og et væskeavsugningsrør (draw-off pipe) og hvis utløp kommuniserer med tanken etter at den har passert gjennom en styringsventil, der anordningen erkarakterisert vedat den ytterligere omfatter en kompressor med et innløp som kommuniserer med tanken i sitt gassnivå og hvis utløp kommuniserer med væskeavtrek-ningsrøret via et innsprøytningssystem via innløpet til varmeveksleren, på en slik måte at en fullstendig flytende og underkjølt blanding blir på ny satt inn i tanken for å kjøle dens innhold, og for derved styring av trykkøkninger. The invention also provides a device for implementing the method comprising firstly at least one tank for liquefied gas containing a liquid (LIQ) and a gas (BOG) and secondly a heat exchanger system whose inlet communicates with the liquid level in the tank via a pump system and a liquid suction pipe (draw-off pipe) and whose outlet communicates with the tank after it has passed through a control valve, where the device is characterized in that it further comprises a compressor with an inlet which communicates with the tank in its gas level and whose outlet communicates with the liquid draw-off pipe via an injection system via the inlet to the heat exchanger, in such a way that a completely liquid and subcooled mixture is reintroduced into the tank to cool its contents, thereby controlling pressure increases.

Fortrinnsvis omfatter varmevekslersystemet en varmeveksler som er konstruert for å motta et fluid for kjøling som hovedsakelig er i væskeform. Preferably, the heat exchanger system comprises a heat exchanger which is designed to receive a fluid for cooling which is mainly in liquid form.

Fortrinnsvis har den komprimerte væske gassblandingen som blir sprøytet inn i varmevekslersystemet et væskeinnhold som ligger i området fra 50% til 100% molar, og fortrinnsvis i området 70% til 100% molar. Preferably, the compressed liquid-gas mixture that is injected into the heat exchanger system has a liquid content that lies in the range from 50% to 100% molar, and preferably in the range 70% to 100% molar.

Varmevekslersystemet kan ha et kjølende fluid som passerer gjennom det eksempelvis et gassformig nitrogen eller en blanding av substanser som kommer fra tanken. Fortrinnsvis er den konfigurert for å kjøle den innsprøytede sammen-pressede væske/gassblandingen ved 1°C til 20°C, og fortrinnsvis ved 3°C til 17°C. Den fullstendige væskeformige og underkjølte blandingen som kommer fra varmeveksler-systemet blir gjeninnsprøytet inn i tanken i gassen (BOG) som/eller i væsken (LIQ). The heat exchanger system can have a cooling fluid that passes through it, for example gaseous nitrogen or a mixture of substances coming from the tank. Preferably, it is configured to cool the injected compressed liquid/gas mixture at 1°C to 20°C, and preferably at 3°C to 17°C. The complete liquid and subcooled mixture coming from the heat exchanger system is re-injected into the tank in the gas (BOG) and/or in the liquid (LIQ).

I en fordelaktig variant av anordningen i henhold til oppfinnelsen omfatter anordningen videre et mellomlagringsvolum plassert på et retur-rør for returnering av fullstendig flytende og underkjølt blanding til tanken, der hvor volumet er plassert mellom utløpet fra varmevekslersystemet og styringsventilen. In an advantageous variant of the device according to the invention, the device further comprises an intermediate storage volume placed on a return pipe for returning completely liquid and subcooled mixture to the tank, where the volume is placed between the outlet from the heat exchanger system and the control valve.

Man skal merke seg at den flytende gassen til hvilket oppfinnelsen kan bli brukt kan bli omfattet av en gass som er tilgjengelig i væskeform lavere enn omgivende temperatur, eksempelvis flytende naturgass (LNG), flytende petroleumsgass (LPG), ammoniakk, hydrogen, etc. Oppfinnelsen kan brukes på en spesiell fordelaktig måte for gasser som ikke finnes i væskeform ved standard-temperaturen på 15°C og hvilket som helst trykk, eksempelvis naturgass eller hydrogen. Når den flytende gassen består av en flytende petroleumsgass (LPG), kan varmevekslersystemet ha et kjølende fluid som passerer derigjennom eksempelvis propylen, freon, en HCFC, eller substanser som kommer fra tanken. It should be noted that the liquefied gas for which the invention can be used can be comprised of a gas that is available in liquid form lower than ambient temperature, for example liquefied natural gas (LNG), liquefied petroleum gas (LPG), ammonia, hydrogen, etc. The invention can be used in a particularly advantageous way for gases that do not exist in liquid form at the standard temperature of 15°C and any pressure, for example natural gas or hydrogen. When the liquefied gas consists of liquefied petroleum gas (LPG), the heat exchanger system can have a cooling fluid that passes through it, for example propylene, freon, an HCFC, or substances coming from the tank.

KORT BESKRIVELSE AV TEGNINGENE BRIEF DESCRIPTION OF THE DRAWINGS

Egenskapene og fordelene med den foreliggende oppfinnelsen vil oppfinnelsen fremgå klarere fra den etterfølgende beskrivelsen gitt av et ikke-be-grensende eksempel og med henvisning til de vedlagte tegninger, der: Fig. 1 er et diagram som viser anordningens prinsipper for lagring og transport av væskeformig gass i samsvar med oppfinnelsen; The properties and advantages of the present invention will appear more clearly from the following description given by a non-limiting example and with reference to the attached drawings, where: Fig. 1 is a diagram showing the principles of the device for storing and transporting liquid gas according to the invention;

Fig. 2 viser en utførelsesvariant av anordningen på fig. 1; og Fig. 2 shows an embodiment variant of the device in fig. 1; and

Fig. 3 viser en anordning i henhold til kjent teknikk som egner seg for styring av trege trykkøkninger i gasstanker for væskeformig gass. Fig. 3 shows a device according to known technology which is suitable for controlling slow pressure increases in gas tanks for liquefied gas.

DETALJERT BESKRIVELSE AV EN FORETRUKKET UTFØRELSESFORM DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Fig. 1 viser en anordning i henhold til oppfinnelsen for lagring og transport av flytende gass eksempelvis flytende naturgass (LNG). Anordningen omfatter en tank 10 som inneholder en væske (LIQ) 12 og en gass. På vanlig måte er tanken anbrakt med forskjellige termiske isoleringskonstruksjoner for å begrense varmelekkasjene til hvilket væsken og gassen som er lagret deri er uttatt for. Over væskeseparasjonsoverflaten 14 finnes det et tilleggsrom 16 som inneholder gassen fra lagringen som består av damp eller "avkok-gass" (BOG). Et pumpesystem 18 er plassert innvendig i tanken i væsken 12 og hovedsakelig ved den nedre delen av denne, (bunnen av tanken), men den kunne også være plassert et annet sted, inkludert utsiden av tanken 10, og er forbundet til en første ende av et gå-rør 20 (go pipe) 20 for å trekke av væsker, hvis andre ende er forbundet til et første innløp på en varmeveksler 22 som også har et kjølefluid som passerer derigjennom mellom et andre innløp og et andre utløp, dvs. gassformig nitrogen eller en blanding av substanser som kommer fra tanken. Et første utløp fra varmeveksler 22 er forbundet med den første ende av et retur-rør 24 hvis andre ende stikker inn i tank 10 (inn i væsken og/eller inn i den avkokte gassen, avhengig av nivået som tanken er fylt til) etter at det har passert gjennom en reguleringsventil 26. Fig. 1 shows a device according to the invention for storing and transporting liquefied gas, for example liquefied natural gas (LNG). The device comprises a tank 10 which contains a liquid (LIQ) 12 and a gas. In the usual way, the tank is fitted with various thermal insulation constructions to limit the heat leaks to which the liquid and gas stored therein is withdrawn. Above the liquid separation surface 14 there is an additional space 16 which contains the gas from the storage consisting of steam or "boil-off gas" (BOG). A pump system 18 is located inside the tank in the liquid 12 and mainly at the lower part thereof, (the bottom of the tank), but it could also be located elsewhere, including the outside of the tank 10, and is connected to a first end of a go pipe 20 (go pipe) 20 for withdrawing liquids, the other end of which is connected to a first inlet of a heat exchanger 22 which also has a cooling fluid passing through it between a second inlet and a second outlet, i.e. gaseous nitrogen or a mixture of substances coming from the tank. A first outlet from the heat exchanger 22 is connected to the first end of a return pipe 24, the other end of which protrudes into the tank 10 (into the liquid and/or into the boiled-off gas, depending on the level to which the tank is filled) after it has passed through a control valve 26.

Oppfinnelsen omfatter ytterligere et andre rør 34 med en ende i kommuni-kasjon med det innvendige av tanken 10 i sin gass 16, hovedsakelig i de øvre deler av denne (toppen av tanken), og med sin andre ende forbundet med innløpet på en kompressor 36 etter at det har passert gjennom en ventil 31. Kompressor 36 kan være tilknyttet kjølingssystemet. Utløpet fra kompressoren 36 kommuniserer via et innsprøytningssystem med røret 20 for å trekke av væske. The invention further comprises a second pipe 34 with one end in communication with the interior of the tank 10 in its gas 16, mainly in the upper parts thereof (the top of the tank), and with its other end connected to the inlet of a compressor 36 after it has passed through a valve 31. Compressor 36 may be connected to the cooling system. The outlet from the compressor 36 communicates via an injection system with the pipe 20 to draw off liquid.

Reguleringsventiler 26 og 31, og kompressoren 36 blir alle styrt av en passende styringsenhet 28 slik at væsken som på ny blir ført inn i tanken og slik at den periodiske avsugningen av gassen 16 gjør det mulig at trykket innvendig i tanken blir styrt i sanntid, med underkjøling av den på ny innsatte væsken som møter varmelekkasjen som motvirker varmelekkasjen og som er årsaken til at væsken 12 og gassen 16 varmes opp. Et mellomlagringsvolum 30 kan bli plassert ved retur-rør 24 på vei tilbake til tanken 10 mellom utløpet fra varmeveksler 22 og reguleringsventil 26 for å fremskaffe større fleksibilitet under drift av anordningen ved å fremskaffe en reservetilførsel av kjølt væske. Naturligvis, gjør tilveiebringelsen av en ventil 32 det mulig, skulle det være nødvendig, å trekke ut eller ekstrahere gassen som mellomlagringsvolumet 30 inneholder. Control valves 26 and 31, and the compressor 36 are all controlled by a suitable control unit 28 so that the liquid which is re-introduced into the tank and so that the periodic suction of the gas 16 makes it possible for the pressure inside the tank to be controlled in real time, with subcooling of the reinserted liquid which meets the heat leak which counteracts the heat leak and which causes the liquid 12 and the gas 16 to heat up. An intermediate storage volume 30 can be placed at the return pipe 24 on the way back to the tank 10 between the outlet from the heat exchanger 22 and the control valve 26 to provide greater flexibility during operation of the device by providing a reserve supply of cooled liquid. Naturally, the provision of a valve 32 makes it possible, should it be necessary, to withdraw or extract the gas which the intermediate storage volume 30 contains.

Fremgangsmåten implementert i anordningen i henhold til oppfinnelsen består i utgangspunktet i å bruke pumpe 18 til å ekstrahere en del av væsken LIQ 12 som blir levert til går-rør 20 til varmeveksler 22 der det blir underkjølt ved hjelp av kjølevæsken som kommer fra et eksternt kjølingssystem. Ved utløpet av varmeveksleren, blir den underkjølte væsken levert i retur-rør 24 mot tank 10 inn i hvilket det blir på ny innsprøytet selektivt, enten direkte eller etter alternativ mellomlagring i volumet 30. I seg selv, tjener denne sirkulasjonen av kjølt væske på en svært enkel måte til å styre trege eller saktegående trykkøkninger. Følgelig, kan eksempelvis for en metantanker med en kapasitet på 135 000 m og for transportering av LNG ha et relativt høyt nitrogeninnhold (omtrent 1,2 % molar i væsken), og tankene holdes kalde av en strøm av flere hundre m<3>/time LNG som er underkjølt av en mengde som ligger i området 1°C til 20°C (fortrinnsvis i området fra 3°C til 17°C). Mer presist, for 150 m<3>/time av LNG underkjølt med 11°C før gjeninnsprøyting i væsken inn i tanken utføres denne funksjonen å holde tanken kald på lang sikt i tillegg godt og uten at noe slippes ut i atmosfæren. Denne sirkuleringshastigheten av LNG kan oppnås rett og slett ved hjelp av en eller flere resirkuleringspumper (spray pumps) eller muligens ved bruk av av-blåsningspumper som metantanker vanligvis er utstyrt med. The method implemented in the device according to the invention basically consists in using pump 18 to extract part of the liquid LIQ 12 which is delivered to the flow pipe 20 to the heat exchanger 22 where it is subcooled by means of the coolant coming from an external cooling system . At the outlet of the heat exchanger, the subcooled liquid is delivered in the return pipe 24 towards the tank 10 into which it is re-injected selectively, either directly or after alternative intermediate storage in the volume 30. In itself, this circulation of cooled liquid serves a very simple way to control slow or slow pressure increases. Consequently, for example, a methane tanker with a capacity of 135,000 m and for transporting LNG can have a relatively high nitrogen content (about 1.2% molar in the liquid), and the tanks are kept cold by a flow of several hundred m<3>/ hour LNG that is subcooled by an amount in the range of 1°C to 20°C (preferably in the range of 3°C to 17°C). More precisely, for 150 m<3>/hour of LNG subcooled by 11°C before re-injection into the liquid into the tank, this function is performed to keep the tank cold in the long term in addition well and without anything being released into the atmosphere. This circulation rate of LNG can be achieved simply by means of one or more recirculation pumps (spray pumps) or possibly by the use of blow-off pumps that methane tanks are usually equipped with.

Uheldigvis, er ikke denne resirkulasjonen av væske tilstrekkelig i seg selv til å styre raske trykkøkninger. Fremgangsmåten beskrevet over blir forbedret ved at en del av avkok-gass BOG 16 kan bli ekstrahert i perioder, og etterfølgende sprøytet inn etter at det blir komprimert (i kompressor 36) via innsprøytnings-systemet 35 inn i LNG-strømmen som sirkulerer i gå-røret 20 etter hvilket det blir utsatt for kjøling i varmeveksler 22. Strømmen som går inn i varmeveksleren er enten en strøm væske i BOG-strømmen hvis BOG-strømmen er fullstendig opp-løst i LNG-strømmen eller ellers mer generelt en strøm væske og damp med en hoveddel væskeinnhold som ligger i området 50% til 100%, og fortrinnsvis i området 70% til 100% molar. Under slike forhold, er varmeveksleren naturligvis en tofase-varmeveksler skjønt av en forenklet struktur-konstruksjon på grunn av tilstedeværelsen av en liten mengde damp. Følgelig, tilbake til det ovenfor gitte eksempel for en metan-tanker, kan det ble vist at håndtering av en trykkhevning på 10 mbar/minutt tilsvarer innsprøytning av en strøm på 2800 kg/time av BOG inn i strømmen på 150 m Vtime væske. Denne blandingen, hvis væskeinnhold i dette tilfelle er 98% molar blir sprøytet inn i varmeveksleren når den blir fullstendig væskeformig og kjølt ved 13°C, etter hvilket den blir på ny sprøytet inn i tanken ved en temperatur på -177°C, dvs. en temperatur som er høyere enn krystalli-sasjonstemperaturen for metan ved atmosfæretrykk, hvilket temperatur er omtrent -182,6°C. Unfortunately, this recirculation of fluid is not sufficient by itself to control rapid pressure increases. The procedure described above is improved by the fact that a part of the boil-off gas BOG 16 can be extracted in periods, and subsequently injected after it is compressed (in the compressor 36) via the injection system 35 into the LNG stream which circulates in the pipe 20 after which it is exposed to cooling in the heat exchanger 22. The stream that enters the heat exchanger is either a stream of liquid in the BOG stream if the BOG stream is completely dissolved in the LNG stream or else more generally a stream of liquid and steam with a main liquid content in the range 50% to 100%, and preferably in the range 70% to 100% molar. Under such conditions, the heat exchanger is naturally a two-phase heat exchanger albeit of a simplified structural design due to the presence of a small amount of steam. Accordingly, returning to the example given above for a methane tanker, it can be shown that handling a pressure rise of 10 mbar/minute is equivalent to injecting a flow of 2800 kg/hour of BOG into the flow of 150 m Vhour of liquid. This mixture, whose liquid content in this case is 98% molar, is injected into the heat exchanger when it becomes completely liquid and cooled at 13°C, after which it is re-injected into the tank at a temperature of -177°C, i.e. a temperature which is higher than the crystallization temperature of methane at atmospheric pressure, which temperature is approximately -182.6°C.

Med konstruksjonen i henhold til oppfinnelsen oppnås utmerket varme-veksling med den kombinerte væske og den fordampede gassen i tanken ("bulk") uten skadelig dumpning ut i atmosfæren. I tillegg, og i denne sammenheng for bruk om bord i skip, er utstyret som foreskrives av liten kostnad, fordi som nevnt over, er det mulig å bruke eksisterende utstyr på skipet, og spesielt dens pumper eller kompressorer. With the construction according to the invention, excellent heat exchange is achieved with the combined liquid and the vaporized gas in the tank ("bulk") without harmful dumping into the atmosphere. In addition, and in this context for use on board ships, the equipment prescribed is of little cost, because as mentioned above, it is possible to use existing equipment on the ship, and especially its pumps or compressors.

Figur 2 viser en variant av anordningen på figur 1 som demonstrerer at fremgangsmåten i henhold til oppfinnelsen også kan bli brukt til ett sett tanker. Etter den første tank 10, som er svært full (for eksempel 98%), kan det ses en andre tank 40 som er nesten tom, og med en sone 42 som inneholder en væske eller LIQ, en væske/dampseparasjonsoverflate 44 og en sone 46 som inneholder gass eller BOG. Mellom de to tankene tillater en kanal 48 at de to sonene som inneholder gassen kommuniserer. Det skal bemerkes at på grunn av at den andre tanken er nesten tom, blir nødvendigvis den underkjølte komprimerte væske/- gassblandingen gjeninnsprøytet i gassen i denne tanken 40. Figure 2 shows a variant of the device in Figure 1 which demonstrates that the method according to the invention can also be used for one set of tanks. After the first tank 10, which is very full (eg 98%), a second tank 40 can be seen which is almost empty, and with a zone 42 containing a liquid or LIQ, a liquid/vapor separation surface 44 and a zone 46 which contains gas or BOG. Between the two tanks, a channel 48 allows the two zones containing the gas to communicate. It should be noted that because the second tank is almost empty, the subcooled compressed liquid/gas mixture is necessarily re-injected into the gas in this tank 40.

Det skal også bemerkes at selv om begge utførelsesformene som vist ved-rører spesielt lagring av væskeformig naturgass (LNG) er det åpenbart at oppfinnelsen kan bli implementert for hvilken som helst annen type gass som er tilgjengelig i væskeform ved lavere enn omgivende temperaturer, eksempelvis flytende petroleumsgass (LPG), ammoniakk, hydrogen, etc. It should also be noted that although both embodiments shown relate in particular to the storage of liquefied natural gas (LNG), it is obvious that the invention can be implemented for any other type of gas that is available in liquid form at lower than ambient temperatures, for example liquid petroleum gas (LPG), ammonia, hydrogen, etc.

Claims (14)

1. Fremgangsmåte for å holde kaldt i det minste én tank for lagring eller transport av flytende gass, i der en andel av den flytende gassen i tanken (10) blir ekstrahert ved pumping (18) og at den flytende gassen som blir ekstrahert på denne måten blir underkjølt i et varmevekslersystem (22) og den flytende gassen som blir underkjølt på denne måten blir selektivt gjeninnsprøytet i tanken, der fremgangsmåten er karakterisert vedat en andel av dampen (16) i tanken også blir ekstrahert intermittent, der dampen som blir ekstrahert på denne måten blir komprimert i en kompressor (36), og den ekstraherte dampen som komprimert på denne måten blir injisert inn i den ekstraherte flytende gassen for å danne en blanding som så er gjort fullstendig flytende og underkjølt i varmevekslersystemet.1. Method for keeping cold at least one tank for storing or transporting liquefied gas, in which a proportion of the liquefied gas in the tank (10) is extracted by pumping (18) and that the liquefied gas which is extracted on this the method is subcooled in a heat exchanger system (22) and the liquefied gas which is subcooled in this way is selectively re-injected into the tank, where the method is characterized in that a portion of the steam (16) in the tank is also extracted intermittently, where the steam that is extracted in this way is compressed in a compressor (36), and the extracted steam that is compressed in this way is injected into the extracted liquid gas to form a mixture which is then completely liquefied and subcooled in the heat exchanger system. 2. Fremgangsmåte i henhold til krav 1, karakterisert vedat det blir implementert et varmevekslersystem (22) som er konstruert for å motta et fluid for kjøling som hovedsakelig er flytende.2. Procedure according to claim 1, characterized in that a heat exchanger system (22) is implemented which is designed to receive a fluid for cooling which is mainly liquid. 3. Fremgangsmåte i henhold til krav 2, karakterisert vedat den komprimerte væske/gass blandingen som sprøytes inn i varmevekslersystemet (22) har et væskeinnhold i området 50% til 100% molar og fortrinnsvis i området 70% til 100% molar.3. Procedure according to claim 2, characterized in that the compressed liquid/gas mixture which is injected into the heat exchanger system (22) has a liquid content in the range 50% to 100% molar and preferably in the range 70% to 100% molar. 4. Fremgangsmåte i henhold til et av de foregående krav 1 til 3,karakterisert vedat den blir brukt til et sett med et antall tanker (10, 40), ved at den komprimerte væske/gassblandingen blir tatt fra minst én av tankene (10) og etter at den har blitt gjort fullstendig flytende og underkjølt i varmevekslersystemet (22), blir gjeninnsprøytet i minst én av tankene (10, 40).4. Method according to one of the preceding claims 1 to 3, characterized in that it is used for a set of a number of tanks (10, 40), in that the compressed liquid/gas mixture is taken from at least one of the tanks (10) and after it has been completely liquefied and subcooled in the heat exchanger system (22), is reinjected into at least one of the tanks (10, 40). 5. Anordning for implementering av fremgangsmåten i henhold til krav 1, der anordningen omfatter først minst én gasstank for flytende gass (10, 40) som inneholder en væske (LIQ 12) og en gass (BOG 16) og for det andre et varmevekslersystem (22) hvis innløp kommuniserer med væskenivået (LIQ 12) i tanken via et pumpesystem (18) og et væske-avsugningsrør (20) og hvis utløp kommuniserer med tanken (10) etter at det har passert gjennom en reguleringsventil (26), der anordningen er karakterisert vedat den ytterligere omfatter en kompressor (36) med et innløp som kommuniserer med tanken (10) i sitt gassnivå (BOG 16) og hvis utløp kommuniserer med væske-avsugningsrør (20) via et innsprøytningssystem (35) ved innløpet til varmeveksleren (22), på en slik måte at en fullstendig flytende og underkjølt blanding på ny blir satt inn i tanken for å kjøle dens innhold for derved å styre trykkøkninger.5. Device for implementing the method according to claim 1, where the device first comprises at least one gas tank for liquefied gas (10, 40) containing a liquid (LIQ 12) and a gas (BOG 16) and secondly a heat exchanger system ( 22) whose inlet communicates with the liquid level (LIQ 12) in the tank via a pump system (18) and a liquid suction pipe (20) and whose outlet communicates with the tank (10) after it has passed through a control valve (26), where the device is characterized in that it further comprises a compressor (36) with an inlet which communicates with the tank (10) in its gas level (BOG 16) and whose outlet communicates with the liquid suction pipe (20) via an injection system (35) at the inlet to the heat exchanger (22) ), in such a way that a completely liquid and subcooled mixture is reintroduced into the tank to cool its contents and thereby control pressure increases. 6. Anordning i henhold til krav 5, karakterisert vedat varmevekslersystemet (22) omfatter en varmeveksler som er beregnet for å motta et fluid for kjøling som hovedsakelig er flytende.6. Device according to claim 5, characterized in that the heat exchanger system (22) comprises a heat exchanger which is designed to receive a fluid for cooling which is mainly liquid. 7. Anordning i henhold til krav 6, karakterisert vedat den komprimerte væske-gassblandingen som blir sprøytet inn i varmevekslersystemet (22) har et væskeinnhold som ligger i området 50% til 100% molar og fortrinnsvis i området 70% til 100% molar.7. Device according to claim 6, characterized in that the compressed liquid-gas mixture which is injected into the heat exchanger system (22) has a liquid content in the range 50% to 100% molar and preferably in the range 70% to 100% molar. 8. Anordning i henhold til krav 5, karakterisert vedat varmevekslersystemet (22) har et kjølefluid som passerer derigjennom, eksempelvis gassformig nitrogen eller substanser tatt fra tanken.8. Device according to claim 5, characterized in that the heat exchanger system (22) has a cooling fluid that passes through it, for example gaseous nitrogen or substances taken from the tank. 9. Anordning i henhold til krav 8, karakterisert vedat varmevekslersystemet (22) er konfigurert for å kjøle den innsprøytede komprimerte væske/gassblandingen ved 1°C til 20°C, og fortrinnsvis ved 3°C til 17°C.9. Device according to claim 8, characterized in that the heat exchanger system (22) is configured to cool the injected compressed liquid/gas mixture at 1°C to 20°C, and preferably at 3°C to 17°C. 10. Anordning i henhold til krav 5, karakterisert vedat den ytterligere omfatter et mellomlagringsvolum (30) plassert på et retur-rør (24) for returnering av fullstendig væskeformig og underkjølt blanding til tanken (10), der volumet er plassert mellom utløpet fra varmevekslersystemet (22) og reguleringsventilen (26).10. Device according to claim 5, characterized in that it further comprises an intermediate storage volume (30) placed on a return pipe (24) for the return of a completely liquid and subcooled mixture to the tank (10), where the volume is placed between the outlet from the heat exchanger system (22) and the control valve (26). 11. Anordning i henhold til krav 5, karakterisert vedat den fullstendige flytende og underkjølte blanding fra varmevekslersystemet (22) blir gjeninnsprøytet inn i tanken (10, 40) i sitt væskenivå (LIQ 12) og/eller i sitt gassnivå (BOG 16).11. Device according to claim 5, characterized in that the complete liquid and subcooled mixture from the heat exchanger system (22) is re-injected into the tank (10, 40) in its liquid level (LIQ 12) and/or in its gas level (BOG 16). 12. Anordning i henhold til et av kravene 5 til 11, karakterisert vedden flytende gassen består av en gass som ikke er tilgjengelig i væskeform uavhengig av trykket ved standard-temperatur på 15°C, eksempelvis flytende naturgass (LNG) eller hydrogen.12. Device according to one of claims 5 to 11, characterized in that the liquefied gas consists of a gas that is not available in liquid form regardless of the pressure at a standard temperature of 15°C, for example liquefied natural gas (LNG) or hydrogen. 13. Anordning i henhold til et av de foregående krav 5 til 7 og 10, 11,karakterisert vedat den flytende gassen består av flytende petroleumsgass (LPG).13. Device according to one of the preceding claims 5 to 7 and 10, 11, characterized in that the liquefied gas consists of liquefied petroleum gas (LPG). 14. Anordning i henhold til krav 13, karakterisert vedat varmevekslersystemet (22) har et kjølende fluid som passerer derigjennom eksempelvis propylen, freon, en HCFC, eller substanser tatt fra tanken.14. Device according to claim 13, characterized in that the heat exchanger system (22) has a cooling fluid that passes through it, for example propylene, freon, an HCFC, or substances taken from the tank.
NO20001980A 1999-04-20 2000-04-14 Apparatus and method for keeping tanks for storing or transporting a liquid gas cold NO333065B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9904949A FR2792707B1 (en) 1999-04-20 1999-04-20 METHOD AND DEVICE FOR THE COLD HOLDING OF TANKS FOR STORING OR TRANSPORTING LIQUEFIED GAS

Publications (3)

Publication Number Publication Date
NO20001980D0 NO20001980D0 (en) 2000-04-14
NO20001980L NO20001980L (en) 2000-10-23
NO333065B1 true NO333065B1 (en) 2013-02-25

Family

ID=9544622

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20001980A NO333065B1 (en) 1999-04-20 2000-04-14 Apparatus and method for keeping tanks for storing or transporting a liquid gas cold

Country Status (8)

Country Link
EP (1) EP1046858B1 (en)
JP (1) JP4662602B2 (en)
KR (1) KR100696079B1 (en)
AT (1) ATE332474T1 (en)
DE (1) DE60029162T2 (en)
ES (1) ES2267473T3 (en)
FR (1) FR2792707B1 (en)
NO (1) NO333065B1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY123311A (en) * 1999-01-15 2006-05-31 Exxon Production Research Co Process for producing a pressurized methane-rich liquid from a methane-rich gas
FR2792707B1 (en) * 1999-04-20 2001-07-06 Gaz De France METHOD AND DEVICE FOR THE COLD HOLDING OF TANKS FOR STORING OR TRANSPORTING LIQUEFIED GAS
US6336331B1 (en) * 2000-08-01 2002-01-08 Praxair Technology, Inc. System for operating cryogenic liquid tankage
JP4255269B2 (en) * 2002-11-25 2009-04-15 昭和炭酸株式会社 Ultra-low temperature nitrogen gas supply device
GB0320474D0 (en) * 2003-09-01 2003-10-01 Cryostar France Sa Controlled storage of liquefied gases
JP4408211B2 (en) * 2003-11-04 2010-02-03 株式会社神戸製鋼所 Pressure adjusting device for liquefied natural gas tank and pressure adjusting method thereof
KR100613430B1 (en) * 2005-07-27 2006-08-17 삼성중공업 주식회사 Process and apparatus for boil-off gas treatment
US20080190352A1 (en) 2007-02-12 2008-08-14 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank ship and operation thereof
KR100834273B1 (en) * 2007-03-20 2008-05-30 대우조선해양 주식회사 Membrane type lng cargo tank, lng carrier with it, and lng carrying method
US20090199591A1 (en) 2008-02-11 2009-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied natural gas with butane and method of storing and processing the same
KR20090107805A (en) 2008-04-10 2009-10-14 대우조선해양 주식회사 Method and system for reducing heating value of natural gas
DE102010020476B4 (en) 2010-05-14 2023-05-04 Air Liquide Deutschland Gmbh Use of a device for storing, decanting and/or transporting cryogenic liquefied combustible gas in a vehicle
DE202010012886U1 (en) 2010-11-15 2011-01-05 Marine Service Gmbh Container for the transport or storage of liquid natural gas
RU2446344C1 (en) * 2011-01-24 2012-03-27 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "ВОЕННАЯ АКАДЕМИЯ ТЫЛА И ТРАНСПОРТА имени генерала армии Хрулева А.В." Condensed natural gas storage complex
RU2451872C1 (en) * 2011-02-14 2012-05-27 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "ВОЕННАЯ АКАДЕМИЯ ТЫЛА И ТРАНСПОРТА имени генерала армии Хрулева А.В." Complex for long-term storage of liquefied natural gas
FR2986061B1 (en) * 2012-01-19 2019-12-06 L'air Liquide, Societe Anonyme Pour L'etude Et L’Exploitation Des Procedes Georges Claude INSTALLATION AND METHOD FOR PROVIDING LIQUID XENON
CN103343884B (en) * 2013-06-19 2015-04-15 北京航空航天大学 Liquid helium conveying system used for large-size multi-section liquid helium heat sinks and class converting method for large-size multi-section liquid helium heat sinks
CN104110938A (en) * 2014-06-24 2014-10-22 中国石油大学(北京) Pipeline gas differential pressure refrigeration liquefying device and technology by combining nitrogen to achieve expansion refrigeration
CN104315802A (en) * 2014-10-27 2015-01-28 中国海洋石油总公司 Method and equipment for dynamically recycling evaporated gas of liquefied natural gas
CN104677000B (en) * 2015-03-19 2017-05-17 中国工程物理研究院材料研究所 Liquid nitrogen cooling cryogenic device and implementation method for same
CN105486031A (en) * 2016-01-07 2016-04-13 惠生(南通)重工有限公司 Natural gas liquefying system used for FLNG (floating liquefied natural gas) and liquefying method thereof
DE102016002316A1 (en) * 2016-02-29 2017-08-31 Tge Marine Gas Engineering Gmbh Method for operating a liquefied gas tank and liquid gas tank for receiving LNG and boil-off gas
RU2649510C2 (en) * 2016-07-25 2018-04-03 Николай Геннадьевич Кириллов Complex of long-term storage and use of cryogenic fuel components
JP6834999B2 (en) * 2018-01-29 2021-02-24 Jfeエンジニアリング株式会社 Evaporative gas suppression device and evaporative gas suppression method for LNG tanks
FR3088407B1 (en) * 2018-11-13 2023-04-14 Engie DEVICE FOR COOLING AN EVAPORATION GAS
US11686434B1 (en) * 2022-02-22 2023-06-27 China Energy Investment Corporation Limited Submerged multi-mode cryopump for refueling hydrogen, system having the same, and method of using the same
CN115388615B (en) * 2022-04-19 2023-11-24 北京师范大学 Argon liquefaction system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733838A (en) * 1971-12-01 1973-05-22 Chicago Bridge & Iron Co System for reliquefying boil-off vapor from liquefied gas
DE2260516A1 (en) * 1972-12-11 1974-06-12 Linde Ag PROCESS FOR COMPENSATING COLD LOSS DURING STORAGE OF LOW-BOILING LOW-BOILING GAS MIXTURES
GB1472533A (en) * 1973-06-27 1977-05-04 Petrocarbon Dev Ltd Reliquefaction of boil-off gas from a ships cargo of liquefied natural gas
US4249387A (en) * 1979-06-27 1981-02-10 Phillips Petroleum Company Refrigeration of liquefied petroleum gas storage with retention of light ends
JPS6465394A (en) * 1987-09-03 1989-03-10 Osaka Gas Co Ltd Manufacture of fuel gas
US5243821A (en) * 1991-06-24 1993-09-14 Air Products And Chemicals, Inc. Method and apparatus for delivering a continuous quantity of gas over a wide range of flow rates
US5687776A (en) * 1992-12-07 1997-11-18 Chicago Bridge & Iron Technical Services Company Method and apparatus for fueling vehicles with liquefied cryogenic fuel
JPH06185699A (en) * 1992-12-15 1994-07-08 Tokyo Gas Co Ltd Device for restraining bog generated in liquefied gas storage tank
JPH06341598A (en) * 1993-05-31 1994-12-13 Chiyoda Corp Evaporated gas treating method of low temperature liquefied gas storage tank
US5456084A (en) * 1993-11-01 1995-10-10 The Boc Group, Inc. Cryogenic heat exchange system and freeze dryer
JPH07218033A (en) * 1994-02-03 1995-08-18 Nkk Corp Cooling device for lng tank
JPH08159396A (en) * 1994-12-09 1996-06-21 Tokyo Gas Co Ltd Method for suppressing bog generated in liquefied gas storage tank, and device therefor
JPH08285194A (en) * 1995-04-11 1996-11-01 Ishikawajima Harima Heavy Ind Co Ltd Cryogenic liquid storage equipment
FR2792707B1 (en) * 1999-04-20 2001-07-06 Gaz De France METHOD AND DEVICE FOR THE COLD HOLDING OF TANKS FOR STORING OR TRANSPORTING LIQUEFIED GAS

Also Published As

Publication number Publication date
JP2000337597A (en) 2000-12-05
JP4662602B2 (en) 2011-03-30
EP1046858A1 (en) 2000-10-25
DE60029162D1 (en) 2006-08-17
KR20010049264A (en) 2001-06-15
FR2792707B1 (en) 2001-07-06
FR2792707A1 (en) 2000-10-27
EP1046858B1 (en) 2006-07-05
ES2267473T3 (en) 2007-03-16
KR100696079B1 (en) 2007-03-16
NO20001980D0 (en) 2000-04-14
ATE332474T1 (en) 2006-07-15
DE60029162T2 (en) 2007-07-05
NO20001980L (en) 2000-10-23

Similar Documents

Publication Publication Date Title
NO333065B1 (en) Apparatus and method for keeping tanks for storing or transporting a liquid gas cold
EP3784952B1 (en) Cryogenic fluid dispensing system having a chilling reservoir
KR102053387B1 (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
CN107110427B (en) Device and method for cooling liquefied gas
CN109154421B (en) Device for supplying a combustible gas to a gas-consuming component and for liquefying said combustible gas
AU2012364280B2 (en) Methods for storing cryogenic fluids in storage vessels
NO332551B1 (en) Method and apparatus for storing and transporting liquefied petroleum gas
US3877240A (en) Process and apparatus for the storage and transportation of liquefied gases
JP2013500192A (en) Combustion gas systems, especially for merchant ships
KR101941314B1 (en) A Treatment System Liquefied Gas
KR100912169B1 (en) Apparatus and method for cycling condensate
CN109563968A (en) Equipment for supplying fuel gas and from the fuel gas that is used to liquefy to gas consumption component
US20170191619A1 (en) System and method for storing and transferring a cryogenic liquid
EP2464563A1 (en) A plant comprising a tank for storing of liquid natural gas (lng) as marine fuel
CN110945277B (en) Method and device for storing liquefied gas in a container and for extracting boil-off gas from the container
KR101943615B1 (en) LNG gasification apparatus for preventing explosion
WO2015012883A1 (en) Storage and delivery system for a liquid cryogen
CN210259661U (en) Low pressure nitrogen of environment-friendly seals cold-insulated vault jar equipment
KR102268560B1 (en) liquefaction system of boil-off gas and ship having the same
KR20170120288A (en) Device for treating boil off gas
US20130327066A1 (en) Temperature control
KR102538059B1 (en) Reduction of Volatile Organic Compounds System and Method for Ship
NO332123B1 (en) Plant to recover BOG from LNG stored in tanks
KR20180078584A (en) Pressure Control System and Method for Liquefied Gas Storage Tank of Ship
KR101751850B1 (en) LNG Unloading Method and Fuel Supply Operating System and Method the Same of Liquefied Gas Carrier

Legal Events

Date Code Title Description
MK1K Patent expired