JP2012246981A - Liquefied hydrogen storage and supply facility - Google Patents

Liquefied hydrogen storage and supply facility Download PDF

Info

Publication number
JP2012246981A
JP2012246981A JP2011118239A JP2011118239A JP2012246981A JP 2012246981 A JP2012246981 A JP 2012246981A JP 2011118239 A JP2011118239 A JP 2011118239A JP 2011118239 A JP2011118239 A JP 2011118239A JP 2012246981 A JP2012246981 A JP 2012246981A
Authority
JP
Japan
Prior art keywords
liquefied hydrogen
inner tank
pipe
liquefied
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011118239A
Other languages
Japanese (ja)
Other versions
JP5783801B2 (en
Inventor
Nobuyuki Kojima
伸之 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2011118239A priority Critical patent/JP5783801B2/en
Publication of JP2012246981A publication Critical patent/JP2012246981A/en
Application granted granted Critical
Publication of JP5783801B2 publication Critical patent/JP5783801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Abstract

PROBLEM TO BE SOLVED: To provide a liquefied hydrogen storage and supply facility allowing efficient filling of liquefied hydrogen into an inner tank by reducing an atmospheric diffusion amount of hydrogen gas for keeping pressure in the inner tank constant without depending on the position of a liquid level of liquefied hydrogen in the inner tank.SOLUTION: Liquefied hydrogen draw-out piping 31 for drawing out liquefied hydrogen 38-1 stored in the inner tank 51 to the outside of a vacuum insulating duplex-shell storage tank 11 includes a gas phase cooling section 59 for cooling the gas phase 39 situated at an upper part 51A in the inner tank 51 among gas phases in the inner tank 51 by the liquefied hydrogen 38-1 drawn out via the liquefied hydrogen draw-out piping 31.

Description

本発明は、液化水素貯蔵供給設備に関するものであって、より詳しくはタンクローリーからの液化水素充填時における水素ガスの大気放散ロスを低減することの可能な液化水素貯蔵供給設備に関する。   The present invention relates to a liquefied hydrogen storage and supply facility, and more particularly to a liquefied hydrogen storage and supply facility capable of reducing the atmospheric loss of hydrogen gas during filling of liquefied hydrogen from a tank lorry.

水素の利用形態が液体である場合、現地にて水素ガスを液化することは、非常に大容量な場合を除き、設備の複雑度から非現実的である。この場合、液化水素貯槽を需要先近傍に設置した上で、液化水素貯蔵供給設備から払い出された液化水素を、そのまま需要先まで断熱配管にて供給する。   When hydrogen is used in a liquid form, it is impractical to liquefy hydrogen gas in the field due to the complexity of the equipment, except for a very large capacity. In this case, after the liquefied hydrogen storage tank is installed in the vicinity of the demand destination, the liquefied hydrogen discharged from the liquefied hydrogen storage and supply equipment is supplied as it is to the demand destination through a heat insulating pipe.

また、水素の利用形態がガスである場合であって、使用量が極端に多い場合は、現地に水素製造装置を建設することが多い。また、使用量が比較的少ない場合には、カードルやトレーラー等の移動容器で供給することが多い。   Further, when the usage form of hydrogen is gas and the usage amount is extremely large, a hydrogen production apparatus is often constructed locally. When the amount used is relatively small, it is often supplied in a moving container such as a cardle or a trailer.

また、水素の使用量がこの中間にある場合、需要先近傍に液化水素貯槽(低温液化ガス貯槽)を有した液化水素貯蔵供給設備を設けることが行なわれている。
この場合、液化水素貯槽から払い出された液化水素は、送ガス蒸発器で気化され、配管により需要先に供給される。なお、液化水素貯槽から液化水素と水素ガスとを同時に供給する場合もある。
Further, when the amount of hydrogen used is in the middle, a liquefied hydrogen storage and supply facility having a liquefied hydrogen storage tank (low temperature liquefied gas storage tank) is provided in the vicinity of the customer.
In this case, the liquefied hydrogen discharged from the liquefied hydrogen storage tank is vaporized by the gas-feeding evaporator and supplied to the customer through the piping. In some cases, liquefied hydrogen and hydrogen gas are simultaneously supplied from the liquefied hydrogen storage tank.

液化窒素や、液化水素を含む低温液化ガス貯槽は、一般的に、低温液化ガスを貯蔵する内槽と、該内槽を収容する外槽と、を有した二重殻構造とされており、内槽と外槽との間は真空断熱空間とされている。また、一般的に、上記低温液化ガス貯槽は、自身の圧力と需要先の圧力との間に適正な圧力差を保つことで、内蔵液の抜き出しを行なう。   The low-temperature liquefied gas storage tank containing liquefied nitrogen and liquefied hydrogen is generally a double-shell structure having an inner tank for storing the low-temperature liquefied gas and an outer tank for housing the inner tank. A space between the inner tank and the outer tank is a vacuum heat insulating space. In general, the low-temperature liquefied gas storage tank extracts the built-in liquid by maintaining an appropriate pressure difference between its own pressure and the pressure of the customer.

また、需要先において液化水素或いは水素ガスを使用し、内槽内の液化水素が払い出されると、内槽内の液化水素の液面が低下して、内槽内に存在するガス相の空間が増大するため、内槽内の圧力が低下してしまう。   In addition, when liquefied hydrogen or hydrogen gas is used at a customer, and the liquefied hydrogen in the inner tank is dispensed, the liquid level of the liquefied hydrogen in the inner tank is lowered, and the space of the gas phase existing in the inner tank is reduced. Since it increases, the pressure in an inner tank will fall.

このため、従来、内槽内の圧力低下を補償するため、液化水素貯槽では、内蔵液である液化水素を加圧蒸発器で蒸発させて水素ガスを生成し、該水素ガスを内槽内のガス相の最上部に導入することで内槽内の圧力を所望の圧力(一定の圧力)に保つことが行なわれている。
上記加圧蒸発器は、通常、大気や温水との熱交換を行なうことで、液化水素を蒸発させ、常温に近い温度とされた水素ガスを発生させる。
Therefore, conventionally, in order to compensate for the pressure drop in the inner tank, the liquefied hydrogen storage tank generates hydrogen gas by evaporating the liquefied hydrogen as the built-in liquid with a pressure evaporator, and the hydrogen gas is stored in the inner tank. By introducing into the uppermost part of the gas phase, the pressure in the inner tank is maintained at a desired pressure (constant pressure).
The pressure evaporator usually performs heat exchange with the atmosphere and hot water to evaporate liquefied hydrogen and generate hydrogen gas having a temperature close to room temperature.

液化水素は、0.7MPaGの圧力において飽和温度が約30Kと非常に低く、ガス相のうち、液化水素と接する部分(ガス相の最下部)の温度も液化水素の温度と同程度となる。
しかし、前述の加圧蒸発器を通った水素ガスは、300K程度の温度であることから、ガス相の最下部のガス密度の1/10程度の軽いガスがガス相の最上部に供給されることとなる。
Liquefied hydrogen has a very low saturation temperature of about 30 K at a pressure of 0.7 MPaG, and the temperature of the portion in contact with the liquefied hydrogen (the lowermost portion of the gas phase) in the gas phase is approximately the same as the temperature of liquefied hydrogen.
However, since the hydrogen gas that has passed through the above-described pressure evaporator has a temperature of about 300K, a light gas of about 1/10 of the gas density at the bottom of the gas phase is supplied to the top of the gas phase. It will be.

上記ガス密度の関係からは、自然対流によるガス相の攪拌は期待できず、ガス相の下部には高い密度のガスが安定して存在し、ガス相の上部には低い密度のガスが安定して存在することとなる。   From the above gas density relationship, gas phase agitation by natural convection cannot be expected, a high density gas stably exists at the bottom of the gas phase, and a low density gas stabilizes at the top of the gas phase. Will exist.

ただし、内槽からの液化水素の抜き出し速度が十分に遅い場合、すなわち、加圧蒸発器を介して供給される加圧ガスの流量が小さい場合には、前述の対流が期待できなくても、下部に残る液化水素による輻射伝熱により内槽の上部を構成する部材が冷却される。
このため、ガス相の上部に位置する比較的温度の高いガスも内槽の上部を構成する部材との対流熱伝達にて間接的に冷却される。これにより、ガス相内での自然対流が長時間掛けて継続するため、ガス相全体の冷却が期待できる。
However, if the extraction speed of liquefied hydrogen from the inner tank is sufficiently slow, that is, if the flow rate of the pressurized gas supplied through the pressurized evaporator is small, even if the above-mentioned convection cannot be expected, The member which comprises the upper part of an inner tank is cooled by the radiant heat transfer by the liquefied hydrogen which remains in the lower part.
For this reason, the relatively high temperature gas located in the upper part of the gas phase is also indirectly cooled by convective heat transfer with the member constituting the upper part of the inner tank. Thereby, since natural convection in the gas phase continues for a long time, cooling of the entire gas phase can be expected.

しかしながら、内槽からの液化水素の抜き出し速度が速い場合、すなわち、加圧蒸発器を介して供給される加圧ガスの流量が大きい場合には、液化水素による内槽の上部を構成する部材の輻射冷却を介したガス相の冷却が時間的に十分でない場合がある。   However, when the extraction speed of liquefied hydrogen from the inner tank is high, that is, when the flow rate of the pressurized gas supplied via the pressurized evaporator is large, the members constituting the upper part of the inner tank by liquefied hydrogen The cooling of the gas phase via radiation cooling may not be sufficient in time.

ところで、内槽内の液化水素量がある一定量を下回ると、タンクローリーより新たな液化水素を内槽内に充填する。通常、内槽内に液化水素を充填する場合、内槽の下部に貯蔵された液相(液化水素)に液化水素を流し込むライン(配管)と、内槽のガス相の上部に液化水素を流し込むラインとの2系統を併用する。   By the way, when the amount of liquefied hydrogen in the inner tank falls below a certain amount, new liquefied hydrogen is filled into the inner tank from the tank lorry. Normally, when liquefied hydrogen is filled in the inner tank, a liquefied hydrogen is poured into the liquid phase (liquefied hydrogen) stored in the lower part of the inner tank and the upper part of the gas phase of the inner tank. Two lines are used together with the line.

上記2系統のラインの使い分けは、理想的には、概して以下の通りである。液相に流し込むラインを使用して液化水素を供給すると、内槽内の液化水素の液面が徐々に上昇するため、内槽内のガス相が圧迫されることで内槽内の圧力が上昇する。   Ideally, the two lines are used as follows in general. When liquefied hydrogen is supplied using a line that flows into the liquid phase, the liquid level of the liquefied hydrogen in the inner tank gradually rises, so the pressure in the inner tank increases as the gas phase in the inner tank is compressed. To do.

一方、ガス相に流し込むラインを使用して液化水素を供給すると、内槽の上部に存在し、かつ液化水素との平衡温度よりも高温のガス相が、タンクローリーからの液化水素に触れて冷却されることで容積が収縮し、内槽内の圧力が低下することが期待できる。   On the other hand, when liquefied hydrogen is supplied using a line that flows into the gas phase, the gas phase that exists in the upper part of the inner tank and that is higher than the equilibrium temperature with liquefied hydrogen is cooled by touching the liquefied hydrogen from the tank lorry. It can be expected that the volume shrinks and the pressure in the inner tank decreases.

タンクローリーからの液化水素の供給が安定すれば、液相に流し込むラインとガス相に流し込むラインとの両系統をバランスよく使用して、内槽内の圧力を適正な範囲内で制御して、水素ガスを大気に放散することなく、液化水素の充填を行なうことができる。   If the supply of liquefied hydrogen from the tank lorry is stabilized, the pressure in the inner tank should be controlled within an appropriate range by using both the line that flows into the liquid phase and the line that flows into the gas phase in a balanced manner. The liquid hydrogen can be filled without releasing the gas into the atmosphere.

しかしながら、現実の運用においては、内槽内のガス相の温度が高い場合、ガス相に流しこむラインを使用開始してしばらくの時間は、相当量の水素ガスを大気放散せざるを得ない場合がある。   However, in actual operation, if the temperature of the gas phase in the inner tank is high, a considerable amount of hydrogen gas must be released to the atmosphere for a while after starting to use the line flowing into the gas phase. There is.

これは、流し込まれる液化水素により、上部のガス相が冷却される効果よりも、内槽の上部に位置する比較的高温の水素ガスに触れることで、流し込まれた液化水素が蒸発する現象が勝る結果、大気放散を行なわないと内槽内の圧力が許容圧力の範囲を超過することに起因する。   This is because the liquefied hydrogen that is poured in evaporates the liquefied hydrogen that is poured by touching the relatively high-temperature hydrogen gas located in the upper part of the inner tank, rather than the effect that the upper gas phase is cooled. As a result, the pressure in the inner tub exceeds the allowable pressure range unless atmospheric diffusion is performed.

この傾向は、需要先に向けて内槽から液化水素を抜き出す速度が大きいほど、すなわち、加圧ガスの時間当たりの流量が大きいほど(言い換えれば、タンクローリーからの液化水素の充填頻度が多いほど)顕著に現れる。   The tendency is that the higher the speed of extracting liquefied hydrogen from the inner tank toward the customer, that is, the higher the flow rate of pressurized gas per hour (in other words, the more frequently liquefied hydrogen is charged from the tank truck). Appears prominently.

特許文献1には、加圧蒸発器出口からの加圧ガス配管を内槽頂部で開口し、加圧ガス配管を内槽内に貯蔵された液化水素に浸漬して加圧ガスを冷却し、冷却した加圧ガスを内槽内の上部に位置するガス相に供給する液化水素貯蔵供給設備が開示されている。   In Patent Document 1, the pressurized gas pipe from the outlet of the pressurized evaporator is opened at the top of the inner tank, and the pressurized gas pipe is immersed in liquefied hydrogen stored in the inner tank to cool the pressurized gas, There is disclosed a liquefied hydrogen storage and supply facility for supplying a cooled pressurized gas to a gas phase located in an upper part of an inner tank.

また、特許文献2には、内槽の下部と上部とを接続した加圧蒸発ラインにおける加圧蒸発器の入口側に第一開閉弁を設け、第一開閉弁の入口側から分岐し加圧蒸発器の出口側に合流するバイパスラインを設け、バイパスラインに第二開閉弁を設け、液化水素収納槽内の上方における液化水素のガス相の温度を検出する温度検出器の検出温度が設定温度となるように、第一開閉弁及び第二開閉弁の弁開度を制御する液化水素貯蔵供給設備が開示されている。   In Patent Document 2, a first on-off valve is provided on the inlet side of the pressurized evaporator in the pressurized evaporation line connecting the lower part and the upper part of the inner tank, and the branch is pressurized from the inlet side of the first on-off valve. A bypass line that joins the outlet side of the evaporator is provided, a second open / close valve is provided in the bypass line, and the temperature detected by the temperature detector that detects the temperature of the gas phase of liquefied hydrogen above the liquefied hydrogen storage tank is the set temperature. Thus, a liquefied hydrogen storage and supply facility for controlling the opening degrees of the first on-off valve and the second on-off valve is disclosed.

特開2011−001993号公報JP 2011-001993 A 特開2011−001992号公報JP2011-001992A

しかしながら、特許文献1記載の液化水素貯蔵供給設備では、内槽内の液化水素の液面の位置が低い場合、液化水素に浸漬される加圧ガス配管の長さが短くなるため、加圧ガス配管を流れる加圧ガスを十分に冷却することができないという問題があった。   However, in the liquefied hydrogen storage and supply facility described in Patent Document 1, when the position of the liquid level of the liquefied hydrogen in the inner tank is low, the length of the pressurized gas pipe immersed in the liquefied hydrogen is shortened. There was a problem that the pressurized gas flowing through the piping could not be sufficiently cooled.

また、特許文献2記載の液化水素貯蔵供給設備では、内槽内のガス相全体の熱容量が非常に大きいため、加圧蒸発器をバイパスするラインを設置し、液化水素を加圧ガスに混合することで内槽内のガス温度を制御しようとしても、温度制御を十分に行なうことは困難であり、また、内槽の加圧制御と干渉する恐れがあった。   Further, in the liquefied hydrogen storage and supply facility described in Patent Document 2, since the heat capacity of the entire gas phase in the inner tank is very large, a line bypassing the pressurized evaporator is installed to mix the liquefied hydrogen with the pressurized gas. Therefore, even if it is attempted to control the gas temperature in the inner tank, it is difficult to sufficiently control the temperature, and there is a possibility of interfering with the pressurization control of the inner tank.

つまり、上記特許文献1,2記載の設備では、タンクローリーから内槽内に液化水素を充填する際、内槽内の圧力を一定に保つための水素ガスの大気放散量を低減させて、内槽内に効率よく液化水素を充填することが困難であった。   That is, in the facilities described in Patent Documents 1 and 2, when filling liquefied hydrogen into the inner tank from the tank lorry, the amount of hydrogen gas released to the atmosphere to keep the pressure in the inner tank constant is reduced. It was difficult to efficiently fill the interior with liquefied hydrogen.

そこで、本発明は、内槽内の液化水素の液面の位置に依存することなく、内槽内の圧力を一定に保つための水素ガスの大気放散量を低減させて、内槽内に効率よく液化水素を充填することのできる液化水素貯蔵供給設備を提供することを目的とする。   Accordingly, the present invention reduces the amount of hydrogen gas released to the atmosphere to maintain the pressure in the inner tank constant without depending on the position of the liquid level of liquefied hydrogen in the inner tank, and improves the efficiency in the inner tank. An object of the present invention is to provide a liquefied hydrogen storage and supply facility that can be well filled with liquefied hydrogen.

上記課題を解決するため、請求項1に係る発明によれば、液化水素を貯留する内槽、該内槽を収容する外槽、及び前記内槽と前記外槽との間に設けられた真空断熱空間よりなる真空断熱二重殻貯槽を有し、前記液化水素あるいは水素ガスを需要先に供給する液化水素貯蔵供給設備であって、前記内槽に貯留された前記液化水素を前記真空断熱二重殻貯槽の外部に抜き出す液化水素抜き出し用配管を備え、前記液化水素抜き出し用配管は、前記液化水素抜き出し用配管を介して抜き出される前記液化水素により、前記内槽内のガス相のうち前記内槽内の上部に位置するガス相を冷却するガス相冷却部を有することを特徴とする液化水素貯蔵供給設備が提供される。   In order to solve the above problems, according to the invention according to claim 1, an inner tank for storing liquefied hydrogen, an outer tank for housing the inner tank, and a vacuum provided between the inner tank and the outer tank. A liquefied hydrogen storage and supply facility for supplying the liquefied hydrogen or hydrogen gas to a demand destination, wherein the liquefied hydrogen stored in the inner tank is A piping for extracting liquefied hydrogen to be extracted to the outside of the heavy shell storage tank, wherein the liquefied hydrogen extracting pipe is the liquid hydrogen extracted through the liquefied hydrogen extracting pipe, and the gas phase in the inner tank is There is provided a liquefied hydrogen storage and supply facility characterized by having a gas phase cooling unit for cooling a gas phase located in an upper part of an inner tank.

また、請求項2に係る発明によれば、前記液化水素抜き出し用配管は、前記内槽の上部を貫通すると共に、前記内槽の下部に延在しており、かつ前記内槽の下部に位置する前記液化水素を抜き出す液化水素抜き出し口を有することを特徴とする請求項1記載の液化水素貯蔵供給設備が提供される。   According to the invention of claim 2, the liquefied hydrogen extraction pipe passes through the upper part of the inner tank, extends to the lower part of the inner tank, and is positioned at the lower part of the inner tank. The liquefied hydrogen storage and supply facility according to claim 1, further comprising a liquefied hydrogen outlet for extracting the liquefied hydrogen.

また、請求項3に係る発明によれば、前記液化水素抜き出し用配管は、前記真空断熱空間を、前記内槽の下部から前記内槽の上部に引き回されており、かつ前記内槽の下部を貫通し、前記内槽の下部に配置された液化水素を抜き出す液化水素抜き出し口を有することを特徴とする請求項1記載の液化水素貯蔵供給設備が提供される。   According to the invention of claim 3, the liquefied hydrogen extraction pipe is routed through the vacuum insulation space from the lower part of the inner tank to the upper part of the inner tank, and the lower part of the inner tank. 2. The liquefied hydrogen storage and supply facility according to claim 1, further comprising a liquefied hydrogen extraction port through which the liquefied hydrogen is extracted at a lower portion of the inner tank.

また、請求項4に係る発明によれば、前記液化水素抜き出し用配管は、前記真空断熱空間から、前記内槽の上部を貫通して、前記内槽内に導入され、再度前記内槽の上部を貫通することを特徴とする請求項3記載の液化水素貯蔵供給設備が提供される。   Moreover, according to the invention which concerns on Claim 4, the said piping for liquefied hydrogen extraction penetrates the upper part of the said inner tank from the said vacuum heat insulation space, is introduced in the said inner tank, and is again the upper part of the said inner tank. The liquefied hydrogen storage and supply equipment according to claim 3 is provided.

また、請求項5に係る発明によれば、前記ガス相冷却部は、前記内槽内の上部に配置され、前記液化水素抜き出し用配管の一部をらせん形状にした配管であること、または前記液化水素抜き出し用配管の一部の配管の外周にフィンを設けた配管であること、あるいは前記らせん形状にした配管と前記フィンを設けた配管の両方を有する配管であることを特徴とする請求項1、2、4のうち、いずれか1項記載の液化水素貯蔵供給設備が提供される。   Moreover, according to the invention which concerns on Claim 5, the said gas phase cooling part is pipe | tube which is arrange | positioned in the upper part in the said inner tank, and made a part of said liquefied hydrogen extraction pipe | tube into a spiral shape, or the said The liquefied hydrogen extraction pipe is a pipe provided with fins on the outer periphery of a part of the pipe, or a pipe having both the spiral-shaped pipe and the pipe provided with the fin. A liquefied hydrogen storage and supply facility according to any one of 1, 2, and 4 is provided.

また、請求項6に係る発明によれば、前記らせん形状にした配管の一部は、前記内槽の内壁に密着されていることを特徴とする請求項5記載の液化水素貯蔵供給設備が提供される。   Moreover, according to the invention which concerns on Claim 6, a part of said piping made into the spiral shape is closely_contact | adhered to the inner wall of the said inner tank, The liquefied hydrogen storage supply equipment of Claim 5 characterized by the above-mentioned is provided. Is done.

また、請求項7に係る発明によれば、前記ガス相冷却部は、前記内槽の上部の外壁と接触するように配置され、前記液化水素抜き出し用配管の一部をらせん形状にした配管であることを特徴とする請求項1ないし6のうち、いずれか1項記載の液化水素貯蔵供給設備が提供される。   Moreover, according to the invention which concerns on Claim 7, the said gas phase cooling part is arrange | positioned so that the outer wall of the upper part of the said inner tank may be contacted, and the piping which made a part of the said piping for liquefied hydrogen extraction into a spiral shape by The liquefied hydrogen storage and supply equipment according to any one of claims 1 to 6 is provided.

また、請求項8に係る発明によれば、前記らせん形状にした配管の一部は、前記内槽の外壁に密着されていることを特徴とする請求項7記載の液化水素貯蔵供給設備が提供される。   According to an eighth aspect of the present invention, there is provided the liquefied hydrogen storage and supply equipment according to the seventh aspect, wherein a part of the spiral pipe is in close contact with the outer wall of the inner tank. Is done.

本発明の液化水素貯蔵供給設備によれば、内槽に貯留された液化水素を真空断熱二重殻貯槽の外部に抜き出す液化水素抜き出し用配管を備え、液化水素抜き出し用配管が、液化水素抜き出し用配管を介して抜き出される液化水素により、内槽内のガス相のうち、内槽内の上部に位置するガス相を冷却するガス相冷却部を有することにより、タンクローリーから内槽内に液化水素を充填する前段階において、内槽内の上部に位置するガス相(液化水素に接するガス相よりも温度の高いガス相)を十分に冷却することが可能となる。   According to the liquefied hydrogen storage and supply facility of the present invention, the liquefied hydrogen extraction pipe is provided for extracting the liquefied hydrogen stored in the inner tank to the outside of the vacuum insulated double shell storage tank, and the liquefied hydrogen extraction pipe is used for extracting the liquefied hydrogen. By having a gas phase cooling part that cools the gas phase located in the upper part of the inner tank among the gas phases in the inner tank by the liquefied hydrogen extracted through the pipe, the liquefied hydrogen is introduced into the inner tank from the tank lorry. It is possible to sufficiently cool the gas phase located in the upper part of the inner tank (the gas phase having a higher temperature than the gas phase in contact with the liquefied hydrogen) in the previous stage of filling the gas.

また、内槽内の液化水素の液面(上面)の位置が低い場合(液化水素の残量が少ない場合)においても内槽内の上部に位置するガス相を十分に冷却することが可能となる。
したがって、内槽内の液化水素の液面の位置に依存することなく、内槽内の圧力を一定に保つための水素ガスの大気放散量を低減させて、内槽内に効率よく液化水素を充填することができる。
In addition, even when the position of the liquid level (upper surface) of liquefied hydrogen in the inner tank is low (when the remaining amount of liquefied hydrogen is low), the gas phase located in the upper part of the inner tank can be sufficiently cooled. Become.
Therefore, without depending on the position of the liquid level of liquefied hydrogen in the inner tank, the amount of hydrogen gas released to the atmosphere to keep the pressure in the inner tank constant is reduced, and liquefied hydrogen is efficiently introduced into the inner tank. Can be filled.

本発明の第1の実施形態に係る液化水素貯蔵供給設備の概略構成を示す図である。It is a figure showing the schematic structure of the liquefied hydrogen storage supply equipment concerning a 1st embodiment of the present invention. 本発明の第1の実施形態の第1変形例に係る液化水素貯蔵供給設備の概略構成を示す図である。It is a figure which shows schematic structure of the liquefied hydrogen storage supply equipment which concerns on the 1st modification of the 1st Embodiment of this invention. 図2に示すガス相冷却部のA−A線方向の断面図である。It is sectional drawing of the AA line direction of the gas phase cooling part shown in FIG. 本発明の第1の実施形態の第2変形例に係る液化水素貯蔵供給設備の概略構成を示す図である。It is a figure which shows schematic structure of the liquefied hydrogen storage supply equipment which concerns on the 2nd modification of the 1st Embodiment of this invention. 本発明の第2の実施形態に係る液化水素貯蔵供給設備の概略構成を示す図である。It is a figure which shows schematic structure of the liquefied hydrogen storage supply equipment which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る液化水素貯蔵供給設備の概略構成を示す図である。It is a figure which shows schematic structure of the liquefied hydrogen storage supply equipment which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る液化水素貯蔵供給設備の概略構成を示す図である。It is a figure which shows schematic structure of the liquefied hydrogen storage supply equipment which concerns on the 4th Embodiment of this invention.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る液化水素貯蔵供給設備の概略構成を示す図である。
図1を参照するに、第1の実施形態の液化水素貯蔵供給設備10は、真空断熱二重殻貯槽11と、液化水素下部充填及び加圧抜き出し用配管13と、加圧弁14と、加圧蒸発器15と、圧力調整用配管17と、圧力逃がしライン18と、圧力逃がし弁19と、第1の接続部22と、分岐ライン23と、下部充填弁24と、液化水素上部充填用配管26と、上部充填弁27と、液化水素抜き出し用配管31と、液化水素供給ライン33と、水素ガス供給ライン34と、送ガス蒸発器35と、を有する。
(First embodiment)
FIG. 1 is a diagram showing a schematic configuration of a liquefied hydrogen storage and supply facility according to the first embodiment of the present invention.
Referring to FIG. 1, a liquefied hydrogen storage and supply facility 10 according to the first embodiment includes a vacuum heat insulation double shell storage tank 11, a liquefied hydrogen lower filling and pressurizing extraction pipe 13, a pressurizing valve 14, and a pressurizing valve. The evaporator 15, the pressure adjustment pipe 17, the pressure relief line 18, the pressure relief valve 19, the first connection part 22, the branch line 23, the lower filling valve 24, and the liquefied hydrogen upper filling pipe 26. And an upper filling valve 27, a liquefied hydrogen extraction pipe 31, a liquefied hydrogen supply line 33, a hydrogen gas supply line 34, and a gas feed evaporator 35.

液化水素貯蔵供給設備10は、液化水素38−1を液化水素需要先に供給、或いは、液化水素38−1を蒸発させた際に発生する水素ガスを水素ガス需要先に供給する設備である。
真空断熱二重殻貯槽11は、液化水素38−1を貯留する内槽51、内槽51を収容する外槽52、及び内槽51と外槽52との間に設けられた真空断熱空間53により構成されている。
The liquefied hydrogen storage and supply facility 10 is a facility for supplying liquefied hydrogen 38-1 to a liquefied hydrogen demand destination or supplying hydrogen gas generated when the liquefied hydrogen 38-1 is evaporated to a hydrogen gas demand destination.
The vacuum heat insulation double shell storage tank 11 includes an inner tank 51 that stores the liquefied hydrogen 38-1, an outer tank 52 that houses the inner tank 51, and a vacuum heat insulation space 53 that is provided between the inner tank 51 and the outer tank 52. It is comprised by.

液化水素下部充填及び加圧抜き出し用配管13は、一方の端が、タンクローリー41に貯留された液化水素38−2を内槽51内に充填可能、及び内槽51内に貯留された液化水素38−1を真空断熱二重殻貯槽11の外部に加圧用として引き出し可能な状態で、内槽51の下部51Bと接続されている。   One end of the liquefied hydrogen lower filling and pressure extraction pipe 13 can be filled with the liquefied hydrogen 38-2 stored in the tank lorry 41 in the inner tank 51, and the liquefied hydrogen 38 stored in the inner tank 51. -1 is connected to the lower part 51 </ b> B of the inner tank 51 in a state where −1 can be pulled out to the outside of the vacuum heat insulating double-shell storage tank 11.

加圧蒸発器15は、液化水素下部充填及び加圧抜き出し用配管13に設けられており、液化水素下部充填及び加圧抜き出し用配管13を介して、内槽51の下部51Bから液化水素38−1を抜き出して蒸発させることで、加圧ガスである水素ガスを発生させる。
圧力調整用配管17は、一方の端が液化水素下部充填及び加圧抜き出し用配管13と接続されており、他方の端が内槽51の上部51Aと接続されている。
The pressurized evaporator 15 is provided in the liquefied hydrogen lower filling and pressure extraction piping 13, and the liquefied hydrogen 38 − is supplied from the lower portion 51 B of the inner tank 51 through the liquefied hydrogen lower filling and pressure extraction piping 13. By extracting 1 and evaporating it, hydrogen gas, which is a pressurized gas, is generated.
One end of the pressure adjusting pipe 17 is connected to the liquefied hydrogen lower filling and pressure extracting pipe 13, and the other end is connected to the upper portion 51 </ b> A of the inner tank 51.

加圧弁14は、圧力調整用配管17に設けられ、内槽51の圧力が所定の圧力より低下したときに開き、加圧蒸発器15により発生された加圧ガス(水素ガス)を、圧力調整用配管17を介して、内槽51内のガス相に供給することでガス相の圧力(内槽51内の圧力)が所望の圧力となるように調整する。   The pressurizing valve 14 is provided in the pressure adjusting pipe 17 and opens when the pressure in the inner tank 51 falls below a predetermined pressure, and pressure adjustment is performed on the pressurized gas (hydrogen gas) generated by the pressurized evaporator 15. The pressure of the gas phase (pressure in the inner tank 51) is adjusted to a desired pressure by supplying the gas phase in the inner tank 51 through the piping 17 for use.

圧力逃がしライン18は、圧力調整用配管17から分岐して設けられている。圧力逃がし弁19は、圧力逃がしライン18に設けられている。圧力逃がし弁19は、内槽51内の圧力が所定の閾値を超えた際に開くことで、圧力調整用配管17を介して、内槽51内に存在する水素ガスを大気放散する。   The pressure relief line 18 is branched from the pressure adjusting pipe 17. The pressure relief valve 19 is provided in the pressure relief line 18. The pressure relief valve 19 is opened when the pressure in the inner tank 51 exceeds a predetermined threshold value, and thereby the hydrogen gas existing in the inner tank 51 is diffused to the atmosphere via the pressure adjusting pipe 17.

第1の接続部22は、分岐ライン23の一端に設けられておりフレキホース43の一方の端が接続される。分岐ライン23の他方の端は、下部充填弁24を介して、液化水素充填及び加圧抜き出し用配管13に接続されている(液化水素充填及び加圧抜き出し用配管13から分岐している。)。   The first connecting portion 22 is provided at one end of the branch line 23, and one end of the flexible hose 43 is connected to the first connecting portion 22. The other end of the branch line 23 is connected to the liquefied hydrogen filling and pressure extraction pipe 13 via the lower filling valve 24 (branched from the liquefied hydrogen filling and pressure extraction pipe 13). .

フレキホース43は、第1の接続部22とタンクローリー41に設けられた第2の接続部42とを接続する液化水素チャージ用ホースである。内槽51内の液化水素38−1の液面38a−1の位置が低下した際、フレキホース43を介して、タンクローリー41内に充填された液化水素38−2が第1の接続部22に導入される。
液化水素38−2は、液化水素38−1と同じ種類の液化水素である。本実施形態では、説明の便宜上、液化水素38−1と液化水素38−2とを用いて以下の説明を行う。
The flexible hose 43 is a liquefied hydrogen charging hose that connects the first connecting portion 22 and the second connecting portion 42 provided in the tank truck 41. When the position of the liquid level 38 a-1 of the liquefied hydrogen 38-1 in the inner tank 51 is lowered, the liquefied hydrogen 38-2 filled in the tank lorry 41 is introduced into the first connection portion 22 through the flexible hose 43. Is done.
The liquefied hydrogen 38-2 is the same type of liquefied hydrogen as the liquefied hydrogen 38-1. In the present embodiment, for convenience of explanation, the following explanation is given using liquefied hydrogen 38-1 and liquefied hydrogen 38-2.

下部充填弁24は、内槽51内の液化水素38−1の液面38a−1が低下し、フレキホース43を介して、第1の接続部22とタンクローリー41とが接続された状態で開くことにより、分岐ライン23及び液化水素下部充填及び加圧抜き出し用配管13を介して、内槽51の下部51Bから内槽51内にタンクローリー41内の液化水素38−2を充填する際に使用される。   The lower filling valve 24 opens when the liquid level 38a-1 of the liquefied hydrogen 38-1 in the inner tank 51 is lowered and the first connecting portion 22 and the tank truck 41 are connected via the flexible hose 43. Is used when filling the liquefied hydrogen 38-2 in the tank lorry 41 from the lower part 51B of the inner tank 51 into the inner tank 51 through the branch line 23 and the lower liquid hydrogen filling and pressure extraction pipe 13. .

液化水素上部充填用配管26は、一方の端が分岐ライン23と接続されており、他方の端が内槽51の上部51Aと接続されている。液化水素上部充填用配管26は、内槽51内の液化水素38−1の液面38a−1が低下し、フレキホース43により第1の接続部22とタンクローリー41とが接続され、上部充填弁27を開けて、内槽51の上部51Aから内槽51内に液化水素38−2を充填する際に使用される。
下部充填弁24及び上部充填弁27は、タンクローリー41内の液化水素38−2を内槽51に充填する際、ガス相の圧力が所望の圧力となるように、それぞれの開度が調整される。
One end of the liquefied hydrogen upper filling pipe 26 is connected to the branch line 23, and the other end is connected to the upper portion 51 </ b> A of the inner tank 51. In the liquefied hydrogen upper filling pipe 26, the liquid level 38 a-1 of the liquefied hydrogen 38-1 in the inner tank 51 is lowered, the first connecting portion 22 and the tank truck 41 are connected by the flexible hose 43, and the upper filling valve 27. Is used to fill liquefied hydrogen 38-2 into the inner tank 51 from the upper part 51A of the inner tank 51.
The lower filling valve 24 and the upper filling valve 27 have their respective opening degrees adjusted so that the gas phase pressure becomes a desired pressure when the inner tank 51 is filled with the liquefied hydrogen 38-2 in the tank lorry 41. .

液化水素抜き出し用配管31は、内槽51に貯留された液化水素38−1を真空断熱二重殻貯槽11の外部に抜き出す配管である。液化水素抜き出し用配管31は、内槽51の上部51Aを貫通すると共に、液化水素38−1が貯留された内槽51の下部51Bに延在している。また、液化水素抜き出し用配管31は、真空断熱空間53において、内槽51の上部51Aから外槽52の下部52Aに引き回されており、かつ外槽52の下部52Aを貫通している。   The liquefied hydrogen extraction pipe 31 is a pipe for extracting the liquefied hydrogen 38-1 stored in the inner tank 51 to the outside of the vacuum heat insulating double shell storage tank 11. The liquefied hydrogen extraction pipe 31 penetrates the upper part 51A of the inner tank 51 and extends to the lower part 51B of the inner tank 51 in which the liquefied hydrogen 38-1 is stored. The liquefied hydrogen extraction pipe 31 is routed from the upper part 51 </ b> A of the inner tank 51 to the lower part 52 </ b> A of the outer tank 52 and penetrates the lower part 52 </ b> A of the outer tank 52 in the vacuum heat insulating space 53.

液化水素抜き出し用配管31は、液化水素抜き出し口56と、液化水素供給口58と、ガス相冷却部59と、を有する。
液化水素抜き出し口56は、液化水素抜き出し用配管31のうち、内槽51内に配置された端部(液化水素抜き出し用配管31の一方の端部)に設けられている。液化水素抜き出し口56は、内槽51の下部51Bに位置する液化水素38−1を抜き出し可能な状態で、液化水素38−1に浸漬されている。
The liquefied hydrogen extraction pipe 31 includes a liquefied hydrogen extraction port 56, a liquefied hydrogen supply port 58, and a gas phase cooling unit 59.
The liquefied hydrogen extraction port 56 is provided at an end portion (one end portion of the liquefied hydrogen extraction pipe 31) disposed in the inner tank 51 in the liquefied hydrogen extraction pipe 31. The liquefied hydrogen extraction port 56 is immersed in the liquefied hydrogen 38-1 in a state where the liquefied hydrogen 38-1 located in the lower portion 51B of the inner tank 51 can be extracted.

液化水素供給口58は、真空断熱二重殻貯槽11の外部に配置されている。液化水素供給口58は、液化水素供給ライン33を介して、液化水素需要先と接続されると共に、水素ガス供給ライン34を介して、水素ガス需要先と接続されている。   The liquefied hydrogen supply port 58 is disposed outside the vacuum heat insulating double shell storage tank 11. The liquefied hydrogen supply port 58 is connected to the liquefied hydrogen demand customer via the liquefied hydrogen feed line 33 and is also connected to the hydrogen gas demand customer via the hydrogen gas supply line 34.

ガス相冷却部59は、内槽51内の上部51Aに配置されている。ガス相冷却部59は、液化水素抜き出し用配管31の一部をらせん形状にした配管である。また、該らせん形状にした配管の一部(ガス相冷却部59の一部)は、内槽51の上部51Aの内壁51aに溶接などによって密着固定してもよい。   The gas phase cooling part 59 is arranged in the upper part 51 </ b> A in the inner tank 51. The gas phase cooling section 59 is a pipe in which a part of the liquefied hydrogen extraction pipe 31 is formed in a spiral shape. Further, a part of the spiral pipe (a part of the gas phase cooling unit 59) may be tightly fixed to the inner wall 51a of the upper part 51A of the inner tank 51 by welding or the like.

上記構成とされたガス相冷却部59は、液化水素抜き出し用配管31を介して抜き出される液化水素38−1の冷熱により、直接熱交換あるいは内壁51aからの間接伝熱によって、内槽51内のガス相39のうち、内槽51内の上部51Aに位置するガス相を冷却する。   The gas phase cooling unit 59 having the above-described configuration is arranged in the inner tank 51 by direct heat exchange or indirect heat transfer from the inner wall 51a by the cold heat of the liquefied hydrogen 38-1 extracted through the liquefied hydrogen extraction pipe 31. Among these gas phases 39, the gas phase located in the upper part 51A in the inner tank 51 is cooled.

このように、第1の実施形態の液化水素貯蔵供給設備によれば、内槽51に貯留された液化水素38−1を真空断熱二重殻貯槽11の外部に抜き出す液化水素抜き出し用配管31が、液化水素抜き出し用配管31を介して抜き出される液化水素38−1により、内槽51内の上部51Aに位置するガス相39を冷却するガス相冷却部59を有することにより、タンクローリー41から内槽51内に液化水素38−2を充填する前段階において、内槽51内の上部51Aに位置するガス相(液化水素に接するガス相よりも温度の高いガス相)を十分に冷却することが可能となる。   Thus, according to the liquefied hydrogen storage and supply facility of the first embodiment, the liquefied hydrogen extraction pipe 31 for extracting the liquefied hydrogen 38-1 stored in the inner tank 51 to the outside of the vacuum heat insulating double-shell storage tank 11 is provided. By having a gas phase cooling part 59 that cools the gas phase 39 located in the upper part 51A in the inner tank 51 by the liquefied hydrogen 38-1 extracted through the liquefied hydrogen extraction pipe 31, the inside of the tank lorry 41 Before the liquefied hydrogen 38-2 is filled in the tank 51, the gas phase located at the upper part 51A in the inner tank 51 (the gas phase having a higher temperature than the gas phase in contact with the liquefied hydrogen) may be sufficiently cooled. It becomes possible.

また、内槽51内の液化水素38−1の液面38a−1の位置が低い場合(液化水素の量の残量が少ない場合)においても内槽51内の上部51Aに位置するガス相39を十分に冷却することが可能となる。   Further, even when the position of the liquid level 38a-1 of the liquefied hydrogen 38-1 in the inner tank 51 is low (when the remaining amount of liquefied hydrogen is small), the gas phase 39 located in the upper part 51A in the inner tank 51. Can be sufficiently cooled.

したがって、内槽51内の液化水素38−1の液面38a−1の位置に依存することなく、内槽51内の圧力を一定に保つための水素ガスの大気放散量を低減させて、内槽51内に効率よく液化水素38−2を充填することができる。   Therefore, without depending on the position of the liquid level 38a-1 of the liquefied hydrogen 38-1 in the inner tank 51, the amount of hydrogen gas released to the atmosphere to keep the pressure in the inner tank 51 constant can be reduced. The tank 51 can be efficiently filled with liquefied hydrogen 38-2.

液化水素供給ライン33は、一端が液化水素供給口58と接続され、他端が液化水素需要先と接続されている。液化水素抜き出し用配管31により内槽51から抜き出された液化水素38−1は、液化水素供給ライン33を介して、液化水素需要先に供給される。   The liquefied hydrogen supply line 33 has one end connected to the liquefied hydrogen supply port 58 and the other end connected to a liquefied hydrogen demand destination. The liquefied hydrogen 38-1 extracted from the inner tank 51 by the liquefied hydrogen extraction pipe 31 is supplied to the liquefied hydrogen demand destination via the liquefied hydrogen supply line 33.

水素ガス供給ライン34は、一端が液化水素供給口58と接続され、他端が水素ガス需要先と接続されている。
送ガス蒸発器35は、水素ガス供給ライン34に設けられている。送ガス蒸発器35は、内槽51内から抜き出された液化水素38−1を蒸発させることで、水素ガスを発生させる。該水素ガスは、水素ガス供給ライン34を介して、水素ガス充填先に供給される。
One end of the hydrogen gas supply line 34 is connected to the liquefied hydrogen supply port 58 and the other end is connected to a hydrogen gas demand destination.
The gas feed evaporator 35 is provided in the hydrogen gas supply line 34. The gas feed evaporator 35 generates hydrogen gas by evaporating the liquefied hydrogen 38-1 extracted from the inner tank 51. The hydrogen gas is supplied to a hydrogen gas filling destination via a hydrogen gas supply line 34.

図2は、本発明の第1の実施形態の第1変形例に係る液化水素貯蔵供給設備の概略構成を示す図である。図2において、図1に示す液化水素貯蔵供給設備10と同一構成部分には、同一符号を付す。   FIG. 2 is a diagram showing a schematic configuration of a liquefied hydrogen storage and supply facility according to a first modification of the first embodiment of the present invention. 2, the same components as those in the liquefied hydrogen storage and supply facility 10 shown in FIG.

図2を参照するに、第1の実施形態の第1変形例に係る液化水素貯蔵供給設備60は、第1の実施形態の液化水素貯蔵供給設備10に設けられた液化水素抜き出し用配管31の替わりに、液化水素抜き出し用配管61を設けた以外は、液化水素貯蔵供給設備10と同様な構成とされている。   Referring to FIG. 2, the liquefied hydrogen storage and supply facility 60 according to the first modification of the first embodiment includes a liquefied hydrogen extraction pipe 31 provided in the liquefied hydrogen storage and supply facility 10 of the first embodiment. Instead, the configuration is the same as that of the liquefied hydrogen storage and supply equipment 10 except that the liquefied hydrogen extraction pipe 61 is provided.

液化水素抜き出し用配管61は、図1に示す液化水素抜き出し用配管31に設けられたガス相冷却部59の替わりに、ガス相冷却部67を設けた以外は、液化水素抜き出し用配管31と同様な構成とされている。ガス相冷却部67は、液化水素抜き出し用配管61の一部の配管の外周にフィン74を設けた配管66である。   The liquefied hydrogen extraction pipe 61 is the same as the liquefied hydrogen extraction pipe 31 except that a gas phase cooling section 67 is provided instead of the gas phase cooling section 59 provided in the liquefied hydrogen extraction pipe 31 shown in FIG. It is made into the composition. The gas phase cooling unit 67 is a pipe 66 provided with fins 74 on the outer periphery of a part of the pipe for extracting the liquefied hydrogen 61.

図3は、図2に示す液化水素抜き出し用配管のA−A線方向の断面図である。
図2及び図3を参照するに、ガス相冷却部67は、内槽51内の上部51Aに配置され、液化水素抜き出し用配管61の一部の配管66の外周に設けられた複数のフィン74を有する。
FIG. 3 is a cross-sectional view of the liquefied hydrogen extraction pipe shown in FIG.
Referring to FIGS. 2 and 3, the gas phase cooling unit 67 is disposed in the upper part 51 </ b> A in the inner tank 51 and has a plurality of fins 74 provided on the outer periphery of a part of the pipe 66 of the liquefied hydrogen extraction pipe 61. Have

第1の実施の形態の第1変形例に係る液化水素貯蔵供給設備によれば、内槽51内の上部51Aに配置され、液化水素抜き出し用配管61の一部の配管66の外周に設けられた複数のフィン74を備えたガス相冷却部67を有することにより、複数のフィン74を介して、内槽51内の上部51Aに位置するガス相39を冷却することが可能となる。   According to the liquefied hydrogen storage and supply facility according to the first modification of the first embodiment, the liquefied hydrogen storage and supply equipment is arranged on the upper part 51A in the inner tank 51 and provided on the outer periphery of a part of the pipe 66 of the liquefied hydrogen extraction pipe 61. By having the gas phase cooling unit 67 including the plurality of fins 74, the gas phase 39 located in the upper portion 51 </ b> A in the inner tank 51 can be cooled via the plurality of fins 74.

これにより、図1に示すらせん形状とされた配管のみで構成されたガス相冷却部59を用いて、内槽51内の上部51Aに位置するガス相39を冷却する場合(第1の実施形態の構成の場合)と比較して、効率よく内槽51内の上部51Aに位置するガス相39を冷却することができる。
つまり、第1の実施の形態の液化水素貯蔵供給設備10よりも、さらに効率よく、内槽51内に液化水素38−2を充填することができる。
Thereby, when cooling the gas phase 39 located in the upper part 51A in the inner tank 51 using the gas phase cooling part 59 comprised only by the piping made into the spiral shape shown in FIG. 1 (1st Embodiment). The gas phase 39 located in the upper part 51A in the inner tank 51 can be efficiently cooled as compared with the case of the above structure).
That is, the liquefied hydrogen 38-2 can be filled in the inner tank 51 more efficiently than the liquefied hydrogen storage and supply facility 10 of the first embodiment.

なお、図2では、ガス相冷却部67の一例として、上下方向に屈曲した液化水素抜き出し用配管61の一部の配管66の外周部に、放射状に8個のフィン74を設けた場合について図示したが、水平方向に屈曲あるいはらせん形状とした液化水素抜き出し用配管61の一部の配管66の外周部に設けてもよいことは当然である。
また、フィン74の数、及びフィン74の形状は、図3に限定されない。また、エロフィンチューブも含まれることは言うまでもない。
ガス相冷却部67の材料としては、熱伝導性に優れた材料を用いることが好ましい。具体的には、ガス相冷却部67の材料としては、例えば、アルミニウムを用いることができる。
In FIG. 2, as an example of the gas phase cooling unit 67, a case where eight fins 74 are provided radially on the outer periphery of a part of the piping 66 of the piping 61 for extracting liquefied hydrogen bent in the vertical direction is illustrated. However, as a matter of course, it may be provided on the outer peripheral portion of a part of the piping 66 of the piping 61 for extracting liquefied hydrogen that is bent or spiraled in the horizontal direction.
Further, the number of fins 74 and the shape of the fins 74 are not limited to those shown in FIG. Needless to say, an erotic fin tube is also included.
As a material of the gas phase cooling unit 67, it is preferable to use a material having excellent thermal conductivity. Specifically, for example, aluminum can be used as the material of the gas phase cooling unit 67.

このような形状とされたガス相冷却部67を備えた第1の実施形態の第1変形例に係る液化水素貯蔵供給設備60は、第1の実施形態の液化水素貯蔵供給設備10と同様な効果を得ることができる。
具体的には、内槽51内の液化水素38−1の液面38a−1の位置に依存することなく、内槽51内の圧力を一定に保つための水素ガスの大気放散量を低減させて、内槽51内に効率よく液化水素38−2を充填することができる。
The liquefied hydrogen storage and supply facility 60 according to the first modified example of the first embodiment including the gas phase cooling unit 67 having such a shape is the same as the liquefied hydrogen storage and supply facility 10 of the first embodiment. An effect can be obtained.
Specifically, without depending on the position of the liquid level 38a-1 of the liquefied hydrogen 38-1 in the inner tank 51, the amount of hydrogen gas released to the atmosphere to keep the pressure in the inner tank 51 constant can be reduced. The liquefied hydrogen 38-2 can be efficiently filled in the inner tank 51.

図4は、本発明の第1の実施形態の第2変形例に係る液化水素貯蔵供給設備の概略構成を示す図である。図4において、図1に示す液化水素貯蔵供給設備10と同一構成部分には、同一符号を付す。   FIG. 4 is a diagram showing a schematic configuration of a liquefied hydrogen storage and supply facility according to a second modification of the first embodiment of the present invention. In FIG. 4, the same components as those of the liquefied hydrogen storage and supply facility 10 shown in FIG.

図4を参照するに、第1の実施形態の第2変形例に係る液化水素貯蔵供給設備70は、第1の実施形態の液化水素貯蔵供給設備10に設けられた液化水素抜き出し用配管31の替わりに、液化水素抜き出し用配管71を設けた以外は、液化水素貯蔵供給設備10と同様な構成とされている。   Referring to FIG. 4, the liquefied hydrogen storage and supply facility 70 according to the second modification of the first embodiment includes a liquefied hydrogen extraction pipe 31 provided in the liquefied hydrogen storage and supply facility 10 of the first embodiment. Instead, the configuration is the same as that of the liquefied hydrogen storage and supply facility 10 except that the liquefied hydrogen extraction pipe 71 is provided.

液化水素抜き出し用配管71は、図1に示す液化水素抜き出し用配管31に設けられたガス相冷却部59の替わりに、ガス相冷却部72を設けた以外は、液化水素抜き出し用配管31と同様な構成とされている。ガス相冷却部72は、液化水素抜き出し用配管71の一部をらせん形状にした配管73と、液化水素抜き出し用配管71の一部の配管の外周にフィン74を設けた配管75との両方の配管が接続されて構成されている。   The liquefied hydrogen extraction pipe 71 is the same as the liquefied hydrogen extraction pipe 31 except that a gas phase cooling section 72 is provided instead of the gas phase cooling section 59 provided in the liquefied hydrogen extraction pipe 31 shown in FIG. It is made into the composition. The gas phase cooling unit 72 includes both a pipe 73 in which a part of the liquefied hydrogen extraction pipe 71 is formed in a spiral shape and a pipe 75 in which a fin 74 is provided on the outer periphery of a part of the pipe in the liquefied hydrogen extraction pipe 71. The pipe is connected and configured.

液化水素抜き出し用配管71の一部をらせん形状にした配管73は、第1の実施形態で説明したガス相冷却部59と同様な構成とされている。また、らせん形状にした配管73の一部は、内槽51の上部51Aの内壁51aに溶接などによって密着固定してもよい。   A pipe 73 in which a part of the liquefied hydrogen extraction pipe 71 is formed in a spiral shape has the same configuration as that of the gas phase cooling unit 59 described in the first embodiment. Further, a part of the spiral pipe 73 may be tightly fixed to the inner wall 51a of the upper part 51A of the inner tank 51 by welding or the like.

なお、液化水素抜き出し用配管71の一部の配管の外周にフィン74を設けた配管75は、第1の実施形態の第1変形例で説明したガス相冷却部67と同様な構成としてもよい。
また、液化水素抜き出し用配管71の一部の配管の外周にフィン74を設けた配管75の材料としては、熱伝導性に優れた材料を用いることが好ましい。具体的には、液化水素抜き出し用配管71の一部の配管の外周にフィン74を設けた配管75の材料としては、例えば、アルミニウムを用いることができる。
The pipe 75 provided with the fins 74 on the outer periphery of a part of the pipe for extracting the liquefied hydrogen 71 may have the same configuration as the gas phase cooling unit 67 described in the first modification of the first embodiment. .
Further, as a material of the pipe 75 in which the fin 74 is provided on the outer periphery of a part of the pipe for extracting the liquefied hydrogen 71, it is preferable to use a material having excellent thermal conductivity. Specifically, for example, aluminum can be used as the material of the pipe 75 in which the fin 74 is provided on the outer periphery of a part of the pipe for extracting the liquefied hydrogen 71.

これにより、図1で示す液化水素抜き出し用配管31の一部をらせん形状とした配管よりなるガス相冷却部59のみ、あるいは図2に示す液化水素抜き出し用配管61の一部の配管66の外周にフィン74を備えたガス相冷却部67のみを用いて、内槽51内の上部51Aに位置するガス相39を冷却する場合(第1の実施形態あるいは第1の実施形態の第1変形例の構成の場合)と比較して、効率よく内槽51内の上部51Aに位置するガス相39を冷却することができる。   Thereby, only the gas phase cooling part 59 made of a pipe having a part of the liquefied hydrogen extraction pipe 31 shown in FIG. 1 having a spiral shape, or the outer periphery of a part of the pipe 66 of the liquefied hydrogen extraction pipe 61 shown in FIG. In the case of cooling the gas phase 39 located in the upper part 51A in the inner tank 51 using only the gas phase cooling part 67 provided with the fins 74 in the first embodiment or the first modification of the first embodiment. The gas phase 39 located in the upper part 51A in the inner tank 51 can be efficiently cooled as compared with the case of the above structure).

つまり、第1の実施形態の液化水素貯蔵供給設備10あるいは第1の実施形態の第1変形例に係る液化水素貯蔵供給設備60よりも、さらに効率よく、内槽51内に液化水素38−2を充填することができる。
このような形状とされたガス相冷却部72を備えた第1の実施形態の第2変形例に係る液化水素貯蔵供給設備70は、第1の実施形態の液化水素貯蔵供給設備10と同様な効果を得ることができる。
That is, the liquefied hydrogen storage and supply facility 10 of the first embodiment or the liquefied hydrogen storage and supply facility 60 according to the first modification of the first embodiment is more efficient than the liquefied hydrogen 38-2 in the inner tank 51. Can be filled.
The liquefied hydrogen storage and supply equipment 70 according to the second modified example of the first embodiment including the gas phase cooling unit 72 having such a shape is the same as the liquefied hydrogen storage and supply equipment 10 of the first embodiment. An effect can be obtained.

(第2の実施形態)
図5は、本発明の第2の実施形態に係る液化水素貯蔵供給設備の概略構成を示す図である。図5において、図1に示す液化水素貯蔵供給設備10と同一構成部分には、同一符号を付す。
(Second Embodiment)
FIG. 5 is a diagram showing a schematic configuration of a liquefied hydrogen storage and supply facility according to the second embodiment of the present invention. In FIG. 5, the same components as those of the liquefied hydrogen storage and supply facility 10 shown in FIG.

図5を参照するに、第2の実施形態の液化水素貯蔵供給設備80は、第1の実施形態の液化水素貯蔵供給設備10に設けられた液化水素抜き出し用配管31の替わりに、液化水素抜き出し用配管81を設けた以外は、液化水素貯蔵供給設備10と同様な構成とされている。   Referring to FIG. 5, the liquefied hydrogen storage and supply facility 80 of the second embodiment is configured to extract liquefied hydrogen instead of the liquefied hydrogen extraction pipe 31 provided in the liquefied hydrogen storage and supply facility 10 of the first embodiment. The configuration is the same as that of the liquefied hydrogen storage and supply facility 10 except that the pipe 81 for operation is provided.

液化水素抜き出し用配管81は、図1に示す液化水素抜き出し用配管31に設けられたガス相冷却部59の替わりに、ガス相冷却部83を設けた以外は、液化水素抜き出し用配管31と同様な構成とされている。   The liquefied hydrogen extraction pipe 81 is the same as the liquefied hydrogen extraction pipe 31 except that a gas phase cooling section 83 is provided instead of the gas phase cooling section 59 provided in the liquefied hydrogen extraction pipe 31 shown in FIG. It is made into the composition.

液化水素抜き出し用配管81は、内槽51の上部51Aを貫通した後、真空断熱空間53において、ガス相冷却部83を設けている。
ガス相冷却部83は、内槽51の上部51Aの外壁51bと接触するように配置されている。ガス相冷却部83の一方の端83Aは、液化水素抜き出し口56と接続されており、ガス相冷却部83の他方の端83Bは、液化水素供給口58と接続されている。
The liquefied hydrogen extraction pipe 81 is provided with a gas phase cooling part 83 in the vacuum heat insulating space 53 after passing through the upper part 51 </ b> A of the inner tank 51.
The gas phase cooling unit 83 is disposed so as to be in contact with the outer wall 51 b of the upper part 51 </ b> A of the inner tank 51. One end 83A of the gas phase cooling unit 83 is connected to the liquefied hydrogen extraction port 56, and the other end 83B of the gas phase cooling unit 83 is connected to the liquefied hydrogen supply port 58.

ガス相冷却部83は、液化水素抜き出し用配管81の一部をらせん形状にした配管である。該らせん形状にした配管の一部(ガス相冷却部83の一部)は、外壁51bに溶接などによって密着固定してもよい。   The gas phase cooling unit 83 is a pipe in which a part of the liquefied hydrogen extraction pipe 81 is formed in a spiral shape. A part of the spiral pipe (a part of the gas phase cooling unit 83) may be tightly fixed to the outer wall 51b by welding or the like.

これにより、上記構成とされたガス相冷却部83は、液化水素抜き出し用配管81を介して抜き出される液化水素38−1の冷熱により、内槽51の上部51Aの外壁51bを介して伝熱によって、内槽51内の上部51Aに位置するガス相39を冷却する。   Thereby, the gas phase cooling unit 83 configured as described above transfers heat through the outer wall 51b of the upper portion 51A of the inner tank 51 by the cold heat of the liquefied hydrogen 38-1 extracted through the liquefied hydrogen extraction pipe 81. Thus, the gas phase 39 located in the upper part 51A in the inner tank 51 is cooled.

このように、内槽51内に貯留された液化水素38−1を真空断熱二重殻貯槽11の外部に抜き出す液化水素抜き出し用配管81が、液化水素抜き出し用配管81を介して抜き出される液化水素38−1により、内槽51内の上部51Aに位置するガス相39を冷却するガス相冷却部83を有することにより、タンクローリー41から内槽51内に液化水素38−2を充填する前段階において、ガス相冷却部83内を通過する液化水素38−1の冷熱により、内槽51の上部51Aの外壁51bを介して、内槽51内の上部51Aに位置するガス相39(液化水素に接するガス相よりも温度の高いガス相)を十分に冷却することが可能となる。   Thus, the liquefied hydrogen extraction pipe 81 for extracting the liquefied hydrogen 38-1 stored in the inner tank 51 to the outside of the vacuum insulated double shell storage tank 11 is extracted through the liquefied hydrogen extraction pipe 81. Preliminary stage of filling the liquefied hydrogen 38-2 from the tank lorry 41 into the inner tank 51 by having the gas phase cooling part 83 for cooling the gas phase 39 located at the upper part 51A in the inner tank 51 by the hydrogen 38-1. In the gas phase cooling section 83, the gas phase 39 (liquefied hydrogen) located in the upper part 51 </ b> A in the inner tank 51 is passed through the outer wall 51 b of the upper part 51 </ b> A of the inner tank 51 by the cold heat of the liquefied hydrogen 38-1. It is possible to sufficiently cool the gas phase having a temperature higher than that of the gas phase in contact therewith.

また、内槽51内の液化水素38−1の液面38a−1の位置が低い場合(液化水素の量の残量が少ない場合)においても内槽51内の上部51Aに位置するガス相を十分に冷却することが可能となる。   Moreover, even when the position of the liquid level 38a-1 of the liquefied hydrogen 38-1 in the inner tank 51 is low (when the remaining amount of liquefied hydrogen is small), the gas phase located in the upper part 51A in the inner tank 51 is changed. Sufficient cooling is possible.

したがって、内槽51内の液化水素38−1の液面38a−1の位置に依存することなく、内槽51内の圧力を一定に保つための水素ガスの大気放散量を低減させて、内槽51内に効率よく液化水素38−2を充填することができる。   Therefore, without depending on the position of the liquid level 38a-1 of the liquefied hydrogen 38-1 in the inner tank 51, the amount of hydrogen gas released to the atmosphere to keep the pressure in the inner tank 51 constant can be reduced. The tank 51 can be efficiently filled with liquefied hydrogen 38-2.

なお、図5に示すガス相冷却部83と、図1,図2,図4にそれぞれ示すガス相冷却部59,67,72と、を組み合わせてもよい。
この場合、内槽51の内側及び外側から内槽51の上部51Aに位置するガス相39をより冷却することが可能となるので、内槽51内に、さらに効率よく液化水素38−2を充填することができる。
Note that the gas phase cooling unit 83 shown in FIG. 5 may be combined with the gas phase cooling units 59, 67, and 72 shown in FIGS. 1, 2, and 4, respectively.
In this case, since the gas phase 39 located in the upper part 51A of the inner tank 51 can be further cooled from the inside and outside of the inner tank 51, the inner tank 51 is more efficiently filled with liquefied hydrogen 38-2. can do.

(第3の実施形態)
図6は、本発明の第3の実施形態に係る液化水素貯蔵供給設備の概略構成を示す図である。図6において、図5に示す液化水素貯蔵供給設備80と同一構成部分には、同一符号を付す。
(Third embodiment)
FIG. 6 is a diagram showing a schematic configuration of a liquefied hydrogen storage and supply facility according to the third embodiment of the present invention. In FIG. 6, the same components as those in the liquefied hydrogen storage and supply facility 80 shown in FIG.

図6を参照するに、第3の実施形態の液化水素貯蔵供給設備90は、第2の実施形態の液化水素貯蔵供給設備80に設けられた液化水素抜き出し用配管81の替わりに、液化水素抜き出し用配管91を設けた以外は、液化水素抜き出し用配管81と同様な構成とされている。   Referring to FIG. 6, the liquefied hydrogen storage and supply facility 90 of the third embodiment is configured to extract liquefied hydrogen instead of the liquefied hydrogen extraction pipe 81 provided in the liquefied hydrogen storage and supply facility 80 of the second embodiment. The configuration is the same as that of the piping 81 for extracting liquefied hydrogen except that the piping 91 is provided.

液化水素抜き出し用配管91は、図5に示す液化水素抜き出し用配管81のうち、液化水素抜き出し口56とガス相冷却部83の一方の端83Aとの間に位置する部分を、真空断熱空間53において内槽51の下部51Bから上部51Aに引き回し、かつ液化水素抜き出し口56を内槽51の下部51Bを貫通させた以外は、液化水素抜き出し用配管81と同様な構成とされている。   The liquefied hydrogen extraction pipe 91 is a portion of the liquefied hydrogen extraction pipe 81 shown in FIG. 5 that is located between the liquefied hydrogen extraction port 56 and one end 83 </ b> A of the gas phase cooling unit 83. In this embodiment, the liquefied hydrogen extraction pipe 81 has the same configuration as the liquefied hydrogen extraction pipe 81 except that the liquefied hydrogen extraction port 56 is passed through the lower portion 51B of the inner tank 51.

つまり、液化水素抜き出し用配管91は、真空断熱空間53に配置された部分の配管により、内槽51の下部51Bに貯留された液化水素38−1を抜き出す構成とされている。
さらに、液化水素抜き出し用配管91を構成するガス相冷却部83の両方の端83A,83Bは、内槽51の上部51Aの外壁51bと接触するように配置されている。
ガス相冷却部83は、液化水素抜き出し用配管91の一部をらせん形状にした配管である。該らせん形状にした配管の一部(ガス相冷却部83の一部)は、内槽51の上部51Aの外壁51bに溶接などによって密着固定してもよい。
That is, the liquefied hydrogen extraction pipe 91 is configured to extract the liquefied hydrogen 38-1 stored in the lower part 51 </ b> B of the inner tank 51 through a part of the pipe disposed in the vacuum heat insulating space 53.
Furthermore, both ends 83 </ b> A and 83 </ b> B of the gas phase cooling unit 83 constituting the liquefied hydrogen extraction pipe 91 are arranged so as to be in contact with the outer wall 51 b of the upper part 51 </ b> A of the inner tank 51.
The gas phase cooling unit 83 is a pipe in which a part of the liquefied hydrogen extraction pipe 91 is formed in a spiral shape. A part of the spiral pipe (a part of the gas phase cooling unit 83) may be tightly fixed to the outer wall 51b of the upper part 51A of the inner tank 51 by welding or the like.

第3の実施形態の液化水素貯蔵供給設備90は、第2の実施形態の液化水素貯蔵供給設備80と同様な効果を得ることができる。具体的には、内槽51内の液化水素38−1の液面38a−1の位置に依存することなく、内槽51内の圧力を一定に保つための水素ガスの大気放散量を低減させて、内槽51内に効率よく液化水素38−2を充填することができる。   The liquefied hydrogen storage and supply facility 90 of the third embodiment can obtain the same effects as the liquefied hydrogen storage and supply facility 80 of the second embodiment. Specifically, without depending on the position of the liquid level 38a-1 of the liquefied hydrogen 38-1 in the inner tank 51, the amount of hydrogen gas released to the atmosphere to keep the pressure in the inner tank 51 constant can be reduced. The liquefied hydrogen 38-2 can be efficiently filled in the inner tank 51.

(第4の実施形態)
図7は、本発明の第4の実施形態に係る液化水素貯蔵供給設備の概略構成を示す図である。図7において、図6に示す液化水素貯蔵供給設備90と同一構成部分には、同一符号を付す。
(Fourth embodiment)
FIG. 7 is a diagram showing a schematic configuration of a liquefied hydrogen storage and supply facility according to the fourth embodiment of the present invention. In FIG. 7, the same components as those in the liquefied hydrogen storage and supply facility 90 shown in FIG.

図7を参照するに、第4の実施形態の液化水素貯蔵供給設備100は、第3の実施形態の液化水素貯蔵供給設備90に設けられた液化水素抜き出し用配管91の替わりに、液化水素抜き出し用配管101を設けた以外は、液化水素貯蔵供給設備90と同様に構成される。   Referring to FIG. 7, the liquefied hydrogen storage and supply facility 100 of the fourth embodiment is configured to extract liquefied hydrogen instead of the liquefied hydrogen extraction pipe 91 provided in the liquefied hydrogen storage and supply facility 90 of the third embodiment. The liquid hydrogen storage and supply equipment 90 is configured in the same manner except that the pipe 101 is provided.

液化水素抜き出し用配管101は、図6に示す液化水素抜き出し用配管91が真空断熱空間53に配置された配管のみから構成されているのに対し、真空断熱空間53において内槽51の下部51Bから上部51Aに引き回した後、内槽51の上部51Aの側壁を貫通して内槽内に導入した構成とされている。   The liquefied hydrogen extraction pipe 101 is composed of only the pipe arranged for the liquefied hydrogen extraction pipe 91 shown in FIG. 6 in the vacuum heat insulating space 53, whereas in the vacuum heat insulating space 53 from the lower part 51 </ b> B of the inner tank 51. After being routed to the upper part 51A, the side wall of the upper part 51A of the inner tank 51 is penetrated and introduced into the inner tank.

つまり、液化水素抜き出し用配管101は、内槽51の下部51Bから真空断熱空間53に抜き出した後、真空断熱空間内を内槽の上部51Aまで引き回し、内槽51の上部51Aの側壁を貫通して内槽51内に導入し、ガス相冷却部59を経由した後、再度内槽51の上部51Aを貫通して真空断熱空間53に配置された配管により、内槽51の下部51Bに貯留された液化水素38−1を抜き出す構成とされている。
さらに、液化水素抜き出し用配管101を構成するガス相冷却部59の一方の端59Aは、内槽51の上部51Aを貫通しており、他方の端59Bは、一方の端59Aとは異なる位置において内槽51の上部51Aを貫通している。
That is, the liquefied hydrogen extraction pipe 101 is extracted from the lower part 51B of the inner tank 51 to the vacuum heat insulating space 53, and then is drawn around the vacuum heat insulating space to the upper part 51A of the inner tank and penetrates the side wall of the upper part 51A of the inner tank 51. After being introduced into the inner tank 51 and passing through the gas phase cooling part 59, it is stored in the lower part 51 </ b> B of the inner tank 51 by a pipe penetrating the upper part 51 </ b> A of the inner tank 51 again and arranged in the vacuum heat insulating space 53. The liquefied hydrogen 38-1 is extracted.
Furthermore, one end 59A of the gas phase cooling part 59 constituting the liquefied hydrogen extraction pipe 101 passes through the upper part 51A of the inner tank 51, and the other end 59B is at a position different from the one end 59A. The upper part 51 </ b> A of the inner tank 51 is penetrated.

このような構成とされた液化水素抜き出し用配管101を備えた第4の実施形態の液化水素貯蔵供給設備100は、第3の実施形態の液化水素貯蔵供給設備90と同様な効果を得ることができる。   The liquefied hydrogen storage and supply equipment 100 of the fourth embodiment provided with the liquefied hydrogen extraction pipe 101 configured as described above can obtain the same effects as the liquefied hydrogen storage and supply equipment 90 of the third embodiment. it can.

なお、図7に示すガス相冷却部59を、図2及び図4に示すガス相冷却部67,72のように変形例とすることもできる。さらに、これらの第4の実施形態及びその変形例に係るガス相冷却部59、67、72と、図6に示すガス相冷却部83とをそれぞれ組み合わせてもよい。
この場合、内槽51の内側及び外側から内槽51の上部51Aに位置するガス相39を冷却することが可能となるので、内槽51内に、さらに効率よく液化水素38−2を充填することができる。
The gas phase cooling unit 59 shown in FIG. 7 can be modified as the gas phase cooling units 67 and 72 shown in FIGS. Furthermore, the gas phase cooling units 59, 67, and 72 according to the fourth embodiment and the modifications thereof may be combined with the gas phase cooling unit 83 shown in FIG.
In this case, the gas phase 39 located in the upper portion 51A of the inner tank 51 can be cooled from the inside and the outside of the inner tank 51, so that the liquid hydrogen 38-2 is filled into the inner tank 51 more efficiently. be able to.

以上、本発明の好ましい実施形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such specific embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims. Deformation / change is possible.

本発明は、内槽内の液化水素の液面の位置に依存することなく、内槽内の圧力を一定に保つための水素ガスの大気放散量を低減させて、内槽内に効率よく液化水素を充填することの可能な液化水素貯蔵供給設備に適用可能である。   The present invention does not depend on the position of the liquid level of liquefied hydrogen in the inner tank, reduces the amount of hydrogen gas released to the atmosphere to maintain the pressure in the inner tank constant, and efficiently liquefies the inner tank. The present invention can be applied to a liquefied hydrogen storage and supply facility that can be filled with hydrogen.

10,60,70,80,90,100…液化水素貯蔵供給設備、11…真空断熱二重殻貯槽、13…液化水素下部充填及び加圧抜き出し用配管、14…加圧弁、15…加圧蒸発器、17…圧力調整用配管、18…圧力逃がしライン、19…圧力逃がし弁、22…第1の接続部、23…分岐ライン、24…下部充填弁、26…液化水素上部充填用配管、27…上部充填弁、31,61,71,81,91,101…液化水素抜き出し用配管、33…液化水素供給ライン、34…水素ガス供給ライン、35…送ガス蒸発器、38−1,38−2…液化水素、38a−1…液面、39…ガス相、41…タンクローリー、42…第2の接続部、43…フレキホース、51…内槽、51a…内壁、51b…外壁、51A…上部、51B…下部、52…外槽、52A…下部、53…真空断熱空間、56…液化水素抜き出し口、58…液化水素供給口、59,67,72,83,91…ガス相冷却部、59A,83A…一方の端、59B,83B…他方の端、73…らせん形状にした配管、74…フィン、66,75…配管   DESCRIPTION OF SYMBOLS 10,60,70,80,90,100 ... Liquid hydrogen storage supply equipment, 11 ... Vacuum heat insulation double shell storage tank, 13 ... Pipe for liquid hydrogen bottom filling and pressure extraction, 14 ... Pressure valve, 15 ... Pressure evaporation 17 ... pressure adjusting pipe, 18 ... pressure relief line, 19 ... pressure relief valve, 22 ... first connection part, 23 ... branch line, 24 ... lower filling valve, 26 ... liquefied hydrogen upper filling pipe, 27 ... Upper filling valve, 31, 61, 71, 81, 91, 101 ... Pipe for extracting liquefied hydrogen, 33 ... Liquefied hydrogen supply line, 34 ... Hydrogen gas supply line, 35 ... Feed gas evaporator, 38-1, 38- 2 ... Liquefied hydrogen, 38a-1 ... Liquid level, 39 ... Gas phase, 41 ... Tank truck, 42 ... Second connection part, 43 ... Flexible hose, 51 ... Inner tank, 51a ... Inner wall, 51b ... Outer wall, 51A ... Upper part, 51B ... Bottom, 52 ... Tank, 52A ... Lower part, 53 ... Vacuum insulation space, 56 ... Liquefied hydrogen extraction port, 58 ... Liquefied hydrogen supply port, 59, 67, 72, 83, 91 ... Gas phase cooling section, 59A, 83A ... One end, 59B 83B ... the other end, 73 ... pipes in a spiral shape, 74 ... fins, 66,75 ... pipes

Claims (8)

液化水素を貯留する内槽、該内槽を収容する外槽、及び前記内槽と前記外槽との間に設けられた真空断熱空間よりなる真空断熱二重殻貯槽を有し、前記液化水素あるいは水素ガスを需要先に供給する液化水素貯蔵供給設備であって、
前記内槽に貯留された前記液化水素を前記真空断熱二重殻貯槽の外部に抜き出す液化水素抜き出し用配管を備え、
前記液化水素抜き出し用配管は、前記液化水素抜き出し用配管を介して抜き出される前記液化水素により、前記内槽内のガス相のうち前記内槽内の上部に位置するガス相を冷却するガス相冷却部を有することを特徴とする液化水素貯蔵供給設備。
An internal tank for storing liquefied hydrogen; an outer tank for storing the inner tank; and a vacuum insulated double-shell storage tank comprising a vacuum insulated space provided between the inner tank and the outer tank. Alternatively, it is a liquefied hydrogen storage and supply facility that supplies hydrogen gas to customers,
A liquefied hydrogen extraction pipe for extracting the liquefied hydrogen stored in the inner tank to the outside of the vacuum-insulated double-shell storage tank;
The liquefied hydrogen extraction pipe is a gas phase that cools a gas phase located in the upper part of the inner tank among the gas phases in the inner tank by the liquefied hydrogen extracted through the liquefied hydrogen extraction pipe. A liquefied hydrogen storage and supply facility comprising a cooling unit.
前記液化水素抜き出し用配管は、前記内槽の上部を貫通すると共に、前記内槽の下部に延在しており、かつ前記内槽の下部に位置する前記液化水素を抜き出す液化水素抜き出し口を有することを特徴とする請求項1記載の液化水素貯蔵供給設備。   The liquefied hydrogen extraction pipe extends through the upper part of the inner tank and extends to the lower part of the inner tank, and has a liquefied hydrogen extraction port for extracting the liquefied hydrogen located at the lower part of the inner tank. The liquefied hydrogen storage and supply equipment according to claim 1. 前記液化水素抜き出し用配管は、前記真空断熱空間を、前記内槽の下部から前記内槽の上部に引き回されており、かつ前記内槽の下部を貫通し、前記内槽の下部に配置された液化水素を抜き出す液化水素抜き出し口を有することを特徴とする請求項1記載の液化水素貯蔵供給設備。   The piping for extracting liquefied hydrogen is routed through the vacuum heat insulating space from the lower part of the inner tank to the upper part of the inner tank, and passes through the lower part of the inner tank and is arranged at the lower part of the inner tank. 2. The liquefied hydrogen storage and supply facility according to claim 1, further comprising a liquefied hydrogen outlet for extracting the liquefied hydrogen. 前記液化水素抜き出し用配管は、前記真空断熱空間から、前記内槽の上部を貫通して、前記内槽内に導入され、再度前記内槽の上部を貫通することを特徴とする請求項3記載の液化水素貯蔵供給設備。   The piping for extracting the liquefied hydrogen passes through the upper part of the inner tank from the vacuum heat insulating space, is introduced into the inner tank, and again passes through the upper part of the inner tank. Liquefied hydrogen storage and supply equipment. 前記ガス相冷却部は、前記内槽内の上部に配置され、前記液化水素抜き出し用配管の一部をらせん形状にした配管であること、または前記液化水素抜き出し用配管の一部の配管の外周にフィンを設けた配管であること、あるいは前記らせん形状にした配管と前記フィンを設けた配管の両方を有する配管であることを特徴とする請求項1、2、4のうち、いずれか1項記載の液化水素貯蔵供給設備。   The gas phase cooling section is arranged in an upper part in the inner tank and is a pipe in which a part of the liquefied hydrogen extraction pipe is formed in a spiral shape, or an outer periphery of a part of the liquefied hydrogen extraction pipe 5. The pipe according to claim 1, wherein the pipe is provided with fins, or is a pipe having both of the spiral pipe and the pipe provided with the fins. Liquefied hydrogen storage and supply equipment as described. 前記らせん形状にした配管の一部は、前記内槽の内壁に密着されていることを特徴とする請求項5記載の液化水素貯蔵供給設備。   6. The liquefied hydrogen storage and supply equipment according to claim 5, wherein a part of the spiral pipe is in close contact with an inner wall of the inner tank. 前記ガス相冷却部は、前記内槽の上部の外壁と接触するように配置され、前記液化水素抜き出し用配管の一部をらせん形状にした配管であることを特徴とする請求項1ないし6のうち、いずれか1項記載の液化水素貯蔵供給設備。   7. The gas phase cooling part according to claim 1, wherein the gas phase cooling part is a pipe arranged in contact with the outer wall of the upper part of the inner tank and having a part of the liquefied hydrogen extraction pipe spiraled. Among them, the liquefied hydrogen storage and supply equipment according to any one of the above. 前記らせん形状にした配管の一部は、前記内槽の外壁に密着されていることを特徴とする請求項7記載の液化水素貯蔵供給設備。
The liquefied hydrogen storage and supply equipment according to claim 7, wherein a part of the spiral pipe is in close contact with an outer wall of the inner tank.
JP2011118239A 2011-05-26 2011-05-26 Liquefied hydrogen storage and supply equipment Active JP5783801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011118239A JP5783801B2 (en) 2011-05-26 2011-05-26 Liquefied hydrogen storage and supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011118239A JP5783801B2 (en) 2011-05-26 2011-05-26 Liquefied hydrogen storage and supply equipment

Publications (2)

Publication Number Publication Date
JP2012246981A true JP2012246981A (en) 2012-12-13
JP5783801B2 JP5783801B2 (en) 2015-09-24

Family

ID=47467614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011118239A Active JP5783801B2 (en) 2011-05-26 2011-05-26 Liquefied hydrogen storage and supply equipment

Country Status (1)

Country Link
JP (1) JP5783801B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200033642A (en) * 2018-09-20 2020-03-30 하이리움산업(주) Liquid hydrogen fueling system including liquid hydrogen storage tank and fueling method thereof
CN112448460A (en) * 2019-08-13 2021-03-05 张家港氢云新能源研究院有限公司 Small and light cryogenic high-pressure hydrogen storage power supply system
CN114576548A (en) * 2022-01-26 2022-06-03 江苏秋林特能装备股份有限公司 Efficient liquid hydrogen fuel system
CN115451333A (en) * 2022-09-14 2022-12-09 北京三盈氢能源装备有限公司 Cooling system and cooling method of hydrogenation machine
WO2023172432A1 (en) * 2022-03-10 2023-09-14 Sumitomo (Shi) Cryogenics Of America, Inc. System for capturing vapor from a cryogenic storage tank
WO2023190972A1 (en) * 2022-03-31 2023-10-05 住友精密工業株式会社 Heat exchange system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102207454B1 (en) * 2019-05-20 2021-01-26 하이리움산업㈜ Mobile liquid and gas hydrogen- refulling apparatus
WO2022254938A1 (en) 2021-06-03 2022-12-08 二朗 渡邊 Circular saw guide device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260060A (en) * 1964-08-26 1966-07-12 Ryan Ind Inc Dewar for liquid air and/or other multicomponent cryogenic liquids
JPS5210611U (en) * 1975-07-11 1977-01-25
US20070144590A1 (en) * 2005-12-22 2007-06-28 Simmons Stephen T Fluid control device
JP2011001993A (en) * 2009-06-17 2011-01-06 Iwatani Internatl Corp Liquefied hydrogen storage supply equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260060A (en) * 1964-08-26 1966-07-12 Ryan Ind Inc Dewar for liquid air and/or other multicomponent cryogenic liquids
JPS5210611U (en) * 1975-07-11 1977-01-25
US20070144590A1 (en) * 2005-12-22 2007-06-28 Simmons Stephen T Fluid control device
JP2011001993A (en) * 2009-06-17 2011-01-06 Iwatani Internatl Corp Liquefied hydrogen storage supply equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200033642A (en) * 2018-09-20 2020-03-30 하이리움산업(주) Liquid hydrogen fueling system including liquid hydrogen storage tank and fueling method thereof
KR102130703B1 (en) * 2018-09-20 2020-07-07 하이리움산업(주) Liquid hydrogen fueling system including liquid hydrogen storage tank and fueling method thereof
CN112448460A (en) * 2019-08-13 2021-03-05 张家港氢云新能源研究院有限公司 Small and light cryogenic high-pressure hydrogen storage power supply system
CN112448460B (en) * 2019-08-13 2023-03-17 张家港氢云新能源研究院有限公司 Small and light cryogenic high-pressure hydrogen storage power supply system
CN114576548A (en) * 2022-01-26 2022-06-03 江苏秋林特能装备股份有限公司 Efficient liquid hydrogen fuel system
WO2023172432A1 (en) * 2022-03-10 2023-09-14 Sumitomo (Shi) Cryogenics Of America, Inc. System for capturing vapor from a cryogenic storage tank
WO2023190972A1 (en) * 2022-03-31 2023-10-05 住友精密工業株式会社 Heat exchange system
CN115451333A (en) * 2022-09-14 2022-12-09 北京三盈氢能源装备有限公司 Cooling system and cooling method of hydrogenation machine

Also Published As

Publication number Publication date
JP5783801B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5783801B2 (en) Liquefied hydrogen storage and supply equipment
TWI343975B (en) A storage vessel for cryogenic liquid
JP5426374B2 (en) Method and apparatus for vaporizing a liquid stream
US20150362128A1 (en) Device and method for supplying fluid
CA2917035C (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
RU2628337C2 (en) Methods of storage of cryogenic fluid environments in storage tanks
JP4728601B2 (en) Cooling system for superconducting power equipment
JP2006100275A (en) Backup cryogenic cooling system
JP2014527610A (en) Liquefaction apparatus with pressure controlled liquefaction chamber
JP5354543B2 (en) Outside air type vaporizer
US20090071171A1 (en) Cryogenic liquid storage method and system
JP2011001993A (en) Liquefied hydrogen storage supply equipment
Bolozdynya et al. The two-phase closed tubular cryogenic thermosyphon
TW201730475A (en) Method and heat exchanger for recovering cold during the re-gasification of cryogenic liquids
TW201309979A (en) Vaporizer for liquefied gas
JP5715498B2 (en) Liquefied hydrogen storage and supply equipment
JP2021507178A (en) Methods and equipment for storing liquefied gas in a container and drawing evaporative gas out of the container
JP2011127754A (en) Hydrogen gas cooling device
KR200446958Y1 (en) Apparatus for drawing draft beer
US11649929B2 (en) Gas dispensing system with tank pressure and heat management
JPH08240353A (en) Cryostat and its operating method
JP5860945B2 (en) Method and apparatus for vaporizing liquefied carbon dioxide
TW202206739A (en) Method for extracting a liquid phase of a cryogen from a storage dewar
JPH11336999A (en) Supply method for liquefied gas and device therefor
AU2012249238B1 (en) Non Pressurised Thermal Energy Storage Tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150721

R150 Certificate of patent or registration of utility model

Ref document number: 5783801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250