JP2010535414A - 増大された高磁場特性を有する超電導体、それを製造する方法、及びそれを含むmri装置 - Google Patents
増大された高磁場特性を有する超電導体、それを製造する方法、及びそれを含むmri装置 Download PDFInfo
- Publication number
- JP2010535414A JP2010535414A JP2010519152A JP2010519152A JP2010535414A JP 2010535414 A JP2010535414 A JP 2010535414A JP 2010519152 A JP2010519152 A JP 2010519152A JP 2010519152 A JP2010519152 A JP 2010519152A JP 2010535414 A JP2010535414 A JP 2010535414A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- disorder
- nonmagnetic
- superconducting material
- superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 167
- 239000002887 superconductor Substances 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 230000001965 increasing effect Effects 0.000 title description 9
- 239000012535 impurity Substances 0.000 claims abstract description 89
- 239000000463 material Substances 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims description 18
- 239000002105 nanoparticle Substances 0.000 claims description 14
- 239000002244 precipitate Substances 0.000 claims description 13
- 230000007547 defect Effects 0.000 claims description 12
- 229910020012 Nb—Ti Inorganic materials 0.000 claims description 10
- 230000007704 transition Effects 0.000 claims description 10
- 150000002500 ions Chemical class 0.000 claims description 6
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 5
- 239000006249 magnetic particle Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 229910052775 Thulium Inorganic materials 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 2
- 229910052691 Erbium Inorganic materials 0.000 claims description 2
- 229910052693 Europium Inorganic materials 0.000 claims description 2
- 229910052689 Holmium Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 229910052771 Terbium Inorganic materials 0.000 claims description 2
- 229910052770 Uranium Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052713 technetium Inorganic materials 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 18
- 238000002595 magnetic resonance imaging Methods 0.000 description 15
- 230000007423 decrease Effects 0.000 description 12
- 238000005481 NMR spectroscopy Methods 0.000 description 10
- 230000004907 flux Effects 0.000 description 9
- 238000007382 vortex spinning Methods 0.000 description 9
- 239000002122 magnetic nanoparticle Substances 0.000 description 7
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 6
- 239000010955 niobium Substances 0.000 description 6
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000005298 paramagnetic effect Effects 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000008092 positive effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000005551 mechanical alloying Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 238000012772 sequence design Methods 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910020073 MgB2 Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 244000022782 cocaer Species 0.000 description 1
- 235000008957 cocaer Nutrition 0.000 description 1
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/381—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
- G01R33/3815—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/3802—Manufacture or installation of magnet assemblies; Additional hardware for transportation or installation of the magnet assembly or for providing mechanical support to components of the magnet assembly
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0156—Manufacture or treatment of devices comprising Nb or an alloy of Nb with one or more of the elements of group IVB, e.g. titanium, zirconium or hafnium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0184—Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0856—Manufacture or treatment of devices comprising metal borides, e.g. MgB2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
- H10N60/85—Superconducting active materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
- H10N60/85—Superconducting active materials
- H10N60/855—Ceramic superconductors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Ceramic Engineering (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
式(1):
ここで、「f」は、適切な関数を意味する。簡単に、「f」は、特定指数αを有し、次の方式で選択することができる。
式(2):
対応するギンツブルグ−ランダウ(Ginzburg−Landau)コヒーレンス長ξGLは、次で与えられる。
式(3):
最後に、上部臨界磁場Hc2は、次のように得ることができる(W. Buckel及びR. Kleinerによる“Superconductivity”, Wiley−VCH, Weinheim (2004), p.236を参照)。
式(4):
式(6):
ここで、Jc0は、純粋な超電導体に対する臨界電流密度である。したがって、非可逆性磁場Hirrは、顕著に増大する。
=0.5ξ0,及びα=1)と線32(ls=2.817ξ0,
=0.5ξ0,及びα=1)である。
=0.6ξ0,及びα=1の場合)で示すように、Jcの追加的な増幅をもたらす。
本発明の一実施例によれば、磁性不純物と非磁性無秩序性を超電導体に注入するために、利用可能な任意の技術を使用することができる。例えば、磁性不純物と非磁性無秩序性を超電導体に注入するために、拡散、アーク溶解、固相反応、急冷−凝結、パルスレーザー蒸着(pulsed laser deposition;PLD)、スパッタリング、分子線エピタキシー(molecular beam epitaxy;MBE)、機械的合金化、照射及び注入(irradiation and implantation)、化学気相蒸着(chemical vapor deposition;CVD)、管内粉末(powder−in−tube;PIT)などの技術を使用することができる。超電導材料内で磁性不純物の溶解度は問題になり得る。したがって、超電導材料及び技術によって最適の溶解度を有する磁性不純物を選択しなければならない。仮に、溶解度限界を超過して磁性不純物を付加すれば、一部の磁性不純物は、沈殿物を形成し得る。この場合、沈殿物は、依然として臨界電流密度Jcを増加させるのに寄与することができる。しかし、沈殿物は、基本的に超電導マトリックスと独立的なので、上部臨界磁場 Hc2は大きく増加しない。磁性ナノ粒子(T. H. Alden及びJ. Livingston, “Ferromagnetic Particles in a Type−II superconductor”, J. Appl. Phys. 37, 3551 (1966); C. C. Koch及びG. R. Love, “Superconductivity in Niobium containing ferromagnetic Gadolinium or paramagnetic Yttrium dispersions”, J. Appl. Phys. 40, 3582 (1969); 及びA. Snezhko, T. Prozorov及びR. Prozorov, “Magnetic nanoparticles as efficient bulk pinning centers in type−II superconductors”, Phys. Rev. B71, 024527 (2005)を参照)と, 人工磁性ピン(N. D. Rizzo, J. Q. Wang, D. E. Prober, L. R. Motowidlo, 及びB. A. Zeitlin, “Ferromagnetic artificial pinning centers in superconducting Nb0.36Ti0.64 wires”, Appl. Phys. Lett. 69, 2285 (1996)参照)と, 磁性ドット(G. Teniers, M. Lange, V. V. Moshchalkov, “Vortex dynamics in superconductors with a lattice of magnetic dots”, Physica C 369, 268 (2002)を参照)を付加することは、磁性不純物付加のように、臨界電流の類似の増大をもたらすことができる。しかし、これらの技術は、ナノ粒子サイズの微細調整を必要とする可能性があり、大量生産に適さないと考えられる。それにもかかわらず、磁性ナノ粒子の負の影響も、本明細書で論議する非磁性無秩序性の付加を通じて補償することができ、したがって、正の影響は、非磁性無秩序性によって増幅されることができる。したがって、本発明の実施例で開示した方法は、超電導体の高磁場特性、すなわちHc2とJcの両方を顕著に増大させることができ、これは、磁性不純物が誘導したボルテックスの強いピンニングにより、固有で且つ強力なので、本発明の方法が有利である。
式(7):1/3<ξ0/l<3
Claims (19)
- その内部に形成された磁性不純物(magnetic impurity)及び非磁性無秩序性(non−magnetic disorder)とを含む超電導材料を含み、
前記磁性不純物と前記非磁性無秩序性を含む前記超電導材料の上部臨界磁場及び臨界電流密度のうち少なくとも1つは、磁性不純物を含み且つ非磁性無秩序性を含まない超電導材料のそれより大きい、超電導体。 - 前記超電導材料は、NbSn3とMgB2よりなる群から選択された少なくとも1つを含む、請求項1記載の超電導体。
- 前記磁性不純物は、ボルテックスピンニングセンター(vortex pinning center)として作用する、請求項1記載の超電導体。
- 超電導材料としてNbと、非磁性無秩序性としてTiと、磁性不純物とを含むNb−Ti合金を含む、請求項1記載の超電導体。
- 前記磁性不純物は、部分的に満たされたd−電子を有する磁性イオン、部分的に満たされたf−電子を有する磁性イオン、及び磁性粒子よりなる群から選択された少なくとも1つを含む、請求項1記載の超電導体。
- 前記磁性不純物は、Mn、Fe、Ni、Cr、Co、Y、Zr、Nb、Mo、Tc、Ru及びRhよりなる群から選択された少なくとも1つの材料を含む、請求項1記載の超電導体。
- 前記磁性不純物は、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm及びUよりなる群から選択された少なくとも1つの材料を含む、請求項1記載の超電導体。
- 前記超電導材料内の磁性不純物の濃度は、0.1at.%から20at.%までの範囲である、請求項1記載の超電導体。
- 前記磁性不純物と前記非磁性無秩序性とを含む前記超電導材料の超電導転移温度は、前記磁性不純物を含み且つ前記非磁性無秩序性を含まない超電導材料の超電導転移温度より大きい、請求項1記載の超電導体。
- 前記非磁性無秩序性は、結晶欠陥、s−電子またはp−電子を有する非磁性イオン、及び非磁性粒子よりなる群から選択された少なくとも1つを含む、請求項1記載の超電導体。
- 前記非磁性無秩序性は、空孔型欠陥、格子間型欠陥、転位、及び放射ダメージよりなる群から選択された少なくとも1つの結晶欠陥を含む、請求項10記載の超電導体。
- 前記非磁性無秩序性は、沈殿物、第2相転移、ナノサイズ粒子、及び前記超電導材料の結晶粒界での析出物(segregate)よりなる群から選択された少なくとも1つの非磁性粒子を含む、請求項10記載の超電導体。
- 前記非磁性無秩序性は、Zn、Al、Ti、C、B及びLiよりなる群から選択された少なくとも1つの材料を含む、請求項1記載の超電導体。
- 前記超電導材料内で前記非磁性無秩序性の濃度は、ξ0/ lが1/3<ξ0/l<3の範囲にあるように選択され、ξ0は、前記超電導材料のBCSコヒーレンス長であり、かつlは、前記非磁性無秩序性を含む前記超電導材料内での平均自由行程である、請求項1記載の超電導体。
- 前記超電導材料内の前記非磁性無秩序性の濃度は、1at.%から40at.%までの範囲である、請求項1記載の超電導体。
- 超電導材料を調製する段階;
前記超電導材料内に磁性不純物を形成する段階;及び
前記超電導材料内に非磁性無秩序性を形成する段階を含む、
超電導体を製造する方法であって、
前記磁性不純物と前記非磁性無秩序性とを含む前記超電導材料の上部臨界磁場及び臨界電流密度のうち少なくとも1つは、磁性不純物を含み且つ非磁性無秩序性を含まない超電導材料のそれより大きい、方法。 - 前記非磁性無秩序性は、前記超電導材料を調製する段階中に形成される、請求項16記載の方法。
- 前記非磁性無秩序性は、前記超電導材料を調製する段階後に形成される、請求項16記載の方法。
- 請求項1記載の超電導体を含む、MRIまたはNMR装置。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US96314507P | 2007-08-01 | 2007-08-01 | |
US60/963,145 | 2007-08-01 | ||
US96444107P | 2007-08-10 | 2007-08-10 | |
US60/964,441 | 2007-08-10 | ||
PCT/KR2008/004454 WO2009017370A2 (en) | 2007-08-01 | 2008-07-31 | Superconductor with enhanced high magenetic field properties, manufacturing method thereof, and mri apparatus comprising the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014065458A Division JP2014179326A (ja) | 2007-08-01 | 2014-03-27 | 増大された高磁場特性を有する超電導体、それを製造する方法、及びそれを含むmri装置 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2010535414A true JP2010535414A (ja) | 2010-11-18 |
JP2010535414A5 JP2010535414A5 (ja) | 2014-05-22 |
JP5792462B2 JP5792462B2 (ja) | 2015-10-14 |
Family
ID=40305060
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010519152A Active JP5792462B2 (ja) | 2007-08-01 | 2008-07-31 | 増大された高磁場特性を有する超電導体、それを製造する方法、及びそれを含むmri装置 |
JP2014065458A Pending JP2014179326A (ja) | 2007-08-01 | 2014-03-27 | 増大された高磁場特性を有する超電導体、それを製造する方法、及びそれを含むmri装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014065458A Pending JP2014179326A (ja) | 2007-08-01 | 2014-03-27 | 増大された高磁場特性を有する超電導体、それを製造する方法、及びそれを含むmri装置 |
Country Status (6)
Country | Link |
---|---|
US (2) | US7791343B2 (ja) |
EP (1) | EP2173247B1 (ja) |
JP (2) | JP5792462B2 (ja) |
KR (1) | KR101092345B1 (ja) |
CN (1) | CN101765399B (ja) |
WO (1) | WO2009017370A2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11758827B2 (en) | 2018-10-26 | 2023-09-12 | Bruker Eas Gmbh | Monofilament for producing an Nb3Sn-containing superconductor wire, especially for internal oxidation |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9080557B2 (en) * | 2006-06-14 | 2015-07-14 | Eddie Sines | Method and apparatus for direct energy conversion |
US7791343B2 (en) * | 2007-08-01 | 2010-09-07 | Yong Jihn Kim | Superconductor with enhanced high magnetic field properties, manufacturing method thereof, and MRI apparatus comprising the same |
CN104310972B (zh) * | 2014-09-30 | 2016-08-24 | 苏州博利迈新材料科技有限公司 | 一种超导材料及其制备方法 |
CN107710335B (zh) * | 2015-05-01 | 2020-06-02 | 金溶进 | 导电聚合物、它们的制造方法、以及它们的应用 |
US10636955B2 (en) * | 2016-05-20 | 2020-04-28 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Terahertz transistor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0294498A (ja) * | 1988-09-30 | 1990-04-05 | Nippon Steel Corp | Nb−Ti系超電導磁気シールド材及びその製造方法 |
JPH06509675A (ja) * | 1991-07-19 | 1994-10-27 | コンポジツト・マテリアルズ・テクノロジー・インコーポレイテツド | 超伝導性合金を製造する方法 |
JP2002284519A (ja) * | 2001-03-28 | 2002-10-03 | Matsushita Electric Ind Co Ltd | 超伝導材料 |
JP2004031550A (ja) * | 2002-06-25 | 2004-01-29 | Takeshi Kawabata | 高臨界電流特性を有する超電導線材 |
JP2004307256A (ja) * | 2003-04-07 | 2004-11-04 | Internatl Superconductivity Technology Center | 臨界電流密度及び不可逆磁界の高いMgB2系超電導体 |
JP2006228797A (ja) * | 2005-02-15 | 2006-08-31 | Hitachi Ltd | 二硼化マグネシウムを用いた永久電流スイッチおよびその製造方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5004539A (en) * | 1989-10-12 | 1991-04-02 | J. M. Huber Corporation | Superconducting magnetic separator |
US5323232A (en) * | 1990-08-01 | 1994-06-21 | Matsushita Electric Industrial Co., Ltd. | Filter device for decimation and interpolation of chrominance components of a video signal |
JP3731231B2 (ja) * | 1995-11-30 | 2006-01-05 | 株式会社日立メディコ | 超電導磁石装置 |
US6602620B1 (en) * | 1998-12-28 | 2003-08-05 | Kabushiki Kaisha Toshiba | Magnetic recording apparatus, magnetic recording medium and manufacturing method thereof |
US7018954B2 (en) * | 2001-03-09 | 2006-03-28 | American Superconductor Corporation | Processing of magnesium-boride superconductors |
GB0129410D0 (en) * | 2001-12-07 | 2002-01-30 | Imp College Innovations Ltd | Magnesium diboride superconductors |
JPWO2003050826A1 (ja) * | 2001-12-10 | 2005-04-21 | 三菱電機株式会社 | 酸化物超電導厚膜用金属基材およびその製造方法 |
JP2003255032A (ja) * | 2002-02-28 | 2003-09-10 | Hitachi Ltd | 核磁気共鳴装置用プローブ |
WO2003082482A1 (en) * | 2002-03-25 | 2003-10-09 | Penn State Research Foundation | Method for producing boride thin films |
JP4122833B2 (ja) * | 2002-05-07 | 2008-07-23 | 株式会社日立製作所 | 二ホウ化マグネシウムを用いたnmr装置用プローブ |
US6946428B2 (en) * | 2002-05-10 | 2005-09-20 | Christopher M. Rey | Magnesium -boride superconducting wires fabricated using thin high temperature fibers |
US20070020165A1 (en) * | 2002-11-26 | 2007-01-25 | Suplinskas Raymond J | Substrate and method for the formation of continuous magnesium diboride and doped magnesium diboride wires |
JP4016103B2 (ja) | 2003-03-04 | 2007-12-05 | 独立行政法人物質・材料研究機構 | MgB2超伝導体の製造方法 |
JP3993127B2 (ja) * | 2003-04-24 | 2007-10-17 | 株式会社日立製作所 | Nmr装置用超電導プローブコイル |
US6961597B1 (en) * | 2003-07-01 | 2005-11-01 | The United States Of America As Represented By The Secretary Of The Navy | Strips for imparting low nonlinearity to high temperature superconductor microwave filters |
US7632784B2 (en) * | 2004-04-17 | 2009-12-15 | Rokhvarger Anatoly E | Sintered ceramic composite lead with superconductive nano-architecture |
US20110111962A1 (en) * | 2007-07-23 | 2011-05-12 | University Of Wollongong | Improvements in magnesium diboride superconductors and methods of synthesis |
US7791343B2 (en) * | 2007-08-01 | 2010-09-07 | Yong Jihn Kim | Superconductor with enhanced high magnetic field properties, manufacturing method thereof, and MRI apparatus comprising the same |
-
2008
- 2008-07-31 US US12/183,333 patent/US7791343B2/en active Active
- 2008-07-31 CN CN2008801009453A patent/CN101765399B/zh active Active
- 2008-07-31 JP JP2010519152A patent/JP5792462B2/ja active Active
- 2008-07-31 WO PCT/KR2008/004454 patent/WO2009017370A2/en active Application Filing
- 2008-07-31 EP EP08792969A patent/EP2173247B1/en active Active
- 2008-07-31 KR KR1020107004485A patent/KR101092345B1/ko active IP Right Grant
-
2010
- 2010-07-25 US US12/843,039 patent/US8390293B2/en not_active Expired - Fee Related
-
2014
- 2014-03-27 JP JP2014065458A patent/JP2014179326A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0294498A (ja) * | 1988-09-30 | 1990-04-05 | Nippon Steel Corp | Nb−Ti系超電導磁気シールド材及びその製造方法 |
JPH06509675A (ja) * | 1991-07-19 | 1994-10-27 | コンポジツト・マテリアルズ・テクノロジー・インコーポレイテツド | 超伝導性合金を製造する方法 |
JP2002284519A (ja) * | 2001-03-28 | 2002-10-03 | Matsushita Electric Ind Co Ltd | 超伝導材料 |
JP2004031550A (ja) * | 2002-06-25 | 2004-01-29 | Takeshi Kawabata | 高臨界電流特性を有する超電導線材 |
JP2004307256A (ja) * | 2003-04-07 | 2004-11-04 | Internatl Superconductivity Technology Center | 臨界電流密度及び不可逆磁界の高いMgB2系超電導体 |
JP2006228797A (ja) * | 2005-02-15 | 2006-08-31 | Hitachi Ltd | 二硼化マグネシウムを用いた永久電流スイッチおよびその製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11758827B2 (en) | 2018-10-26 | 2023-09-12 | Bruker Eas Gmbh | Monofilament for producing an Nb3Sn-containing superconductor wire, especially for internal oxidation |
Also Published As
Publication number | Publication date |
---|---|
KR101092345B1 (ko) | 2011-12-09 |
WO2009017370A2 (en) | 2009-02-05 |
EP2173247A4 (en) | 2010-08-11 |
US20090033330A1 (en) | 2009-02-05 |
JP5792462B2 (ja) | 2015-10-14 |
KR20100038460A (ko) | 2010-04-14 |
WO2009017370A3 (en) | 2009-04-02 |
CN101765399A (zh) | 2010-06-30 |
US7791343B2 (en) | 2010-09-07 |
EP2173247B1 (en) | 2012-10-03 |
US20100285966A1 (en) | 2010-11-11 |
JP2014179326A (ja) | 2014-09-25 |
CN101765399B (zh) | 2013-08-21 |
EP2173247A2 (en) | 2010-04-14 |
US8390293B2 (en) | 2013-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014179326A (ja) | 増大された高磁場特性を有する超電導体、それを製造する方法、及びそれを含むmri装置 | |
Jiao et al. | Anisotropic superconductivity in Eu (Fe0. 75Ru0. 25) 2As2 ferromagnetic superconductor | |
Shen et al. | Intrinsic percolative superconductivity in KxFe2− ySe2 single crystals | |
Muralidhar et al. | Optimization of processing conditions towards high trapped fields in MgB2 bulks | |
US11791075B2 (en) | Iron-based superconducting permanent magnet and method of manufacture | |
Bhagurkar et al. | High trapped fields in C-doped MgB2 bulk superconductors fabricated by infiltration and growth process | |
Dou et al. | Transport critical current density in Fe-sheathed nano-SiC doped MgB/sub 2/wires | |
Noudem et al. | Improvement of critical current density of MgB2 bulk superconductor processed by Spark Plasma Sintering | |
Güner et al. | Investigation on superconducting and magnetic levitation force behaviour of excess Mg doped-bulk MgB2 superconductors | |
JP2010535414A5 (ja) | ||
Gruss et al. | Trapped fields beyond 14 tesla in bulk YBa/sub 2/Cu/sub 3/O/sub 7-/spl delta | |
Bashlakov et al. | Distribution of the superconducting gap in a YNi2B2C film studied by point contact spectroscopy | |
Li et al. | Significant Improvement of Superconducting Properties in Nano‐NiFe2O4‐Doped Y–Ba–Cu–O Single‐Grain Superconductor | |
Schlachter et al. | Properties of MgB2 superconductors with regard to space applications | |
Naito et al. | Vortex Pinning Properties of Dense Ti-Doped MgB 2 Bulks Sintered at Different Temperatures | |
Semenok et al. | Evidence for Pseudogap Phase in Cerium Superhydrides: CeH $ _ {10} $ and CeH $ _9$ | |
Setoyama et al. | Effects of densification of precursor pellets on microstructures and critical current properties of YBCO melt-textured bulks | |
Kimishima et al. | Pinning enhancement in Mo/MgB2 bulk system | |
Patrin et al. | Magnetic Properties and Critical Current of Superconducting Nanocomposites (1− x) YBa {sub 2} Cu {sub 3} O {sub 7− δ}+ xCuO | |
Cardwell et al. | The generation of high trapped fields in bulk (RE) BCO high temperature superconductors | |
Chu | Materials and physics of high temperature superconductors: A summary, two recent experiments and a comment | |
Kagerbauer | Critical current properties and flux pinning in Ba122 superconductors | |
Basma et al. | Improvement of the Superconducting Properties of GdBa {sub 2} Cu {sub 3} O {sub 7-δ} with Nano-Sized Ferrite Addition | |
Hakoishi et al. | Effects of Gd211 ball-milled by stainless-steel on trapped field of GdBaCuO bulk | |
Akbari et al. | Study of YBa {sub 2} Cu {sub 3} O {sub 7− δ} Superconductor/Graphene Oxide Composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121003 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20121219 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20121227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130403 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140327 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20140327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140428 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140428 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140526 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20140808 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150409 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150623 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150806 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5792462 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |