JP2010532299A - Foamed ceramic having excellent heat insulating effect and soundproofing effect and method for producing the same - Google Patents

Foamed ceramic having excellent heat insulating effect and soundproofing effect and method for producing the same Download PDF

Info

Publication number
JP2010532299A
JP2010532299A JP2010502012A JP2010502012A JP2010532299A JP 2010532299 A JP2010532299 A JP 2010532299A JP 2010502012 A JP2010502012 A JP 2010502012A JP 2010502012 A JP2010502012 A JP 2010502012A JP 2010532299 A JP2010532299 A JP 2010532299A
Authority
JP
Japan
Prior art keywords
ceramic
silicate
water
foamed
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010502012A
Other languages
Japanese (ja)
Inventor
ファ パク ミン
Original Assignee
ファ パク ミン
エス イー エム カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファ パク ミン, エス イー エム カンパニー リミテッド filed Critical ファ パク ミン
Publication of JP2010532299A publication Critical patent/JP2010532299A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/88Insulating elements for both heat and sound
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/10Mortars, concrete or artificial stone characterised by specific physical values for the viscosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Architecture (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本発明は、水で希釈された気泡剤により微細気泡が形成された発泡物、ケイ酸塩、セラミック粉末、及び添加剤が混合されて形成されたセラミックスラリーと、セラミックスラリーに導入され、セラミックスラリーの形状を維持して三次元シリカネットワークを形成するゲル化剤とを含むことを特徴とする発泡セラミックを提供する。前記発泡セラミックは、気泡剤を水で希釈し、水で希釈された気泡剤を入れた発泡装置を利用して多量の微細気泡を形成し、得られた発泡物にケイ酸塩、セラミック粉末及び添加剤を混合してセラミックスラリーを形成し、セラミックスラリーにゲル化剤を導入してセラミックスラリーの形状を維持して三次元シリカネットワークを形成し、セラミックスラリーを乾燥して内部の水分を除去して、添加剤を融着させて耐水性を増大させることにより形成される。  The present invention relates to a ceramic slurry formed by mixing foam, silicate, ceramic powder, and additive in which fine bubbles are formed by a foaming agent diluted with water, and is introduced into the ceramic slurry. A foamed ceramic comprising a gelling agent that maintains the shape of the gel and forms a three-dimensional silica network is provided. The foamed ceramic is formed by diluting a foaming agent with water and forming a large amount of fine bubbles using a foaming apparatus containing a foaming agent diluted with water, and the resulting foam has a silicate, ceramic powder, and Additives are mixed to form a ceramic slurry, a gelling agent is introduced into the ceramic slurry to maintain the shape of the ceramic slurry to form a three-dimensional silica network, and the ceramic slurry is dried to remove internal moisture. Thus, the additive is fused to increase water resistance.

Description

本発明は、断熱効果及び防音効果に優れたセラミック発泡体、及びその製造方法に関する。より詳しくは、植物性気泡剤又は動物性気泡剤を水溶液に加えて発泡させ、ここにセラミック粉末、ケイ酸塩、及び添加剤を加えて微細多孔性のセラミックスラリーを作製し、三次元シリカネットワークを形成するゲル化過程を経て、発泡された形状を維持して発泡体を乾燥、硬化することにより、多量の微細発泡体が形成された発泡セラミックに関する。   The present invention relates to a ceramic foam excellent in heat insulation effect and sound insulation effect, and a method for producing the same. More specifically, a plant foam or animal foam is added to an aqueous solution and foamed, and a ceramic powder, a silicate, and an additive are added thereto to produce a microporous ceramic slurry, and a three-dimensional silica network. The present invention relates to a foamed ceramic in which a large amount of fine foam is formed by maintaining a foamed shape through a gelation process to form a foam and drying and curing the foam.

一般に、建物の施工時に、建物の外壁を通じて建物内外部の熱が出入りすることによりエネルギーが浪費されることを防ぐために、建物の外壁に断熱材を設置する等の断熱施工がなされている。また、断熱材は、防音材の役割を兼ねるようにし、騷音による生活の不快感を低減する役割をしている。   In general, in order to prevent energy from being wasted due to heat flowing in and out of the building through the outer wall of the building during the construction of the building, heat insulation is performed such as installing a heat insulating material on the outer wall of the building. Further, the heat insulating material serves as a soundproofing material, and plays a role of reducing life discomfort due to noise.

発泡時に形成される気泡は、断熱効果及び吸音効果に非常に優れているため、従来から断熱効果を極大化するために、微細多孔性構造のセラミックあるいは発泡性高分子材料が単独で使用されたり、防音効果を高めるために空気層を含む多孔性セラミックに吸音材を添加して使用している。   Bubbles formed at the time of foaming are extremely excellent in heat insulation effect and sound absorption effect. Therefore, in order to maximize the heat insulation effect, a ceramic with a porous structure or a foamable polymer material has been used alone. In order to enhance the soundproofing effect, a sound absorbing material is added to a porous ceramic containing an air layer.

従来の断熱材、及び防音材は、発泡ポリスチレン、ガラスウール、発泡ポリエチレン、ポリウレタンフォーム、蛭石(Vermiculite)、パーライト(Perlite)、ウレアフォーム、セルロース保温材、軟質繊維板、フェノールフォーム、エアロゲル、及び軽量セメントが使用される。   Conventional insulation and soundproofing materials are expanded polystyrene, glass wool, expanded polyethylene, polyurethane foam, vermiculite, perlite, urea foam, cellulose insulation, soft fiberboard, phenolic foam, aerogel, and Lightweight cement is used.

発泡ポリスチレンの場合、断熱効果が高く軽量であるので、運搬及び施工性に優れているが、最高安全使用温度が70℃と低く、紫外線に弱く、火災発生時に着火の危険性や有毒ガス発生の危険性が高く、人体に致命的でありうるという問題があった。ガラスウールは、ガラス繊維間に密封された空気層が断熱層として作用するとともに、断熱性以外にも不燃性、吸音性、施工性、運搬性に優れており、圧縮や沈下による有効厚さの減少や、含水による断熱性低下の恐れがないが、耐湿性がないので防湿層を別途設ける必要があるという問題があった。発泡ポリエチレンは、ポリエチレン樹脂に発泡剤、及び難燃剤を配合して押出発泡させた後、冷却した板状の発泡剤(または発泡シート)を積層し、熱融着させて自己消火性を有する保温板、保温筒に製造したものである。平均温度における熱伝導率が0.039kcal/mh℃以下であるため断熱効果に優れているが、最高安全使用温度が80℃であり、火災発生時に放出される有毒ガスが人体に致命的でありうるという短所がある。また、ポリウレタンは、有機系発泡体(独立気泡構造)の断熱材及び防音材であり、ポリウレタン、ポリオール、ポリイソシアネート、及び、難燃添加剤を主原料として含むポリウレタンフォームを発泡成形して得られる。耐熱性(最高安全使用温度:100℃)が多少落ちるが、断熱性に優れているので、冷凍機器などの保冷材に適する。しかし、施工後の体積が減少すると共に、熱伝導率が低下するという短所がある。また、他の発泡性高分子材料と同じく、火災発生時に有毒ガスを放出するという問題がある。蛭石は、雲母系鉱石を1,000℃以上の温度で焼成した有孔型の無機材料であり、断熱性、保温性、不燃性、防音性、結露防止に優れている。パーライトは、火山石からなる真珠岩を900〜1200℃で焼成した後、粉砕して塑性膨脹させて、内部に微細な孔隙を有する軽量の球状の粒子を形成することにより得られ、軽量骨材及び断熱材料として利用される。蛭石及びパーライトは、断熱、保温、吸音に効果的であるが、蛭石やパーライトのような鉱物を発泡させるためには、1000℃以上の高エネルギーが必要であるという問題がある。エアロゲルは、髪の毛の1万分の1の太さの微細構造体が綿菓子のように互いに絡み合い、気孔が全体積の95%を占めているので、断熱性と防音効果に非常に優れているという長所がある。しかし、非常に高価なものであるため、一部の産業での利用にとどまっている。軽量セメントは、結合材として安価なセメントを用いるため、経済的な発泡材を提供することができる。しかし、セメントに含まれた6価クロム(Cr6+)が呼吸器疾患、及び発癌の原因となることがある。また、軽量セメントを製造するためには高温高圧の反応器(オートクレーブ)で養生しなければならないので、設置費に関する経済的負担があるだけでなく、発泡されたセメントを硬化するために高い熱エネルギーが必要であると共に、セメントの養生に長時間かかるという問題がある。 In the case of expanded polystyrene, the heat insulation effect is high and light weight, so it is excellent in transportation and workability, but the maximum safe use temperature is as low as 70 ° C, it is weak to ultraviolet rays, and there is a risk of ignition and generation of toxic gas in the event of a fire. There was a problem that it was dangerous and could be fatal to the human body. In glass wool, an air layer sealed between glass fibers acts as a heat insulation layer, and in addition to heat insulation, it is excellent in nonflammability, sound absorption, workability, and transportability, and has an effective thickness due to compression and settlement. Although there is no fear of a decrease or a decrease in heat insulation due to water content, there is a problem that it is necessary to provide a moisture-proof layer separately because of no moisture resistance. Polyethylene foam is made of polyethylene resin by adding a foaming agent and a flame retardant, extruded and foamed, and then laminated with a cooled plate-like foaming agent (or foamed sheet), and heat-sealed to maintain heat-extinguishing properties. It is manufactured to a board and a heat insulating cylinder. The thermal conductivity at average temperature is 0.039 kcal / mh ° C or less, so heat insulation effect is excellent, but the maximum safe use temperature is 80 ° C, and toxic gas released in the event of a fire is fatal to the human body. There is a disadvantage that it can. Polyurethane is an insulating material and soundproofing material of an organic foam (closed cell structure), and is obtained by foam molding a polyurethane foam containing polyurethane, polyol, polyisocyanate, and flame retardant additives as main ingredients. . Although heat resistance (maximum safe operating temperature: 100 ° C.) is slightly reduced, it has excellent heat insulation properties, so it is suitable for cold insulation materials such as refrigeration equipment. However, there are disadvantages in that the volume after construction decreases and the thermal conductivity decreases. Also, like other foamable polymer materials, there is a problem of releasing toxic gas in the event of a fire. Meteorite is a porous inorganic material obtained by firing mica-based ore at a temperature of 1,000 ° C. or higher, and is excellent in heat insulation, heat retention, nonflammability, soundproofing, and prevention of condensation. Pearlite is obtained by firing pearlite made of volcanic stone at 900-1200 ° C. and then crushing it to plastically expand to form lightweight spherical particles with fine pores inside. And used as a heat insulating material. Meteorite and pearlite are effective for heat insulation, heat retention, and sound absorption, but there is a problem that high energy of 1000 ° C. or higher is required to foam minerals such as meteorite and pearlite. Airgel is extremely superior in heat insulation and soundproofing because fine structures with a thickness of 1 / 10,000 of the hair are entangled with each other like cotton candy and the pores account for 95% of the total volume. There are advantages. However, since it is very expensive, it is only used in some industries. Since lightweight cement uses an inexpensive cement as a binder, it can provide an economical foam material. However, hexavalent chromium (Cr 6+ ) contained in cement may cause respiratory diseases and carcinogenesis. In addition, in order to produce lightweight cement, it must be cured in a high-temperature and high-pressure reactor (autoclave), which not only has an economic burden on installation costs but also high thermal energy to cure the foamed cement. In addition, there is a problem that it takes a long time to cure the cement.

石油化学製品は、現在まで断熱材及び防音材として開発されて使用されている。しかし、火災発生時の有毒ガスの放出により人体に致命的なダメージを与える危険性が非常に高いだけでなく、環境汚染を引き起こすことがある。発泡セラミックや軽量セメントは、大規模な設備システムが必要であり、高温での処理工程または長時間の処理工程が必要であるので、エネルギーの損失が大きく、生産性が落ちるという問題がある。   Petrochemical products have been developed and used as heat insulating materials and sound insulation materials to date. However, not only is there a very high risk of lethal damage to the human body due to the release of toxic gas in the event of a fire, but it may also cause environmental pollution. Foamed ceramics and lightweight cements require a large-scale equipment system and require a high-temperature treatment process or a long-time treatment process, resulting in a problem of large energy loss and reduced productivity.

特に発泡セラミックは、圧縮成形をするために所定の型枠で成形するので、高価な設備が必要であり、エアロゲルなどの高価な原料を使用しなければならないという短所がある。このため価格競争力が落ちるので、建物用断熱材及び防音材などの分野で制限的に適用されている。   In particular, the foamed ceramic is molded in a predetermined mold for compression molding, and therefore expensive equipment is required, and expensive raw materials such as airgel must be used. For this reason, since price competitiveness falls, it is applied restrictively in fields, such as a heat insulating material for buildings, and a soundproofing material.

上記問題点を解決し、断熱材及び防音材としての多孔性軽量構造体を提供するために、韓国公開特許公報2006−0099979では、液状のケイ酸ソーダに酸、両性酸化物、或いは両性水酸化物を加えて製造される不完全ゲル化ケイ酸ソーダをバインダーとして使用して、セラミック発泡成形物を内部に中孔部が形成された構造として製造する方法が提案されている。しかし、発泡成形物を軽量化して吸音性、遮音性、及び断熱性を増大させることができるが、コロイド状の物質である不完全ゲル化ケイ酸ソーダを単にバインダーとして使用して、一般的なセラミック発泡成形物を製造することに過ぎないので、技術的進歩は大きくない。   In order to solve the above problems and to provide a porous lightweight structure as a heat insulating material and a soundproofing material, Korean Patent Application Publication No. 2006-0099979 describes liquid sodium silicate with acid, amphoteric oxide, or amphoteric hydroxide. There has been proposed a method of manufacturing a ceramic foam molded product as a structure in which a medium hole portion is formed inside by using incompletely gelled sodium silicate produced by adding a product as a binder. However, although it is possible to reduce the weight of the foamed molded article to increase the sound absorption, sound insulation, and heat insulation properties, it is possible to use an incompletely gelled sodium silicate, which is a colloidal substance, as a binder. The technological advance is not significant because it is merely the production of ceramic foam moldings.

また、韓国公開特許公報2006−0092782では、粉砕発泡された蛭石、真珠岩、黒曜石、松脂石を含む各種発泡セラミック粒子と、石膏、セメント、紙粘土、ケイ酸ソーダ、不完全ゲル化ケイ酸ソーダ、ケイ酸ソーダセメントなどを含む各種無機接着剤を1種以上と、その他の強化物質としてスチールファイバー、繊維くず、紙くず(パウダー状のものを含む)、及びガラスウールとを混合して製造したり、金網又は合成樹脂網を内部に装着することによって、耐久性を強化したセラミック発泡成形物を提供する方法が提案されている。しかし、セラミックに含まれた空気層に断熱性を提供することができるが、発泡セラミックを製造するために天然原料である蛭石、真珠岩、黒曜石、松脂石などの岩石を所望の大きさに粉砕し、上記粉砕粒子を800〜1400℃の高熱で加熱しなければなりないので、発泡セラミックの製造に多くの熱エネルギーが必要であり、製造のための設備費が高くなるという短所がある。そして発泡セラミック粒子に石膏、セメント、紙粘土、ケイ酸ソーダ、不完全ゲル化ケイ酸ソーダ、ケイ酸ソーダセメントなどの無機接着剤を混合したことに過ぎないので、技術的な進歩がそれほど大きくない。   Also, in Korean Patent Publication No. 2006-098782, various foamed ceramic particles including pulverized meteorite, pearlite, obsidian, pine stone, gypsum, cement, paper clay, sodium silicate, incomplete gel silicate Manufactured by mixing one or more inorganic adhesives including soda, sodium silicate cement, etc., and other reinforcing materials such as steel fibers, fiber scraps, paper scraps (including powders), and glass wool. Alternatively, a method of providing a ceramic foam molded article with enhanced durability by installing a metal mesh or a synthetic resin mesh inside has been proposed. However, although it can provide heat insulation to the air layer contained in the ceramic, natural rocks such as meteorite, pearlite, obsidian and pine stone are made to the desired size to produce the foamed ceramic. Since the pulverized particles must be heated at a high heat of 800 to 1400 ° C., a large amount of heat energy is required for the production of the foamed ceramic, and the equipment cost for the production is high. And the technical progress is not so great because it is only mixed with inorganic adhesives such as gypsum, cement, paper clay, sodium silicate, incompletely gelled sodium silicate, sodium silicate cement, etc. .

また、米国公開特許公報2006−0151903には、ケイ酸塩を主成分とし、多孔性を付与するために、運搬ガスとして、酸素、窒素、空気、一酸化炭素、二酸化炭素を注入してフォーム(foam)を形成する技術が開示されている。しかし、セラミック発泡のように、具体的に対象物質を提案しているのではなく、単に酸素、窒素、空気、一酸化炭素、二酸化炭素などの運搬ガスをケイ酸塩が含まれた媒体に吹き込み、フォームを形成するために無機結合剤を利用する技術である。この技術は、大規模な設備が必要であるので、経済的な理由で実際に産業に適用されるのは困難である。   In addition, in US Patent Publication No. 2006-0151903, silicate is a main component, and in order to impart porosity, oxygen, nitrogen, air, carbon monoxide, carbon dioxide is injected as a carrier gas to form foam ( Techniques for forming foam) are disclosed. However, the target substance is not specifically proposed like ceramic foaming, but a carrier gas such as oxygen, nitrogen, air, carbon monoxide and carbon dioxide is simply blown into the silicate-containing medium. , A technology that utilizes an inorganic binder to form a foam. Since this technology requires large-scale equipment, it is difficult to actually apply it to industries for economic reasons.

また、韓国公開特許公報2003−0086955には、断熱性を考慮した建築物の外壁の仕上げ材としての不燃性軽量気泡コンクリートサンドイッチパネルが開示されている。より詳しくは、天然の蛭石が高温で加熱されて孔隙が形成された膨脹蛭石とラウリルアルキルベンゼンスルホネート系材料とを用いて空気密度が約40〜50kg/cmになるように調節し、生成された気泡、セメントスラリー、膨脹蛭石を混合して、火災時にも燃焼せず、有毒ガスを放出しない不燃性軽量気泡コンクリートサンドイッチパネルを得る。しかし、界面活性剤により優れた発泡力を提供し、無機結合剤としてセメントを利用して経済性を向上することができるが、軽量セメントの硬化体を形成するために1〜2日の養生を必要とするため、生産性が非常に悪いという短所がある。 Korean Patent Publication No. 2003-0086955 discloses a non-flammable lightweight aerated concrete sandwich panel as a finishing material for the outer wall of a building in consideration of heat insulation. More specifically, a natural meteorite is heated at a high temperature to adjust the air density to about 40 to 50 kg / cm 2 by using an expanded meteorite in which pores are formed and a lauryl alkylbenzene sulfonate-based material. The resulting foam, cement slurry and expanded meteorite are mixed to obtain a non-flammable lightweight aerated concrete sandwich panel that does not burn in the event of a fire and does not release toxic gases. However, the surfactant can provide excellent foaming power and can improve the economy by using cement as an inorganic binder. It has the disadvantage that productivity is very poor because it requires it.

本発明は、上記先行技術の課題を解決するためになされたものである。本発明は、従来、断熱材及び防音材として利用される石油化学製品である発泡性樹脂を代替できる発泡セラミック、及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art. An object of this invention is to provide the foaming ceramic which can substitute the foaming resin which is a petrochemical product utilized conventionally as a heat insulating material and a soundproofing material, and its manufacturing method.

また、本発明は、セラミック粉末と発泡剤を混合して、三次元のシリカネットワークを形成するゲル化段階を経て、火災発生時に有毒ガスを放出しない発泡セラミック、及びその製造方法を提供することを目的とする。   The present invention also provides a foamed ceramic that does not release a toxic gas in the event of a fire through a gelation step in which ceramic powder and a foaming agent are mixed to form a three-dimensional silica network, and a method for manufacturing the same. Objective.

また、本発明は、高温工程を経ることなく製作できる多量の微細気泡を含む発泡セラミック、及びその製造方法を提供することを目的とする。   Another object of the present invention is to provide a foamed ceramic containing a large amount of fine bubbles that can be produced without going through a high-temperature process, and a method for producing the same.

本発明は、水で希釈された気泡剤により微細気泡が形成された発泡物、ケイ酸塩、セラミック粉末、及び添加剤が混合されて形成されたセラミックスラリーと、セラミックスラリーに供給され、セラミックスラリーの形状を維持して三次元シリカネットワークを形成するゲル化剤とを含むことを特徴とする発泡セラミックを提供する。   The present invention relates to a ceramic slurry formed by mixing a foam, silicate, ceramic powder, and additives in which fine bubbles are formed by a foaming agent diluted with water, and the ceramic slurry is supplied to the ceramic slurry. A foamed ceramic comprising a gelling agent that maintains the shape of the gel and forms a three-dimensional silica network is provided.

本発明の他の一態様によれば、気泡剤は、水に対する重量比が100:0.1〜10の割合で希釈される。   According to another aspect of the invention, the foaming agent is diluted at a weight ratio of 100: 0.1 to 10 with respect to water.

本発明の他の一態様によれば、気泡剤は、アミノ酸系の動物性気泡剤、有効成分としてアルキルベンゼンスルホネート系材料、ラウリル硫酸ナトリウム、又はそのエステルを含む植物性気泡剤の中から選択される。   According to another aspect of the present invention, the foaming agent is selected from among amino acid-based animal foaming agents, vegetable foaming agents containing an alkylbenzene sulfonate-based material, sodium lauryl sulfate, or an ester thereof as an active ingredient. .

本発明の他の一態様によれば、ケイ酸塩は、セラミック粉末に対する重量比が100:20〜160の割合で含まれる。   According to another aspect of the invention, the silicate is included in a weight ratio of 100: 20 to 160 with respect to the ceramic powder.

本発明の他の一態様によれば、セラミックスラリーは、粘度が5000〜200000cpsである。   According to another aspect of the invention, the ceramic slurry has a viscosity of 5000-200000 cps.

本発明の他の一態様によれば、セラミックスラリーに含まれるケイ酸塩は、のうち1種類乃至4種類の溶液型ケイ酸ナトリウム、粉末型ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウム、ケイ酸アルミニウムナトリウムの中から選択される。   According to another aspect of the present invention, the silicate contained in the ceramic slurry includes one to four types of solution-type sodium silicate, powder-type sodium silicate, potassium silicate, lithium silicate, silica Selected from sodium aluminum oxide.

本発明の他の一態様によれば、セラミックスラリーに含まれるセラミック粉末は麦飯石、黄土石、かんらん石(Olivine)、高嶺土(Kaolin)、ケイ酸塩鉱物(Silica Minerals)、マグネサイト(Magnesite)、ボーキサイト(Bauxite)、ベントナイト(Bentonite)、浮石(Pumice)、ほう酸塩(Borate)、蛇紋石(Serpentine)、酸性白土(Acid clay)、酸化鉄(Ironoxide)、石榴石(Garnet)、炭酸塩鉱物(Carbonate Minerals)、アタパルジャイト(Attapulgite)、セピオライト(Sepiolite)、軟玉(Nephrite)、燐灰石(Apatite)、イライト (雲母、Illite-Mica)、長石(Feldspar)、真珠岩(Perlite)、蛭石(Vermiculite)、ゼオライト(Zeolite)、重晶石(Barite)、滑石(Talc)、珪藻土(diatomaceous earth)、黒鉛(Graphite)、ヘクトライト(Hectorite)、粘土鉱物(Clay Minerals)、ジルコニウム鉱物(Zirconium Minerals)、チタニウム鉱物(Titanium Minerals)、トルマリン(Tourmaline)、ヒュームシリカ(Fume Silica)、エアロゲル(Aerogel)、フライアッシュ(Fly ash)、高炉スラグ粉末の中から選択される。   According to another embodiment of the present invention, the ceramic powder contained in the ceramic slurry may be barley stone, ocher stone, olivine, Kaolin, silicate mineral (Silica Minerals), magnesite (Magnesite). ), Bauxite, bentonite, pumice, borate, serpentine, acid clay, iron oxide, garnet, carbonate Carbonate Minerals, Attapulgite, Sepiolite, Nephrite, Apatite, Mite, Illite-Mica, Feldspar, Pearlite, Vermiculite ), Zeolite (Zeolite), barite, talc (Talc), diatomaceous earth, graphite (Graphite), hectorite, clay mineral (Clay Minerals), zirconium mineral (Zirconium Minerals), Titanium Minerals, Tourmaline, Hugh Silica (Fume Silica), airgel (Airgel), fly ash (Fly ash), it is selected from blast furnace slag powder.

本発明の他の一態様によれば、セラミック粉末は、粒子の大きさが5nm〜400μmである。   According to another embodiment of the present invention, the ceramic powder has a particle size of 5 nm to 400 μm.

本発明の他の一態様によれば、セラミックスラリーに混合される添加剤は、天然繊維又は人造繊維を含む。   According to another aspect of the invention, the additive mixed with the ceramic slurry comprises natural fibers or man-made fibers.

本発明の他の一態様によれば、繊維の太さは3〜50μmである。   According to another aspect of the invention, the fiber has a thickness of 3 to 50 μm.

本発明の他の一態様によれば、繊維の長さは1〜50mmである。   According to another aspect of the invention, the fiber length is 1-50 mm.

本発明の他の一態様によれば、セラミックスラリーに混合される添加剤は、発泡セラミックの耐水性及び補強のために、水分散性高分子樹脂及び微細粉末高分子樹脂のうちいずれか一つを含む。   According to another aspect of the present invention, the additive mixed in the ceramic slurry is any one of a water dispersible polymer resin and a fine powder polymer resin for water resistance and reinforcement of the foamed ceramic. including.

本発明の他の一態様によれば、水分散性高分子樹脂は、アクリル、酢酸ビニール、アルキド、メラミン樹脂、スチレンブタジエンゴム溶液の中から選択される。   According to another aspect of the present invention, the water dispersible polymer resin is selected from acrylic, vinyl acetate, alkyd, melamine resin, and styrene butadiene rubber solution.

本発明の他の一態様によれば、微細粉末高分子樹脂は、ポリエチレンテレフタレート(PET)、低密度ポリエチレン、高密度ポリエチレン、塩化ビニール樹脂(PVC)、ポリメタクリル酸メチル(PMMA)、ポリスチレン(PS)、ポリプロピレン(PP)、エチレンビニルアセテート(EVA)、ポリウレタン(PU)、ポリカプロラクトン(Polycarprolacton)の中から選択される。   According to another aspect of the present invention, the fine powder polymer resin is made of polyethylene terephthalate (PET), low density polyethylene, high density polyethylene, vinyl chloride resin (PVC), polymethyl methacrylate (PMMA), polystyrene (PS). ), Polypropylene (PP), ethylene vinyl acetate (EVA), polyurethane (PU), polycaprolactone (Polycarprolacton).

本発明の他の一態様によれば、ゲル化剤は、二酸化炭素ガス、ドライアイス、重炭酸塩、グリオキサル(glyoxal)、エチレングリコールジアセテート、有機酸、無機酸の中から選択される。   According to another aspect of the invention, the gelling agent is selected from carbon dioxide gas, dry ice, bicarbonate, glyoxal, ethylene glycol diacetate, organic acid, inorganic acid.

本発明の他の一態様によれば、ゲル化剤は、ケイ酸塩に対する化学量論的当量(stoichiometic equivalence)で含まれる。   According to another aspect of the invention, the gelling agent is included in stoichiometic equivalence to silicate.

本発明の他の一態様によれば、重炭酸塩は、重炭酸ナトリウム、重炭酸カリウム、重炭酸アンモニウムの中から選択される。   According to another aspect of the invention, the bicarbonate is selected from sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate.

本発明の他の一態様によれば、有機酸又は無機酸は、塩酸、硝酸、硫酸、燐酸、フッ酸、蟻酸、酢酸、クエン酸、マレイン酸、オレイン酸の中から選択される。   According to another aspect of the invention, the organic or inorganic acid is selected from hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, formic acid, acetic acid, citric acid, maleic acid, oleic acid.

また、本発明は、気泡剤を水で希釈する第1段階と、水で希釈された気泡剤を発泡装置を利用して多量の微細気泡を形成する第2段階と、第2段階で得られた発泡物にケイ酸塩、セラミック粉末、及び添加剤を混合してセラミックスラリーを形成する第3段階と、セラミックスラリーにゲル化剤を加え、セラミックスラリーの形状を維持して三次元シリカネットワークを形成する第4段階と、セラミックスラリーを乾燥して内部の水分を除去し、添加剤を融着させて耐水性を増大させる第5段階とを含むことを特徴とする発泡セラミックの製造方法を提供する。   In addition, the present invention is obtained in a first stage in which a foam agent is diluted with water, a second stage in which a foam agent diluted with water is formed using a foaming device, and a large amount of fine bubbles is formed. A third stage in which a silicate, ceramic powder, and additives are mixed into the foamed product to form a ceramic slurry, and a gelling agent is added to the ceramic slurry to maintain the shape of the ceramic slurry to form a three-dimensional silica network. Provided is a method for producing a foamed ceramic comprising: a fourth stage to be formed; and a fifth stage in which the ceramic slurry is dried to remove internal moisture and the additive is fused to increase water resistance. To do.

本発明の他の一態様によれば、第2段階は、回転翼を備える発泡装置中で、500〜12,000rpmの速度で気泡剤を回転させることにより気泡剤を高速分散させ、多量の微細気泡を形成する。   According to another aspect of the present invention, in the second stage, the foaming agent is rotated at a speed of 500 to 12,000 rpm in the foaming apparatus including the rotating blades to disperse the foaming agent at a high speed, thereby producing a large amount of fine particles. Bubbles are formed.

本発明の他の一態様によれば、第2段階は、コンプレッサーを備える発泡装置中で、圧縮ガスを利用して微細気泡を形成する。   According to another aspect of the present invention, in the second stage, fine bubbles are formed using a compressed gas in a foaming apparatus including a compressor.

本発明の他の一態様によれば、第3段階は、発泡装置中で発泡物、ケイ酸塩、セラミック粉末、及び添加剤を混合してセラミックスラリーが形成される。   According to another aspect of the present invention, in the third stage, a foam, silicate, ceramic powder, and additives are mixed in a foaming apparatus to form a ceramic slurry.

本発明の他の一態様によれば、第4段階は、二酸化炭素ガス、ドライアイス、重炭酸塩、グリオキサル、エチレングリコールジアセテート、有機酸、無機酸の中から選択されたゲル化剤と、セラミックスラリーとを混合して三次元シリカネットワークを形成する。   According to another aspect of the invention, the fourth stage comprises a gelling agent selected from carbon dioxide gas, dry ice, bicarbonate, glyoxal, ethylene glycol diacetate, organic acid, inorganic acid; A ceramic slurry is mixed to form a three-dimensional silica network.

本発明の他の一態様によれば、第5段階は、空気による常温乾燥、オーブンによる熱風乾燥、極超短波(UHF)を利用した加熱乾燥の中から選択された方式により乾燥される。   According to another aspect of the present invention, the fifth stage is dried by a method selected from room temperature drying with air, hot air drying with an oven, and heat drying using ultra high frequency (UHF).

本発明の他の一態様によれば、オーブンによる熱風乾燥又は極超短波を利用した加熱乾燥は、80〜250℃でなされる。   According to another aspect of the present invention, hot air drying by an oven or heat drying using ultra-high frequency is performed at 80 to 250 ° C.

本発明の他の一態様によれば、第3段階は、セラミックススラリーの粘度が5,000〜200,000cpsになるようにセラミックスラリーを形成する。   According to another aspect of the invention, the third step forms the ceramic slurry such that the ceramic slurry has a viscosity of 5,000 to 200,000 cps.

本発明の他の一態様によれば、第4段階は、ケイ酸塩に対して化学量論的当量のゲル化剤を、セラミックスラリーに導入する。   According to another aspect of the invention, the fourth stage introduces a stoichiometric equivalent of gelling agent to the ceramic slurry with respect to the silicate.

本発明の他の一態様によれば、添加剤は、発泡セラミックの耐水性及び補強のために水分散性樹脂または微細粉末高分子樹脂の中から選択され、耐水性を向上させる段階は、水分散性樹脂または微細粉末高分子樹脂を融着させる。   According to another aspect of the present invention, the additive is selected from a water-dispersible resin or a finely powdered polymer resin for water resistance and reinforcement of the foamed ceramic, and the step of improving the water resistance is water. A dispersible resin or a fine powder polymer resin is fused.

また、本発明のセラミック発泡体の製造方法は、気泡剤を水で希釈する第1段階と、水で希釈された気泡剤を入れた発泡装置を利用して多量の微細気泡を形成する第2段階と、第2段階で得られた発泡物にケイ酸塩、セラミック粉末及び添加剤である水分散性樹脂又は微細粉末高分子樹脂を混合して、発泡装置内でセラミックスラリーを形成する第3段階と、セラミックスラリーに、二酸化炭素ガス、ドライアイス、重炭酸塩、グリオキサル、エチレングリコールジアセテート、有機酸、無機酸の中から選択されるゲル化剤を、ケイ酸塩に対する化学量論的当量で導入し、セラミックスラリーの形状を維持して三次元シリカネットワークを形成する第4段階と、セラミックスラリーを乾燥して内部の水分を除去し、水分散性樹脂又は微細粉末高分子樹脂を融着させて耐水性を増大させる第5段階とを含むことを特徴とする発泡セラミックの製造方法を提供する。   The method for producing a ceramic foam of the present invention includes a first step of diluting a foaming agent with water, and a second step of forming a large amount of fine bubbles using a foaming apparatus containing a foaming agent diluted with water. In the third step, the foam obtained in the second step is mixed with a silicate, ceramic powder, and a water-dispersible resin or fine powder polymer resin as an additive to form a ceramic slurry in a foaming apparatus. A stoichiometric equivalent of silicate with a gelling agent selected from carbon dioxide gas, dry ice, bicarbonate, glyoxal, ethylene glycol diacetate, organic acid, inorganic acid in the ceramic slurry; Introduced in step 4 to maintain the shape of the ceramic slurry to form a three-dimensional silica network, and drying the ceramic slurry to remove the moisture inside the water-dispersible resin or fine powder To provide a method for manufacturing a ceramic foam, characterized in that it comprises a fifth step of increasing the water resistance by fusing the molecules resin.

本発明により製造される発泡セラミックは、低温で製造され、高価な設備を必要としないので、生産性及び経済性が向上する。   Since the foamed ceramic produced according to the present invention is produced at a low temperature and does not require expensive equipment, productivity and economy are improved.

本発明により製造させるセラミック発泡体は、室温でも発泡体が発泡された形状を維持して硬化され、多量の微細発泡体が均一に形成されて、断熱効果及び防音効果に優れている。   The ceramic foam produced by the present invention is cured while maintaining the foamed foam shape even at room temperature, and a large amount of fine foam is uniformly formed, which is excellent in heat insulation effect and soundproofing effect.

本発明は、多様な形状で、多量の微細気泡が形成された発泡セラミック、及びその製造方法を提供する。本発明によって製造された発泡セラミックは、断熱効果及び防音効果が高く、火災発生時における有毒ガス発生の恐れが少ないため、火災時の有毒ガスによる人命被害を低減できる。また、単純な製造工程であり、生産コストが低く、製造時の環境汚染を大幅に低減できる。   The present invention provides a foamed ceramic in which a large amount of fine bubbles are formed in various shapes, and a method for producing the same. The foamed ceramic manufactured according to the present invention has a high heat insulating effect and a soundproofing effect, and is less likely to generate a toxic gas in the event of a fire. Therefore, it is possible to reduce human life damage due to a toxic gas during a fire. Moreover, it is a simple manufacturing process, the production cost is low, and environmental pollution during manufacturing can be greatly reduced.

また、本発明により製造された発泡セラミックは製造過程で高い熱を必要とせず、設備費を低減できる。さらに、発泡セラミックの製造段階のセラミックスラリーが、適正水準の粘度を維持するため、所定のモールド内にセラミックスラリーを流入させて硬化させることにより、所望の形状の発泡セラミックを製造することができる。   In addition, the foamed ceramic manufactured according to the present invention does not require high heat during the manufacturing process, and the equipment cost can be reduced. Further, since the ceramic slurry in the production stage of the foamed ceramic maintains an appropriate level of viscosity, the ceramic slurry is allowed to flow into a predetermined mold and cured to produce a foamed ceramic having a desired shape.

また、本発明により製造された発泡セラミックは、微細な気泡が多量に発泡されて密度が低いので、軽量化することができ、断熱材及び吸音材として有用である。   In addition, the foamed ceramic produced according to the present invention has a low density because a large amount of fine bubbles are foamed, so that it can be reduced in weight and is useful as a heat insulating material and a sound absorbing material.

本発明の一実施例に係る発泡セラミックの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the foam ceramic which concerns on one Example of this invention. 本発明の一実施例に係るよる発泡セラミックを30日間水に浸漬して耐水性を実験する写真である。3 is a photograph of a test for water resistance by immersing a foam ceramic according to an embodiment of the present invention in water for 30 days.

以下では、具体的な適用例を挙げて、本発明をより詳細に説明する。
発泡物を準備する段階で使用可能な気泡剤は、動物性気泡剤と呼ばれるアミノ酸系気泡剤、及び、植物性気泡剤と呼ばれるアルキルベンジンスルホネート系材料またはラウリル硫酸ナトリウム、及びそのエステルを有効成分として含む気泡剤をそれぞれ単独で、或いは混合して、水で希釈されたものを使用することができる。ここで、水は、下記の混合段階でケイ酸塩と反応して相対的に結合力が低くなり得るアルカリ土類金属が多量に含まれる水を除いては、水道水、地下水、工業用水など如何なるものも制限無く使用される。気泡が消泡されず、長期間発泡された状態を維持するために、場合によっては動物性気泡剤を使用することが好ましい。一方、気泡形成過程で気泡剤から発生する臭気を回避するために、場合によっては植物性気泡剤を使用することが好ましい。
Hereinafter, the present invention will be described in more detail with specific application examples.
The foaming agents that can be used at the stage of preparing the foam are amino acid foams called animal foams, alkylbenzine sulfonate materials or vegetable laurate sodium lauryl sulfate, and esters thereof as active ingredients. It is possible to use a foaming agent containing each of them individually or mixed and diluted with water. Here, water is tap water, groundwater, industrial water, etc., except for water containing a large amount of alkaline earth metal that can react with silicate at the following mixing stage and can have a relatively low binding force. Anything can be used without limitation. In order to maintain the foamed state for a long period of time without bubbles being defoamed, it is sometimes preferable to use an animal foam. On the other hand, in order to avoid the odor generated from the foaming agent during the bubble formation process, it is preferable to use a vegetable foaming agent in some cases.

気泡剤の添加量は、水100重量部に対して、0.1〜10重量部が好ましく、より好ましくは0.25〜8.5重量部、最も好ましくは0.5〜7.5重量部である。気泡剤が0.1重量部以下で含まれる場合は、発泡力が低いので、微細な多孔性気泡が形成されにくい。一方、気泡剤が10重量部を超えると、多量の微細な気泡を形成することができるが、気泡剤が有機材料で構成されているため、セラミック粉末との結合力が低下し、火災発生時に気泡剤の熱分解により多量の有毒ガスが発生する恐れがある。   The amount of the foaming agent added is preferably 0.1 to 10 parts by weight, more preferably 0.25 to 8.5 parts by weight, and most preferably 0.5 to 7.5 parts by weight with respect to 100 parts by weight of water. It is. When the foaming agent is contained in an amount of 0.1 parts by weight or less, the foaming power is low, so that it is difficult to form fine porous bubbles. On the other hand, when the amount of the foaming agent exceeds 10 parts by weight, a large amount of fine bubbles can be formed. However, since the foaming agent is composed of an organic material, the binding force with the ceramic powder is reduced and a fire occurs. A large amount of toxic gas may be generated due to thermal decomposition of the foaming agent.

気泡剤が水で希釈された溶液を発泡する段階は、多量の微細気泡が発生し得る方法であれば、如何なる方法を利用してもよい。一般に、発泡段階は発泡装置により行なわれるが、発泡装置は、回転翼の回転により発泡する方法、コンプレッサーが装着された発泡器を利用する発泡方法などを利用して気泡を発生させる。少量の気泡を必要とする場合は、回転翼を利用することが有利であり、多量の気泡を必要とする場合は、コンプレッサーが装着された発泡器を利用することが有利である。   For the step of foaming the solution in which the foaming agent is diluted with water, any method may be used as long as a large amount of fine bubbles can be generated. In general, the foaming step is performed by a foaming device, which generates bubbles using a method of foaming by rotation of a rotating blade, a foaming method using a foamer equipped with a compressor, or the like. When a small amount of air bubbles is required, it is advantageous to use a rotary blade. When a large amount of air bubbles is required, it is advantageous to use a foamer equipped with a compressor.

モーターの軸に装着された回転翼を利用する場合は、回転速度を500〜12,000rpmの範囲内とする。このような回転翼を備えた発泡装置の例として、ミキサー、溶解機(Dissolver)、ホモミキサー(Homomixer)を利用することができる。コンプレッサーが装着された発泡器のような発泡装置は、均一かつ微細な気泡を多量に形成することができるとともに、コンプレッサーから空気圧力を加えて生成される気泡の密度を調節することによって、発泡の程度を調節することができる。   When using a rotary blade mounted on the shaft of the motor, the rotational speed is in the range of 500 to 12,000 rpm. As an example of a foaming apparatus having such a rotating blade, a mixer, a dissolver (Dissolver), and a homomixer (Homomixer) can be used. A foaming device such as a foamer equipped with a compressor can form a large amount of uniform and fine bubbles, and by adjusting the density of bubbles generated by applying air pressure from the compressor, The degree can be adjusted.

セラミックスラリーを形成する段階は、発泡段階で形成された気泡が消泡されず、セラミック粉末、ケイ酸塩、及び添加剤が均一に混合されることができれば、いかなる方法を利用してもよい。例えば、スラリー状態を維持するように、ミキサーで発泡物、セラミック粉末、ケイ酸塩及び添加剤を均一に混合することができる。ケイ酸塩は、セラミック粉末100重量部に対して、20〜160重量部が混合されることが好ましく、より好ましくは40〜140重量部、最も好ましくは60〜110重量部である。セラミック粉末100重量部に対してケイ酸塩が20重量部以下で混合されると、三次元シリカネットワークを形成するゲル化段階を経ても、シリカネットワークの結合力が低くなり、発泡セラミックがスラリー状態に戻る可能性がある。一方、ケイ酸塩が140重量部以上混合されると、シリカネットワークの結合力に優れた発泡セラミックを形成することができるが、過量のケイ酸塩の添加によって生産単価が上昇するという短所がある。   As the step of forming the ceramic slurry, any method may be used as long as the bubbles formed in the foaming step are not defoamed and the ceramic powder, the silicate, and the additive can be mixed uniformly. For example, the foam, ceramic powder, silicate and additives can be uniformly mixed in a mixer so as to maintain a slurry state. The silicate is preferably mixed in an amount of 20 to 160 parts by weight, more preferably 40 to 140 parts by weight, and most preferably 60 to 110 parts by weight with respect to 100 parts by weight of the ceramic powder. When silicate is mixed in an amount of 20 parts by weight or less with respect to 100 parts by weight of ceramic powder, the bonding strength of the silica network is lowered even after the gelation step to form a three-dimensional silica network, and the foamed ceramic is in a slurry state. May return. On the other hand, when 140 parts by weight or more of silicate is mixed, it is possible to form a foamed ceramic having excellent silica network binding force, but there is a disadvantage in that the production unit price increases due to the addition of an excessive amount of silicate. .

ここで、セラミックスラリーの状態は、粘度5,000〜200,000cpsを維持することが好ましく、より好ましくは15,000〜180,000cps、最も好ましくは35,000〜160,000cpsである。セラミックスラリーの粘度が5,000cps以下であると、粘度が低くて微細発泡されたセラミックスラリーが消泡される可能性が高いという短所がある。一方、粘度が200,000cps以上であると、流動性が低すぎるので、モールドに流入して発泡セラミックを形状する際に、金型の角などの部分にセラミックスラリーが良好に流入されず、所望の形状の発泡セラミックを作ることができないという問題がある。   Here, the state of the ceramic slurry is preferably maintained at a viscosity of 5,000 to 200,000 cps, more preferably 15,000 to 180,000 cps, and most preferably 35,000 to 160,000 cps. When the viscosity of the ceramic slurry is 5,000 cps or less, there is a disadvantage that the possibility of defoaming the ceramic slurry that is low in viscosity and finely foamed is high. On the other hand, if the viscosity is 200,000 cps or more, the fluidity is too low, so when forming the foamed ceramic by flowing into the mold, the ceramic slurry does not flow well into the corners of the mold, etc. There is a problem that it is not possible to make a foam ceramic of the shape.

一方、ケイ酸塩は、水に溶解されたり、均一に分散できる性質を有するものであれば、いかなるものを用いても良い。利用可能なケイ酸塩としては、1種類乃至4種類の溶液型ケイ酸ナトリウム、粉末型ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウム、及びケイ酸アルミニウムナトリウムの中から選択される1種以上が混合されることが好ましい。ケイ酸カリウム及びケイ酸リチウムは、発泡セラミックを形成するとき、結合力及び耐水性に優れた発泡セラミックを提供することができるが、高価である。これに対して、ケイ酸アルミニウムナトリウムは比較的安価であるという長所があるが、シリカの含有量がアルミニウム含有量よりも相対的に少ないため、結合力が多少落ちる。また、粉末型ケイ酸ナトリウムを水に溶解するためには熱源又は長時間の溶解が要求される。ケイ酸ナトリウムI型(SiO/NaO、モル比:2.1〜2.3)は、4種類のケイ酸ナトリウムの水溶液の1つであり、粘度が100,000cps以上と非常に大きいため、スラリーの状態を調節するために水を供給しなければならず、接着力または結合力が落ちることがあるという短所がある。また、冬期に製造される場合、氷のように固化しやすくなり、作業性が低下するという短所がある。ケイ酸ナトリウムII型(SiO/NaO、モル比:2.4〜2.6)は、ケイ酸ナトリウムI型よりシリカゾルを多く含んでいるが、粘度が10,000〜50,000cpsと高いため、ケイ酸ナトリウムII型も、ケイ酸ナトリウムI型と同様の短所がある。ケイ酸ナトリウムIII型(SiO/NaO、モル比:3.15〜3.30)は粘度が高くないので、セラミック鉱物をスラリー状態に容易に調節することができると共に、安価であるという長所がある。ケイ酸ナトリウムIV型(SiO/NaO、モル比:3.4〜3.6)は、多量のシリカネットワークを生成することができ、また粘度が比較的低くて、セラミック鉱物をスラリー状態に容易に調節することができるが、単価が高いという短所がある。 On the other hand, any silicate may be used as long as it has a property of being dissolved in water or uniformly dispersed. Usable silicates are one or more selected from one to four types of solution-type sodium silicate, powder-type sodium silicate, potassium silicate, lithium silicate, and sodium aluminum silicate. It is preferable to be mixed. Potassium silicate and lithium silicate, when forming a foam ceramic, can provide a foam ceramic with excellent bonding strength and water resistance, but are expensive. In contrast, sodium aluminum silicate has the advantage of being relatively inexpensive, but since the silica content is relatively less than the aluminum content, the bonding strength is somewhat reduced. Further, in order to dissolve the powdered sodium silicate in water, a heat source or long-time dissolution is required. Sodium silicate type I (SiO 2 / Na 2 O, molar ratio: 2.1 to 2.3) is one of four types of aqueous solutions of sodium silicate and has a very high viscosity of 100,000 cps or more. Therefore, water must be supplied in order to adjust the state of the slurry, and there is a disadvantage in that the adhesive force or bonding force may be reduced. Further, when manufactured in winter, there is a disadvantage that it is easy to solidify like ice and workability is lowered. Sodium silicate type II (SiO 2 / Na 2 O, molar ratio: 2.4 to 2.6) contains more silica sol than sodium silicate type I, but has a viscosity of 10,000 to 50,000 cps. Due to its high cost, sodium silicate type II has the same disadvantages as sodium silicate type I. Sodium silicate type III (SiO 2 / Na 2 O, molar ratio: 3.15 to 3.30) is not high in viscosity, so that ceramic mineral can be easily adjusted to a slurry state and inexpensive. There are advantages. Sodium silicate type IV (SiO 2 / Na 2 O, molar ratio: 3.4 to 3.6) is capable of producing a large amount of silica network and has a relatively low viscosity, so that the ceramic mineral is in a slurry state. However, there is a disadvantage that the unit price is high.

また、セラミック粉末は、麦飯石、黄土石、かんらん石、高嶺土、ケイ酸塩鉱物、マグネサイト、ボーキサイト、ベントナイト、浮石、ホウ酸塩、蛇紋石、酸性白土、酸化鉄、石榴石、炭酸塩鉱物、アタパルジャイト、セピオライト、軟玉、燐灰石、イライト(雲母)、長石、真珠岩、蛭石、ゼオライト、重晶石、滑石、珪藻土、黒鉛、ヘクトライト、粘土鉱物、ジルコニウム鉱物、チタニウム鉱物、トルマリン、ヒュームシリカ、エアロゲル、フライアッシュ、高炉スラグ粉末のうち1種以上が挙げられるが、これらに限定されない。   Ceramic powders are barleystone, ocher stone, olivine, high-grade clay, silicate mineral, magnesite, bauxite, bentonite, pumice, borate, serpentine, acid clay, iron oxide, stone meteorite, carbonate Mineral, attapulgite, sepiolite, soft jade, apatite, illite (mica), feldspar, nacre, meteorite, zeolite, barite, talc, diatomaceous earth, graphite, hectorite, clay mineral, zirconium mineral, titanium mineral, tourmaline, fume One or more of silica, aerogel, fly ash, and blast furnace slag powder may be mentioned, but not limited thereto.

セラミック鉱物粒子の大きさは、セラミック粒子間に微細気泡が形成されるように、粒子が小さいことが好ましいが、大きさ5nm〜400μmの粒子を使用することができる。好ましくは20nm〜250μm、最も好ましくは5nm〜50μmである。5nm以下の粒子を使用すると、エアロゲルを除いては一般的な粉砕装置を利用して製造することは困難であり、粒子を粉砕する費用が増加するので好ましくない。また、400μm以上の粒子を利用すると、セラミック粉末の表面積が小さくて、ゲル化段階で接着力が落ちることになり、粒子間に微細気泡を形成するのは困難である。   The size of the ceramic mineral particles is preferably small so that fine bubbles are formed between the ceramic particles, but particles having a size of 5 nm to 400 μm can be used. Preferably they are 20 nm-250 micrometers, Most preferably, they are 5 nm-50 micrometers. When particles of 5 nm or less are used, it is difficult to produce using a general pulverizer except for airgel, and the cost for pulverizing the particles is not preferable. Further, when particles of 400 μm or more are used, the surface area of the ceramic powder is small, and the adhesive force is reduced at the gelation stage, and it is difficult to form fine bubbles between the particles.

添加剤は、発泡セラミックの強度を増加させるために強度補強剤の役割を兼備する吸音材や耐水性を増大させるための耐水補強剤を含むことができる。一般的に強度補強剤を兼ねた吸音材としては、金属酸化物または繊維質を用いることができる。金属酸化物の場合、発泡セラミックが金属酸化物からなるため、人為的に添加する必要がない。繊維状の吸音材を添加してセラミック粒子間に繊維が充填されると、接着力が増加するだけでなく、防音効果も向上する。   The additive may include a sound-absorbing material that also serves as a strength reinforcing agent to increase the strength of the foamed ceramic, and a water-resistant reinforcing agent for increasing water resistance. In general, a metal oxide or a fiber can be used as a sound absorbing material that also serves as a strength reinforcing agent. In the case of a metal oxide, since the foamed ceramic is made of a metal oxide, it is not necessary to add it artificially. When the fibrous sound absorbing material is added and the fibers are filled between the ceramic particles, not only the adhesive force is increased but also the soundproofing effect is improved.

常温で発泡セラミックが形成されるため、強度補強剤は、発泡セラミックの強度を増加させるために繊維質で構成されていれば、天然繊維、人造繊維のいずれを使用してもよい。例えば、天然繊維としては、セルロース系繊維(種子繊維、靭皮繊維、葉繊維、果実繊維)、ステープル形態又はフィラメント形態の蛋白質系繊維、及び鉱物系繊維などが利用され、人造繊維としては、有機繊維(再生繊維、半合成纎維、合成繊維など)又は無機纎維(金属繊維、ガラス繊維、岩石繊維、スラグ繊維、炭素繊維など)などがあるが、これに限定されない。   Since the foamed ceramic is formed at room temperature, the strength reinforcing agent may be either a natural fiber or an artificial fiber as long as it is composed of a fiber to increase the strength of the foamed ceramic. For example, cellulosic fibers (seed fibers, bast fibers, leaf fibers, fruit fibers), protein fibers in staple form or filament form, mineral fibers, etc. are used as natural fibers, and organic fibers are organic. Examples include, but are not limited to, fibers (regenerated fibers, semi-synthetic fibers, synthetic fibers, etc.) or inorganic fibers (metal fibers, glass fibers, rock fibers, slag fibers, carbon fibers, etc.).

強度補強剤を兼ねた吸入材の繊維の太さは、3〜50μmであることが好ましく、より好ましくは5〜25μm、最も好ましくは5〜10μmである。繊維質の特性上、細いほど外観が滑らかで、触感が軟らかい傾向があり、優れた物性を有するので利用価値の高いという長所があるが、天然繊維、及びガラス繊維以外の人造繊維で生産される繊維は、その大部分は太さが3μm以上であり、太さ3μm以下の繊維を選択することは容易ではないという短所がある。一方、太さ50μm以上の繊維は外観上滑らかでなく、強度が落ちるという短所がある。   The thickness of the fiber of the inhalation material that also serves as a strength reinforcing agent is preferably 3 to 50 μm, more preferably 5 to 25 μm, and most preferably 5 to 10 μm. Due to the properties of the fiber, the thinner it is, the smoother the appearance and the softer the tactile sensation, and the superior physical properties make it highly useful, but it is produced with natural fibers and artificial fibers other than glass fibers. Most of the fibers have a thickness of 3 μm or more, and it is not easy to select a fiber having a thickness of 3 μm or less. On the other hand, fibers having a thickness of 50 μm or more are disadvantageous in that the appearance is not smooth and the strength decreases.

また、強度補強剤を兼ねた吸音材の繊維の長さは、1〜50mmが好ましく、より好ましくは5〜35mm、最も好ましくは10〜25mmである。繊維の長さが1mm以下であると、ゲル化段階で三次元シリカネットワークの微細な多孔性セラミック粒子間に接続される繊維が短く、接着力があまり大きくないという短所があり、50mm以上であると、セラミックスラリーの形成段階で繊維がセラミックと均一に混合されず、繊維質同士が絡み付き、発泡セラミックの物性を低下させるという短所がある。   Further, the length of the fiber of the sound absorbing material that also serves as the strength reinforcing agent is preferably 1 to 50 mm, more preferably 5 to 35 mm, and most preferably 10 to 25 mm. When the length of the fiber is 1 mm or less, the fibers connected between the fine porous ceramic particles of the three-dimensional silica network in the gelation stage are short, and there is a disadvantage that the adhesive force is not so large, and the length is 50 mm or more. In addition, the fibers are not uniformly mixed with the ceramic in the formation stage of the ceramic slurry, so that the fibers are entangled with each other and the physical properties of the foamed ceramic are deteriorated.

一方、強度補強剤を兼ねた吸音材として添加される繊維質の量は、セラミック粉末を100重量部とする時、1〜20重量部が含まれることが好ましく、より好ましくは2.5〜15重量部、最も好ましくは、5〜10重量部が含まれる。吸音材が1重量部以下で含まれる場合、発泡セラミックを補強する効果がほとんどなく、20重量部以上含まれる場合、セラミック粉末や繊維質との混合が困難である。   On the other hand, the amount of the fiber added as the sound absorbing material that also serves as the strength reinforcing agent is preferably 1 to 20 parts by weight, more preferably 2.5 to 15 parts when the ceramic powder is 100 parts by weight. Part by weight, most preferably 5 to 10 parts by weight is included. When the sound absorbing material is contained in an amount of 1 part by weight or less, there is almost no effect of reinforcing the foamed ceramic, and when it is contained in an amount of 20 parts by weight or more, it is difficult to mix with the ceramic powder or the fiber.

一方、耐水補強剤としては、水分散性高分子樹脂又は微細粉末高分子樹脂が添加できる。水分散性高分子樹脂の場合は、水に均一に混合されれば如何なるものでも良い。水分散性高分子樹脂の一例としては、水分散性アクリル、酢酸ビニール、アルキド、メラミン樹脂、スチレンブタジエンゴム溶液(Solution Styrene Butadiene Rubber)などが挙げられる。水分散性高分子樹脂の添加量は、セラミック粉末を100重量部とすると、1.0〜25重量部であることが好ましく、より好ましくは2.5〜25重量部、最も好ましくは5〜10重量部である。1重量部以下を添加すると、セラミック発泡体粒子間に高分子被膜を十分に形成することができず、耐水性が大きくないという短所がある。25重量部以上添加すると耐水性は大幅に増加するが、火災発生時に高分子の分解により有毒ガスが多量に発生して人体に致命的でありうるという短所がある。   On the other hand, a water dispersible polymer resin or a fine powder polymer resin can be added as the water-resistant reinforcing agent. In the case of a water-dispersible polymer resin, any resin can be used as long as it is uniformly mixed with water. Examples of the water-dispersible polymer resin include water-dispersible acrylic, vinyl acetate, alkyd, melamine resin, and styrene butadiene rubber solution (Solution Styrene Butadiene Rubber). The amount of the water dispersible polymer resin added is preferably 1.0 to 25 parts by weight, more preferably 2.5 to 25 parts by weight, and most preferably 5 to 10 parts by weight based on 100 parts by weight of the ceramic powder. Parts by weight. When 1 part by weight or less is added, there is a disadvantage that a polymer film cannot be sufficiently formed between the ceramic foam particles and the water resistance is not large. When added in an amount of 25 parts by weight or more, the water resistance greatly increases, but there is a disadvantage that a large amount of toxic gas is generated due to decomposition of the polymer in the event of a fire, which can be fatal to the human body.

微細粉末高分子樹脂としては、ポリエチレンテレフタレート(PET)、低密度ポリエチレン、高密度ポリエチレン、塩化ビニール樹脂(PVC)、ポリメタクリル酸メチル(PMMA)、ポリスチレン(PS)、ポリプロピレン(PP)、エチレンビニルアセテート(EVA)、ポリウレタン(PU)、ポリカプロラクトンなどが挙げられるがこれに限定されない。微細粉末高分子樹脂は、セラミック粉末を100重量部とすると、0.5〜15重量部が含まれることが好ましく、より好ましくは2.5〜12重量部、最も好ましくは5〜10重量部である。0.5重量部以下含まれると、セラミック発泡体の粒子間に高分子被膜を十分に形成することができず、耐水性が大きくないという短所がある。15重量部以上添加すると、耐水性は大幅に増加するが、火災発生時に高分子の分解により有毒ガスが多量に発生し、人体に致命的でありえるという短所がある。   Fine powder polymer resin includes polyethylene terephthalate (PET), low density polyethylene, high density polyethylene, vinyl chloride resin (PVC), polymethyl methacrylate (PMMA), polystyrene (PS), polypropylene (PP), ethylene vinyl acetate (EVA), polyurethane (PU), polycaprolactone, and the like, but are not limited thereto. The fine powder polymer resin preferably contains 0.5 to 15 parts by weight, more preferably 2.5 to 12 parts by weight, and most preferably 5 to 10 parts by weight, when the ceramic powder is 100 parts by weight. is there. When 0.5 parts by weight or less is contained, there is a disadvantage that a polymer film cannot be sufficiently formed between the ceramic foam particles, and the water resistance is not large. When added in an amount of 15 parts by weight or more, the water resistance is greatly increased, but there is a disadvantage that a large amount of toxic gas is generated due to decomposition of the polymer in the event of a fire, which can be fatal to the human body.

微細粉末高分子樹脂の粒子は小さいほど良いが、好ましくは、0.5μm〜0.1mm範囲が好ましく、より好ましくは、0.5μm〜1mm、最も好ましくは、5〜50μm範囲である。粉末粒子の大きさが0.1μm未満であると、表面積が大きくなり、水中に分散される可能性は高いが、微粒子による粉塵のため作業が容易ではなく、経済性が落ちるという短所がある。一方、0.5mmを超えると、表面積が小さく、粒子が大きいため、均一にセラミック粉末に融着する確率が低いという問題がある。   The smaller the particles of the fine powder polymer resin, the better. However, the range of 0.5 μm to 0.1 mm is preferable, the range of 0.5 μm to 1 mm is more preferable, and the range of 5 to 50 μm is most preferable. If the size of the powder particles is less than 0.1 μm, the surface area becomes large and the possibility of being dispersed in water is high, but there is a disadvantage that the work is not easy due to the dust caused by the fine particles and the economy is reduced. On the other hand, when the thickness exceeds 0.5 mm, the surface area is small and the particles are large, so that there is a problem that the probability of uniform fusion to the ceramic powder is low.

さらに、ゲル化段階とは、発泡段階及びスラリー形成段階で既に形成された微細気泡のセラミックスラリーに三次元シリカネットワークを形成する段階である。この段階では、セラミックスラリーの発泡体が消泡されず、発泡された形状を維持して硬化して、多量の微細気泡が形成されるので、従来の発泡セラミックの製造に必要な高温工程は要らなくなる。   Further, the gelation step is a step of forming a three-dimensional silica network in the fine-cell ceramic slurry already formed in the foaming step and the slurry forming step. At this stage, the foam of the ceramic slurry is not defoamed and is cured while maintaining the foamed shape, so that a large amount of fine bubbles are formed. Therefore, a high temperature process necessary for the production of the conventional foamed ceramic is not required. Disappear.

三次元シリカネットワークを形成する方法は、ケイ酸塩とセラミックが含まれたスラリー状態の発泡体を、二酸化炭素(CO)、酸、重炭酸塩(bicarbonate)のソース、グリオキサル(glyoxal)、エチレングリコールジアセテート(ethylene glycol diacetate)と混合したり、浸漬させて形成することができる。 A method for forming a three-dimensional silica network is to use a foam in a slurry state containing silicate and ceramic, carbon dioxide (CO 2 ), acid, bicarbonate source, glyoxal, ethylene It can be formed by mixing or immersing with glycol diacetate.

発泡されたセラミックスラリーに二酸化炭素、ドライアイス、重炭酸ガス、グリオキサル、エチレングリコールジアセテートなどを均一に浸透させると、セラミックスラリーに含まれたケイ酸塩、二酸化炭素、重炭酸ガス、グリオキサル、エチレングリコールジアセテートなどと反応して化学式1〜3で示すようなゾル(sol)状態で化学的均衡が崩れて、粒子がお互いに絡み付き、ケイ酸塩のゲル化現像による三次元シリカネットワークが形成されると共に、固体状態を維持し、三次元シリカネットワークが無機結合材(binder)の役割をして発泡された形状を維持するようになる。   When carbon dioxide, dry ice, bicarbonate gas, glyoxal, ethylene glycol diacetate, etc. are uniformly infiltrated into the foamed ceramic slurry, the silicate, carbon dioxide, bicarbonate gas, glyoxal, ethylene contained in the ceramic slurry Reaction with glycol diacetate, etc. causes the chemical balance to be lost in the sol state as shown in Chemical Formulas 1-3, and the particles are entangled with each other to form a three-dimensional silica network by silicate gel development. In addition, the solid state is maintained, and the three-dimensional silica network serves as an inorganic binder to maintain a foamed shape.

反応式1
O・nSiO+CO→nSiO(シリカゲル形態)+MCO
(M=Na,K,Li)(n=2〜4)
反応式2
O・nSiO+HSO→nSiO(シリカゲル形態)+MSO
(M=Na,K,Li)(n=2〜4)
反応式3
O・nSiO+LHCO→nSiO(シリカゲル形態)+MCO+LOH
(L=Na,K,NH)(M=Na,K,Li)(n=2〜4)
Reaction formula 1
M 2 O · nSiO 2 + CO 2 → nSiO 2 (silica gel form) + M 2 CO 3
(M = Na, K, Li) (n = 2-4)
Reaction formula 2
M 2 O · nSiO 2 + H 2 SO 4 → nSiO 2 (silica gel form) + M 2 SO 4
(M = Na, K, Li) (n = 2-4)
Reaction formula 3
M 2 O · nSiO 2 + LHCO 3 → nSiO 2 (silica gel form) + M 2 CO 3 + LOH
(L = Na, K, NH 4 ) (M = Na, K, Li) (n = 2 to 4)

三次元シリカネットワークを形成するためのソースが二酸化炭素である場合,ガス筒に貯蔵された二酸化炭素ガス、或いはドライアイスを使用することができる。ガス筒に貯蔵された二酸化炭素ガスを利用すると、圧力調節計により二酸化炭素の注入量を任意に調節することができ、高圧で注入することができるため、発泡体が厚かったり、短い時間で三次元シリカネットワークを形成しようとする場合は、ドライアイスを利用することが好ましい。しかし、ドライアイスをソースとして使用する場合、水分が含まれた発泡体が結氷する恐れがあり、結氷が発生すると、三次元シリカネットワークが破損されたり、接着力が落ちる恐れがあるため、発泡体と直接接触しないように注意しなければならない。   When the source for forming the three-dimensional silica network is carbon dioxide, carbon dioxide gas stored in a gas cylinder or dry ice can be used. When carbon dioxide gas stored in the gas cylinder is used, the amount of carbon dioxide injection can be adjusted arbitrarily by the pressure regulator, and it can be injected at a high pressure. When trying to form the original silica network, it is preferable to use dry ice. However, when dry ice is used as a source, the foam containing moisture may freeze, and if it occurs, the three-dimensional silica network may be damaged or the adhesive strength may be reduced. Care must be taken not to come into direct contact with.

三次元シリカネックワークを形成するソースが酸である場合、水で希釈された酸にケイ酸塩が含まれた発泡体を浸漬させたり、ケイ酸塩が含まれたスラリー状態の発泡体と酸とを混合して三次元シリカネットワークを形成することができる。希釈された酸にセラミックスラリーを浸漬する場合、2〜10秒間希釈された酸溶液に浸漬すると、中和すると同時に、三次元シリカネットワークが形成される。この方法は酸が微細に発泡されたセラミックスラリーに浸透する速度が比較的に遅いため、1cm以下のセラミックスラリーに三次元シリカネットワークを形成することに適している。   When the source forming the three-dimensional silica neckwork is an acid, the foam containing the silicate is immersed in the acid diluted with water, or the foam and the acid in the slurry state containing the silicate are used. Can be mixed to form a three-dimensional silica network. When the ceramic slurry is immersed in the diluted acid, when the ceramic slurry is immersed in the diluted acid solution for 2 to 10 seconds, a three-dimensional silica network is formed at the same time as neutralization. This method is suitable for forming a three-dimensional silica network in a ceramic slurry of 1 cm or less because the rate at which the acid penetrates into the finely foamed ceramic slurry is relatively slow.

ケイ酸塩が含まれた多孔性スラリー状態の発泡体と酸を混合する場合、10秒以内に三次元のシリカネットワークが形成され得るが、このためには酸と混合されたセラミックスラリーのpH範囲を5〜9にしなければならない。また、三次元シリカネットワークを形成するとき、1分以上が要求される場合は、セラミックスラリーのpH範囲は5〜9の範囲を外れてもよい。ここで、使用される酸は、塩酸、硝酸、硫酸、燐酸、フッ酸、蟻酸、酢酸、クエン酸、マレイン酸、オレイン酸のうち1種以上の酸混合溶液を選択することができる。好ましくは、安価で、環境汚染を最小化できる硫酸、酢酸、クエン酸を使用すればよい。また、酸の希釈量は、水の総重量を100重量部にして、2〜25重量部とされ、より好ましくは2.5〜20重量部とされ、最も好ましくは4.0〜15重量部とされる。酸が2重量部以下の量で希釈される場合は、発泡体に含まれたアルカリ性のケイ酸塩を中和しながらゲル化するため、多くの時間が必要であるという短所があり、25重量部を超える酸が希釈される場合は、三次元シリカネットワークの形成時間を調節し難く、酸が多すぎるためゲル化が阻害され、後述する乾燥段階で発泡体に残っている余分の酸を乾燥させる過程で大気汚染及び呼吸器疾患を起こすことがある。   When mixing the foam in porous slurry containing silicate and acid, a three-dimensional silica network can be formed within 10 seconds, which is the pH range of the ceramic slurry mixed with acid. Must be 5-9. Moreover, when forming a three-dimensional silica network, when 1 minute or more is requested | required, the pH range of a ceramic slurry may remove | deviate from the range of 5-9. Here, as the acid used, one or more acid mixed solutions of hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, formic acid, acetic acid, citric acid, maleic acid and oleic acid can be selected. Preferably, sulfuric acid, acetic acid and citric acid which are inexpensive and can minimize environmental pollution may be used. The acid dilution amount is 2 to 25 parts by weight, more preferably 2.5 to 20 parts by weight, most preferably 4.0 to 15 parts by weight, with the total weight of water being 100 parts by weight. It is said. When the acid is diluted in an amount of 2 parts by weight or less, the gelation is performed while neutralizing the alkaline silicate contained in the foam. When more than part of the acid is diluted, it is difficult to adjust the formation time of the three-dimensional silica network, and the gelation is hindered because there is too much acid, and the excess acid remaining in the foam is dried at the drying stage described later. May cause air pollution and respiratory illness.

三次元シリカネットワークを形成するためのソースが重炭酸である場合は、重炭酸ナトリウム、重炭酸カリウム、重炭酸アンモニウムの中から選択された1種、或いは混合物のうちいずれを使用してもよい。ただし、重炭酸塩の粉末、又は 重炭酸塩を水に溶解して希釈した溶液を、発泡されたセラミックスラリーと混合したり、重炭酸塩粉末の水溶解した溶液に発泡されたセラミックスラリーを浸漬して使用することができる。一方、重炭酸塩のうち重炭酸アンモニウムを使用する場合、最終反応後にアンモニアガス、又はアンモニア水からの有毒なガスが放出されるので、人体に有害であり、また重炭酸ナトリウムより高価なため、重炭酸ナトリウムを利用することが価格面でも、環境面でも有利である。また、重炭酸塩の使用量は、発泡体に含まれたケイ酸塩と反応してゲル化を起こすことのできる化学量論的当量である。水に溶解させたり、振盪して使用すると、均一な三次元シリカネットワークの形成により、均一なゲル化を行うことができる。   When the source for forming the three-dimensional silica network is bicarbonate, any one selected from sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate, or a mixture may be used. However, a solution of bicarbonate powder or a solution obtained by dissolving bicarbonate in water is mixed with a foamed ceramic slurry, or a foamed ceramic slurry is immersed in a solution of bicarbonate powder in water. Can be used. On the other hand, when using ammonium bicarbonate among bicarbonates, toxic gas from ammonia gas or ammonia water is released after the final reaction, which is harmful to human body and more expensive than sodium bicarbonate, The use of sodium bicarbonate is advantageous both in terms of price and environment. The amount of bicarbonate used is the stoichiometric equivalent that can react with the silicate contained in the foam to cause gelation. When dissolved in water or shaken, uniform gelation can be achieved by forming a uniform three-dimensional silica network.

ソースがグリオキサル及びエチレングリコールジアセテートである場合は、三次元シリカネットワークを形成するために比較的長時間を要するときに適している。例えば、エチレングリコールジアセテートとケイ酸塩との反応式は次の通りである。   When the source is glyoxal and ethylene glycol diacetate, it is suitable when a relatively long time is required to form a three-dimensional silica network. For example, the reaction formula of ethylene glycol diacetate and silicate is as follows.

反応式4
C-COO-CH-CH-OCO-CH(EGDAc)+2H
→OH-CH-CH-OH(EG)+2CHCOOH(酢酸)
Reaction formula 4
H 3 C—COO—CH 2 —CH 2 —OCO—CH 3 (EGDAc) + 2H 2 O
→ OH—CH 2 —CH 2 —OH (EG) + 2CH 3 COOH (acetic acid)

ケイ酸塩が含まれている発泡されたセラミックスラリーは1次反応と2次反応を経て硬化するが、1次反応は加水分解反応としてEGDAc(エチレングリコールジアセテート)がケイ酸塩中のアルカリの存在下に、反応式4に示すように、加水分解され、EG(エチレングリコール)と酢酸を生成する。   The foamed ceramic slurry containing the silicate is cured through a primary reaction and a secondary reaction. The primary reaction is a hydrolysis reaction in which EGDAc (ethylene glycol diacetate) is an alkaline solution in the silicate. In the presence, as shown in Reaction Scheme 4, it is hydrolyzed to produce EG (ethylene glycol) and acetic acid.

反応式5
O・nSiO+2CHCOOH
→2CHCOOM+nSiO(シリカゲル形態)+H
(M=Na,K,Li)(n=2〜4)
Reaction formula 5
M 2 O · nSiO 2 + 2CH 3 COOH
→ 2CH 3 COOM + nSiO 2 (silica gel form) + H 2 O
(M = Na, K, Li) (n = 2-4)

次いで、反応式5に示すように、ゲル化反応による三次元シリカネットワークが徐々に形成される。すなわち、ケイ酸塩が酢酸と反応して、酢酸ナトリウムと不溶性のケイ酸ゲルとが生成される。   Next, as shown in Reaction Formula 5, a three-dimensional silica network is gradually formed by the gelation reaction. That is, the silicate reacts with acetic acid to produce sodium acetate and an insoluble silicate gel.

さらに、加熱段階は、ゲル化段階まで形成された発泡軽量セラミックに含まれている水分を除去したり、耐水性を向上させるための耐水補強剤の水分散性高分子樹脂又は微細粉末高分子樹脂を、三次元シリカネットワークの発泡セラミック表面に熱融着によりコーティングする段階である。微細に発泡された多量の気泡が形成された発泡セラミックに物理的な変化を起こさずに発泡セラミック内の水分を除去すると同時に、熱により、添加された高分子樹脂をセラミック表面に融着し得る方法であれば、いかなる方法を使用してもよい。ゲル化段階の工程を経た発泡セラミックには、空気による常温乾燥方法、オーブンによる熱風乾燥方法、極超短波(電子レンジ)による急速乾燥方法が利用され得る。常温乾燥方法は、耐水性をあまり必要としない、薄い発泡セラミックの製造に適している。これは、幅の広い発泡体を積層して空気により乾燥するため、乾燥過程に要する設備費を低減でき、加熱を必要としないため、燃料費がからないという長所があるが、乾燥時間が長いため、乾燥のための空間を大きくしなければならず、生産性が低いという短所がある。   Furthermore, the heating stage is a water-dispersible polymer resin or fine powder polymer resin that is a water-resistant reinforcing agent for removing water contained in the foamed lightweight ceramic formed up to the gelling stage or improving the water resistance. Is coated on the surface of the ceramic foam of the three-dimensional silica network by thermal fusion. It is possible to remove the moisture in the foamed ceramic without causing a physical change in the foamed ceramic in which a large amount of finely foamed bubbles are formed, and at the same time, the added polymer resin can be fused to the ceramic surface by heat. Any method may be used as long as it is a method. For the foamed ceramic that has undergone the gelation step, a room temperature drying method using air, a hot air drying method using an oven, or a rapid drying method using ultra-high frequency (microwave oven) can be used. The room temperature drying method is suitable for producing a thin foamed ceramic that does not require much water resistance. This is because a wide range of foams are laminated and dried by air, so that the equipment cost required for the drying process can be reduced and heating is not required, so there is no fuel cost, but the drying time is long. For this reason, the space for drying must be increased, and the productivity is low.

極超短波による乾燥方法は、2,450MHzの極超短波を加えて水分子を振動させて振動熱により水分を乾燥させる方法である。これは、発泡セラミック内部の水分を速い速度で除去できるという長所があるが、断熱材として使われる場合のように発泡セラミックが厚い、かつ大きい場合、極超短波生成設備のための設備費が多く要求されるという短所がある。   The drying method using ultra high frequency waves is a method in which water molecules are vibrated by applying ultra high frequency waves of 2,450 MHz and water is dried by vibrational heat. This has the advantage that moisture inside the ceramic foam can be removed at a high rate, but if the ceramic foam is thick and large, as in the case of heat insulation, it requires a lot of equipment costs for the ultra-high frequency generation equipment. There is a disadvantage of being.

オーブンによる熱風乾燥方法は、短時間に、比較的少ない設備費で発泡セラミックを乾燥できるという長所がある。   The hot air drying method using an oven has an advantage that the foamed ceramic can be dried in a short time with relatively low equipment costs.

ここで、極超短波又は熱風乾燥方法を利用する場合、加熱温度は80〜250℃が好ましく、より好ましくは、90〜220℃であり、最も好ましくは、100〜200℃である。80℃以下の温度で加熱すると、ゲル化段階まで含有されていた水分の除去速度があまり大きくないだけでなく、耐水性向上のための水分散性高分子樹脂又は微細粉末高分子樹脂を溶融し難いと共に、セラミック表面に融着できないという短所がある。一方、加熱温度が250℃を越えると、高速で水分を蒸発させることができ、微細粉末高分子樹脂の融点以上の温度であるので、短い時間でセラミック表面に高分子樹脂を熱融着することが容易であるが、高温では高分子の物性が変わるという短所がある。   Here, when using an ultra-high frequency or a hot-air drying method, the heating temperature is preferably 80 to 250 ° C, more preferably 90 to 220 ° C, and most preferably 100 to 200 ° C. When heated at a temperature of 80 ° C. or lower, not only the removal rate of water contained until the gelation stage is not so great, but also the water dispersible polymer resin or fine powder polymer resin for improving the water resistance is melted. It is difficult and cannot be fused to the ceramic surface. On the other hand, when the heating temperature exceeds 250 ° C., the moisture can be evaporated at a high speed and the temperature is higher than the melting point of the fine powder polymer resin, so that the polymer resin can be heat-sealed to the ceramic surface in a short time. However, there is a disadvantage that the physical properties of the polymer change at high temperatures.

以下、本発明の好ましい実施例により本発明をより詳細に説明する。
実施例1
気泡剤として、韓国産業株式会社製の動物性気泡剤を、水重量の2%に該当する量を添加してホモミキサーを利用して発泡水溶液を製造し、ここに(株)黄土名家製の黄土粉末250gを分取して混合し、(株)三和工業製の水ガラス(ケイ酸ナトリウム)III型を150g混合し、粘度が約100,000cpsになるように増粘剤であるCMCを添加して、ケイ酸塩が含まれた黄土発泡スラリーを製造した。ここにCOガスラインを挿入して二酸化炭素ガスを2分間パージ(purging)させてゲル化させて固形化し、100℃のオーブンで2時間加熱、乾燥させて発泡セラミックを製造した。
Hereinafter, the present invention will be described in more detail with reference to preferred embodiments of the present invention.
Example 1
As a foaming agent, an animal foaming agent made by Korea Sangyo Co., Ltd. was added in an amount corresponding to 2% of the weight of water, and a foaming aqueous solution was produced using a homomixer. 250 g of ocher powder is separated and mixed, 150 g of water glass (sodium silicate) type III manufactured by Sanwa Industry Co., Ltd. is mixed, and CMC as a thickener is added so that the viscosity becomes about 100,000 cps. This was added to produce an ocher foaming slurry containing silicate. A CO 2 gas line was inserted therein, and carbon dioxide gas was purged (purging) for 2 minutes to be gelled and solidified, and heated and dried in an oven at 100 ° C. for 2 hours to produce a foamed ceramic.

実施例2
気泡剤として(株)韓一コーン製の植物性気泡剤(商品名:インフォーマー)を水重量の2%に該当する量を添加したことを除いて、実施例1と同様にして製造した。
Example 2
As a foaming agent, a plant foaming agent (trade name: Informer) manufactured by Hanichi Corn Co., Ltd. was produced in the same manner as in Example 1 except that an amount corresponding to 2% of the water weight was added. .

実施例3
韓国産業株式会社製の動物性気泡剤を水重量の4%に該当する量を添加して、気泡発生装置を利用して発泡水溶液を製造した後、ここに(株)東洋製鉄化学のヒュームシリカ粉末200gを分取して混合し、(株)三和工業製のケイ酸カリウムを130g混合し、粘度が約150,000cpsになるように増粘剤であるCMCを添加して、ケイ酸塩が含まれたヒュームシリカスラリーを製造した。ここに10%濃度の重炭酸ナトリウム溶液50mlを添加して非常に速い速度で均一に混合し、混合後13秒以内にスラリーをゲル化して固形化し、極超短波により30分間加熱した後、乾燥して発泡セラミックを製造した。
Example 3
After adding an amount corresponding to 4% of the water weight of the animal foam made by Korea Sangyo Co., Ltd., and producing a foaming aqueous solution using a bubble generating device, here, Toyo Seikan Fume Silica Co., Ltd. 200 g of powder is separated and mixed, 130 g of potassium silicate manufactured by Sanwa Kogyo Co., Ltd. is mixed, CMC as a thickener is added so that the viscosity becomes about 150,000 cps, and silicate is added. A fume silica slurry containing was produced. Add 50 ml of 10% sodium bicarbonate solution and mix uniformly at a very high speed. After mixing, the slurry is gelled and solidified within 13 seconds, heated by ultra high frequency waves for 30 minutes, and then dried. To produce a foam ceramic.

実施例4
(株)韓一コーン製の植物性気泡剤を水重量の4%に該当する量を水に希釈して、ホモミキサーを利用して発泡水溶液を製造し、ここに(株)黄土名家製の黄土粉末250g、(株)三和工業製の水ガラス(ケイ酸ナトリウム)III型を150g、ディーンテックスコリアで製造した繊維7.5g、(株)オゴンボンド製の水分散性アクリル樹脂(エマルジョンアクリル樹脂)5gを各々混合し、粘度が約100,000cpsになるように、増粘剤であるCMCを添加して、ケイ酸塩が含まれた黄土スラリーを製造した。これを10%濃度に希釈した硫酸水溶液100mlに15秒間浸漬させてゲル化させて固形化し、100℃のオーブンで2時間加熱、乾燥してセラミック発泡体を製造した。
Example 4
An amount of water equivalent to 4% of the weight of water produced by Hanichi Corn Co., Ltd. is diluted in water, and a foaming aqueous solution is produced using a homomixer. 250 g of ocher powder, 150 g of water glass (sodium silicate) type III manufactured by Sanwa Kogyo Co., Ltd., 7.5 g of fibers manufactured by Deantech Korea, water dispersible acrylic resin (emulsion acrylic resin) manufactured by Ogon Bond Co., Ltd. ) 5 g of each was mixed, and CMC as a thickener was added so that the viscosity was about 100,000 cps, and a loess slurry containing silicate was produced. This was immersed in 100 ml of sulfuric acid aqueous solution diluted to a concentration of 10% for 15 seconds to be gelled and solidified, and heated and dried in an oven at 100 ° C. for 2 hours to produce a ceramic foam.

実施例5
(株)韓一コーン製の植物性気泡剤を水重量の4%に該当する量を水に希釈して、ホモミキサーを利用して発泡水溶液を製造し、ここに(株)黄土名家製の黄土粉末250g、(株)三和工業で製造した水ガラス(ケイ酸ナトリウム)III型を150g、ディーンテックスコリア製の繊維7.5g、(株)オゴンボンド製の水分散性アクリル樹脂(エマルジョンアクリル樹脂)5gを各々混合して、粘度が約100,000cpsになるように、増粘剤であるCMCを添加して、ケイ酸塩が含まれた黄土スラリーを製造した。これを10%濃度に希釈した硫酸水溶液50mlと非常に高速で均一に混合し、混合して8秒以内にゲル化させて固形化し、100℃のオーブンで2時間加熱し、乾燥して発泡セラミックを製造した。
Example 5
An amount of water equivalent to 4% of the weight of water produced by Hanichi Corn Co., Ltd. is diluted in water, and a foaming aqueous solution is produced using a homomixer. 250 g of ocher powder, 150 g of water glass (sodium silicate) type III manufactured by Sanwa Kogyo Co., Ltd., 7.5 g of fibers made by Deantech Scoria, water dispersible acrylic resin (emulsion acrylic resin) made by Ogon Bond Co., Ltd. ) 5 g of each was mixed, and CMC as a thickener was added so that the viscosity became about 100,000 cps, and a loess slurry containing silicate was produced. This is uniformly mixed with 50 ml of sulfuric acid aqueous solution diluted to 10% concentration at a very high speed, mixed, gelled within 8 seconds, solidified, heated in an oven at 100 ° C. for 2 hours, dried and foamed ceramic Manufactured.

実施例6
韓国産業株式会社製の動物性気泡剤を、水重量の4%に該当する量を添加して、気泡発生装置を利用して発泡水溶液を製造し、ここに(株)基礎素材製の高炉スラグ粉末を200g分取して混合し、(株)三和工業製のケイ酸ナトリウム(ケイ酸ナトリウム)を100g混合し、粘度が約200,000cpsになるように増粘剤であるCMCを添加して、ケイ酸塩が含まれた高炉スラグ発泡スラリーを製造した。ここにグリオキサル溶液25mlを添加して均一に混合して15分間放置した後、高炉スラグ発泡スラリーをゲル化させて固形化し、極超短波を利用して30分間加熱、乾燥させて発泡セラミックを製造した。
Example 6
Add an amount corresponding to 4% of the weight of water to the animal foam produced by Korea Sangyo Co., Ltd., and use the bubble generator to produce a foaming aqueous solution. 200 g of powder is collected and mixed, 100 g of sodium silicate (sodium silicate) manufactured by Sanwa Industry Co., Ltd. is mixed, and CMC as a thickener is added so that the viscosity becomes about 200,000 cps. Thus, a blast furnace slag foaming slurry containing silicate was produced. 25 ml of glyoxal solution was added and mixed uniformly and allowed to stand for 15 minutes, then the blast furnace slag foam slurry was gelled and solidified, and heated and dried for 30 minutes using ultra-high frequency to produce a foam ceramic. .

比較例1
COによる三次元シリカネットワークの形成段階を省略したことを除いては、実施例1と同様にして製造した。
Comparative Example 1
It was produced in the same manner as in Example 1 except that the step of forming a three-dimensional silica network with CO 2 was omitted.

比較例2
COによる三次元シリカネットワークの形成段階を省略したことを除いては、実施例2と同様にして製造した。
Comparative Example 2
It was produced in the same manner as in Example 2 except that the step of forming the three-dimensional silica network with CO 2 was omitted.

比較例3
重炭酸ナトリウムによる三次元シリカネットワークの形成段階を省略したことを除いては、実施例2と同様にして製造した。
Comparative Example 3
Prepared as in Example 2, except that the step of forming the three-dimensional silica network with sodium bicarbonate was omitted.

比較例4
10%濃度に希釈された硫酸水溶液に15秒間浸漬させて三次元シリカネットワークを形成する段階を省略したことを除いては、実施例4と同様にして製造した。
Comparative Example 4
It was produced in the same manner as in Example 4 except that the step of forming a three-dimensional silica network by immersing in an aqueous sulfuric acid solution diluted to 10% concentration for 15 seconds was omitted.

比較例5
10%濃度に希釈された硫酸水溶液50mlを混合して三次元シリカネットワークを形成する段階を省略したことを除いては、実施例5と同様にして製造した。
Comparative Example 5
It was produced in the same manner as Example 5 except that the step of forming a three-dimensional silica network by mixing 50 ml of an aqueous sulfuric acid solution diluted to 10% concentration was omitted.

比較例6
グリオキサル40%溶液25mlを添加して三次元シリカネットワークを形成する段階を省略したことを除いては、実施例6と同様にして製造した。
Comparative Example 6
The product was prepared in the same manner as in Example 6 except that the step of forming a three-dimensional silica network by adding 25 ml of a 40% glyoxal solution was omitted.

比較例1〜6、及び本発明による実施例1〜6の発泡セラミックの効果を比較するために実験した結果を表1に表した。特に、耐水性を維持できる三次元シリカネットワークの耐久性を検討するために、本発明の実施例によって製造された発泡セラミックを30日間水に入れて浮上するか否かを確認した。

Figure 2010532299
Table 1 shows the results of experiments performed to compare the effects of the ceramic foams of Comparative Examples 1 to 6 and Examples 1 to 6 according to the present invention. In particular, in order to examine the durability of a three-dimensional silica network capable of maintaining water resistance, it was confirmed whether or not the foamed ceramic manufactured according to the example of the present invention floats in water for 30 days.
Figure 2010532299

表1に表すとおり、比較例1〜6で製造された発泡物は、発泡水溶液の内部にケイ酸塩を含有するとしても、三次元シリカネットワークが形成されるゲル化段階を経ないので、微細に発泡された気泡が消泡されて、軽量の発泡セラミックが得られない。一方、本発明による実施例1〜6により製造された発泡セラミックは、ケイ酸塩が含まれたセラミックスラリーが三次元シリカネットワークの形成段階でゲル化し、発泡された微細気泡を維持して硬化しているため、密度が低く、発泡セラミック内に含まれた空気層(気泡)による断熱効果及び防音効果に優れている。また、比較例4〜5のように耐水性向上のための水分散性樹脂であるアクリル樹脂を含んでいても、製造物を水に入れると直ちに沈むことから、三次元シリカネットワークの形成段階を経ない場合、発泡されたセラミックスラリーが消泡されて、セラミック粒子間に微細な気泡がほとんど形成されていないことが分かる。実施例4〜5では、乾燥段階でゲル化により形成された三次元シリカネットワークに含まれたアクリル樹脂が、セラミック表面にコーティングされて耐水性が急激に増加することが分かり、また繊維質を添加するので耐久性に優れている。   As shown in Table 1, the foams produced in Comparative Examples 1 to 6 do not go through a gelation stage in which a three-dimensional silica network is formed even though the foamed aqueous solution contains a silicate inside the foamed aqueous solution. The foamed foam is defoamed and a lightweight foamed ceramic cannot be obtained. On the other hand, in the foamed ceramics manufactured according to Examples 1 to 6 according to the present invention, the ceramic slurry containing the silicate gels at the formation stage of the three-dimensional silica network, and the foamed fine bubbles are maintained and cured. Therefore, the density is low, and the heat insulation effect and the soundproofing effect due to the air layer (bubbles) contained in the foamed ceramic are excellent. Moreover, even if it contains an acrylic resin, which is a water-dispersible resin for improving water resistance as in Comparative Examples 4 to 5, the product immediately sinks when placed in water. If not, it can be seen that the foamed ceramic slurry is defoamed, and fine bubbles are hardly formed between the ceramic particles. In Examples 4 to 5, it was found that the acrylic resin contained in the three-dimensional silica network formed by gelation in the drying stage was coated on the ceramic surface and the water resistance increased rapidly, and the fiber was added. It has excellent durability.

本発明は、多様な形状で多量の微細な気泡が形成された発泡セラミック、及びその製造方法を提供する。本発明により製造された発泡セラミックは、断熱効果及び防音効果が高く、火災発生時に有毒ガスが発生する恐れがないため、火災時における有毒ガスによる人命被害が防ぐことができる。また、製造工程を簡素化し、生産単価を低くすることができ、製造時の環境汚染も大幅に減少できる。   The present invention provides a foamed ceramic in which a large amount of fine bubbles are formed in various shapes, and a method for producing the same. The foamed ceramic manufactured according to the present invention has a high heat insulating effect and a soundproofing effect, and there is no fear that toxic gas is generated at the time of fire. Therefore, it is possible to prevent human lives from being damaged by toxic gas at the time of fire. In addition, the manufacturing process can be simplified, the production unit price can be lowered, and environmental pollution during manufacturing can be greatly reduced.

また、本発明により製造された発泡セラミックは、製造過程で高熱を必要とせずに、設備費を縮減できるので、発泡セラミックの製造段階におけるセラミックスラリーが適正水準の粘度を維持して所定のモールド内にセラミックスラリーを流入して硬化させ、所望の形状の発泡セラミックを製造することができる。   In addition, since the foamed ceramic manufactured according to the present invention can reduce equipment costs without requiring high heat during the manufacturing process, the ceramic slurry in the manufacturing stage of the foamed ceramic maintains an appropriate level of viscosity and maintains a predetermined mold. The ceramic slurry is allowed to flow into and hardened to produce a foamed ceramic having a desired shape.

また、本発明により製造された発泡セラミックは微細な気泡が多量に発泡されて密度が低いので、軽量化することができ、断熱材、及び吸音材として設置することが容易である。   In addition, since the foamed ceramic produced according to the present invention is foamed with a large amount of fine bubbles and has a low density, it can be reduced in weight and can be easily installed as a heat insulating material and a sound absorbing material.

添付の図面及び好適な実施形態により本発明を説明したが、本発明はこれらに限定されず、添付の請求の範囲により定義される。当業者は、添付の請求の範囲で定義された本発明の趣旨及び範囲から逸脱することなく、これらを改良及び変形することができることを理解されたい。   While the invention has been described with reference to the accompanying drawings and preferred embodiments, the invention is not limited thereto but is defined by the appended claims. It should be understood that those skilled in the art can make improvements and modifications without departing from the spirit and scope of the invention as defined in the appended claims.

Claims (29)

水で希釈された気泡剤により微細気泡が形成された発泡物、ケイ酸塩、セラミック粉末、及び添加剤が混合されて形成されたセラミックスラリーと、
前記セラミックスラリーに供給されて、前記セラミックスラリーの形状を維持して三次元シリカネットワークを形成するゲル化剤とを含むことを特徴とする発泡セラミック。
A ceramic slurry formed by mixing foam, silicate, ceramic powder, and additives in which fine bubbles are formed by a foam diluted with water;
A foamed ceramic comprising: a gelling agent that is supplied to the ceramic slurry and maintains a shape of the ceramic slurry to form a three-dimensional silica network.
前記気泡剤が、水に対する重量比が100:0.1〜10の割合で希釈されることを特徴とする請求項1に記載の発泡セラミック。   The foamed ceramic according to claim 1, wherein the foaming agent is diluted at a weight ratio of 100: 0.1 to 10 with respect to water. 前記気泡剤が、アミノ酸系の動物性気泡剤、及び、有効成分としてアルキルベンゼンスルホネート系材料、ラウリル硫酸ナトリウム、又はそのエステルを含む植物性気泡剤中から選択されることを特徴とする請求項1に記載の発泡セラミック。   2. The foaming agent according to claim 1, wherein the foaming agent is selected from an amino acid-based animal foaming agent and a plant foaming agent containing an alkylbenzene sulfonate-based material, sodium lauryl sulfate, or an ester thereof as an active ingredient. The ceramic foam described. 前記ケイ酸塩が、前記セラミック粉末に対するケイ酸塩の重量比が100:20〜160の割合で含まれることを特徴とする請求項1に記載の発泡セラミック。   2. The ceramic foam according to claim 1, wherein the silicate is included in a weight ratio of silicate to the ceramic powder of 100: 20 to 160. 3. 前記セラミックスラリーが、粘度が5,000〜200,000cpsであることを特徴とする請求項1に記載の発泡セラミック。   The foamed ceramic according to claim 1, wherein the ceramic slurry has a viscosity of 5,000 to 200,000 cps. 前記セラミックスラリーに含まれる前記ケイ酸塩が、1種類乃至4種類の溶液型ケイ酸ナトリウム、粉末型ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウム、ケイ酸アルミニウムナトリウム中から選択されることを特徴とする請求項1に記載の発泡セラミック。   The silicate contained in the ceramic slurry is selected from one to four types of solution type sodium silicate, powder type sodium silicate, potassium silicate, lithium silicate, and sodium aluminum silicate. The foamed ceramic according to claim 1. 前記セラミックスラリーに含まれる前記セラミック粉末が、麦飯石、黄土石、橄欖石、高嶺土、ケイ酸塩鉱物、マグネサイト、ボーキサイト、ベントナイト、浮石、ほう酸塩、蛇紋石、酸性白土、酸化鉄、石榴石、炭酸塩鉱物、アタパルジャイト、セピオライト、軟玉、燐灰石、イライト(雲母)、長石、真珠岩、蛭石、ゼオライト、重晶石、滑石、珪藻土、黒鉛、ヘクトライト、粘土鉱物、ジルコニウム鉱物、チタニウム鉱物、トルマリン、ヒュームシリカ、エアロゲル、フライアッシュ、高炉スラグ粉末の中から選択されることを特徴とする請求項1に記載の発泡セラミック。   The ceramic powder contained in the ceramic slurry is barleystone, ocher stone, aragonite, high-grade clay, silicate mineral, magnesite, bauxite, bentonite, pumice, borate, serpentine, acid clay, iron oxide, stone meteorite , Carbonate mineral, attapulgite, sepiolite, soft jade, apatite, illite (mica), feldspar, pearlite, nepheline, zeolite, barite, talc, diatomite, graphite, hectorite, clay mineral, zirconium mineral, titanium mineral, The foamed ceramic according to claim 1, which is selected from tourmaline, fume silica, aerogel, fly ash, and blast furnace slag powder. 前記セラミック粉末が、粒子の大きさが5nm〜400μmであることを特徴とする請求項7に記載の発泡セラミック。   The foamed ceramic according to claim 7, wherein the ceramic powder has a particle size of 5 nm to 400 μm. 前記セラミックスラリーに混合される前記添加剤が、天然繊維又は人造繊維を含むことを特徴とする請求項1に記載の発泡セラミック。   The foamed ceramic according to claim 1, wherein the additive mixed with the ceramic slurry includes natural fibers or artificial fibers. 前記繊維の太さが、3〜50μmであることを特徴とする請求項9に記載の発泡セラミック。   The foamed ceramic according to claim 9, wherein the fiber has a thickness of 3 to 50 μm. 前記繊維の長さが、1〜50mmであることを特徴とする請求項9に記載の発泡セラミック。   The foamed ceramic according to claim 9, wherein a length of the fiber is 1 to 50 mm. 前記セラミックスラリーに混合される前記添加剤が、発泡セラミックの耐水及び補強のために、水分散性高分子樹脂及び微細粉末高分子樹脂のうちいずれか一つを含むことを特徴とする請求項1に記載の発泡セラミック。   The additive added to the ceramic slurry includes any one of a water dispersible polymer resin and a fine powder polymer resin for water resistance and reinforcement of the foamed ceramic. The foam ceramic described in 1. 前記水分散性高分子樹脂が、アクリル、酢酸ビニール、アルキド、メラミン、スチレンブタジエンゴム溶液の中から選択されることを特徴とする請求項12に記載の発泡セラミック。   The foamed ceramic according to claim 12, wherein the water-dispersible polymer resin is selected from acrylic, vinyl acetate, alkyd, melamine, and styrene butadiene rubber solutions. 前記微細粉末高分子樹脂が、ポリエチレンテレフタレート(PET)、低密度ポリエチレン、高密度ポリエチレン、塩化ビニール樹脂(PVC)、ポリメタクリル酸メチル(PMMA)、ポリスチレン(PS)、ポリプロピレン(PP)、エチレンビニルアセテート(EVA)、ポリウレタン(PU)、ポリカプロラクトンの中から選択されて使われることを特徴とする請求項12に記載の発泡セラミック。   The fine powder polymer resin is polyethylene terephthalate (PET), low density polyethylene, high density polyethylene, vinyl chloride resin (PVC), polymethyl methacrylate (PMMA), polystyrene (PS), polypropylene (PP), ethylene vinyl acetate. The foamed ceramic according to claim 12, wherein the foamed ceramic is selected from (EVA), polyurethane (PU), and polycaprolactone. 前記ゲル化剤が、二酸化炭素ガス、ドライアイス、重炭酸塩、グリオキサル、エチレングリコールジアセテート、有機酸、無機酸の中から選択されることを特徴とする請求項1に記載の発泡セラミック。   The foamed ceramic according to claim 1, wherein the gelling agent is selected from carbon dioxide gas, dry ice, bicarbonate, glyoxal, ethylene glycol diacetate, organic acid, and inorganic acid. 前記ゲル化剤が、ケイ酸塩に対する化学量論的等量当量で導入されることを特徴とする請求項15に記載の発泡セラミック。   The foamed ceramic according to claim 15, wherein the gelling agent is introduced in a stoichiometric equivalent to silicate. 前記重炭酸塩が、重炭酸ナトリウム、重炭酸カリウム、重炭酸アンモニウムの中から選択されることを特徴とする請求項15に記載の発泡セラミック。   The foamed ceramic according to claim 15, wherein the bicarbonate is selected from sodium bicarbonate, potassium bicarbonate, and ammonium bicarbonate. 前記有機酸又は無機酸が、塩酸、硝酸、硫酸、燐酸、フッ酸、蟻酸、酢酸、クエン酸、マレイン酸、オレイン酸の中から選択されることを特徴とする請求項15に記載の発泡セラミック。   The foamed ceramic according to claim 15, wherein the organic acid or inorganic acid is selected from hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, formic acid, acetic acid, citric acid, maleic acid, and oleic acid. . 前記気泡剤を水で希釈する第1段階と、
前記水で希釈された気泡剤を発泡装置を利用して、多量の微細気泡を形成する第2段階と、
前記第2段階で得られた発泡物にケイ酸塩、セラミック粉末及び添加剤を混合して、セラミックスラリーを形成する第3段階と、
前記セラミックスラリーにゲル化剤を加え、前記セラミックスラリーの形状を維持して三次元シリカネットワークを形成する第4段階と、
前記セラミックスラリーを乾燥して内部の水分を除去し、前記添加剤を融着させて耐水性を増大させる第5段階とを含むことを特徴とする発泡セラミックの製造方法。
A first stage of diluting the foam with water;
A second step of forming a large amount of fine bubbles using a foaming device for the foamed agent diluted with water;
A third stage in which the foam obtained in the second stage is mixed with silicate, ceramic powder and additives to form a ceramic slurry;
Adding a gelling agent to the ceramic slurry, and maintaining a shape of the ceramic slurry to form a three-dimensional silica network;
A method for producing a foamed ceramic, comprising: drying the ceramic slurry to remove moisture inside, and fusing the additive to increase water resistance.
前記第2段階が、回転翼を備える発泡装置中で500〜12,000rpmの速度で気泡剤を回転させることにより気泡剤を高速分散させ、多量の微細気泡を形成することを特徴とする請求項19に記載の発泡セラミックの製造方法。   The second step is characterized in that the foaming agent is rotated at a speed of 500 to 12,000 rpm in a foaming apparatus having rotating blades to disperse the foaming agent at a high speed to form a large amount of fine bubbles. 19. A method for producing a foamed ceramic according to item 19. 前記第2段階が、コンプレッサーを備える発泡装置中で圧縮ガスを利用して微細気泡を形成することを特徴とする請求項19に記載の発泡セラミックの製造方法。   The method according to claim 19, wherein in the second step, fine bubbles are formed using a compressed gas in a foaming apparatus including a compressor. 前記第3段階が、発泡装置で発泡物、ケイ酸塩、セラミック粉末及び添加剤を混合してセラミックスラリーが形成されることを特徴とする請求項19に記載の発泡セラミックの製造方法。   The method according to claim 19, wherein the third step is to form a ceramic slurry by mixing foam, silicate, ceramic powder and additives in a foaming apparatus. 前記第4段階が、二酸化炭素ガス、ドライアイス、重炭酸塩、グリオキサル、エチレングリコールジアセテート、有機酸、無機酸の中から選択されたゲル化剤と、前記セラミックスラリーとを混合して三次元シリカネットワークを形成することを特徴とする請求項21に記載の発泡セラミックの製造方法。   In the fourth step, a gelling agent selected from carbon dioxide gas, dry ice, bicarbonate, glyoxal, ethylene glycol diacetate, organic acid, and inorganic acid is mixed with the ceramic slurry to obtain a three-dimensional structure. The method for producing a ceramic foam according to claim 21, wherein a silica network is formed. 前記第5段階が、空気による常温乾燥、オーブンによる熱風乾燥、極超短波を利用した加熱乾燥の中から選択された方式により乾燥されることを特徴とする請求項21に記載の発泡セラミックの製造方法。   The method for producing a foamed ceramic according to claim 21, wherein the fifth stage is dried by a method selected from room temperature drying with air, hot air drying with an oven, and heat drying using an ultra high frequency wave. . 前記オーブンによる熱風乾燥又は前記極超短波を利用した加熱乾燥が、80〜250℃でなされることを特徴とする請求項24に記載の発泡セラミックの製造方法。   25. The method for producing a foamed ceramic according to claim 24, wherein the hot air drying by the oven or the heat drying using the ultra high frequency is performed at 80 to 250 ° C. 前記第3段階は、粘度が5,000〜200,000cpsになるように前記セラミックスラリーを形成することを特徴とする請求項21に記載の発泡セラミックの製造方法。   The method according to claim 21, wherein in the third step, the ceramic slurry is formed to have a viscosity of 5,000 to 200,000 cps. 前記第4段階が、ケイ酸塩に対して化学量論的当量のゲル化剤を、前記セラミックスラリーに導入することを特徴とする請求項21に記載の発泡セラミックの製造方法。   The method for producing a foamed ceramic according to claim 21, wherein in the fourth step, a stoichiometric equivalent of a gelling agent with respect to silicate is introduced into the ceramic slurry. 前記添加剤が、前記発泡セラミックの耐水及び補強のために水分散性樹脂または微細粉末高分子樹脂の中から選択され、
前記第5段階が、前記添加剤である前記水分散性樹脂又は前記微細粉末高分子樹脂を融着させることを特徴とする請求項21に記載の発泡セラミックの製造方法。
The additive is selected from water-dispersible resin or fine powder polymer resin for water resistance and reinforcement of the foamed ceramic;
The method for producing a foamed ceramic according to claim 21, wherein in the fifth step, the water-dispersible resin or the fine powder polymer resin as the additive is fused.
気泡剤を水で希釈する第1段階と、
前記水で希釈された気泡剤を入れた発泡装置を利用して、多量の微細気泡を形成する第2段階と、
前記第2段階で得られた発泡物にケイ酸塩、セラミック粉末及び添加剤である水分散性樹脂又は微細粉末高分子樹脂を混合して、前記発泡装置内でセラミックスラリーを形成する第3段階と、
前記セラミックスラリーに、二酸化炭素ガス、ドライアイス、重炭酸塩、グリオキサル、エチレングリコールジアセテート、有機酸、無機酸の中から選択されるゲル化剤をケイ酸塩に対する化学量論的当量で供給し、前記セラミックスラリーの形状を維持して三次元シリカネットワークを形成する第4段階と、
前記セラミックスラリーを乾燥して内部の水分を除去し、前記水分散性樹脂又は前記微細粉末高分子樹脂を融着させて耐水性を増大させる第5段階とを含むことを特徴とする発泡セラミックの製造方法。
A first stage of diluting the foam with water;
A second step of forming a large amount of fine bubbles using a foaming device containing a foaming agent diluted with water;
A third stage in which the foam obtained in the second stage is mixed with a silicate, ceramic powder, and a water-dispersible resin or fine powder polymer resin as an additive to form a ceramic slurry in the foaming apparatus. When,
A gelling agent selected from carbon dioxide gas, dry ice, bicarbonate, glyoxal, ethylene glycol diacetate, organic acid, and inorganic acid is supplied to the ceramic slurry in a stoichiometric equivalent to silicate. A fourth stage of maintaining the shape of the ceramic slurry to form a three-dimensional silica network;
And a fifth step of increasing the water resistance by fusing the water-dispersible resin or the fine-powder polymer resin to dry the ceramic slurry to remove internal moisture. Production method.
JP2010502012A 2007-04-04 2008-03-31 Foamed ceramic having excellent heat insulating effect and soundproofing effect and method for producing the same Withdrawn JP2010532299A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070033447A KR100785652B1 (en) 2007-04-04 2007-04-04 Manufacture method of ceramic foam which superior to insulating effect
PCT/KR2008/001801 WO2008123671A2 (en) 2007-04-04 2008-03-31 Ceramic foam and method for manufacturing it

Publications (1)

Publication Number Publication Date
JP2010532299A true JP2010532299A (en) 2010-10-07

Family

ID=39141033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010502012A Withdrawn JP2010532299A (en) 2007-04-04 2008-03-31 Foamed ceramic having excellent heat insulating effect and soundproofing effect and method for producing the same

Country Status (3)

Country Link
JP (1) JP2010532299A (en)
KR (1) KR100785652B1 (en)
WO (1) WO2008123671A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079172A (en) * 2011-10-04 2013-05-02 Hoya Corp Ceramic porous body and method for producing ceramic porous body
KR101519864B1 (en) 2013-07-04 2015-05-14 고영신 Sound absorbing and adiabatic material having lightweight fireproof using expandable graphite and manufacturing method of the same
KR20190004577A (en) * 2017-07-04 2019-01-14 울산과학기술원 Insulation board, and apparatus and method for manufacturing the insulation board

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955621B1 (en) * 2009-04-01 2010-05-03 에스이엠 주식회사 Manufacture method of ceramic foam which superior to insulating effect by using by waste and natural gypsum
KR101129375B1 (en) * 2009-05-04 2012-03-20 유미선 Porous Ceramic Prepared From Sodium Silicate and Aerogel and A Method for Preparing Thereof
KR101138245B1 (en) * 2009-07-01 2012-04-24 성현산업 주식회사 A sound absorbing and insulating material for vehicle including vermiculite and manufacturing method thereof
KR101031103B1 (en) 2009-12-24 2011-05-09 주식회사 유신건축종합건축사사무소 The engineering method of constructuring architectural material with excellent property
KR101286259B1 (en) 2010-11-17 2013-07-18 주철완 Manufacture method of inorganic foam using geopolymer silica sol·gel method
PL2674409T3 (en) * 2011-02-08 2020-04-30 Ceilook, Sl Ceramic composition
KR101273398B1 (en) * 2011-07-11 2013-06-11 주식회사 알인텍 Nonfiring Insulation Having Electric Insulation and Heat Resistance and Method for Manufacturing the Same
KR101289807B1 (en) 2011-10-26 2013-07-26 반봉찬 Method for manufacture of fire-resistant MgO-board from serpentine powder
CN103465731B (en) * 2013-09-17 2015-11-11 山东永泰化工有限公司 Low noise pneumatic tire
WO2016076811A1 (en) * 2014-11-10 2016-05-19 Güden Mustafa Manufacturing of porous structural building materials
KR101646155B1 (en) 2015-12-23 2016-08-08 그렉 조 Fly ash composition for preparing a light-weight molded foam article and method for producing a light-weight molded foam article using them and a light-weight molded foam article made thereby
KR101718946B1 (en) * 2016-07-27 2017-03-23 이종철 Insulation composition for anti-sweating
US11807566B2 (en) * 2017-03-16 2023-11-07 Synthera Biomedical Private Limited Manufacture of porous glass and glass-ceramic particulate structures by gel casting
KR101892391B1 (en) 2017-05-22 2018-08-27 그렉 조 Method for manufacturing bottom ash molded foam article
KR102533684B1 (en) * 2017-09-25 2023-05-16 배경호 Composition for room temperature formable ceramic thermal insulation panel, room temperature formable ceramic thermal insulation panel formed therefrom, and preparing method thereof
CN110698197A (en) * 2019-08-08 2020-01-17 深圳光韵达光电科技股份有限公司 Ceramic 3D printing paste and preparation method thereof
CN110483082B (en) * 2019-09-17 2022-01-28 航天特种材料及工艺技术研究所 Micro-nano multi-scale nano heat-insulating material and preparation method thereof
CN111302830B (en) * 2020-04-03 2022-05-10 张家港市盛澳电炉科技有限公司 Preparation method of microporous high-temperature-resistant light refractory brick
CN111792908B (en) * 2020-07-21 2022-04-26 福建龙净环保股份有限公司 Ceramic fiber porous filter material reinforcing agent, preparation method thereof and ceramic fiber reinforcing material
KR102422149B1 (en) * 2020-09-17 2022-07-19 주식회사 온도기술센테크 Method for manufacturing porous ceramic by direct foaming method and porous ceramic manufactured thereby
CN112358314A (en) * 2020-10-31 2021-02-12 辽宁罕王绿色建材有限公司 Method for producing foamed ceramic by using piling mud
KR102285369B1 (en) * 2020-11-17 2021-08-03 주식회사 크린텍개발 Spraying method of aerogel insulation composition using silica sol-gel method
CN112876225B (en) * 2021-02-08 2023-08-01 新疆硅质耐火材料有限公司 Sintered high-temperature-resistant light heat insulation material and preparation method thereof
CN113321527A (en) * 2021-06-30 2021-08-31 陈宁 Novel composite ceramic and manufacturing method thereof
CN113956068B (en) * 2021-09-26 2022-11-29 江苏华之杰环境科技有限公司 Combined type micro-through hole foam ceramic plate for sound barrier and preparation method thereof
CN113896462A (en) * 2021-10-12 2022-01-07 华北水利水电大学 Method for strengthening cold-bending thin-wall steel column based on geopolymer foam concrete
KR102444232B1 (en) 2022-01-17 2022-09-19 (주)아키사운드 Ecofriendly sound-absorbing board and method for manufacturing the same
CN114394791B (en) * 2022-02-07 2022-10-04 武汉理工大学 Composite porous ceramic decorative plate and preparation method thereof
KR102493793B1 (en) 2022-08-30 2023-02-01 주식회사 넘버제로 Ecofriendly sound-absorbing board and method for manufacturing the same
CN115353411A (en) * 2022-09-05 2022-11-18 山东国材工程有限公司 Foamed ceramic sound insulation material and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3058174B2 (en) * 1988-09-20 2000-07-04 旭光学工業株式会社 Porous ceramics, dried body for producing the same, and methods for producing them
EP0360244B1 (en) * 1988-09-20 1993-12-29 Asahi Kogaku Kogyo Kabushiki Kaisha Porous ceramic sinter and process for producing same
KR0181779B1 (en) * 1996-11-08 1999-04-15 우덕창 Method for producing a lightweight bubble acoustic-absorptive block of a rigid type
US20030052428A1 (en) * 2001-07-02 2003-03-20 Toshiba Ceramics Co., Ltd. Production method for ceramic porous material
KR20030086955A (en) * 2003-10-02 2003-11-12 (주)우송산업 Manufacturing technology of autoclave lightweight concrete use of extensibility lightweight for manufacture of bulyon sandwitch pannel
KR20060043360A (en) * 2004-11-08 2006-05-15 오은영 Pannel
KR100641811B1 (en) * 2004-12-17 2006-11-02 신현창 The foamed ceramics shape of high strength and the making method thereof
KR100698873B1 (en) * 2005-06-29 2007-03-22 박충범 Inorganic light weight insulator and a process therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079172A (en) * 2011-10-04 2013-05-02 Hoya Corp Ceramic porous body and method for producing ceramic porous body
KR101519864B1 (en) 2013-07-04 2015-05-14 고영신 Sound absorbing and adiabatic material having lightweight fireproof using expandable graphite and manufacturing method of the same
KR20190004577A (en) * 2017-07-04 2019-01-14 울산과학기술원 Insulation board, and apparatus and method for manufacturing the insulation board
KR101997828B1 (en) * 2017-07-04 2019-07-08 울산과학기술원 Insulation board, and apparatus and method for manufacturing the insulation board

Also Published As

Publication number Publication date
WO2008123671A2 (en) 2008-10-16
WO2008123671A3 (en) 2008-12-04
KR100785652B1 (en) 2007-12-14

Similar Documents

Publication Publication Date Title
JP2010532299A (en) Foamed ceramic having excellent heat insulating effect and soundproofing effect and method for producing the same
KR100760040B1 (en) Manufacture method of foam ceramics
KR100760039B1 (en) Manufacture method of quick setting light weight bubble cement which superior to insulating effect
KR101286259B1 (en) Manufacture method of inorganic foam using geopolymer silica sol·gel method
KR101099025B1 (en) Manufacture method of ultra lightweight foam cement
KR101314741B1 (en) Manufacture method of inorganic foam using magnesia and its hardner at room temperature
JP6494618B2 (en) Geopolymer foam preparation for non-flammable, sound-absorbing and heat-insulating geopolymer foam components
KR101317357B1 (en) Manufacture method of inorganic foam using geopolymer as binder
KR101146220B1 (en) A high density fire resistive coating composition for ultra high strength concrete having finish function
KR101603669B1 (en) Mortar and method for fabricating thereof
CA3019760A1 (en) Geopolymer foam formulation
CN107265965B (en) Aerogel foam concrete building block and preparation method thereof
CN107266107B (en) Fibrofelt reinforced aerogel foamed concrete and preparation method thereof
CN107265962A (en) A kind of superthermal insulation aerogel foam concrete and preparation method thereof
KR100772124B1 (en) Incombustible composition and preparation method of incombustible material for architecture using the same
KR102200959B1 (en) Eco-friendly sound-absorbing non-combustible foam for construction with heat insulation and sound-absorbing function and its manufacturing method.
CN107265964B (en) Super heat insulation aerogel foamed concrete and preparation method thereof
JP6681272B2 (en) Composition and non-combustible material
US8846557B2 (en) Ceramic composition, porous ceramic heat insulating material using same, and preparation method thereof
CN102596854B (en) Elastic inorganic-organic hybrid foam
KR101300772B1 (en) Manufacture method for inorganic form of light weight using magnesia and its hardner without foaming step at room temperature
CN107266114A (en) A kind of aerogel heat-insulating masonry mortar and preparation method thereof
JP6556017B2 (en) Composition and incombustible material
JPH0656497A (en) Alumina cement composite material
KR100940618B1 (en) The composition of adiabatic blanket

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607