KR100785652B1 - Manufacture method of ceramic foam which superior to insulating effect - Google Patents

Manufacture method of ceramic foam which superior to insulating effect Download PDF

Info

Publication number
KR100785652B1
KR100785652B1 KR1020070033447A KR20070033447A KR100785652B1 KR 100785652 B1 KR100785652 B1 KR 100785652B1 KR 1020070033447 A KR1020070033447 A KR 1020070033447A KR 20070033447 A KR20070033447 A KR 20070033447A KR 100785652 B1 KR100785652 B1 KR 100785652B1
Authority
KR
South Korea
Prior art keywords
ceramic
foamed
foaming
acid
silicate
Prior art date
Application number
KR1020070033447A
Other languages
Korean (ko)
Inventor
박민화
Original Assignee
박민화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박민화 filed Critical 박민화
Priority to KR1020070033447A priority Critical patent/KR100785652B1/en
Application granted granted Critical
Publication of KR100785652B1 publication Critical patent/KR100785652B1/en
Priority to PCT/KR2008/001801 priority patent/WO2008123671A2/en
Priority to JP2010502012A priority patent/JP2010532299A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/88Insulating elements for both heat and sound
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/10Mortars, concrete or artificial stone characterised by specific physical values for the viscosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Nanotechnology (AREA)
  • Acoustics & Sound (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

A method for producing ceramic foam is provided to obtain a heat insulating and noise-absorbing material maintaining its foamed shape during curing and substituting for styrofoam or polyurethane foam, and to improve the cost efficiency and workability. A method for producing ceramic foam having heat insulating and noise-protecting effects comprises the steps of: diluting an animal or vegetable bubbling agent in water; forming a large amount of microbubbles by dispersing the bubbling agent with a high speed dispersion system or foaming system; mixing the foamed product with ceramic powder and additives to obtain ceramic slurry; gelling the ceramic slurry to form a three-dimensional silica network for maintaining the shape of the foamed ceramic slurry; and heating the foamed ceramic slurry to remove water therefrom and to fuse the water dispersible resin(emulsion resin, powder resin) contained in the ceramic slurry, thereby increasing the water resistance.

Description

단열 및 방음효과가 우수한 발포세라믹의 제조방법 { Manufacture method of ceramic foam which superior to insulating effect }Manufacture method of ceramic foam which superior to insulating effect}

도 1은 기포제에 의해 발포된 수용액과 규산염 및 첨가제를 포함시켜 이루어진 세라믹을 겔화단계를 통하여 발포세라믹을 제조하기 위한 개략 공정도.1 is a schematic process diagram for preparing a foam ceramic through a gelling step of a ceramic comprising an aqueous solution foamed by a foaming agent, a silicate and an additive.

도 2는 본 발명의 실시 예를 통하여 얻은 발포세라믹의 내수성을 확인하기 위하여 30일 동안 물에 침적한 후 발포성세라믹을 찰영한 사진도.Figure 2 is a photographic view of the foam ceramic after immersed in water for 30 days to confirm the water resistance of the foam ceramic obtained through an embodiment of the present invention.

본 발명은 단열 및 방음효과가 우수한 발포세라믹 제조방법에 관한 것으로서, 더욱 상세하게는 식물성 내지는 동물성 기포제를 수용액에 포함시켜 먼저 발포를 시키고, 이곳에 세라믹 분말, 규산염 및 첨가제를 첨가하여 미세다공성의 세라믹 슬러리상태로 제조하고, 이 때 3차원적 실리카네트워크를 제공하는 겔화단계를 제공하면, 발포체가 사라지지 않고 발포된 형상 원상태를 유지하면서 건조, 경화하여 다량의 미세발포체가 형성되도록 하는 발포세라믹 제조방법에 관한 것이다.The present invention relates to a foamed ceramic manufacturing method excellent in heat insulation and soundproofing effect, and more specifically, to include a vegetable or animal foaming agent in an aqueous solution to foam first, and to add a ceramic powder, silicate and additives to the microporous ceramic When preparing in a slurry state, and providing a gelation step to provide a three-dimensional silica network, foaming ceramics manufacturing method to form a large amount of fine foams by drying and curing while maintaining the original shape of the foam without disappearing foams It is about.

본원은 종래의 발포세라믹 내지는 발포시멘트(ALC)를 제조할 때와 같이 고온 의 공정이나 장 시간 가공공정이 필요치 않고, 상온에서도 짧은 시간에 견고하고 일정한 형상의 발포세라믹을 제공하여 경제성이 매우 우수하면서 단열 및 흡음효과가 뛰어나서 종래의 합성수지 스치로폼 내지는 발포성 폴리우레탄과 같은 발포성수지를 대체할 수 있는 발포세라믹 제조방법에 관한 것이다.The present application does not require a high temperature process or a long time processing process as in the case of manufacturing a conventional foam ceramic or foam cement (ALC), and provides a solid and uniform foam foam ceramic in a short time even at room temperature, and very economical The present invention relates to a foamed ceramic manufacturing method capable of replacing foamed resins such as synthetic resin styrofoam or foamed polyurethane with excellent insulation and sound absorption effects.

우리나라는 에너지 최빈국으로 우리가 필요로 하는 에너지의 거의 대부분을 외국에서 수입해 오고 있는 실정으로 한해 에너지 수입액은 500억 달러를 상위하고 있는데, 이는 전체 수입액의 20 % 이상 달하는 엄청난 금액규모이다. Korea is one of the poorest countries in the world, importing almost all of the energy we need from foreign countries. The amount of energy imports is over US $ 50 billion, which is more than 20% of total imports.

세계 12위의 무역대국이면서도 특별한 에너지 부존자원이 없는 우리나라의 여건을 감안할 때 에너지 이용의 효율성 제고는 필수적이다. Considering Korea's situation as the world's 12th largest trading power and without special energy resources, improving the efficiency of energy use is essential.

특히, 온실가스 배출의 83% 이상이 에너지 소비에서 발생하고 있는 우리의 현실에서 2005년 교토의정서 발효에 따라 에너지 절약의 필요성이 더욱 대두되고 있는 실정이다. In particular, in our reality, where more than 83% of greenhouse gas emissions are generated from energy consumption, the necessity of energy saving is increasing as the 2005 Kyoto Protocol enters into force.

국내 전체 에너지 소비량의 약 30%는 건축물을 통해 이뤄지는바, 건축물을 통한 에너지 낭비요인을 없애려면 철저한 단열시공이 필수적이며, 또한 소음은 심리적으로 사고능력의 저하, 휴식과 수면의 방해, 대화의 방해, 건전한 일상생활의 방해를 가져다 줄 수 있으며, 생리적으로는 피로의 증대, 조급함, 정신집중의 곤란, 작업에 대한 에너지 소비의 증대, 위액분비의 감소, 심혈관계의 영향, 침액의 분비 감소, 자율신경, 내분비계의 영향 및 수면방해를 영향을 미칠 수 있으므로 안락하고, 편안한 생활공간을 유지하기 위하여 단열재 및 방음재가 필요하며 이를 위한 단열재 및 방음재를 제조하는 과정 중에 필요한 열에너지를 최소화하는 것은 그 자체로서 가치가 있다.About 30% of the country's total energy consumption is achieved through buildings, so thorough insulation construction is essential to eliminate energy waste factors through buildings, and noise is psychologically impaired in thinking ability, disturbed rest and sleep, and disturbed conversation. May cause hindrances to healthy daily life, physiologically increased fatigue, impatience, difficulty in mental concentration, increased energy consumption for work, decreased gastric juice secretion, cardiovascular effects, decreased salivation, autonomy Insulation and sound insulation are necessary to maintain a comfortable and comfortable living space because it can affect nerves, endocrine system and sleep disturbance. Minimizing the heat energy required in the process of manufacturing insulation and sound insulation for this purpose is itself. It is worth it.

종래부터 단열효과를 극대화하기 위하여 미세한 다공성이 부여된 세라믹 내지 발포성 고분자재료를 단독으로 사용하거나, 방음효과를 높이기 위하여 공기층으로 형성된 다공성 세라믹과 소음을 흡수할 수 있는 흡음재료를 함께 첨가하여 사용하고 있으나 이는 발포성재료에 형성된 공기층 자체가 단열 및 흡음효과가 매우 우수하기 때문이다. Conventionally, in order to maximize the thermal insulation effect, ceramics or foamed polymer materials with fine porosity are used alone, or porous ceramics formed with air layers and sound absorbing materials that absorb noise are used together to increase the sound insulation effect. This is because the air layer itself formed on the foamable material has excellent heat insulation and sound absorption effects.

종래의 단열재 및 방음재류는 발포폴리스타이렌, 유리면, 발포폴리에틸렌, 폴리우레탄폼, 질석(Vermiculite), 퍼라이트(Perlite), 우레아폼, 셀룰로오즈보온재, 연질섬유판, 페놀폼 및 에어로겔 및 경량시멘트을 사용하고 있으나, 발포폴리스타이렌인 경우 단열효과 높고 경량으로 운반 및 시공성이 우수하나 최고안전 사용온도 70 oC로 고온, 자외선에 약하고 화재발생 시 착화나 유독가스의 발생 위험이 높아 인체에 치명적인 위험성을 주는 문제점을 갖고, 유리면인 경우 유리섬유사이에 밀봉된 공기층이 단열층으로 단열성 외에 불연성, 흡음성, 시공성, 운반성이 우수하고, 압축이나 침하에 의한 유효두께 감소, 함수에 의한 단열성 저하 우려가 없으나, 투습저항이 없으므로 별도의 방습층 설치가 필요하다는 문제점을 가지며, 발포폴리에틸린인 경우 폴리에틸렌수지에 발포제 및 난연제를 배합하여 압출발포시킨 후 냉각한 판상의 발포제 적층 열융착하여 자기소화성을 갖춘 보온판, 보온통으로 제조한 것으로써, 평균온도상의 열전도율 0.039 kcal/mhoC이하이기 때문에 단열효과가 우수하나 최고 안전 사용온도 80 oC로 화재발생 시 유독가스의 방출로 인한 인체 에 치명적일 수 있다는 문제점을 갖는다. Conventional insulation and sound insulation materials use foamed polystyrene, glass wool, foamed polyethylene, polyurethane foam, vermiculite, perlite, urea foam, cellulose insulation, soft fiber board, phenol foam and aerogel and lightweight cement, but foamed In case of polystyrene, it has high insulation and light weight, and has excellent transport and construction. However, it is weak to high temperature and ultraviolet rays with the highest safety operating temperature of 70 o C. It has a high risk of ignition or toxic gas in case of fire. In the case of the air layer sealed between the glass fibers as a heat insulating layer, in addition to heat insulation, non-combustible, sound-absorbing, workability, transportability, there is no fear of reducing the effective thickness due to compression or settlement, and lowering the heat insulation by water, but there is no moisture resistance The problem is that the installation of a moisture-proof layer has a problem, in the case of expanded polyethylene After extrusion foaming by the ethylene resin blended with a blowing agent and a flame retardant with a self-extinguishing fused blowing agent lamination of a cooling plate-shaped heat insulating plate, written as prepared in boontong, thermal insulation because the thermal conductivity 0.039 kcal / mh o C or less on the average temperature Although it is excellent in effect, it has the problem that it can be fatal to human body due to the emission of toxic gas in case of fire with the maximum safe working temperature of 80 o C.

폴리우레탄인 경우 폴리올(polyol), 폴리이소시아네이트(polyisocyanate) 및 발포제, 난연성을 위한 첨가제가 주원료이며, 폴리우레탄폼을 발포성형한 유기발포체(독립기포구조)의 단열 및 방음재로써, 내열성(최고안전사용온도 100 oC)보다는 단열성이 우수하여 냉동기기 등의 보냉재로 적합하나 시공 후 부피가 줄고 열전도율이 저하되는 단점이 있으며, 이 또한 화재발생 시 다른 발포성고분자 재료와 동일하게 유독가스가 방출된다는 문제점을 갖고, 질석(Vermiculite)인 경우 운모계 광석으로 1000 oC 이상의 온도에서 소성한 유공형의 무기질로 단열, 보온, 불연, 방음, 결로방지에 장점을 가지고 있으며, 퍼라이트인 경우 화산석으로된 진주석을 900~1200 oC로 소성한 후 분쇄하여 소성?팽창한 것으로 내부에 미세공극을 가지는 경량구상형의 작은 입자로 구성되어 경량골재 및 단열재료로 이용하는 것으로 단열, 보온, 흡음에 효과가 있으나, 질석이나 퍼라이트와 같은 광물을 발포시키기 위해서 1,000 oC 이상의 높은 에너지가 필요하다는 문제점을 가지며, 에어로겔인 경우 머리카락 1만분의 1 굵기인 구조체들이 솜사탕처럼 얽혀서 공기구멍이 전체부피의 95 %를 차지함에 따라 단열과 방음효과가 매우 뛰어나다는 장점을 가지고 있으나 매우 고가라는 문제점으로 일부 첨단산업의 경우에 제한적으로 이용하고 있다. In case of polyurethane, polyol, polyisocyanate, foaming agent, and additives for flame retardancy are the main raw materials.Thermal insulation and sound insulation of foamed polyurethane foam (independent bubble structure), heat resistance (highest safety use) It is suitable for cold storage materials such as refrigeration equipment because it has better thermal insulation than temperature 100 o C), but it has the disadvantage of decreasing volume after construction and lowering thermal conductivity. Also, in case of fire, toxic gas is released like other foaming polymer materials. In the case of vermiculite, it is a mica-based ore, which is a porous inorganic material fired at a temperature of 1000 o C or more, and has the advantage of insulation, insulation, non-combustibility, soundproofing, and condensation prevention. 900 ~ 1200 o C and then pulverized and then fired to the fired? inflation one to consist of small particles of a light-weight spherical type having fine voids therein Lightweight aggregate, and to utilize a heat-insulating material, but the effect on the thermal insulation, thermal insulation, sound absorption, has a problem that it requires more than 1,000 o C high energy in order to foam the same minerals and vermiculite or peorayiteu, a thickness of the case of airgel hair 1 manbun Phosphorus structures are entangled like cotton candy, so that the air hole occupies 95% of the total volume, which has the advantage of excellent insulation and soundproofing effects, but it is limited in some high-tech industries due to its high cost.

경량시멘트의 경우 결합제로서 가격이 저렴한 시멘트를 이용하기 때문에 경제성이 있는 발포체를 제공할 수 있으나, 시멘트에 포함된 6가크롬(Cr6 +)에 의한 호 흡기질환 및 발암의 원인이 될 수 있으며, 경량시멘트를 제조하기 위해서는 고온 고압의 반응기(오토클래이브)에서 양생을 하여야 하기 때문에 경량시멘트를 제조하기 위한 설치비에 대한 경제적 부담을 가중시킬 뿐만 아니라 발포된 시멘트를 경화시키기 위하여 높은 열에너지가 필요하고, 시멘트의 양생을 위해 장시간이 필요하다는 문제점을 갖는다.In the case of lightweight cement, it is possible to provide an economical foam because it uses low-cost cement as a binder, but may cause respiratory diseases and carcinogenesis caused by hexavalent chromium (Cr 6 + ) contained in cement. In order to manufacture lightweight cement, curing must be done in a high-temperature, high-pressure reactor (autoclave), which not only increases the economic burden on the installation cost for manufacturing lightweight cement, but also requires high thermal energy to cure the foamed cement. There is a problem that a long time is required for curing the cement.

이와 같이 지금까지 단열재 및 방음재로 개발되어 제공되고 있는 발포재는 석유화학제품인 경우 화재발생 시 유독가스 방출에 의한 인체에 치명적인 위해를 가할 위험성이 매우 높을 뿐만 아니라 환경오염을 가속화시킬 수 있으며, 발포세라믹이나 경량시멘트인 경우 대규모의 설비시스템이 필요하고, 고온의 공정이 필요하거나 제조공정에 장시간의 처리공정 필요하기 때문에 에너지손실이 클 뿐만 아니라 생산력이 떨어지는 문제점을 가진다. As such, the foam material, which has been developed and provided as a heat insulating material and a soundproof material, has a high risk of causing fatal harm to the human body due to the release of toxic gases in the event of a fire, as well as accelerating environmental pollution. In the case of lightweight cement, a large-scale facility system is required, and a high-temperature process or a long-term treatment process is required for the manufacturing process, so that the energy loss is large and the productivity is lowered.

특히 발포세라믹인 경우 압축성형을 하기 위하여 일정한 틀에 성형을 하기 위한 많은 설비비가 필요하거나 에어로겔과 같이 가격이 고가인 원료를 사용해야 하는 단점을 가지고 있기 때문에 가격경쟁력을 잃을 뿐만 아니라 에너지절감을 위한 건축 단열 및 방음소재로써 다방면의 분야에 제한적으로 적용하고 있는 실정이다.In particular, in the case of foamed ceramics, a large amount of equipment cost is required for forming a mold in order to perform compression molding, or it has a disadvantage of using expensive raw materials such as aerogels. And as a soundproofing material is being applied to a limited number of fields.

상기의 제반 문제점을 해소하기 위하여 그동안 단열 및 방음재를 위한 다공성의 경량 구조체를 제공하기 위한 연구가 이루어진 선행기술 자료들을 살펴보면, 한국공개특허 2006-0099979에서는 액상의 규산소다에 산(acid) 또는 양쪽성산화물 또는 양쪽성수산화물을 투입하여 제조한 불완전 겔화규산소다를 바인더로 사용하여 제조한 세라믹발포성형물로 내부에 중공부를 형성시킨 구조로 제조하는 방법을 제안하고 있으며, 한국공개특허 2006-0092782에서는 분쇄 발포된 질석, 진주암, 흑요석, 송지석을 포함하는 각종 발포세라믹입자를 단독 또는 혼용하고, 석고, 시멘트, 지점토, 규산소다, 미완성겔화규산소다, 규산소다시멘트 등을 포함하는 각종 무기접착제 1종 이상을 혼합하며, 기타의 강화물질로서 스틸화이바, 섬유쇄설물, 종이분쇄물(파우더형 포함), 유리솜(그라스울)을 혼합하여 제조하거나, 철망 또는 합성수지망을 내부에 장착하므로써 내구성을 강화한 세라믹발포성형물을 제공하는 방법을 제안하고 있으며, 미국공개특허 2006-0151903에서는 규산염을 주성분으로 다공성을 제공하기 위하여 운반가스로 산소, 질소, 공기, 일산화탄소, 이산화탄소 가스를 불어주어 폼(foam)을 제공하고자 하는 기술구성을 개시하고 있으며, 한국공개특허 2003-0086955에서는 천연의 질석을 고온에서 가열하여 공극이 형성된 팽창질석과 계면활성제인 라우릴 알킬벤젠 설포네이트계 재료를 이용하여 공기밀도가 약 40 내지 50 kg/cm2 이 되도록 조절하고, 생성된 기포와 시멘트 슬러리와 팽창질석을 혼합하여 화재 시에도 불에 타지 않고 유독가스의 방출이 없는 건축물 외벽 마감 및 단열성을 고려한 불연성 경량기포 콘크리트 샌드위치 판넬을 제안하고 있다. In order to solve the above problems, the prior art data that have been studied to provide a porous lightweight structure for insulation and soundproofing materials have been studied. In Korean Patent Laid-Open Publication No. 2006-0099979, acid or amphoteric acid in a liquid sodium silicate is disclosed. Ceramic foam molded by using incomplete gel silicate silica prepared by adding a cargo or amphoteric hydroxide as a binder is proposed a method of manufacturing a structure having a hollow portion formed therein, Korean Patent Laid-Open No. 2006-0092782 One or more kinds of inorganic adhesives including gypsum, pearlite, obsidian, and pine stone alone or in combination, including gypsum, cement, clay, sodium silicate, unfinished gel silicate, and sodium silicate cement. Mixed with other reinforcing materials such as steel fibres, fiber crushed water, paper crushed products (including powder), Produced by mixing the lysosomes (glass wool) or by mounting a wire mesh or synthetic resin network inside to provide a method for providing a durable ceramic foam molding, US Patent Publication 2006-0151903 to provide porosity based on silicate as a main component It discloses a technical configuration to provide a foam by blowing oxygen, nitrogen, air, carbon monoxide, carbon dioxide gas as a carrier gas, Korean Patent Laid-Open Publication No. 2003-0086955 by heating the natural vermiculite at high temperature to expand the pores formed Using a vermiculite and a lauryl alkylbenzene sulfonate-based material, which is a surfactant, the air density is adjusted to about 40 to 50 kg / cm 2 , and the resulting bubbles, cement slurry, and expanded vermiculite are mixed and burned in a fire. Non-flammable, lightweight foamed concrete considering the exterior finish and insulation of building without toxic gas emission Propose a sandwich panel.

상기 특허 공개자료 중 한국공개특허 2006-0099979에서는 발포성형물을 경량화하여, 흡음성과 차음성 및 단열성을 증대시킬 수 있으나 내부에 중공부가 형성된 불완전겔화규산소다를 바인더로 사용하여 세라믹발포성물을 제공하고자 하는 경우 규산소다에 산(acid) 또는 양쪽성산화물 또는 양쪽성수산화물을 투입하여 제조한 불완전겔상(콜로이드상)의 물질인 불완전겔화규산소다를 단순히 결합제인 바인더로 사용하고 있을 뿐 일반적인 세라믹발포 성형물을 제조하는 것에 불과하기 때문에 기술적 진보가 크지 않다. In Korean Patent Laid-Open Publication No. 2006-0099979 of the patent publication, it is possible to increase the sound-absorbing, sound-absorbing, and heat insulating properties by reducing the weight of the foamed molding, but to provide a ceramic foaming material by using incomplete gel silicate silica having a hollow formed therein as a binder. In this case, an incomplete gel silicate, which is an incomplete gel-like (colloidal) material prepared by adding an acid, an amphoteric oxide or an amphoteric hydroxide to sodium silicate, is simply used as a binder to prepare a general ceramic foam molding. Technological advances aren't great because they're just things to do.

또한 상기에서 제안한 2006-0092782에서는 세라믹에 포함된 공기층에 의해 단열성을 제공할 수 있으나 발포세라믹을 제조하기 위하여 천연원료인 질석, 진주암, 흑요석, 송지석 등을 포함하는 각종 암석을 원하는 크기로 분쇄하고, 상기 분쇄입자를 800~1400 oC의 높은 고열로 가열하여야 하기 때문에 발포세라믹을 제조하기 위한 많은 열에너지가 필요하고, 제조하기 위한 설비비가 많이 소요된다는 단점을 가지고 있으며, 이 또한 발포세라믹입자에, 석고, 시멘트, 지점토, 규산소다, 미완성겔화규산소다, 규산소다시멘트 등을 포함하는 무기접착제를 혼합한 것에 불과하기 때문에 기술적 진보성이 그다지 크지 않다.In addition, in 2006-0092782 proposed above, it is possible to provide heat insulation by the air layer included in the ceramic, but in order to manufacture foamed ceramics, various rocks including natural materials such as vermiculite, pearlite, obsidian, and pine stone are crushed to a desired size. In addition, since the pulverized particles must be heated to a high temperature of 800 to 1400 o C, a large amount of thermal energy is required to manufacture the foamed ceramics, and a lot of equipment costs are required to prepare the foamed ceramic particles. The technical progress is not so great because it is only a mixture of inorganic adhesives including gypsum, cement, clay, sodium silicate, unfinished gel silicate, and sodium silicate cement.

상기 특허 중 미국공개특허 2006-0151903에서는 세라믹발포와 같이 구체적으로 어떠한 대상물질에 대해 제안을 하고 있지 않을 뿐만 아니라 단순히 산소, 질소, 공기, 일산화탄소, 이산화탄소와 같이 가스 상태의 운반가스를 규산염이 포함된 매체에 불어주어 가스에 의한 폼(foam)을 형성시켜 주는 무기결합재(Inorganic binder)를 이용하는 기술구성으로 대규모 시설이 필요하며 경제적 적용이 어려울 것으로 판단된다. US Patent Publication No. 2006-0151903 of the above patents do not specifically propose any target material, such as ceramic foam, as well as simply carrier gas in the gaseous state, such as oxygen, nitrogen, air, carbon monoxide, carbon dioxide, etc. It is a technical construction that uses an inorganic binder that blows into the medium to form a foam by gas. Therefore, a large-scale facility is required and economic application is difficult.

상기 특허 중 한국공개특허 2003-0086955는 계면활성제에 의해 우수한 발포력을 제공하고, 무기결합제로서 시멘트를 이용하여 경제성을 제공할 수 있으나, 실 시 예를 살펴보면 경량시멘트의 경화체를 형성하기 위한 양생시간이 1~2일간의 장시간이 소요되기 때문에 생산성이 매우 떨어진다는 문제점을 갖고 이 역시도 경제적 적용이 어려울 것으로 판단된다. Korean Patent Laid-Open Publication No. 2003-0086955 of the above patent provides excellent foaming power by surfactants and economics by using cement as an inorganic binder. However, the curing time for forming a cured body of lightweight cement is shown in the examples. This takes a long time of 1-2 days, so productivity is very low and it is also difficult to apply economically.

이에 본 발명자는 종래의 단열재 및 흡음재로 석유화학제품인 발포성수지를 대체시키기 위한 제품으로, 화재발생 시 유독가스 방출에 의한 치명적인 인명피해를 없이하고자 규산염이 함유된 세라믹 분말과 발포제를 혼합하여 일정한 형상으로 발포를 시키고, 이 때 3차원적 실리카네트워크를 제공하는 겔화단계를 제공하여 발포된 발포체가 전혀 사라지지 않고 발포된 형상을 그대로 유지하면서 경화시키는 구조의 발포세라믹 물품을 제공하고자 하는 목적을 갖는다.Therefore, the present inventors are a product for replacing the foaming resin, which is a petrochemical product, with a conventional heat insulating material and a sound absorbing material, by mixing ceramic powder containing silicate and the foaming agent in a predetermined shape in order to avoid fatal injury to the toxic gas during fire. It is an object of the present invention to provide a foamed ceramic article having a structure in which a foaming step is provided, and a gelation step of providing a three-dimensional silica network is provided so that the foamed foam does not disappear at all and the foamed shape is kept intact.

본원의 발포세라믹 물품은 종래의 발포물품을 제조할 때와 같이 고온공정이 필요치 않은 상태에서 일정한 형태의 다량의 미세한 발포세라믹을 제공하여 단열효과가 우수하면서도 간단한 제조공정으로 발포세라믹을 제조할 수 있는 방법을 제공하고자 하는 목적을 갖는다.The foamed ceramic article of the present application provides a large amount of fine foamed ceramics in a certain form in a state where high temperature processes are not required as in the case of manufacturing a conventional foamed article, and thus, the foamed ceramics can be manufactured by a simple manufacturing process with excellent insulation effect. It is intended to provide a method.

본원은 출원인의 선 출원(발명의 명칭: 발포세라믹 제조방법)기술을 다양한 분야에 적용하기 위하여 연구하는 과정 중에 선 출원된 발명보다 발포세라믹의 물성을 증진시키면서 생산성을 더욱 높일 수 있는 연구결과를 확인하고 후속출원을 하게 된 것으로, 본 발명은 경량의 세라믹 발포체를 제조하는 과정 중에 고온이 필요치 않으며, 짧은 시간에 간단한 제조공정으로 종래의 석유화학제품인 발포성수지 를 대체할 수 있는 단열 및 방음효과가 우수한 발포세라믹 물품을 얻을 수 있음을 확인하여 완성된 발명이다.The present application confirms the results of research that can increase productivity while enhancing the physical properties of foamed ceramics compared to the inventions applied in the process of applying the applicant's prior application (name of the invention: foamed ceramic manufacturing method) to various fields. And the subsequent application, the present invention does not require high temperature during the process of manufacturing a lightweight ceramic foam, and has a good insulation and sound insulation effect that can replace the conventional petrochemical foam resin by a simple manufacturing process in a short time The invention is completed by confirming that a foamed ceramic article can be obtained.

또한 본 발명의 또 다른 목적은 세라믹의 물성과 단열 및 방음특성을 요구하면서 경량의 지지체가 요구되는 건축분야에서 본원의 발포세라믹 물품을 이용시키고자 하는 목적도 갖는다.Still another object of the present invention is to use the foamed ceramic article of the present application in the construction field requiring a lightweight support while requiring physical properties of the ceramic and insulation and sound insulation.

본 발명은 단열 및 방음효과가 우수한 발포세라믹 제조방법에 관한 것으로서, 더욱 상세하게는 식물성 내지는 동물성 기포제를 수용액에 포함시켜 먼저 발포를 시키고, 이곳에 세라믹 분말, 규산염 및 첨가제를 첨가하여 미세다공성의 세라믹 슬러리상태로 제조하고, 이 때 3차원적 실리카네트워크를 제공하는 겔화단계를 제공하면, 발포체가 사라지지 않고 발포된 형상 원상태를 유지하면서 건조, 경화하여 다량의 미세발포체가 형성되도록 하는 발포세라믹 제조방법에 관한 기술사상을 갖는다.The present invention relates to a foamed ceramic manufacturing method excellent in heat insulation and soundproofing effect, and more specifically, to include a vegetable or animal foaming agent in an aqueous solution to foam first, and to add a ceramic powder, silicate and additives to the microporous ceramic When preparing in a slurry state, and providing a gelation step to provide a three-dimensional silica network, foaming ceramics manufacturing method to form a large amount of fine foams by drying and curing while maintaining the original shape of the foam without disappearing foams Has a technical idea of

상기 기술사상을 구현하기 위한 본 발명의 일 실시양태는 간략하게 언급하면, 먼저 발포물을 준비하기 위한 전 단계로 식물성 내지는 동물성 기포제를 물에 혼합시켜 희석 및 분산시키는 혼합단계를 통하여 혼합물에 다량의 미세기포를 형성시키는 예비 발포단계; 상기 예비 발포물에 규산염, 세라믹분말 및 첨가제를 혼합하여 슬러리 상태의 세라믹슬러리 혼합물을 얻되 혼합물이 발포형상을 그대로 유지시키도록 하기 위해 3차원적 실리카네트워크를 형성시키기 위한 겔화단계; 상기 겔 화단계에서 다량의 미세기포가 형성되어 일정한 발포형상을 갖는 발포세라믹혼합물 내부의 수분을 제거하고 발포세라믹 내부에 포함된 수분산성수지(에멀젼수지, 분말수지)를 열원에 의해 융착시켜 내수성을 높여 주기 위한 가열단계; 를 포함하여 이루어지는 것을 특징으로 하여 단열 및 방음효과가 우수한 발포세라믹을 얻는 제조방법에 특징을 갖는다.One embodiment of the present invention for implementing the above technical concept is briefly mentioned, first of all, in order to prepare a foam, a mixture of vegetable or animal foam is mixed with water to dilute and disperse a large amount of the mixture in the mixture. A preliminary foaming step of forming microbubbles; A gelation step of forming a three-dimensional silica network so as to mix silicate, ceramic powder and additives with the preliminary foam to obtain a ceramic slurry mixture in a slurry state so that the mixture maintains the foam shape; In the gelation step, a large amount of micro-bubbles are formed to remove moisture in the foamed ceramic mixture having a predetermined foaming shape, and the water-dispersible resin (emulsion resin, powdered resin) contained in the foamed ceramic is fused by a heat source for water resistance. A heating step for raising; It characterized by comprising a, characterized in that the manufacturing method for obtaining a foamed ceramic excellent in thermal insulation and soundproofing effect.

이하, 본원의 기술사상을 구현하기 위한 구체적 적용예를 상세히 설명하면 다음과 같다.Hereinafter, a detailed application example for implementing the technical idea of the present application will be described in detail.

상기 발포물을 준비하기 위한 단계에서 사용 가능한 기포제는 동물성 기포제라 불리우는 아미노산계와 식물성 기포제라 불리우는 알킬벤젠 설포네이트계 내지는 소디움 라우릴 설페이트와 이의 에스테르를 주원료로 하는 기포제를 단독 내지는 혼합 후 물과 희석하여 사용할 수 있다. The foaming agent that can be used in the preparation of the foam is diluted with water alone or after mixing a foaming agent based on an amino acid system called an animal foaming agent and an alkylbenzene sulfonate type or a sodium lauryl sulfate and an ester thereof called a vegetable foaming agent. Can be used.

이 때 물은 하기의 혼합단계에서 규산염과 반응하여 상대적으로 결합력이 낮아질 수 있는 알칼리토금속류가 다량 포함된 물을 제외하고는 특별한 제한 없이 수돗물, 지하수, 공업용수를 사용할 수 있다. At this time, tap water, groundwater, and industrial water may be used without particular limitation, except for water containing a large amount of alkaline earth metals, which may react with silicate in the mixing step as described below.

상기 기포제는 발포된 기포가 소포되지 않고 장기간 유지하기 위해서는 동물성 기포제를 사용하는 것이 유리할 수 있으며, 기포발생 과정 중 기포제 자체에서 발생하는 냄새를 피하기 위해서는 식물성 기포제를 사용하는 것이 유리할 수 있다.The foaming agent may be advantageous to use an animal foaming agent in order to maintain the foamed foam for a long time without foaming, it may be advantageous to use a vegetable foaming agent to avoid the odor generated by the foaming agent itself during the foaming process.

기포제의 첨가량은 물을 100중량부로 기준으로 할 때 0.1 ~10 중량부를 첨가할 수 있으며, 바람직하게는 0.25~8.5 중량부가 유리하며, 더욱 바람직하게는 0.5~7.5 중량부를 혼합하는 것이 유리한 바, 기포제가 0.1 중량부 이하로 함유할 경우 발포력이 낮아 미세한 다공성의 기포가 형성될 가능성이 희박하다는 단점을 가지고 있으며, 기포제가 10 중량부를 초과하여 희석될 경우 다량의 미세한 기포를 형성할 수 있으나 기포제가 유기물로 구성되어 있기 때문에 세라믹 분말과의 결합력이 떨어질 뿐만 아니라 화재발생 시 기포제의 열분해에 의한 유독가스가 다량 발생할 우려가 있으며, 가격이 비교적 고가이기 때문에 상기 제안한 비율로 첨가해야 바람직하다.The addition amount of the foaming agent may be added 0.1 to 10 parts by weight based on 100 parts by weight of water, preferably 0.25 to 8.5 parts by weight, more preferably from 0.5 to 7.5 parts by weight, it is advantageous to mix the foaming agent When the content is less than 0.1 parts by weight, the foaming power is low, so it is unlikely that a fine porous bubble is formed. When the foaming agent is diluted to more than 10 parts by weight, a large amount of fine bubbles can be formed, but the foaming agent is Since it is composed of organic materials, not only the bonding strength with ceramic powder is lowered, but also a large amount of toxic gas may be generated due to thermal decomposition of the foaming agent in the event of a fire.

상기 발포단계는 큰 제한을 두지 않으며, 기포제 희석단계에 의해 제공된 용액을 미세한 다량의 기포를 발생시킬 수 있으면 무관하다. 발포단계는 모터의 축으로부터 장착된 회전날개의 분산력을 이용한 발포방법 내지는 콤프레셔(compressor)가 장착된 발포기를 사용할 수 있는바, 적은 량의 기포제가 필요한 경우 모터의 축으로부터 장착된 회전날개를 이용한 발포방법을 이용하는 것이 유리하며, 다량의 기포제가 필요한 경우 콤프레셔가 장착된 발포기를 사용하는 것이 유리하다. The foaming step is not particularly limited, and it is irrelevant if the solution provided by the foaming agent dilution step can generate a fine amount of bubbles. The foaming step may use a foaming method using a dispersing force of the rotary blades mounted from the shaft of the motor or a foamer equipped with a compressor. If a small amount of foaming agent is required, foaming using the rotary blades mounted from the shaft of the motor is required. It is advantageous to use the process, and it is advantageous to use a foamer equipped with a compressor if a large amount of foaming agent is required.

모터의 축으로부터 장착된 회전날개를 이용할 경우 500~12,000 rpm의 회전속도를 이용할 수 있으며, 믹서(Mixer), 디졸버(Dissolver), 호머믹서(Homo mixer)가 포함되어 제공될 수 있으며, 콤프레셔(compressor)가 장착된 발포기를 사용할 경우 다량으로 균일하고, 미세한 공기를 만들어 줄수 있는 것은 사용 가능하며, 이는 콤프레서에 의해 공기압력을 가하여 생성되는 공기 기포의 밀도를 조절시킴으로 가능하게 된다.When using a rotor blade mounted from the shaft of the motor, a rotation speed of 500 to 12,000 rpm can be used, and a mixer, a resolver, a home mixer may be included, and a compressor ( When using a foaming machine equipped with a compressor, it is possible to use a large amount of uniform and fine air, which can be used by adjusting the density of air bubbles generated by applying air pressure by the compressor.

상기 혼합단계는 예비발포단계에서 형성된 기포가 소포되지 않고 세라믹분말, 규산염 및 첨가제를 균일하게 혼합되는 것을 제외하고는 큰 제한을 두지 않으 며, 혼합기에 의해 슬러리상태로 유지되도록 균일하게 혼합되며 이 때 세라믹분말을 100 중량부로 기준으로 할 때, 20~160 중량부의 규산염을 혼합하는 것이 유리하고, 바람직하게는 40~140 중량부가 유리하며, 가장 바람직하게는 60~110 중량부가 유리한 바, 규산염이 20 중량부 이하로 함유할 경우 3차원적 실리카 네트워크를 제공하는 겔화단계를 제공한다 할지라도 결합력이 낮을 뿐만 아니라 이로 인하여 발포된 세라믹발포체가 원상태의 슬러리상태로 가라앉을 가능성이 높으며, 규산염이 140 중량부 이상으로 함유할 경우 결합력이 우수한 발포세라믹을 제공할 수 있으나 과량의 규산염 첨가로 인한 경제성이 떨어지기 때문에 상기 비율로 첨가해야 바람직하다. The mixing step does not place a large limit except that the bubbles formed in the pre-expanding step is uniformly mixed with the ceramic powder, silicate and additives, and is uniformly mixed so as to remain in the slurry state by the mixer. When the ceramic powder is based on 100 parts by weight, it is advantageous to mix 20 to 160 parts by weight of silicate, preferably 40 to 140 parts by weight, and most preferably 60 to 110 parts by weight. When contained in parts by weight, even if the gelation step of providing a three-dimensional silica network provides a low bonding strength, it is highly likely that the foamed ceramic foam to sink to the original slurry, 140 parts by weight of silicate If it contains more than that, it can provide foam ceramic with excellent bonding strength. It is preferable to add it in the above ratio because of the low economic efficiency.

이 때 슬러리상태는 5,000~200,000 cps의 점도를 유지하는 것이 유리하며, 바람직하게는 15,000~180,000 cps가 유리하며, 더욱 바람직하게는 35,000~160,000 cps가 바람직하며, 가장 바람직하게는 50,000~150,000 cps가 유리한 바, 점도가 5,000 cps 이하일 경우 점도가 낮아 미세 발포된 세라믹슬러리가 형상이 복잡한 몰드(mold)까지 유입될 가능성이 높다는 장점을 가지고 있으나, 점도가 낮기 때문에 소포될 가능성이 높아 본 발명의 기술적 사상과 근접하지 않으며, 점도가 200,000 cps이상일 경우 유동성이 작아 몰드형상의 모서리과 같은 곳에 혼합된 슬러리를 제공하지 못할 뿐만 아니라 다량의 미세발포체를 제공할 수 없다는 문제점이 나타나기 때문에 상기 점도의 범위를 지키는 것이 바람직하다. At this time, the slurry state is advantageous to maintain the viscosity of 5,000 ~ 200,000 cps, preferably 15,000 ~ 180,000 cps, more preferably 35,000 ~ 160,000 cps, most preferably 50,000 ~ 150,000 cps Advantageously, when the viscosity is 5,000 cps or less has the advantage that the low viscosity, finely foamed ceramic slurry is likely to flow into the mold complex shape, but because of the low viscosity it is highly likely to be defoamed, the technical idea of the present invention If the viscosity is not more than 200,000 cps, the fluidity is low, and it is preferable to maintain the above-mentioned viscosity range because it does not provide a slurry mixed at the corners of the mold shape and also cannot provide a large amount of microfoam. .

상기 규산염은 물에 용해되거나 균일하게 분산되는 것을 제외하고는 큰 제한을 두지 않으며, 1종~4종의 용액형 규산나트륨 내지는 분말형 규산나트륨, 규산칼 륨, 규산리튬, 알루미늄실리콘산나트륨 중에 선택되어지는 1종 내지는 1종 이상이 선택되어지고, 바람직하게는 1종~4종의 용액형 규산나트륨 내지는 규산칼륨 내지는 알루미늄실리콘산 나트륨을 이용하는 것이 유리하며, 더욱 바람직하게는 1종~4종의 규산나트륨, 알루미늄실리콘산 나트륨이 유리하고, 가장 바람직하게는 3종의 규산나트륨을 이용하는 것이 유리한바 규산칼륨과 규산리튬은 본 발명의 최종 발포세라믹이 제조될 때 대체적으로 결합력이 우수하고, 내수성이 우수한 발포세라믹을 제공할 수 있으나, 가격이 고가라는 단점을 가지며, 알루미늄실리콘산 나트륨인 경우 대체적으로 가격이 저렴하나 알루미늄과 실리콘이 함께 결합된 규산염으로서 상대적인 실리카의 함량이 적어지기 때문에 본 발명의 결합력이 우수한 발포세라믹을 제공하기에 기술적 사상에 다소 미흡하고, 분말형 규산나트륨은 물에 명확히 용해가기 위하여 열원이 필요하거나 장시간 필요하게 되며, 1종~4종의 용액형 규산나트륨 중 1종의 규산나트륨(SiO2/Na2O의 mole ratio: 2.1~2.3)은 점도가 100,000 cps 이상으로 점도가 매우 크기 때문에 슬러리상태로 조절하기 위하여 물을 공급해야 됨에 따라 상대적으로 결합력이 떨어질 수 있다는 단점이 있으며, 특히 동절기에 이루어지는 작업에서는 어름과 같이 고형화될 확률이 높아 작업성이 매우 떨어진다는 단점이 있으며, 규산나트륨 2종(SiO2/Na2O의 mole ratio: 2.4~2.6)인 경우 1종보다 실리카 졸의 량을 더 많이 제공할 수 있으나, 점도가 10,000~50,000 cps로 대체적으로 높기 때문에 2종 역시 정확한 규산염의 유입량을 조절하기 어렵고, 규산나트륨 4종(SiO2/Na2O의 mole ratio: 3.4~3.6)인 경우 많은 량의 3차원적 실리 카 네트워크를 생성시킬 수 있으며, 점도가 비교적 낮아 세라믹 광물을 슬러리 상태로 조절하기 매우 편리하나, 국내의 수요처가 대체적으로 낮아 생산을 하지 않기 때문에 구입하기 어려우며, 단가가 비싸다는 단점을 가지고 있으며, 규산나트륨 3종(SiO2/Na2O의 mole ratio: 3.15~3.30)인 경우 점도도 그다지 높지 않으면서 가격이 저렴하고 국내의 규산염 제조업체에서 가장 많이 생산하고 있는 규산염이기 때문에 구입하는데 편리하므로 경제성 및 생산성을 고려할 때 3종의 규산나트륨을 이용하는 것이 가장 바람직하다. The silicate is not particularly limited except that it is dissolved in water or dispersed uniformly, and is selected from one to four types of solution sodium silicate or powdered sodium silicate, calcium silicate, lithium silicate, and sodium aluminum silicate. It is advantageous to use 1 type or 1 type or more, and it is advantageous to use 1 type-4 types of solution type sodium silicate, potassium silicate, or sodium aluminum silicate, More preferably, 1 type-4 types Sodium silicate and sodium aluminum silicate are advantageous, and most preferably it is advantageous to use three kinds of sodium silicate. Potassium silicate and lithium silicate generally have excellent bonding strength and water resistance when the final foamed ceramic of the present invention is prepared. It can provide excellent foamed ceramics, but has the disadvantage of being expensive, and is generally used for sodium aluminum silicate. Although it is inexpensive, the silicate is a combination of aluminum and silicon together, so the relative silica content is reduced, so it is somewhat less than the technical idea to provide a foam ceramic having excellent bonding strength of the present invention, and powdered sodium silicate is clearly dissolved in water. The heat source is required for a long time or for a long time, and one type of sodium silicate (mole ratio of SiO 2 / Na 2 O: 2.1 to 2.3) of one to four types of solution sodium silicate has a viscosity of 100,000 cps or more. As it is very large, there is a disadvantage in that the binding force may be relatively low as water must be supplied in order to adjust the slurry state. In particular, in winter, the workability is very high and the workability is very low. sodium silicate two kinds of (SiO 2 / Na 2 O of the mole ratio: 2.4 ~ 2.6) provide more than one kinds of the amount of silica sol when the May, but the viscosity is high as substantially to 10,000 ~ 50,000 cps 2 jong also difficult to control the flow of accurate silicate, sodium silicate four kinds of (SiO 2 / Na 2 O of the mole ratio: 3.4 ~ 3.6) In case of the large amount It is possible to create three-dimensional silica network, and it is very convenient to control ceramic minerals in slurry state due to its relatively low viscosity, but it is difficult to purchase because it is not produced domestically, and it is expensive. Sodium silicate 3 species (mole ratio of SiO 2 / Na 2 O: 3.15 ~ 3.30) is not easy to buy because it is inexpensive and is the most silicate produced by domestic silicate manufacturers. Therefore, in consideration of economics and productivity, it is most preferable to use three kinds of sodium silicate.

상기 세라믹 분말은 맥반석, 황토석, 감람석(Olivine), 고령토(Kaolin), 규산염 광물(Silica Mineral), 규조토(Diatomite), 규회석(Wollastonite), 납석(Pyrophyllite), 돌로마이트(Dolomite), 리튬광물(Lithium Minerals), 마그네사이트(Magnesite), 보크사이트(Bauxite), 벤토나이트(Bentonite), 부석(Pumice), 붕산염광물(Borate), 사문석(Serpentine), 산성백토(Acid clay), 산화철(Iron Oxide), 석류석(Garnet), 탄산광물(Carbonate Minerals), 애타풀자이트(Attapulgite), 세피오라이트(Sepiolite), 연옥(Nephrite), 인회석(Apatite), 일라이트-운모(Illite-Mica), 장석(Feldspar), 진주암(Perlite), 질석(Vermiculite), 제올라이트(Zeolite), 중정석(Barite), 활석(Talc), 규조토(diatomaceous earth), 흑연(Graphite), 헥토라이트(Hectorite), 점토광물(Clay Minerals), 지르코늄 광물(Zirconium Minerals), 티타늄 광물(Titanium Minerals), 투어마린(Tourmaine; 전기석), 흄실리카(Fume silica), 에어로겔(Aerogel), 플라이에쉬(Fly ash), 고로 슬래그 분말 중 1종 내지는 1종 이상을 선택하여 혼합 사용하도록 구성될 수 있다. The ceramic powder is elvan, loess, olive, kaolin, silicate, silica mineral, diatomite, wollastonite, pyrophyllite, dolomite, lithium minerals. ), Magnesite, Bauxite, Bentonite, Pumice, Borate, Serpentine, Acid clay, Iron Oxide, Garnet ), Carbonate Minerals, Attapulgite, Sepiolite, Nephrite, Apatite, Illite-Mica, Feldspar, Perlite , Vermiculite, Zeolite, Barite, Talc, Diatomaceous earth, Graphite, Hectorite, Clay Minerals, Zirconium Minerals ), Titanium minerals, tourmaine (tourmaline), fume silica, Aerogel, fly ash, blast furnace slag powder may be configured to use one or more selected from one or more selected.

상기 세라믹광물의 입자크기는 세라믹입자와 입자사이의 미세한 발포체를 제공하기 위하여 가능한 한 작은 것이 유리하며, 5 nm~400 ㎛의 크기를 사용할 수 있으며, 바람직하게는 20 nm~250 ㎛의 입자크기가 유리하며, 가장 바람직하게는 50 nm~50 ㎛의 입자크기가 유리한 바, 5 nm 이하의 크기는 에어로겔을 제외하고 분쇄장치를 이용하여 수 nm의 미립자를 제조하기 위한 가능성이 희박할 뿐만 아니라 원재료비가 매우 고가이기 때문에 가격경쟁력이 떨어지기 때문에 일부 특수한 분야에만 사용할 수 있다는 단점을 가지고 있으며, 400 ㎛ 이상의 크기를 가진 세라믹분말은 비표면적이 적어 겔화단계에 의한 결합력이 떨어짐과 동시에 분말과 분말 사이에 다량의 미세한 발포체 형성률이 낮기 때문에 상기 범위의 입자크기를 가진 세라믹광물을 이용하는 것이 바람직하다.The particle size of the ceramic mineral is advantageously as small as possible in order to provide a fine foam between the ceramic particles and the particles, it is possible to use a size of 5 nm ~ 400 ㎛, preferably a particle size of 20 nm ~ 250 ㎛ It is advantageous, and most preferably, the particle size of 50 nm to 50 μm is advantageous, and the size of 5 nm or less is unlikely to produce fine particles of several nm using a grinder except for aerogels, and also has a raw material cost. Due to its high price, its price competitiveness is low, so it can be used only in some special fields. Ceramic powder with a size of 400 μm or more has a small specific surface area, which decreases the bonding strength due to the gelation step, and at the same time, a large amount between powder and powder. Using a ceramic mineral having a particle size in the above range because the rate of formation of fine foams is low It is preferred.

첨가제는 발포세라믹의 강도를 증진시키기 위한 강도보강제를 겸비한 흡음재나 내수성을 증가시키기 위한 내수보강제를 포함시킬 수 있으며, 강도보강제를 겸비한 흡음재로서 금속산화물이나 섬유질이 이용될 수 있으며, 내수성을 증가시키기 위한 내수보강제는 수분산성 고분자수지 내지는 고분자수지 분말이 첨가될 수 있ㄴ는바, 금속산화물의 강도보강제인 경우 본 발명의 발포세라믹이 금속산화물로 이루어져 있기 때문에 고의로 첨가할 필요가 없으며, 세라믹 분말과 분말사이에 섬유질이 충진되며 더욱 결합력을 증진시킬 수 있을 뿐만 아니라 섬유질 형태의 흡음재에 의해 방음효과가 있게 된다. The additive may include a sound absorbing material having a strength reinforcing agent to enhance the strength of the foamed ceramic or a water reinforcing material for increasing the water resistance, and a metal oxide or fiber may be used as the sound absorbing material having a strength reinforcing agent, and to increase water resistance. Water-resistant reinforcing agent may be added to water-dispersible polymer resin or polymer resin powder bar, the strength enhancer of the metal oxide does not need to be intentionally added because the expanded ceramic of the present invention consists of a metal oxide, ceramic powder and powder The fiber is filled in between and can further enhance the bonding force, as well as the sound-absorbing effect by the sound absorbing material of the fibrous form.

강도보강제는 본 발명인 경우 상온에서도 발포체가 형성되기 때문에 발포체 의 강도를 더욱 증가시키기 위한 섬유질로 구성된 것을 제외하고 큰 제한이 없으며, 천연섬유 내지는 인조섬유 중 어떠한 것이라도 사용할 수 있는바, 천연섬유인 경우는 셀룰로오즈계 섬유(종묘섬유, 인피섬유, 염맥섬유, 과실섬유) 내지는 스태이플 내지는 필라멘트 형태의 단백질계 섬유 내지는 광물질계 섬유가 포함될 수 있으며, 인조섬유는 유기질섬유(재생섬유, 반합성섬유, 합성섬유) 내지는 무기질섬유(금속섬유, 유리섬유, 암석섬유, 광재섬유, 탄소섬유)가 포함될 수 있다. Strength reinforcing agent in the present invention, since the foam is formed at room temperature, there is no big limitation except that it is composed of fibers to further increase the strength of the foam, any of natural fibers or artificial fibers can be used, in the case of natural fibers May include cellulose-based fibers (seedling fibers, bast fibers, salt fiber, fruit fibers), staples, or filament-like protein-based or mineral-based fibers, artificial fibers are organic fibers (regenerated fibers, semi-synthetic fibers, synthetic fibers) ) And inorganic fibers (metal fibers, glass fibers, rock fibers, slag fibers, carbon fibers) may be included.

상기 강도보강제를 겸비한 흡음재의 섬유 굵기는 3~50 ㎛가 유리하며, 바람직하게는 5 내지 25 ㎛의 굵기가 유리하고, 가장 바람직하게는 5 내지 10 ㎛의 굵기가 유리한 바, 3 ㎛ 이하 굵기의 섬유질은 섬유질의 특성상 가늘수록 외관상 매끄럽고 촉감도 부드러워지는 특징이 있어 물성이 우수하고 이용 가치도 높다는 장점을 가지고 있음에도 불구하고, 유리섬유 이외에 천연섬유 및 인조섬유에서 생산되는 섬유질이 대부분 3 ㎛ 이상의 굵기를 가지고 있기 때문에 섬유질을 첨가하기 위한 선택권이 부족하다는 단점을 가지고 있으며, 50 ㎛ 이상 굵기를 가진 섬유질은 외관상 촉감이 매끄럽지 않으며, 대체적으로 미세섬유질보다 강도가 떨어진다는 단점을 갖고 있기 때문에 상기 범위의 굵기의 섬유질을 사용하는 것이 바람직하다.The fiber thickness of the sound absorbing material having the above-mentioned strength reinforcing agent is advantageously 3 to 50 µm, preferably 5 to 25 µm in thickness, and most preferably 5 to 10 µm in thickness, having a thickness of 3 µm or less. Although the fiber has the advantage of being smoother in appearance and softer to the touch due to the characteristics of the fiber, it has excellent physical properties and high value in use.In addition to glass fiber, the fiber produced from natural fiber and artificial fiber has a thickness of 3 μm or more. Since it has a disadvantage of lacking the option to add fiber, fiber having a thickness of 50 μm or more has a disadvantage in that it is not smooth in appearance and generally has a disadvantage in that it is inferior in strength to fine fibers. Preference is given to using fibers.

강도보강제를 겸비한 흡음재의 섬유길이는 1~50 mm가 유리하며, 보다 바람직하게는 5 내지 35 mm가 유리하고, 가장 바람직하게는 10 내지 25 mm가 유리한 바, 섬유질의 길이가 1 mm 이하일 경우 본 발명의 겔화단계에서 형성된 3차원적 실리카네트워크의 미세한 다공성의 세라믹 분말사이에 섬유질이 접속되는 길이가 짧아 결합력이 그다지 크기 않다는 단점을 가지고 있으며, 상기 혼합단계에서 섬유질과 슬 러리형태의 세라믹과 균일하게 분산되어야 하나, 50 mm 이상일 경우 섬유질끼리 서로 엉키게 되어 오히려 발포세라믹의 물성을 저해하기 때문에 상기 범위의 길이를 가진 섬유질을 사용하는 것이 바람직하다.The fiber length of the sound absorbing material having a strength reinforcing agent is advantageously 1 to 50 mm, more preferably 5 to 35 mm, and most preferably 10 to 25 mm, and the fiber length is 1 mm or less. The length of the fiber connection between the microporous ceramic powder of the three-dimensional silica network formed in the gelling step of the invention has a disadvantage that the bonding strength is not so large, uniformly with the ceramic of the fiber and slurry form in the mixing step Although it should be dispersed, it is preferable to use fibers having a length in the above range because the fibers are entangled with each other when they are 50 mm or more and thus inhibit the physical properties of the foamed ceramics.

발포세라믹의 강도보강제를 겸비한 흡음재로 첨가되는 섬유질의 량은 세라믹 분말을 100 중량부로 기준으로 할 때 1~20 중량부를 포함하는 것이 바람직하며, 더욱 바람직하게는 2.5 내지 15 중량부가 포함되는 것이 유리하며, 가장 바람직하게는 5.0 내지 10 중량부가 포함되는 것이 유리한 바, 1중량부 이하로 첨가될 경우 발포세라믹 구조체의 보강효과가 높지 않다는 단점을 가지고 있으며, 20 중량부 이상을 첨가할 경우 보강효과는 상대적으로 커지는 장점을 가지고 있으나 상기 혼합단계에서 세라믹 분말과 섬유질과의 균일한 혼합이 어려우며, 대체적으로 섬유질이 고가이므로 경제성이 떨어진다는 단점을 가지고 있기 때문에 상기 범위의 량을 첨가하는 것이 바람직하다.The amount of fiber added as a sound absorbing material having a strength enhancer of the foamed ceramic is preferably 1 to 20 parts by weight based on 100 parts by weight of ceramic powder, more preferably 2.5 to 15 parts by weight. , It is advantageous to include 5.0 to 10 parts by weight most preferably, the addition of less than 1 part by weight has the disadvantage that the reinforcing effect of the foamed ceramic structure is not high, and when more than 20 parts by weight is added, the reinforcing effect is relatively Although it has an advantage of increasing, it is difficult to uniformly mix the ceramic powder and the fiber in the mixing step, and it is preferable to add the amount in the above range because it has a disadvantage in that the economy is inexpensive since the fiber is generally expensive.

상기 내수성을 증가시키기 위한 내수보강제는 수분산성 고분자수지 내지는 미분말의 고분자수지가 포함되어 사용될 수 있는바, 수분산성 고분자수지인 경우 고분자수지가 물에 균일하게 분산되어 있는 것을 제외하고는 큰 제한을 두지 않으며, 수분산성의 아크릴, 초산비닐, 알키드, 멜라민 수지, 스타이렌 부타디엔 고무(Solution Styrene Butadiene Rubber)가 포함될 수 있으며, 상기 수분산성 고분자수지의 첨가량은 세라믹분말을 100중량부로 기준으로 할 때 1.0~25 중량부가 포함하는 것이 바람직하며, 보다 바람직하게는 2.5~25 중량부가 유리하며, 가장 바람직하게는 5.0~15 중량부를 첨가하는 것이 유리한 바, 1.0 중량부 이하로 첨가할 경우 발포세라믹의 입자들간의 충분한 고분자피막을 씨워주는 역할이 적어 내수성이 크지 않다는 단점을 가지고 있으며, 25중량부 이상으로 첨가할 경우 내수성이 상당히 증가한다는 장점을 가지고 있으나, 화재발생 시 고분자 분해에 의한 유독가스가 다량 방출되어 인체에 치명적일 수 있다는 단점을 가지고 있기 때문에 상기 제안한 적정한 농도로 첨가하는 것이 유리하다. The water reinforcing agent to increase the water resistance can be used to include water dispersible polymer resin or fine powder polymer resin bar, in the case of water dispersible polymer resin does not have a big limitation except that the polymer resin is uniformly dispersed in water And, water-dispersible acrylic, vinyl acetate, alkyd, melamine resin, styrene butadiene rubber (Solution Styrene Butadiene Rubber) may be included, the amount of the water-dispersible polymer resin is 1.0 ~ based on 100 parts by weight of ceramic powder It is preferable to include 25 parts by weight, more preferably 2.5 to 25 parts by weight, most preferably it is advantageous to add 5.0 to 15 parts by weight, when added to 1.0 parts by weight or less between the particles of the foamed ceramic It has a disadvantage in that the water resistance is not large because the role of seeding sufficient polymer film is small. 2 When added to more than 5 parts by weight has the advantage that the water resistance considerably increases, but it is advantageous to add the proper concentration suggested above because it has the disadvantage that it can be fatal to the human body by releasing a large amount of toxic gas due to polymer decomposition in the event of fire. Do.

미분말 고분자수지인 경우 폴리에틸렌테테레프탈레이트(PET), 저밀도 내지는 고밀도 폴리에틸렌(PE), 염화비닐수지(PVC), 폴리메틸 메타크릴레이트(PMMA), 폴리스타이렌(PS), 폴리프로필렌(PP), 에틸렌비닐아세테이트(EVA), 폴리우레탄(PU), 폴리카프로렉톤(Polycaprolacton) 중 선택된 분말이 세라믹 분말을 100 중량부로 기준으로 할 때 0.5~15 중량부가 포함하는 것이 바람직하며, 보다 바람직하게는 2.5~12중량부가 유리하며, 가장 바람직하게는 5.0~10 중량부를 첨가하는 것이 유리한 바, 0.5 중량부 이하로 첨가할 경우 발포세라믹의 입자들간의 충분한 고분자피막을 씨워주는 역할이 적어 내수성이 크지 않다는 단점을 가지고 있으며, 15중량부 이상으로 첨가할 경우 내수성이 상당히 증가한다는 장점을 가지고 있으나, 상기 수분산성 고분자수지가 다량함유된 것과 같이 화재발생 시 고분자 분해에 의한 유독가스가 다량 방출되어 인체에 치명적일 수 있다는 단점을 가지고 있기 때문에 상기 제안한 적정한 농도로 첨가하는 것이 유리하다. 상기 미분말고분자 수지의 입자는 크기가 가능한 미분인 것이 좋으며, 구체적으로 0.1 ㎛~0.5 ㎜ 범위의 분말을 사용할 수 있으며, 바람직하게는 0.5 ㎛ ~ 0.1 ㎜ 범위가 유리하며, 보다 바람직하기로는 5 ~ 50 ㎛ 범위를 유지하는 것이 유리한 바, 분말 입자의 크기가 0.1 ㎛ 미만이면 비표면적이 더욱 커져서 수중에 분산될 가능성은 높아지나, 미립자에 의한 분진으로 작업에 불편을 줄 수 있으며, 미분말고분자를 위한 내수성을 증가시키기 위한 보강제로써, 경제성이 떨어진다는 단점을 가지고 있으며, 0.5 mm를 초과하는 경우에는 비표면적이 적고, 입자의 크기가 크기 때문에 균일하게 세라믹 분말에 융착될 확률이 상대적으로 저조한 문제가 발생하기 때문에 상기 제안한 입자의 크기를 가진 분말수지를 이용하는 것이 유리하다.In the case of fine powder polymer resin, polyethylene terephthalate (PET), low or high density polyethylene (PE), vinyl chloride resin (PVC), polymethyl methacrylate (PMMA), polystyrene (PS), polypropylene (PP), ethylene vinyl Preferably, the powder selected from acetate (EVA), polyurethane (PU), and polycaprolacton contains 0.5 to 15 parts by weight based on 100 parts by weight of ceramic powder, and more preferably 2.5 to 12 parts by weight. It is advantageous to add, and most preferably, it is advantageous to add 5.0 to 10 parts by weight. When it is added to 0.5 parts by weight or less, it has a disadvantage in that the water resistance is not large because the role of seeding sufficient polymer film between the particles of the foamed ceramic is small. However, when added to more than 15 parts by weight has the advantage that the water resistance considerably increases, but the water-dispersible polymer resin As it has a disadvantage in that a large amount of toxic gas due to the decomposition of the polymer may be fatal to the human body in the event of a fire, it is advantageous to add the proper concentration suggested above. Particles of the fine powder polymer resin may be a fine powder capable of a size, specifically, a powder in the range of 0.1 μm to 0.5 mm may be used, preferably in the range of 0.5 μm to 0.1 mm, more preferably 5 to 50 mm. It is advantageous to maintain the range of μm. If the size of the powder particles is less than 0.1 μm, the specific surface area becomes larger and the possibility of dispersing in water increases, but it is inconvenient to work due to the dust by fine particles, and the water resistance for fine powder polymers. As a reinforcing agent to increase the viscosity, it has a disadvantage of low economical efficiency, and if it exceeds 0.5 mm, the specific surface area is small and the size of the particles is large, which causes a relatively low probability of uniformly fusion to the ceramic powder. Therefore, it is advantageous to use a powder resin having the size of the proposed particle.

본원의 겔화단계는 발포단계 및 혼합단계에서 이미 형성된 미세기포의 세라믹 슬러리에 3차원적 실리카네트워크를 제공하기 위한 공정인바, 발포체가 전혀 사라지지 않고 발포된 형상을 그대로 유지하면서 경화되어, 다량의 미세발포체가 형성되어 종래의 발포세라믹을 제조할 때와 같이 고온이 필요치 않고, 일정한 형상의 발포세라믹을 제공할 수 있다.The gelation step of the present application is a process for providing a three-dimensional silica network to the ceramic slurry of the micro-bubbles already formed in the foaming step and the mixing step, the foam does not disappear at all and is cured while maintaining the foamed shape as it is, a large amount of fine The foam is formed so that a high temperature is not required as in the case of manufacturing a conventional foam ceramic, and it is possible to provide a foam ceramic having a constant shape.

본원에서 3차원적 실리카네트워크를 형성시키기 위한 방법은 규산염과 세라믹이 함유된 슬러리상태의 발포체를 이산화탄소(CO2), 산(acid), 중탄산염(bicarbonate)의 소스(source), 글리옥살(glyoxal), 에틸렌글리콜 디아세테이트(ethylene glycol diacetate)를 혼합 내지는 침적시켜 형성시킬 수 있으며, 겔화단계에 대한 상세한 일례는 다음과 같다. The method for forming a three-dimensional silica network herein comprises a slurry of silicate and ceramic in a slurry form containing carbon dioxide (CO 2 ), a source of acid, bicarbonate, glyoxal , Ethylene glycol diacetate (ethylene glycol diacetate) can be formed by mixing or depositing, a detailed example of the gelling step is as follows.

상기 발포된 슬러리타입의 광물세라믹 내부에 이산화탄소(CO2) 또는 드라이아이스를 규일하게 침투시키면 이미 규산염이 함유된 발포된 광물세라믹들은 산(acid) 및 이산화탄소(탄산가스), 중탄산가스와 반응하여 반응식 1~3와 같이 졸(sol)상태에서 화학적 균형이 깨지면서 입자들이 서로 얽히게 되어 규산염의 겔화현상에 의한 3차원적 실리카의 네트워크가 형성됨과 동시에 고체상태의 형상을 그대로 유지되고, 무기결합재(Binder)로서 역할을 하게 됨에 따라 발포된 형상을 유지하게 된다. When carbon dioxide (CO 2 ) or dry ice is penetrated uniformly into the foamed slurry-type mineral ceramics, the foamed mineral ceramics already containing silicates react with acid (acid), carbon dioxide (carbonic acid gas) and bicarbonate gas. As the chemical balance is broken in the sol state as in the case of 1 to 3, the particles are entangled with each other to form a network of three-dimensional silica due to the gelation of silicate and at the same time maintain the solid state, and the inorganic binder (Binder) As it serves as it will maintain the foamed shape.

M2O·nSiO2 + CO2 ----> nSiO2(실리카 겔 형태) + M2CO3 M 2 O · nSiO 2 + CO 2 ----> nSiO 2 (silica gel form) + M 2 CO 3

(M = Na, K, Li)(M = Na, K, Li)

(n = 2 ~ 4)(n = 2 to 4)

M2O·nSiO2 + H2SO4 ----> nSiO2(실리카 겔 형태) + M2SO4 M 2 O · nSiO 2 + H 2 SO 4 ----> nSiO 2 (silica gel form) + M 2 SO 4

(M = Na, K, Li)(M = Na, K, Li)

(n = 2 ~ 4)(n = 2 to 4)

M2O·nSiO2 +LHCO3 ----> nSiO2(실리카 겔 형태) + M2CO3 + LOHM 2 O · nSiO 2 + LHCO 3 ----> nSiO 2 (silica gel form) + M 2 CO 3 + LOH

(L=Na, K, NH4)(L = Na, K, NH 4 )

(M = Na, K, Li)(M = Na, K, Li)

(n = 2 ~ 4)(n = 2 to 4)

3차원적 실리카네트워크를 형성시키기 위한 소스가 이산화탄소인 경우 가스통에 저장된 이산화탄소 가스 내지는 드라이아이스를 사용할 수 있는바, 가스통에 저장된 이산화탄소 가스를 이용할 경우 압력 조절계(Regulator)에 의해 이산화탄소의 주입량을 임의대로 조절할 수 있으며, 고압으로 주입할 수 있기 때문에 발포체가 두껍거나 짧은 시간에 3차원적 실리카네트워크를 형성시킬 때 유리하며, 비교적 발포체의 두께가 얇거나 장시간에 걸쳐 3차원적 실리카네트워크를 형성시키기 위해서는 드라이아이스를 제공하는 것이 유리하나, 드라이아이스를 소스로 사용할 경우 수분이 포함된 발포체가 결빙에 의한 3차원적 실리카의 네트워크가 파손되거나 결합력이 떨어질 우려가 있기 때문에 이를 위해서 발포체와 직접적으로 접촉되지 않도록 주의해야 한다. When carbon dioxide is a source for forming a three-dimensional silica network, carbon dioxide gas or dry ice stored in a gas cylinder can be used. When using carbon dioxide gas stored in a gas cylinder, the amount of carbon dioxide injected can be arbitrarily controlled by a pressure regulator. It can be injected at high pressure, which is advantageous when the foam forms a three-dimensional silica network in a thick or short time, and is relatively thin in foam or dry ice to form a three-dimensional silica network over a long time. However, when using dry ice as a source, care should be taken to avoid direct contact with the foam, since moisture-containing foam may break the network of three-dimensional silica due to freezing or reduce the bonding strength.The.

3차원적 실리카네트워크를 형성시키기 위한 소스가 산(acid)인 경우 물로 희석된 산에 규산염이 함유된 발포체를 침적시키거나 규산염이 포함된 슬러리상태의 발포체와 함께 혼합할 수 있는바, 희석된 산에 침적시킬 경우 2 내지 10초간 희석된 산 용액에 침적을 시키면 중화가 됨과 동시에 3차원적 실리카의 네트워크가 형성이 되며, 이 방법은 산(acid)이 미세하게 발포된 세라믹슬러리에 침투되는 속도가 비교적 느리기 때문에 1 cm 이하의 슬러리를 3차원적 네트워크를 형성시키는데 적합하다. If the source for forming a three-dimensional silica network is an acid, the silicate-containing foam may be deposited in an acid diluted with water or mixed with a slurry in the form of a slurry containing silicate. When deposited on a dilute acid solution diluted for 2 to 10 seconds, neutralization is formed and a network of three-dimensional silica is formed. In this method, the rate at which acid penetrates into finely foamed ceramic slurry is increased. As relatively slow, slurries of up to 1 cm are suitable for forming a three-dimensional network.

규산염이 포함된 다공성 슬러리상태의 발포체와 산을 혼합할 경우 10초 이내에 3차원적 실리카 네트워크를 형성시킬 수 있으며, 이를 위해 산과 혼합된 슬러리상태의 pH 범위가 5~9일 때 가능하며, 1분 이상의 3차원적 실리카 네트워크를 요구할 때 pH가 5~9의 범위를 벗어나면 가능하며, 이 때 사용되는 산(acid)은 염산, 질산, 황산, 인산, 불산, 포름산, 아세트산, 구연산, 말레인산, 올레인산 중 1 종 내지는 1종 이상의 산(acid)이 선택되어 지며, 바람직하게는 가격이 저렴하고 환경오염을 최소화할 수 있는 황산, 아세트산, 구연산을 사용하는 것이 유리하며, 상기 산의 희석량은 물의 총중량을 100 중량으로 기준으로 할 때 바람직하게는 2 내지는 25 중량부가 희석된 산이 유리하며, 더욱 바람직하게는 2.5 내지는 20 중량부가 유리하고, 가장 바람직하게는 4.0 내지는 15 중량부가 유리한 바, 산(acid)이 2 중량부 이하로 희석될 경우 발포체에 함유된 알칼리성의 규산염을 중화시키면서 겔화를 시키기 위하여 많은 시간이 소요된다는 단점이 있으며, 25 중량부를 초과하여 산도가 높을 경우 3차원적 실리카네트워크의 시간조절이 까다로우며, 산(acid)에 의해 오히려 겔화 형성을 저해하고, 본 발명의 건조과정에서 발포체에 남아있는 여분의 산을 건조시키는 과정에 대기환경 및 인체의 호흡기 질환을 초래하기 때문에 상기 제안한 첨가량를 혼합하는 것이 적절하다.When mixing acid with porous slurry of silicate and acid, three-dimensional silica network can be formed within 10 seconds. For this, it is possible when the pH range of slurry mixed with acid is 5-9, and 1 minute. When the above three-dimensional silica network is required, it is possible if the pH is outside the range of 5-9, and the acid used here is hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, formic acid, acetic acid, citric acid, maleic acid, oleic acid. Among them, one or more acids are selected, and it is advantageous to use sulfuric acid, acetic acid and citric acid, which are inexpensive and can minimize environmental pollution. The dilution amount of the acid is the total weight of water. Is preferably from 2 to 25 parts by weight of dilute acid, more preferably from 2.5 to 20 parts by weight, most preferably 4.0 Since 15 parts by weight is advantageous, when acid is diluted to 2 parts by weight or less, it takes a long time to gel the alkaline silicate contained in the foam while neutralizing, and the acidity exceeds 25 parts by weight. When it is high, it is difficult to control the three-dimensional silica network, and rather it inhibits gelation formation by acid, and in the process of drying the excess acid remaining in the foam during the drying process of the present invention, It is appropriate to mix the above-mentioned addition amount because it causes respiratory diseases.

3차원적 실리카네트워크를 형성시키기 위한 소스가 중탄산(bicarbonate)인 경우 중탄산나트륨, 중탄산칼륨, 중탄산암모늄 중 선택된 1종 내지는 혼합물 중 어떠한 것을 사용할 수 있으며, 중탄산염 자체의 분말 내지는 물에 용해하여 희석된 용액을 발포단계에서 제공된 세라믹슬러리와 혼합 내지는 침적하여 사용할 수 있ㄴ는바, 중탄산염 중 중탄산암모늄인 경우 최종 반응 후 암모니아 가스 내지는 암모니아수의 유독한 냄새가 유출되어 인체에 유해하고, 중탄산칼륨인 가격이 중탄산나트륨보다 고가이기 때문에 가능한한 가격이 저렴하면서 환경에 문제가 발생치 않는 중탄산나트륨을 이용하는 것이 유리하며, 중탄산염의 사용량은 발포체에 함유된 규산염과 반응하여 겔화가 일어날 수 있는 화학양론적인 량이 사용되며, 물에 용해 내지는 진탕(shaking)하여 사용하면 균일한 3차원적 실리카네트워크에 의한 겔화를 유도할 수 있다.When the source for forming the three-dimensional silica network is bicarbonate, any one selected from sodium bicarbonate, potassium bicarbonate, and ammonium bicarbonate, or a mixture thereof may be used, and the solution of the bicarbonate itself in powder or water is diluted. Can be mixed with or deposited with the ceramic slurry provided in the foaming step. In the case of ammonium bicarbonate in the bicarbonate, the poisonous odor of ammonia gas or ammonia water is leaked after the final reaction, which is harmful to the human body, and the price of potassium bicarbonate is bicarbonate. Since it is more expensive than sodium, it is advantageous to use sodium bicarbonate, which is as inexpensive as possible and does not cause environmental problems, and the amount of bicarbonate used is a stoichiometric amount that can react with the silicate contained in the foam and cause gelation. Soluble in water or shaking When used, gelation can be induced by a uniform three-dimensional silica network.

3차원적 실리카네트워크를 형성시키기 위한 소스가 글리옥살과 에틸렌글리콜 디아세테이트인 경우 3차원적 실리카네트워크를 형성시키는 시간이 비교적 필요할 때 적합하며, 일례로 에틸렌글리콜 디아세테이트와 규산염과의 반응을 살펴보면 반응식 4와 같다.Glyoxal and ethylene glycol diacetate are suitable when the source for forming a three-dimensional silica network is relatively needed. For example, the reaction between ethylene glycol diacetate and silicate can be seen. Same as 4.

규산염이 함유되어 있는 슬러리 상태의 발포체는 1차 반응과 2차 반응을 거쳐 경화되는바, 1차 반응은 가수분해 반응으로서 EGDAc(에틸렌글리콜 디아세테이트)이 규산염 중의 알칼리 존재하에 하기 반응식 4의 (1)처럼 가수분해되고 에틸렌 글리콜(Ethylene glycol; EG)과 초산을 생성한다. The slurry in the form of a slurry containing silicate is cured through a first reaction and a second reaction. The first reaction is a hydrolysis reaction, in which EGDAc (ethylene glycol diacetate) is used in the presence of alkali in silicate (1). Hydrolyzes to form ethylene glycol (EG) and acetic acid.

H3C-COO-CH2-CH2-OCO-CH3(EGDAc)+2H2O→OH-CH2-CH2-OH(EG)+2CH3COOH(초산)-(1)H 3 C-COO-CH 2 -CH 2 -OCO-CH 3 (EGDAc) + 2H 2 O → OH-CH 2 -CH 2 -OH (EG) + 2CH 3 COOH (acetic acid)-(1)

뒤이어 하기식 (2)와 같이 서서히 겔화반응에 의한 3차원적 실리카네트워크가 진행된다. 즉, 규산염이 초산과 반응하고, 초산나트륨과 불용성의 규산겔을 생성한다.Subsequently, as shown in Equation (2), a three-dimensional silica network is gradually developed by gelation reaction. That is, the silicate reacts with acetic acid, producing sodium acetate and an insoluble silicate gel.

M2O·nSiO2 + 2CH3COOH→2CH3COOM+nSiO2(실리카 겔 형태)+H2O-(2)M 2 O · nSiO 2 + 2CH 3 COOH → 2CH 3 COOM + nSiO 2 (silica gel form) + H 2 O- (2)

(M = Na, K, Li), (n = 2 ~ 4)(M = Na, K, Li), (n = 2 to 4)

상기 가열단계는 겔화단계까지 형성된 발포 경량세라믹에 포함되어 있는 수분을 제거하거나 상기 내수성을 향상시키기 위한 내수보강제의 수분산성 고분자수 지 내지는 미분말의 고분자수지를 3차원적 실리카네트워크의 발포세라믹 표면에 열융착에 의해 코팅하는 단계로써, 미세하게 발포된 다량의 발포체내의 수분을 효율적으로 발포체의 물리적 변화없이 가능한한 빠른 속도로 제거하면서 열에 의해 세라믹표면에 융착되는 것을 제외하고는 특별한 제한이 없다. 겔화단계의 공정을 거친 발포세라믹은 공기에 의한 상온건조, 오븐(Oven)에 의한 열풍가열, 극초단파(일명: 전자렌지)에 의한 급속 가열방법을 이용할 수 있으며, 상온건조방법을 이용할 경우 두께가 얇으면서 내수성이 크게 필요치 않는 발포성세라믹을 제조하는데 적합하며, 넓은 발포체를 적층으로 쌓고 대기의 바람으로 건조하므로 가열건조 과정에 필요한 연료비를 절감할 수 있다는 장점을 가지고 있으나, 건조시간이 장시간 필요하기 때문에 많은 공간이 필요하고, 생산성이 낮다는 단점을 가지고 있다. In the heating step, the water-dispersible polymer resin or fine powder polymer resin of the water-reinforcement agent is removed on the foamed ceramic surface of the three-dimensional silica network to remove water contained in the foamed lightweight ceramics formed up to the gelation step or to improve the water resistance. As a step of coating by fusion, there is no particular limitation except that the moisture in the finely foamed large amount of foam is efficiently bonded to the ceramic surface by heat while efficiently removing as quickly as possible without physical change of the foam. Foamed ceramics that have undergone the gelation step can be dried at room temperature by air, heated by hot air by oven, or rapidly heated by microwave (aka: microwave oven). It is suitable for manufacturing foamable ceramics that do not require much water resistance, and it has the advantage of reducing fuel costs required for the heat drying process by stacking a wide range of foams and drying them with air wind. The disadvantage is that space is required and productivity is low.

극초단파에 의한 가열방법은 2,450 MHz의 극초단파를 가하면 극성이 있는 물 분자가 극 초단파 만큼의 진동열에 의해 온도가 상승하는 것으로 매우 빠른 속도로 물체내부에 포함된 수분을 빠른 속도로 제거할 수 있다는 장점을 갖고 있으나, 단열재와 같이 큰 재료를 건조시키기 위해 많은 설비비가 요구된다는 단점을 가지고 있기 때문에 산업현장에서 가장 많이 사용하고 있는 오븐에 의한 열풍 가열방법을 이용하는 것이 유리하고 극초단파 내지는 열풍 가열방법을 이용한 가열온도는 80~250 oC의 온도로 가열하는 것이 바람직하며, 더욱 바람직하게는 90~220 oC가 유리하며, 가장 바람직하게는 100~200 oC의 온도가 바람직한 바, 80 oC의 온도로 가열할 경우 발포단계까지 포함된 수분의 제거속도가 그다지 크지 않을 뿐만 아니라 내 수성 향상을 위한 수분산성 고분자수지 내지는 미 분말의 고분자수지를 상기 발포단계에서 발포된 세라믹표면 위에 열원에 의한 열융착을 할 수 없다는 단점을 가지고 있으며, 가열온도가 250 oC를 넘을 경우 빠른 속도로 수분을 증가시킬 수 있으며, 미분말 고분자수지의 녹는점보다 많이 상위하므로 짧은 시간에 세라믹표면에 쉽게 열융착이 되어 내수성이 크게 증가된다는 장점을 가지고 있으나, 고온에 의한 열에너지 손실이 커져 경제성이 낮아지며, 고온에 의한 고분자의 물성변화가 약화된다는 단점을 가지고 있기 때문에 상기 제안한 가열온도를 유지하는 것이 바람직하다. The microwave heating method has the advantage that when 2,450 MHz microwave is applied, the water of polar water rises by vibrating heat as much as microwave, and the moisture contained in the object can be removed very quickly. However, it has a disadvantage that a lot of equipment cost is required to dry a large material such as a heat insulating material, it is advantageous to use the hot air heating method by the oven which is most used in the industrial field and the heating temperature using the microwave or hot air heating method Is preferably heated to a temperature of 80 to 250 o C, more preferably 90 to 220 o C, most preferably 100 to 200 o C bar is preferred, heating to a temperature of 80 o C In this case, the removal rate of the water contained up to the foaming step is not very high and the water dispersibility for improving the water resistance The polymer resin or the powdered polymer resin has a disadvantage in that it cannot be thermally fused by a heat source on the ceramic surface foamed in the foaming step. When the heating temperature exceeds 250 ° C., moisture can be rapidly increased. However, since it is much higher than the melting point of fine powder polymer resin, it has the advantage of being easily heat-sealed on the ceramic surface in a short time, so that its water resistance is greatly increased. It is desirable to maintain the proposed heating temperature because it has the disadvantage of weakening.

이하, 본 발명을 다음의 실시 예에 의하여 더욱 상세하게 설명하겠는 바, 본 발명이 실시 예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, which are not intended to limit the present invention.

실시 예 1Example 1

기포제로서 한국산업주식회사에서 구입한 동물성기포제를 물 중량의 2%를 첨가하고, 호모믹서를 이용하여 발포수용액을 제조한 후 이곳에 (주)황토명가에서 구입한 황토분말 250 g을 분취하고 이곳에 삼화공업(주)에서 구입한 물유리(sodium silicate) 3종을 150 g을 혼합하였으며, 점도가 약 100,000 cps되도록 증점제인 CMC를 첨가하여 규산염이 함유된 발포 황토슬러리를 제조하였다. 이곳에 CO2 가스라인을 삽입하고 2분간 이산화탄소 가스를 퍼징(purging)시켜 겔화에 의한 고형화를 시키고, 100 oC의 오븐에서 2시간 가열, 건조시켜 발포세라믹을 제조하였다. As a foaming agent, 2% of water weight is added to the animal foaming agent purchased from Korea Industrial Co., Ltd., a foamed aqueous solution is prepared using a homomixer, and 250 g of ocher powder purchased from Hwangto Myeongga is collected there. 150 g of three kinds of water silica (sodium silicate) purchased from Samhwa Industrial Co., Ltd. were mixed, and a foamed ocher slurry containing silicate was prepared by adding a thickening agent CMC to a viscosity of about 100,000 cps. CO 2 gas line was inserted therein, and the carbon dioxide gas was purged for 2 minutes to solidify by gelation, and heated and dried in an oven at 100 ° C. for 2 hours to prepare a foamed ceramic.

실시 예 2Example 2

기포제로서 (주)한일콘의 식물성기포제(상품명 인포머)를 물 중량의 2%를 첨가한 것 이외에 실시 예 1과 동일하게 수행하였다.As a foaming agent, Hanilcon Co., Ltd. vegetable foaming agent (trade name Infomer) was added in the same manner as in Example 1 except that 2% of the water weight was added.

실시 예 3Example 3

한국산업주식회사에서 구입한 동물성기포제를 물 중량의 4%를 첨가하고, 기포발생장치를 이용하여 발포수용액을 제조한 후 이곳에 (주)동양제철화학의 흄실리카(fume silica)분말 200 g을 분취하고 이곳에 삼화공업(주)에서 구입한 규산칼륨(potassium silicate)을 130 g을 혼합하였으며, 점도가 약 150,000 cps되게 증점제인 CMC를 첨가하여 규산염이 함유된 흄실리카 슬러리를 제조하였다. 이곳에 10 %농도의 중탄산나트륨 용액 50 ml를 첨가하고 매우 빠른 속도로 균일하게 혼합하여 13 이내에 슬러리를 겔화에 의해 고형화를 시키고, 전자렌지에서 30분간 가열, 건조시켜 발포세라믹을 제조하였다. Animal foaming agent purchased from Korea Industrial Co., Ltd. is added 4% of water weight, foaming solution is prepared using bubble generator, and 200g of fume silica powder of Dongyang Steel Chemical Co., Ltd. is collected here. 130 g of potassium silicate purchased from Samhwa Industrial Co., Ltd. was mixed therein, and a fumed silica slurry containing silicate was prepared by adding a thickening agent CMC to a viscosity of about 150,000 cps. 50 ml of a 10% sodium bicarbonate solution was added thereto, and the mixture was uniformly mixed at a very high speed. The slurry was solidified by gelation within 13 minutes, heated and dried in a microwave oven for 30 minutes to prepare a foamed ceramic.

실시 예 4Example 4

(주)한일콘의 식물성기포제(상품명 인포머)를 물 중량의 4%를 호모믹서를 이용하여 발포수용액을 제조한 후 이곳에 (주)황토명가에서 구입한 황토분말 250 g, 삼화공업(주)에서 구입한 물유리(sodium silicate) 3종을 150 g, 딘텍스코리아에서 구입한 섬유 7.5 g, (주)오공본드의 수분산성 아크릴수지(에멀젼 아크릴수지) 5 g을 각각 혼합하였으며, 점도가 약 100,000 cps되도록 증점제인 CMC를 첨가하여 규산염이 함유된 황토슬러리를 제조하였다. 이곳에 10 %농도로 희석된 황산수용액 100 ml를 15초간 침적시켜 겔화에 의한 고형화를 시키고, 100 oC의 오븐에서 2시간 가열, 건조시켜 발포세라믹을 제조하였다.After making foamed aqueous solution with 4% of the weight of water by using Hanilcon's vegetable foaming agent (trade name infomer), 250 g of ocher powder purchased from Ocher Myeongga Co., Ltd., Samhwa Industrial Co., Ltd. 150 g of three kinds of sodium silicate, 7.5 g of fiber purchased from Dintex Korea, and 5 g of water-dispersible acrylic resin (emulsion acrylic resin) of Ogong Bond Co., Ltd. A yellow clay slurry containing silicate was prepared by adding a thickening agent CMC to 100,000 cps. 100 ml of sulfuric acid solution diluted to 10% concentration was deposited therein for 15 seconds to solidify by gelation, and heated and dried in an oven at 100 ° C. for 2 hours to prepare a foamed ceramic.

실시 예 5Example 5

(주)한일콘의 식물성기포제(상품명 인포머)를 물 중량의 4%를 호모믹서를 이용하여 발포수용액을 제조한 후 이곳에 (주)황토명가에서 구입한 황토분말 250 g, 삼화공업(주)에서 구입한 물유리(sodium silicate) 3종을 150 g, 딘텍스코리아에서 구입한 섬유 7.5 g, (주)오공본드의 수분산성 아크릴수지(에멀젼 아크릴수지) 5 g을 각각 혼합하였으며, 점도가 약 100,000 cps되도록 증점제인 CMC를 첨가하여 규산염이 함유된 황토슬러리를 제조하였다. 이곳에 10 %농도로 희석된 황산수용액 50 ml를 혼합하자마자 매우 빠른 속도로 균일하게 혼합한 후 겔화에 의해 8초 내에 고형화를 시키고, 100 oC의 오븐에서 2시간 가열, 건조시켜 발포세라믹을 제조하였다.After making foamed aqueous solution with 4% of the weight of water by using Hanilcon's vegetable foaming agent (trade name infomer), 250 g of ocher powder purchased from Ocher Myeongga Co., Ltd., Samhwa Industrial Co., Ltd. 150 g of three kinds of sodium silicate, 7.5 g of fiber purchased from Dintex Korea, and 5 g of water-dispersible acrylic resin (emulsion acrylic resin) of Ogong Bond Co., Ltd. A yellow clay slurry containing silicate was prepared by adding a thickening agent CMC to 100,000 cps. As soon as 50 ml of 10% diluted sulfuric acid solution was mixed, the mixture was uniformly mixed at a very high speed and solidified within 8 seconds by gelation, followed by heating and drying in an oven at 100 ° C. for 2 hours to prepare a foamed ceramic. It was.

실시 예 6Example 6

한국산업주식회사에서 구입한 동물성기포제를 물 중량의 4%를 첨가하고, 기포발생장치를 이용하여 발포수용액을 제조한 후 이곳에 기초소재(주)의 고로슬래그 분말 200 g을 분취하고 이곳에 삼화공업(주)에서 구입한 규산나트륨(sodium silicate)을 100 g을 혼합하였으며, 점도가 약 200,000 cps되게 증점제인 CMC를 첨가하여 규산염이 함유된 고로슬래그 슬러리를 제조하였다. 이곳에 글리옥살(glyoxal; 40%) 용액 25 ml를 첨가한 후 균일하게 혼합하여 15분간 방치하고 고로슬래그 슬러리를 겔화에 의해 고형화를 시킨 다음 전자렌지에서 30분간 가열, 건조시켜 발포세라믹을 제조하였다. Animal foaming agent purchased from Korea Industrial Co., Ltd. is added 4% of water weight, foaming solution is prepared by using bubble generator, and 200g of blast furnace slag powder of basic material is collected here and Samhwa Industrial Co., Ltd. 100 g of sodium silicate purchased from Co., Ltd. was mixed, and a blast furnace slag slurry containing silicate was prepared by adding a thickening agent CMC to a viscosity of about 200,000 cps. After adding 25 ml of glyoxal (40%) solution to the mixture, the mixture was uniformly left to stand for 15 minutes, the blast furnace slag slurry was solidified by gelation, and then heated and dried in a microwave oven for 30 minutes to prepare a foamed ceramic. .

비교 예 1~2.Comparative Examples 1-2.

CO2에 의한 3차원적 실리카네트워크를 형성시키지 않은 것 이외에 실시 예 1 및 2와 동일하게 수행하였다.The same procedure as in Examples 1 and 2 was carried out except that the three-dimensional silica network was not formed by CO 2 .

비교 예 3.Comparative Example 3.

중탄산나트륨에 의한 3차원적 실리카네트워크 겔화을 시키지 않은 것 이외에 실시 예 2와 동일하게 수행하였다.The same procedure as in Example 2 was carried out except that three-dimensional silica network gelation with sodium bicarbonate was not performed.

비교 예 4.Comparative Example 4.

10 %농도로 희석된 황산수용액에 15초간 침적시키지 않아 3차원적 실리카네트워크를 형성시키지 않은 것 이외에 실시 예 4과 동일하게 수행하였다.The same procedure as in Example 4 was carried out except that the sulfuric acid solution diluted to 10% concentration was not deposited for 15 seconds to form a three-dimensional silica network.

비교 예 5. Comparative Example 5.

10 %농도로 희석된 황산수용액 50 ml를 혼합하지 않아 3차원적 실리카네트워크를 형성시키지 않은 것 이외에 실시 예 5와 동일하게 수행하였다.The same procedure as in Example 5 was carried out except that 50 ml of diluted sulfuric acid solution diluted to 10% concentration was not mixed to form a three-dimensional silica network.

비교 예 6.Comparative Example 6.

글리옥살(glyoxal; 40%) 용액 25 ml를 첨가하지 않아 3차원적 실리카네트워크를 형성시키지 않은 것 이외에 실시 예 6와 동일하게 수행하였다.The same procedure as in Example 6 was performed except that 25 ml of glyoxal (40%) solution was not added to form a three-dimensional silica network.

비교 예 1~6 및 실시 예 1~6에 따라 본 발명의 단열 및 방음효과가 우수한 발포세라믹의 효과를 살펴보기 위한 결과를 표 1에 나타냈으며, 특히 내수성을 유지하면서 3차원적 실리카네트워크의 내구성을 살펴보기 위하여 본 발명의 실시 예 에서 얻어진 결과의 발포세라믹을 30일간 물에 넣고 부상 여부를 확인하였다.According to Comparative Examples 1 to 6 and Examples 1 to 6, the results for examining the effect of the foamed ceramic having excellent thermal insulation and soundproofing effects of the present invention are shown in Table 1, and in particular, durability of the three-dimensional silica network while maintaining water resistance. In order to examine the put the foamed ceramics of the result obtained in the embodiment of the present invention in water for 30 days was checked for injury.

실험항목 구분Experiment Item 내수성Water resistance 발포 여부Whether foamed 밀도 (g/cm3)Density (g / cm 3 ) 수중에 부상여부 (30일)Injury in water (30 days) 실시 예 1Example 1 우수Great 미세한 기포 다량 발생Generation of fine bubbles 0.250.25 30일 이상 물에 뜸30 days or more 실시 예 2Example 2 우수Great 미세한 기포 다량 발생Generation of fine bubbles 0.220.22 30일 이상 물에 뜸30 days or more 실시 예 3Example 3 우수Great 미세한 기포 다량 발생Generation of fine bubbles 0.180.18 30일 이상 물에 뜸30 days or more 실시 예 4Example 4 매우우수Very good 미세한 기포 다량 발생Generation of fine bubbles 0.240.24 30일 이상 물에 뜸30 days or more 실시 예 5Example 5 매우우수Very good 미세한 기로 다량 발생Large amount of finer 0.230.23 30일 이상 물에 뜸30 days or more 실시 예 6Example 6 우수Great 미세한 기로 다량 발생Large amount of finer 0.250.25 30일 이상 물에 뜸30 days or more 비교 예 1Comparative Example 1 저조Low 기포 없음No bubble 2.32.3 곧바로 물에 가라 앉음Sinking directly into the water 비교 예 2Comparative Example 2 저조Low 기포 없음No bubble 2.42.4 곧바로 물에 가라 앉음Sinking directly into the water 비교 예 3Comparative Example 3 저조Low 기포 없음No bubble 1.41.4 35분 후 물에 가라 앉음Submerged after 35 minutes 비교 예 4Comparative Example 4 저조Low 기포 없음No bubble 2.42.4 곧바로 물에 가라 앉음Sinking directly into the water 비교 예 5Comparative Example 5 저조Low 기포 없음No bubble 2.42.4 곧바로 물에 가라 앉음Sinking directly into the water 비교 예 6Comparative Example 6 저조Low 기포 없음No bubble 2.52.5 곧바로 물에 가라 앉음Sinking directly into the water

상기 표 1에 나타낸 바와 같이, 비교 예 1~6에서와 같이 발포제에 의해 형성된 다량의 미세한 발포수용액 내부에 규산염이 함유되었을 지라도 3차원적 실리카네트워크를 제공하는 겔화단계를 거치지 않으면 발포체가 사라지게 되어 경량의 세라믹 구조체가 만들어지지 않는 반면, 본 발명의 실시 예 1~6의 규산염이 함유되어 일정한 형상으로 이루어진 세라믹 슬러리 상태를 3차원적 실리카네트워크를 제공하는 겔화단계를 제공하면, 발포체가 사라지지 않고 그대로 발포된 형상을 유지하면서 경화되어 다량의 미세발포체가 형성됨에 따라 세라믹 구조체 사이에 미세한 공기층을 형성시켜 저밀도의 단열효과 및 방음효과가 충분히 발휘할 수 있는 발포성세라믹을 제조할 수 있음을 확인할 수 있었다. 또한 비교 예 4~5에서와 같이 내수성 향상을 위한 수분산성수지인 아크릴수지가 포함되었다 할지라도 3차원적 실리카네트워크를 형성하지 않을 경우 발포된 세라믹슬러리가 소포되어 곧바로 가라앉음으로서 세라믹 입자와 입자사이의 미세한 공기가 거의 형성되지 않았음을 확인할 수 있었으나, 실시 예 4~5에서는 3차원적 네트워크에 의해 겔화가 형성된 후 건조되면서 세라믹 표면에 아크릴수지가 코팅되어 내수성이 급격히 증가됨을 알 수 있었으며, 섬유질을 첨가하므로서 내구성에 우수한 효과가 발휘할 수 있음을 알 수 있었다. As shown in Table 1, although the silicate is contained in a large amount of fine foamed aqueous solution formed by the blowing agent as in Comparative Examples 1 to 6, the foam disappears unless the gelation step is provided to provide a three-dimensional silica network. While the ceramic structure of the present invention is not made, if the gelation step of providing a three-dimensional silica network in the state of a ceramic slurry containing a silicate of the embodiments 1 to 6 of the present invention in a uniform shape, the foam does not disappear as it is As it was cured while maintaining the foamed shape, a large amount of micro-foams were formed to form a fine air layer between the ceramic structures, thereby confirming that foam ceramics capable of sufficiently exhibiting low-density thermal insulation and sound insulation effects could be confirmed. In addition, even though acrylic resin, which is a water dispersible resin for improving water resistance, is included as in Comparative Examples 4 to 5, when the three-dimensional silica network is not formed, the foamed ceramic slurry is deflected and immediately sinks. Although it was confirmed that the fine air of Al was hardly formed, in Examples 4 to 5, the gel was formed by the three-dimensional network and dried, and the acrylic resin was coated on the ceramic surface, and the water resistance was rapidly increased. It was found that an excellent effect on durability can be exerted by adding.

본 발명은 다양한 형상으로 다량의 미세한 세라믹 발포체가 제조 가능하여 단열효과가 우수하면서 화재발생 시 유독가스 방출에 의한 인명피해를 최소화하고, 제조공정 및 경비를 최소화하여 환경에 유익한 단열재 및 방음재 제공하기 위한 단열 및 방음효과가 우수한 발포세라믹 물품을 얻고자 하는 것이다.The present invention is capable of manufacturing a large amount of fine ceramic foam in a variety of shapes to excellent thermal insulation effect, to minimize the damage to life due to the release of toxic gases in the event of a fire, to minimize the manufacturing process and costs to provide a thermal insulation and sound insulation material that is beneficial to the environment It is to obtain a foamed ceramic article having excellent insulation and sound insulation.

본원의 기술사상을 이용하면 종래의 발포세라믹을 제조하기 위해서 900~1,300 oC의 높은 열원이 필요하지 않고, 압출, 성형을 위하여 일정한 형상을 유지하기 위한 몰드(Mold) 및 압력장치 등 많은 시설비가 필요치 않으며, 일정한 다공성의 형체를 형성하기 위해 많은 발포시간이 필요 없는 개선방법을 제공할 수 있는 것으로, 제조공정을 최소화하면서 단열 및 방음효과가 우수한 발포세라믹 물품을 제공할 수 있을 뿐만 아니라 더욱 제조공정을 단축시킬 수 있어 종래의 석유화학제품인 스치로폼이나 발포폴리우레탄의 단열재 및 흡음재를 대체할 수 있는 발포세라믹을 제공할 수 있는 효과를 갖는다. The technical idea of the present application does not require a high heat source of 900 ~ 1,300 ° C in order to manufacture a conventional foam ceramic, and a lot of facility costs such as mold and pressure device for maintaining a constant shape for extrusion, molding It is not necessary to provide an improvement method that does not require much foaming time to form a uniform porous shape, and can provide a foamed ceramic article having excellent insulation and soundproofing effect while minimizing the manufacturing process, as well as further manufacturing process. It is possible to shorten the effect has the effect of providing a foam ceramic that can replace the insulation and sound absorbing material of the conventional petrochemical product Styrofoam or polyurethane foam.

상기에서 살펴본 바와 같이, 종래의 발포세라믹을 제조하는 경우 1,000 oC 이상의 고온이 필요하며, 압출, 성형에 의한 거대한 장비가 필요하여 작업성은 물론 경제성이 매우 저조한 반면 본 발명에 따라 동물성 내지는 식물성기포제를 물에 희석 혼합하고 이를 다량의 미세기포를 형성시킨 후 규산염, 세라믹분말 및 첨가제를 혼합하여 슬러리 상태를 제공한 다음 3차원적 실리카네트워크를 제공하는 겔화단계와 미세발포체 내부에 포함된 수분을 제거하는 가열단계를 제공하면, 실온에서도 발포체가 사라지지 않고 그대로 발포된 형상을 유지하면서 경화되어, 다량의 미세발포체가 균일하게 형성되어 일정한 형상의 발포세라믹을 제공하여 단열효과 및 흡음효과가 우수한 스치로폼 내지는 발포성폴리우레탄과 같은 발포성수지를 대체할 수 있는 경제성은 물론 작업성이 획기적으로 우수하여 단열 및 방음효과가 우수한 발포세라믹을 제조하는데 매우 큰 이점이 있다.As described above, in the case of manufacturing a conventional foamed ceramic, a high temperature of 1,000 o C or more is required, and a huge equipment by extrusion and molding is required, and workability and economic efficiency are very low, whereas animal or vegetable foaming agents are used according to the present invention. After diluting and mixing with water to form a large amount of micro-bubbles, and then mixed with silicate, ceramic powder and additives to provide a slurry state, the gelation step to provide a three-dimensional silica network and to remove the water contained in the micro-foaming body When the heating step is provided, the foam does not disappear even at room temperature and is cured while maintaining a foamed shape, and a large amount of micro-foams are uniformly formed to provide a foamed ceramic having a uniform shape, which is excellent in insulation and sound absorption effect. Economical to replace foaming resins such as polyurethane Of course, the workability is remarkably excellent and there is a very big advantage in producing a foam ceramic excellent in insulation and soundproofing effect.

Claims (16)

단열 및 방음효과를 갖는 발포세라믹의 제조방법에 있어서,In the manufacturing method of foam ceramic having a heat insulation and sound insulation effect, 발포형성을 이루기 위한 준비공정으로 동물성 기포제나 식물성 기포제를 물에 희석시키는 제1 혼합단계; A first mixing step of diluting the animal foaming agent or the vegetable foaming agent in water as a preparation process for achieving foaming; 제1 혼합단계에서 얻은 기포제를 고속분산기 내지는 발포기를 이용하여 분산시켜 다량의 미세기포를 형성시키는 제2 발포단계; A second foaming step of dispersing the foaming agent obtained in the first mixing step by using a high speed disperser or a foaming machine to form a large amount of fine bubbles; 제2 발포물에 규산염과 세라믹분말과 첨가제를 혼합하여 세라믹슬러리를 얻기 위한 제3 발포슬러리화단계; A third foaming slurrying step for obtaining ceramic slurry by mixing silicate, ceramic powder, and additive with the second foaming material; 제3 단계에서 얻은 발포된 세라믹슬러리의 형상을 계속 유지시키기 위해 3차원적 실리카네트워크를 제공하는 제4 겔화단계; A fourth gelling step of providing a three-dimensional silica network to maintain the shape of the foamed ceramic slurry obtained in the third step; 제4 겔화단계를 통하여 일정한 형상으로 발포된 세라믹슬러리의 내부수분을 제거하고, 세라믹슬러리에 포함된 수분산성수지(에멀젼수지, 분말수지)를 융착시켜 내수성을 증가시켜 주기 위한 제5 가열단계;A fifth heating step of removing internal moisture of the ceramic slurry foamed into a predetermined shape through a fourth gelling step and increasing water resistance by fusing the water dispersible resin (emulsion resin, powder resin) contained in the ceramic slurry; 를 포함하여 이루어지는 것을 특징으로 하는 발포세라믹의 제조방법.Method for producing a foamed ceramic, characterized in that comprises a. 제1항에 있어서,The method of claim 1, 제1 혼합단계에서 사용되는 기포제는 아미노산계의 동물성 기포제를 이용하거나 알킬벤젠 설포네이트계 내지는 소디움 라우릴 설페이트계나 이의 에스테르를 주원료로 하는 식물성 기포제 중에서 선택되어 사용되는 것을 특징으로 하는 발포세라믹의 제조방법.The foaming agent used in the first mixing step is an animal foaming agent of amino acid type, or is selected from the alkyl foaming agent based on alkylbenzene sulfonate or sodium lauryl sulfate type or ester thereof, the method of producing foamed ceramics, characterized in that used . 제1항에 있어서,The method of claim 1, 제2 발포단계에서 기포제를 고속분산시키기 위해 500~12,000 rpm의 회전속도를 갖는 믹서(Mixer)나, 디졸버(Dissolver), 호머믹서(Homo mixer), 콤프레셔(compressor)가 장착된 발포기 중에서 선택되는 장치를 이용하여 다량의 미세기포를 얻는 것을 특징으로 하는 발포세라믹의 제조방법.In order to rapidly disperse the foaming agent in the second foaming step, a mixer having a rotational speed of 500 to 12,000 rpm, a dissolver, a homo mixer, or a compressor equipped with a compressor is selected. Method for producing a foamed ceramic, characterized in that to obtain a large amount of fine bubbles by using a device. 제1항에 있어서,The method of claim 1, 제3 발포슬러지화단계에서 사용되는 규산염은 1종~4종의 규산나트륨, 분말규산나트륨, 규산칼륨, 규산리튬, 알루미늄실리콘산 나트륨 중에서 선택되어 사용되는 것을 특징으로 하는 발포세라믹의 제조방법 The silicate used in the third foaming sludge stage is selected from one to four kinds of sodium silicate, powdered sodium silicate, potassium silicate, lithium silicate, sodium aluminum silicate, and the method for producing foamed ceramics. 제1항에 있어서,The method of claim 1, 제3 발포슬러지화단계에서 사용되는 세라믹분말은 맥반석, 황토석, 감람석(Olivine), 고령토(Kaolin), 규산염 광물(Silica Mineral), 규조토(Diatomite), 규회석(Wollastonite), 납석(Pyrophyllite), 돌로마이트(Dolomite), 리튬광물(Lithium Minerals), 마그네사이트(Magnesite), 보크사이트(Bauxite), 벤토나이 트(Bentonite), 부석(Pumice), 붕산염광물(Borate), 사문석(Serpentine), 산성백토(Acid clay), 산화철(Iron Oxide), 석류석(Garnet), 탄산광물(Carbonate Minerals), 애타풀자이트(Attapulgite), 세피오라이트(Sepiolite), 연옥(Nephrite), 인회석(Apatite), 일라이트-운모(Illite-Mica), 장석(Feldspar), 진주암(Perlite), 질석(Vermiculite), 제올라이트(Zeolite), 중정석(Barite), 활석(Talc), 규조토(diatomaceous earth), 흑연(Graphite), 헥토라이트(Hectorite), 점토광물(Clay Minerals), 지르코늄 광물(Zirconium Minerals), 티타늄 광물(Titanium Minerals), 투어마린(Tourmaine; 전기석), 흄실리카(Fume silica), 에어로겔(Aerogel), 플라이에쉬(Fly ash), 고로슬래그분말 중에서 선택되고, 입자의 크기가 5 nm~400 ㎛를 갖는 분말로 사용되는 것을 특징으로 하는 발포세라믹의 제조방법. The ceramic powders used in the third foaming sludge stage include elvan, ocher, olivine, kaolin, silicate mineral, diatomite, wollastonite, pyrophyllite, and dolomite. Dolomite, Lithium Minerals, Magnesite, Bauxite, Bentonite, Pumice, Borate, Serpentine, Acid clay , Iron Oxide, Garnet, Carbonate Minerals, Attapulgite, Sepiolite, Nephrite, Apatite, Illite-Mica Feldspar, Perlite, Vermiculite, Zeolite, Barite, Talc, Diatomaceous earth, Graphite, Hectorite, Clay minerals Clay Minerals, Zirconium Minerals, Titanium Minerals, Tourmarines ne; tourmaline), fume silica, Aerogel, Fly ash, blast furnace slag powder, the particle size of 5 nm ~ 400 ㎛ characterized in that it is used as a powder having a Method for producing foamed ceramics. 제1항에 있어서,The method of claim 1, 제3 발포슬러지화단계에서 사용되는 첨가제는 3~50 ㎛의 굵기와 1~50 mm의 길이를 갖는 천연섬유 또는 인조섬유 중에서 선택되어 발포세라믹의 강도보강과 흡음을 겸한 강도보강제로 사용하는 것을 특징으로 하는 발포세라믹의 제조방법.The additive used in the third foaming sludge stage is selected from natural fibers or artificial fibers having a thickness of 3 to 50 μm and a length of 1 to 50 mm, and is used as a strength reinforcing agent that combines strength and sound absorption of the foamed ceramic. Method for producing a foamed ceramic to be. 제1항에 있어서,The method of claim 1, 제3 발포슬러지화단계에서 사용되는 첨가제는 발포세라믹의 내수보강을 위해 수분산성 고분자수지나 미 분말의 고분자수지 중에서 선택되어 사용하는 것을 특징으로 하는 발포세라믹의 제조방법. The additive used in the third foaming sludge step is selected from water dispersible polymer resin or fine powder polymer resin for water reinforcement of the foamed ceramic. 제1항에 있어서,The method of claim 1, 제3 발포슬러지화단계에서 규산염, 세라믹분말 및 첨가제를 혼합하여 슬러리(slurry)상태를 제공하기 위한 혼합단계에서 5,000~200,000 cps의 점도를 유지하도록 제공되는 것을 특징으로 하는 발포세라믹물의 제조방법.Method for producing a foamed ceramic material, characterized in that provided to maintain the viscosity of 5,000 ~ 200,000 cps in the mixing step to provide a slurry (slurry) state by mixing the silicate, ceramic powder and additives in the third foam sludge. 제1항에 있어서,The method of claim 1, 제4 겔화단계에서 3차원적 실리카네트워크를 제공하기 위해 발포단계에 사용한 규산염에 해당하는 화학양론적인 량만큼의 기체이산화탄소, 고체 드라이아이스, 중탄산염, 글리옥살(glyoxal), 에틸렌글리콜 디아세테이트, 유기산, 무기산(acid)중에서 선택되는 원료를 혼합시켜 겔화시키는 것을 특징으로 하는 발포세라믹의 제조방법.Stoichiometric amount of gaseous carbon dioxide, solid dry ice, bicarbonate, glyoxal, ethylene glycol diacetate, organic acid, corresponding to the silicate used in the foaming step to provide a three-dimensional silica network in the fourth gelling step A method for producing a foamed ceramic, characterized by mixing and gelling a raw material selected from inorganic acids. 제1항에 있어서,The method of claim 1, 제5 가열단계에서는 공기에 의한 상온건조, 오븐(Oven)에 의한 열풍건조, 극초단파를 이용한 가열건조 중에서 선택되어 제공되는 것을 특징으로 하는 발포세라믹의 제조방법.In the fifth heating step is selected from the room temperature drying with air, hot air drying with an oven (Oven), heating drying using microwaves provided manufacturing method of the foam ceramic. 제7항에 있어서,The method of claim 7, wherein 제3 발포슬러지화단계에서 사용되는 수분산성 고분자수지는 아크릴, 초산비닐, 알키드, 멜라민, 스타이렌 부타디엔 고무의 수분산성 수지 중에서 선택되어 사용되는 것을 특징으로 하는 발포세라믹의 제조방법.The water-dispersible polymer resin used in the third foaming sludge step is selected from water-dispersible resins of acryl, vinyl acetate, alkyd, melamine, styrene butadiene rubber. 제7항에 있어서,The method of claim 7, wherein 제3 발포슬러지화단계에서 사용되는 미 분말의 고분자수지는 폴리에틸렌테테레프탈레이트(PET), 저밀도 내지는 고밀도 폴리에틸렌(PE), 염화비닐수지(PVC), 폴리메틸 메타크릴레이트(PMMA), 폴리스타이렌(PS), 폴리프로필렌(PP), 에틸렌비닐아세테이트(EVA), 폴리우레탄(PU), 폴리카프로렉톤(Polycaprolacton) 중에서 선택되어 사용되는 것을 특징으로 하는 발포세라믹의 제조방법The fine powdered polymer resin used in the third foamed sludge stage is polyethylene terephthalate (PET), low or high density polyethylene (PE), vinyl chloride resin (PVC), polymethyl methacrylate (PMMA), polystyrene (PS). ), Polypropylene (PP), ethylene vinyl acetate (EVA), polyurethane (PU), polycaprolactone (Polycaprolacton) is a method for producing a foamed ceramic, characterized in that it is used 제9항에 있어서,The method of claim 9, 발포단계에 사용되는 중탄산염은 중탄산나트륨, 중탄산칼륨, 중탄산암모늄 중에서 선택되어 사용되는 것을 특징으로 하는 발포세라믹의 제조방법Bicarbonate used in the foaming step is selected from sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate is a method for producing a foamed ceramic, characterized in that used 제9항에 있어서,The method of claim 9, 발포단계에 사용되는 유기산 또는 무기산은 염산, 질산, 황산, 인산, 불산, 포름산, 아세트산, 구연산, 말레인산, 올레인산 중 선택되어 지는 산(acid)이 사용되는 것을 특징으로 하는 발포세라믹의 제조방법.The organic or inorganic acid used in the foaming step is an acid (acid) selected from hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, formic acid, acetic acid, citric acid, maleic acid, oleic acid is used. 제10에 있어서,The method according to claim 10, 오븐(Oven)에 의한 열풍건조 또는 극초단파의 가열건조는 건조온도가 80~250 oC로 제공되는 것을 특징으로 하는 발포세라믹의 제조방법.Hot air drying by the oven (Oven) or microwave drying heating method is a method for producing a foamed ceramic, characterized in that the drying temperature is provided at 80 ~ 250 ° C. 단열 및 방음효과를 갖는 발포세라믹에 있어서,In the foamed ceramic having insulation and sound insulation effect, 발포형성을 이루기 위해 아미노산계의 동물성 기포제를 이용하거나 알킬벤젠 설포네이트계 내지는 소디움 라우릴 설페이트계나 이의 에스테르를 주원료로 하는 식물성 기포제 중에서 선택되는 기포제를 물에 희석시키는 제1혼합단계와, A first mixing step of diluting a foaming agent selected from a vegetable foaming agent based on an alkylbenzene sulfonate type or sodium lauryl sulfate type or an ester thereof using an animal foaming agent of an amino acid type to achieve foaming; 상기 제1혼합단계에서 얻은 기포제를 고속분산기 내지는 발포기를 이용하여 분산시켜 다량의 미세기포를 형성시키는 제2발포단계와,A second foaming step of dispersing the foaming agent obtained in the first mixing step by using a high speed disperser or a foaming machine to form a large amount of fine bubbles; 상기 제2 발포단계를 통하여 얻은 발포물에 규산염과 세라믹분말과 첨가제를 혼합하여 세라믹슬러리를 얻기 위한 제3발포슬러리화단계와. A third foaming slurrying step for obtaining ceramic slurry by mixing silicate, ceramic powder and additives with the foamed product obtained through the second foaming step; 상기 제3 단계에서 얻은 발포된 세라믹슬러리의 형상을 계속 유지시키기 위해 3차원적 실리카네트워크를 제공하기 위해 제3발포슬러리화단계에서 사용한 규산염에 해당하는 화학양론적인 양 만큼의 기체 이산화탄소, 고체 드라이아이스, 중탄산염, 글리옥살(glyoxal), 에틸렌글리콜 디아세테이트, 유기산, 무기산(acid)중에서 선택되는 원료를 혼합하여 겔화시키는 제4겔화단계와 Stoichiometric amount of gaseous carbon dioxide, solid dry ice corresponding to the silicate used in the third foamed slurrying step to provide a three-dimensional silica network to maintain the shape of the foamed ceramic slurry obtained in the third step Gelling step of mixing and gelling a raw material selected from bicarbonate, glyoxal, ethylene glycol diacetate, organic acid and inorganic acid; 상기 제4겔화단계를 통하여 일정한 형상으로 발포된 세라믹슬러리의 내부수분을 제거하고, 세라믹슬러리에 포함된 수분산성수지를 융착시켜 내수성을 증가시켜 주기 위한 제5가열단계를 포함하여 제공됨으로 발포형상을 유지하면서 경화되어 제공되는 발포세라믹.By removing the internal moisture of the ceramic slurry foamed to a predetermined shape through the fourth gelling step, and the water-dispersible resin contained in the ceramic slurry is fused to provide a fifth heating step for increasing the water resistance to form a foamed shape Foamed ceramics that are cured while being retained.
KR1020070033447A 2007-04-04 2007-04-04 Manufacture method of ceramic foam which superior to insulating effect KR100785652B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020070033447A KR100785652B1 (en) 2007-04-04 2007-04-04 Manufacture method of ceramic foam which superior to insulating effect
PCT/KR2008/001801 WO2008123671A2 (en) 2007-04-04 2008-03-31 Ceramic foam and method for manufacturing it
JP2010502012A JP2010532299A (en) 2007-04-04 2008-03-31 Foamed ceramic having excellent heat insulating effect and soundproofing effect and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070033447A KR100785652B1 (en) 2007-04-04 2007-04-04 Manufacture method of ceramic foam which superior to insulating effect

Publications (1)

Publication Number Publication Date
KR100785652B1 true KR100785652B1 (en) 2007-12-14

Family

ID=39141033

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070033447A KR100785652B1 (en) 2007-04-04 2007-04-04 Manufacture method of ceramic foam which superior to insulating effect

Country Status (3)

Country Link
JP (1) JP2010532299A (en)
KR (1) KR100785652B1 (en)
WO (1) WO2008123671A2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955621B1 (en) * 2009-04-01 2010-05-03 에스이엠 주식회사 Manufacture method of ceramic foam which superior to insulating effect by using by waste and natural gypsum
KR101031103B1 (en) 2009-12-24 2011-05-09 주식회사 유신건축종합건축사사무소 The engineering method of constructuring architectural material with excellent property
KR101129375B1 (en) * 2009-05-04 2012-03-20 유미선 Porous Ceramic Prepared From Sodium Silicate and Aerogel and A Method for Preparing Thereof
KR101138245B1 (en) * 2009-07-01 2012-04-24 성현산업 주식회사 A sound absorbing and insulating material for vehicle including vermiculite and manufacturing method thereof
KR101273398B1 (en) * 2011-07-11 2013-06-11 주식회사 알인텍 Nonfiring Insulation Having Electric Insulation and Heat Resistance and Method for Manufacturing the Same
KR101286259B1 (en) 2010-11-17 2013-07-18 주철완 Manufacture method of inorganic foam using geopolymer silica sol·gel method
KR101289807B1 (en) 2011-10-26 2013-07-26 반봉찬 Method for manufacture of fire-resistant MgO-board from serpentine powder
KR101646155B1 (en) 2015-12-23 2016-08-08 그렉 조 Fly ash composition for preparing a light-weight molded foam article and method for producing a light-weight molded foam article using them and a light-weight molded foam article made thereby
KR101718946B1 (en) * 2016-07-27 2017-03-23 이종철 Insulation composition for anti-sweating
KR101892391B1 (en) 2017-05-22 2018-08-27 그렉 조 Method for manufacturing bottom ash molded foam article
KR20190035032A (en) * 2017-09-25 2019-04-03 배경호 Composition for room temperature formable ceramic thermal insulation panel, room temperature formable ceramic thermal insulation panel formed therefrom, and preparing method thereof
CN110698197A (en) * 2019-08-08 2020-01-17 深圳光韵达光电科技股份有限公司 Ceramic 3D printing paste and preparation method thereof
US20210147276A1 (en) * 2017-03-16 2021-05-20 Synthera Biomedical Private Limited Manufacture of porous glass and glass-ceramic particulate structures by gel casting
KR102285369B1 (en) * 2020-11-17 2021-08-03 주식회사 크린텍개발 Spraying method of aerogel insulation composition using silica sol-gel method
CN113321527A (en) * 2021-06-30 2021-08-31 陈宁 Novel composite ceramic and manufacturing method thereof
CN113896462A (en) * 2021-10-12 2022-01-07 华北水利水电大学 Method for strengthening cold-bending thin-wall steel column based on geopolymer foam concrete
KR20220037168A (en) * 2020-09-17 2022-03-24 주식회사 온도기술센테크 Method for manufacturing porous ceramic by direct foaming method and porous ceramic manufactured thereby
KR102444232B1 (en) 2022-01-17 2022-09-19 (주)아키사운드 Ecofriendly sound-absorbing board and method for manufacturing the same
KR102493793B1 (en) 2022-08-30 2023-02-01 주식회사 넘버제로 Ecofriendly sound-absorbing board and method for manufacturing the same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2674409B1 (en) * 2011-02-08 2019-10-23 Ceilook, SL Ceramic composition
JP5793045B2 (en) * 2011-10-04 2015-10-14 HOYA Technosurgical株式会社 Method for producing ceramic porous body
KR101519864B1 (en) 2013-07-04 2015-05-14 고영신 Sound absorbing and adiabatic material having lightweight fireproof using expandable graphite and manufacturing method of the same
CN103465731B (en) * 2013-09-17 2015-11-11 山东永泰化工有限公司 Low noise pneumatic tire
WO2016076811A1 (en) * 2014-11-10 2016-05-19 Güden Mustafa Manufacturing of porous structural building materials
KR101997828B1 (en) * 2017-07-04 2019-07-08 울산과학기술원 Insulation board, and apparatus and method for manufacturing the insulation board
CN110483082B (en) * 2019-09-17 2022-01-28 航天特种材料及工艺技术研究所 Micro-nano multi-scale nano heat-insulating material and preparation method thereof
CN111302830B (en) * 2020-04-03 2022-05-10 张家港市盛澳电炉科技有限公司 Preparation method of microporous high-temperature-resistant light refractory brick
CN111792908B (en) * 2020-07-21 2022-04-26 福建龙净环保股份有限公司 Ceramic fiber porous filter material reinforcing agent, preparation method thereof and ceramic fiber reinforcing material
CN112358314A (en) * 2020-10-31 2021-02-12 辽宁罕王绿色建材有限公司 Method for producing foamed ceramic by using piling mud
CN112876225B (en) * 2021-02-08 2023-08-01 新疆硅质耐火材料有限公司 Sintered high-temperature-resistant light heat insulation material and preparation method thereof
CN113956068B (en) * 2021-09-26 2022-11-29 江苏华之杰环境科技有限公司 Combined type micro-through hole foam ceramic plate for sound barrier and preparation method thereof
CN114394791B (en) * 2022-02-07 2022-10-04 武汉理工大学 Composite porous ceramic decorative plate and preparation method thereof
CN115353411A (en) * 2022-09-05 2022-11-18 山东国材工程有限公司 Foamed ceramic sound insulation material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0181779B1 (en) * 1996-11-08 1999-04-15 우덕창 Method for producing a lightweight bubble acoustic-absorptive block of a rigid type
KR20030086955A (en) * 2003-10-02 2003-11-12 (주)우송산업 Manufacturing technology of autoclave lightweight concrete use of extensibility lightweight for manufacture of bulyon sandwitch pannel
KR20060043360A (en) * 2004-11-08 2006-05-15 오은영 Pannel
KR20060068929A (en) * 2004-12-17 2006-06-21 신현창 The foamed ceramics shape of high strength and the making method thereof
KR20070001383A (en) * 2005-06-29 2007-01-04 박충범 Inorganic light weight insulator and a process therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68911811T2 (en) * 1988-09-20 1994-06-09 Asahi Optical Co Ltd Porous ceramic sinter and process for its production.
JP3058174B2 (en) * 1988-09-20 2000-07-04 旭光学工業株式会社 Porous ceramics, dried body for producing the same, and methods for producing them
US20030052428A1 (en) * 2001-07-02 2003-03-20 Toshiba Ceramics Co., Ltd. Production method for ceramic porous material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0181779B1 (en) * 1996-11-08 1999-04-15 우덕창 Method for producing a lightweight bubble acoustic-absorptive block of a rigid type
KR20030086955A (en) * 2003-10-02 2003-11-12 (주)우송산업 Manufacturing technology of autoclave lightweight concrete use of extensibility lightweight for manufacture of bulyon sandwitch pannel
KR20060043360A (en) * 2004-11-08 2006-05-15 오은영 Pannel
KR20060068929A (en) * 2004-12-17 2006-06-21 신현창 The foamed ceramics shape of high strength and the making method thereof
KR20070001383A (en) * 2005-06-29 2007-01-04 박충범 Inorganic light weight insulator and a process therefor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955621B1 (en) * 2009-04-01 2010-05-03 에스이엠 주식회사 Manufacture method of ceramic foam which superior to insulating effect by using by waste and natural gypsum
KR101129375B1 (en) * 2009-05-04 2012-03-20 유미선 Porous Ceramic Prepared From Sodium Silicate and Aerogel and A Method for Preparing Thereof
KR101138245B1 (en) * 2009-07-01 2012-04-24 성현산업 주식회사 A sound absorbing and insulating material for vehicle including vermiculite and manufacturing method thereof
KR101031103B1 (en) 2009-12-24 2011-05-09 주식회사 유신건축종합건축사사무소 The engineering method of constructuring architectural material with excellent property
KR101286259B1 (en) 2010-11-17 2013-07-18 주철완 Manufacture method of inorganic foam using geopolymer silica sol·gel method
KR101273398B1 (en) * 2011-07-11 2013-06-11 주식회사 알인텍 Nonfiring Insulation Having Electric Insulation and Heat Resistance and Method for Manufacturing the Same
KR101289807B1 (en) 2011-10-26 2013-07-26 반봉찬 Method for manufacture of fire-resistant MgO-board from serpentine powder
KR101646155B1 (en) 2015-12-23 2016-08-08 그렉 조 Fly ash composition for preparing a light-weight molded foam article and method for producing a light-weight molded foam article using them and a light-weight molded foam article made thereby
KR101718946B1 (en) * 2016-07-27 2017-03-23 이종철 Insulation composition for anti-sweating
US20210147276A1 (en) * 2017-03-16 2021-05-20 Synthera Biomedical Private Limited Manufacture of porous glass and glass-ceramic particulate structures by gel casting
US11807566B2 (en) * 2017-03-16 2023-11-07 Synthera Biomedical Private Limited Manufacture of porous glass and glass-ceramic particulate structures by gel casting
KR101892391B1 (en) 2017-05-22 2018-08-27 그렉 조 Method for manufacturing bottom ash molded foam article
KR20190035032A (en) * 2017-09-25 2019-04-03 배경호 Composition for room temperature formable ceramic thermal insulation panel, room temperature formable ceramic thermal insulation panel formed therefrom, and preparing method thereof
KR102533684B1 (en) 2017-09-25 2023-05-16 배경호 Composition for room temperature formable ceramic thermal insulation panel, room temperature formable ceramic thermal insulation panel formed therefrom, and preparing method thereof
CN110698197A (en) * 2019-08-08 2020-01-17 深圳光韵达光电科技股份有限公司 Ceramic 3D printing paste and preparation method thereof
KR20220037168A (en) * 2020-09-17 2022-03-24 주식회사 온도기술센테크 Method for manufacturing porous ceramic by direct foaming method and porous ceramic manufactured thereby
KR102422149B1 (en) 2020-09-17 2022-07-19 주식회사 온도기술센테크 Method for manufacturing porous ceramic by direct foaming method and porous ceramic manufactured thereby
KR102285369B1 (en) * 2020-11-17 2021-08-03 주식회사 크린텍개발 Spraying method of aerogel insulation composition using silica sol-gel method
CN113321527A (en) * 2021-06-30 2021-08-31 陈宁 Novel composite ceramic and manufacturing method thereof
CN113896462A (en) * 2021-10-12 2022-01-07 华北水利水电大学 Method for strengthening cold-bending thin-wall steel column based on geopolymer foam concrete
KR102444232B1 (en) 2022-01-17 2022-09-19 (주)아키사운드 Ecofriendly sound-absorbing board and method for manufacturing the same
KR102493793B1 (en) 2022-08-30 2023-02-01 주식회사 넘버제로 Ecofriendly sound-absorbing board and method for manufacturing the same

Also Published As

Publication number Publication date
JP2010532299A (en) 2010-10-07
WO2008123671A3 (en) 2008-12-04
WO2008123671A2 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
KR100785652B1 (en) Manufacture method of ceramic foam which superior to insulating effect
KR100760040B1 (en) Manufacture method of foam ceramics
KR100760039B1 (en) Manufacture method of quick setting light weight bubble cement which superior to insulating effect
KR101286259B1 (en) Manufacture method of inorganic foam using geopolymer silica sol·gel method
KR101099025B1 (en) Manufacture method of ultra lightweight foam cement
KR101317357B1 (en) Manufacture method of inorganic foam using geopolymer as binder
CN105683120B (en) Geo-polymer foam formulations for non-ignitable, sound absorption, insulation geo-polymer foam element
KR100963907B1 (en) Foam feeding system of lightweight cement and gypsum which can control to setting speed
EP2864535B1 (en) Flexible insulating structures and methods of making and using same
KR100955622B1 (en) Manufacture method of ultra lightweight foam ceramic
KR101314741B1 (en) Manufacture method of inorganic foam using magnesia and its hardner at room temperature
EP3440031A1 (en) Geopolymer foam formulation
KR100809804B1 (en) Light foam concrete composition using bottom ash, used for sound absorbtion materials, light foam concrete product employing the same and the manufacturing method thereof
KR101603669B1 (en) Mortar and method for fabricating thereof
CN105658881B (en) Concrete element comprising a sound absorber
CN101143777B (en) Lightweight fireproof foaming cement door inner filling material and preparation method thereof
KR101726589B1 (en) Expanded mortar and method for fabricating thereof
CN107265962A (en) A kind of superthermal insulation aerogel foam concrete and preparation method thereof
KR101220726B1 (en) Method for manufacturing a light, flexible and thermal insulating ceramic pad by foaming process and a light, flexible and thermal insulating ceramic pad manufactured by the same method
CN102515824A (en) Super-light foam cement concrete and preparation method thereof
KR20120053411A (en) Manufacture method of inorganic foam using geopolymer
KR102200959B1 (en) Eco-friendly sound-absorbing non-combustible foam for construction with heat insulation and sound-absorbing function and its manufacturing method.
US8846557B2 (en) Ceramic composition, porous ceramic heat insulating material using same, and preparation method thereof
US8822557B2 (en) Elastic inorganic-organic hybrid foam
KR101300772B1 (en) Manufacture method for inorganic form of light weight using magnesia and its hardner without foaming step at room temperature

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111207

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20121212

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151202

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161206

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180117

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee