JP2010528844A - 多層フィルタ媒体 - Google Patents

多層フィルタ媒体 Download PDF

Info

Publication number
JP2010528844A
JP2010528844A JP2010511185A JP2010511185A JP2010528844A JP 2010528844 A JP2010528844 A JP 2010528844A JP 2010511185 A JP2010511185 A JP 2010511185A JP 2010511185 A JP2010511185 A JP 2010511185A JP 2010528844 A JP2010528844 A JP 2010528844A
Authority
JP
Japan
Prior art keywords
layer
filter media
filter
region
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010511185A
Other languages
English (en)
Inventor
ジェバート,リチャード
シン プーン,ワイ
スターク,スティーブ
Original Assignee
ゴア エンタープライズ ホールディングス,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゴア エンタープライズ ホールディングス,インコーポレイティド filed Critical ゴア エンタープライズ ホールディングス,インコーポレイティド
Publication of JP2010528844A publication Critical patent/JP2010528844A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1692Other shaped material, e.g. perforated or porous sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/54Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
    • B01D46/543Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0668The layers being joined by heat or melt-bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/10Multiple layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明により、流体流から粒子を除去する多層フィルタ媒体が提供される。この多層フィルタ媒体は、デプス濾過層と、膜濾過層と、支持層を含むことができる。追加の層が存在していてもよい。膜濾過層は、延伸ポリテトラフルオロエチレン(ePTFE)を含むことができる。この多層フィルタ媒体のさまざまな層は、複数の点接合を通じて一緒に接合することができる。点接合プロセスは、多層フィルタ媒体の複数の層を1回だけの操作で同時に一緒に接合する操作を含むことができる。点接合は、超音波接合を利用して作り出すことができる。

Description

ガス流から粒子を除去することが、さまざまな産業分野で長年にわたって行なわれてきた。ガス流から粒子などを濾過する従来の手段として、以下に限られないが、フィルタ・バッグ、フィルタ・チューブ、フィルタ・パネル、フィルタ・カートリッジなどがある。この明細書では、便宜上、“フィルタエレメント”という用語を用いてこれらのタイプの濾過手段をまとめて表わす。
使用するフィルタ媒体のタイプの選択は、一般に、フィルタエレメントを接触させる流体流と、システムの動作条件と、濾過する粒子のタイプとに基づいてなされる。
流体流は、液体であれ気体であれ、フィルタエレメントを通過するときに圧力差または圧力低下を生じさせる。流体の濾過に必要なパワーを最小にするには、流体の所定の流速におけるこの圧力差ができるだけ小さいことが好ましい。
フィルタ媒体は、大まかに、デプスフィルタ媒体または表面フィルタ媒体として特徴づけることができる。粒子はデプスフィルタ媒体の中に幾分か侵入して蓄積される傾向がある。それとは逆に、粒子の大半が表面フィルタ媒体の表面で回収される。
多くの材料が、デプスフィルタ媒体として有用であることが知られている。そのような材料として、さまざまな材料(例えばポリエステル、ポリプロピレン、アラミド、セルロース、ガラス、フルオロポリマー)でできたスパンボンド・ウェブ、メルトブローン・ウェブ、フェルト、布帛などがある。公知のメルトブローン・フィルタ媒体は、高い効率と小さな圧力低下を示す。メルトブローン・フィルタ媒体は、ダスト保持能力も大きい。しかしメルトブローン・フィルタ媒体は水浸入圧が比較的低いため、環境によっては屋外での利用に適しない可能性がある。
表面フィルタ(例えば膜)は、いくつかの用途で、特に、屋外環境や濾過すべき流体が液体エーロゾルまたは刺激性の化学物質を含んでいる用途において、よく使用されてきた。別の用途では、膜フィルタ媒体は、デプスフィルタ媒体よりも一定の濾過効率を有するために有用である。膜は、安定な濾過効率を有する。なぜなら膜フィルタの効率は、デプスフィルタ媒体とは異なり、ダスト粒子からなるケークの成長に依存しないからである。
ポリテトラフルオロエチレン(PTFE)は多くの分野(例えば、多くの一般的な金属やポリマー材料を通常は劣化させる苛酷な化学的環境)で有用であることが証明されている。延伸PTFE(ePTFE)膜フィルタ媒体が従来のフィルタエレメントに表面ラミネートとして組み込まれたとき、粒子濾過の分野における大きな進歩が実現された。そのようなフィルタ媒体の例が、アメリカ合衆国特許第4,878,930号、第5,207,812号に教示されている。これらの特許は、運動する気体または空気の流れからダストの粒子を除去するためのフィルタ・カートリッジに関するものである。ePTFEで構成された膜は疎水性であることが有利である。
熱可塑性物質層とePTFE層が一緒に接合されてフィルタエレメントを形成している公知のフィルタ・システムでは、別々の層の間の結合した領域がそのフィルタエレメントの中を通過する流体流を著しく制限し、その結果としてフィルタ・システムの性能が低下する可能性がある。フィルタエレメントの全表面に熱と圧力を加えることによって多数の層を接合する従来のラミネーション技術の場合にこのようなことが当てはまる可能性がある。このようなフィルタでは、熱可塑性物質層からの材料の混合が制御されないため、流れが制限された領域が作り出される。さらに、全表面に熱と圧力を加えると、ePTFE層の広い領域に応力と圧縮力が生じて濾過効率が低下するとともに水浸入圧が低くなる可能性がある。屋外環境によっては、濾過効率と水浸入圧の低下がフィルタエレメントの早い故障につながる可能性がある。
上記のことに鑑み、この明細書に記載した実施態様の1つの目的は、改善された多層フィルタ媒体を提供することである。この明細書に記載した実施態様により、効率と空気透過率の大きな多層フィルタ媒体が提供される。この明細書に記載した実施態様では多層を1回だけの接合プロセスで接合できるため、フィルタの性能を維持または改善しつつ、製造サイクルの時間が短縮され、部品のコストと製造コストが低下する。
1つの特徴では、多層フィルタ媒体が提供される。この多層フィルタ媒体は、第1の熱可塑性物質を含む第1の材料と、第2のフィルタ材料と、第2の熱可塑性物質を含む第3の材料を含むことができる。この多層フィルタ媒体は、第1の領域と、少なくとも1つの第2の領域を含むことができる。
一実施態様では、多層フィルタ媒体は、第1の領域内に、第1の層と第2の層と第3の層を含むことができる。第1の領域では、第1の材料の少なくともいくつかの部分を第1の層内に互いに離して配置することができ、第2のフィルタ材料の少なくともいくつかの部分を第2の層内に互いに離して配置することができ、第3の材料の少なくともいくつかの部分を第3の層内に互いに離して配置することができる。これらの層は、第2の層が第1の層と第3の層の間に配置されるように構成できる。
1つの構成では、少なくとも1つの第2の領域において、第1の材料と第2のフィルタ材料の少なくともいくつかの部分と、第1の材料と第3の材料の少なくともいくつかの部分とを直接接合してこれらの間に連続した接合を規定することができる。この連続した接合は、フィルタ媒体のどれかの層がフィルタ媒体の他のどの層にもダメージを与えずに除去されることを制限することができる。
一実施態様では、第2の層は、少なくとも4フレージャーの空気透過率を持つことができる。さらに、いくつかの実施態様では、第2の層は、少なくとも10フレージャーの空気透過率を持つことができる。1つの構成では、第2の層は、0.5PSIよりも大きな水浸入圧を持つことができる。さらに、いくつかの構成では、第2の層は、1.5PSIよりも大きな水浸入圧を持つことができる。さまざまな実施態様では、第2の層は、微孔質ポリマー膜を含むことができる。微孔質ポリマー膜はePTFEを含むことができる。この点に関し、第2のフィルタ材料はePTFEを含むことができる。
1つの構成では、第1の材料はフィルタ材料にすることができる。第1の材料の少なくともいくつかの部分をメルトブローン・ポリマー・ウェブの中に配置することができる。メルトブローン・ポリマー・ウェブは、例えばポリプロピレン、ポリエステル、ナイロン、ポリエチレン、またはこれらの組み合わせを含むことができる。この構成の1つのバリエーションでは、第3の材料がフィルタ媒体のための支持を提供することができる。第3の材料の少なくともいくつかの部分を繊維の中に配置することができる。繊維として、スパンボンド繊維、水流交絡(hydroentangled)繊維、湿式(wet laid)繊維、またはこれらの任意の組み合わせが可能である。繊維は、第2の熱可塑性物質からなる少なくともいくつかの部分を含む熱可塑性結合剤を有するセルロース紙からなるセルロース繊維にすることができる。第2の熱可塑性物質は、ポリエステル、ナイロン、ポリプロピレン、ポリエチレン、ポリウレタン、フェノール樹脂、アクリル樹脂、ポリ酢酸ビニル、またはこれらの組み合わせを含むことができる。この構成の1つのバリエーションでは、第2の層に2つのePTFE膜が含まれていてよい。2つのePTFE膜は、それぞれが透過率や濾過能力などの異なる属性を持つことができる。透過性熱可塑性ウェブを2つのePTFE膜の間に配置することができる。透過性熱可塑性ウェブは、ポリプロピレン、ポリエステル、ナイロン、ポリエチレン、ポリウレタン、またはこれらの組み合わせで構成することができる。このようなバリエーションでは、透過性熱可塑性ウェブが第2の熱可塑性物質を含むことができる。この構成の別のバリエーションでは、第1の材料が、第1の熱可塑性物質から構成される結合剤を有するセルロース紙を含むことができる。
さらに別の構成では、第1の材料の少なくともいくつかの部分を透過性熱可塑性ウェブの中に配置することができる。透過性熱可塑性ウェブは、ポリプロピレン、ポリエステル、ナイロン、ポリエチレン、ポリウレタン、またはこれらの組み合わせで構成することができる。この構成の1つのバリエーションでは、以前の構成に関して説明したのと同様、第3の材料がフィルタ媒体の支持を提供することができる。
別の一実施態様では、3層を含む多層フィルタ媒体が第4の層も含むことができる。第4の層は、第3の層が第2の層と第4の層の間に位置するように配置できる。このフィルタ媒体は、第5の層も含むことができ、第5の層は、第4の層が第3の層と第5の層の間に位置するように配置できる。第4の層は、メルトブローン繊維ウェブを含むことができる。第5の層は、スパンボンド熱可塑性繊維ウェブを含むことができる。
さまざまな実施態様では、第1の層と第2の層と第3の層は、多層フィルタ媒体の第1の領域において互いに接合されていないようにすることができる。この点に関し、第1の領域では、層は、互いに隣接させて少なくとも1つの第2の領域において相互に接続することで所定の位置に保持することができる。第1の材料と第3の材料の融点は、第2のフィルタ材料の融点よりも低くすることができる。さらに、第1の材料と第3の材料の融点は、第2のフィルタ材料が顕著に分解する温度よりも低くすることができる。
さまざまな実施態様では、第1の領域の全面積とすべての第2の領域の合計面積との比を少なくとも9対1にすることができる。さらに、いくつかの実施態様では、第1の領域の全面積とすべての第2の領域の合計面積との比を少なくとも32対1にすることができる。
さまざまな構成では、連続した接合の最小の厚さを第1の領域におけるフィルタ媒体の最大の厚さの50%未満にすることができる。さらに、いくつかの構成では、連続した接合の最小の厚さを第1の領域におけるフィルタ媒体の最大の厚さの25%未満にすることができる。
さまざまな実施態様では、少なくとも1つの第2の領域の連続した接合は、第1の材料の少なくともいくつかの部分と、第2のフィルタ材料の少なくともいくつかの部分と、第3の材料の少なくともいくつかの部分とを、これらが直接接合された状態で含むことができる。
1つの構成では、フィルタ媒体は、空気の速度が2.5cm/秒のときに0.1μmのDOP(フタル酸ジオクチル)粒子に関して少なくとも約0.8 1/kraylという比品質因子を持つことができる。1つの構成では、フィルタ媒体は、約10g/m2より大きいダスト保持能力を持つことができる。
一実施態様では、フィルタ媒体を折り曲げてひだを形成することができる。このような実施態様では、少なくとも1つの第2の領域のうちの1つの最大横断寸法は、第1の領域におけるフィルタ媒体の厚さの最小値の2倍未満にすることができる。
少なくとも1つの第2の領域として、複数の第2の領域が可能である。その複数の第2の領域は、フィルタ媒体の表面全体にあるパターンで配置することができる。そのパターンは一様なものが可能である。その複数の第2の領域のそれぞれは、点接合を規定することができる。さまざまな構成では、接合を超音波接合にすることができる。その少なくとも1つの第2の領域が複数の点接合から構成される場合、第1の領域の全面積とすべての点接合の合計面積との比を少なくとも9対1にすることができる。いくつかの実施態様では、この比を少なくとも32対1にすることができる。
別の特徴では、フィルタ媒体を製造する方法が提供される。この方法は、第1の層と第2の層と第3の層の位置を決めるステップと、その位置決めした層の横方向に広がった範囲の中から選択した少なくとも1つの領域にエネルギーを加えるステップを含むことができる。位置決めは、第1の層と第2の層と第3の層が横方向に広がった範囲の全体で隣り合い互いに向かい合った関係で離れて配置されていて、第2の層が第1の層と第3の層の間に挟まれた状態になるように、これらの層を配置することを含んでもよい。第1の層は第1の熱可塑性材料を含むことができ、第2の層は第2のフィルタ材料を含むことができ、第3の層は第3の熱可塑性材料を含むことができる。エネルギーを加えることにより、横方向に広がった範囲の中から選択した少なくとも1つの領域において第1の熱可塑性材料のいくつかの部分を第3の熱可塑性材料のいくつかの部分に接合させて、これらの間に連続した接合を規定することができる。
この方法の一実施態様では、エネルギーを加えるステップは、選択した複数の領域にエネルギーを加えることを含んでもよい。選択した複数の領域のそれぞれは、1つの点接合を規定することができる。フィルタ媒体で点接合を除いた部分の面積と、すべての点接合の合計面積との比は、少なくとも9対1にすることができる。いくつかの実施態様では、この比を少なくとも32対1にすることができる。
一実施態様では、エネルギーを加えるステップは、位置決めした第1の層と第2の層と第3の層にエネルギーを加えて、第1の層と第3の層の融点よりも高いが第2の層の融点よりも低い温度に加熱することを含んでいる。さまざまな実施態様では、加えるエネルギーは、超音波エネルギーを含むことができる。
エネルギーを加えるステップは、横方向の広がった範囲の中で選択した領域において、第1の熱可塑性材料の少なくとも一部を第2の層を通過させて第3の層の中に流し込むことを含んでもよい。一実施態様では、第1の層と第2の層と第3の層は、エネルギーを加えるステップの後に、横方向に広がった範囲の中から選択した領域の外では互いに接合されていないようにすることができる。さらに、エネルギーを加えるステップの後、フィルタ媒体は少なくとも4フレージャーの空気透過率を持つことができる。いくつかの実施態様では、空気透過率を少なくとも10フレージャーにすることができる。エネルギーを加えるステップの後、フィルタ媒体は0.5PSIよりも大きな水浸入圧を持つことができる。いくつかの実施態様では、水浸入圧を1.5PSIよりも大きくすることができる。
上記のそれぞれの特徴に関して説明したさまざまな特色、構成、実施態様は、上記のどの特徴でも利用することができる。別の特徴とそれに対応する利点は、当業者にとって、以下のより詳しい説明を考慮すれば明らかであろう。
1つの点接合の領域におけるフィルタ媒体の一実施態様の、等角投影法による概略断面図である。 多数の材料層を接合する超音波接合装置の一例の概略図である。 フィルタ組立体の一例の等角投影図である。 フィルタ媒体を製造する方法の一実施態様のフローチャートである。
図1は、多層フィルタ媒体100の一実施態様の概略断面図である。図1には、多層フィルタ媒体100の多数の層が互いに隣接して配置された第1の領域101が含まれている。この図には、多層フィルタ媒体100の多数の層が一緒に接合された第2の領域102も含まれている。これら領域101、102のそれぞれについて以下に説明する。図1に示した層の相対的な厚さは説明用であり、必ずしも現実通り描かれてはいない。
図1に示した多層フィルタ媒体100は、2つの濾過層を備えている。すなわちデプス濾過層103と膜濾過層104である。この多層フィルタ媒体100を通って流れる流体の方向は、多層フィルタ媒体100の第1の側106から第2の側107に向かうようにできる。図1からわかるように、デプス濾過層103は、膜濾過層104の上流に位置させることができる。多層フィルタ媒体100は、支持層105をさらに備えることができる。支持層105は、多層フィルタ媒体100を通って流れる流体に対して膜濾過層104の上流に位置させても下流に位置させてもよい。図1では、支持層105が膜濾過層104の下流に位置している様子を示してある。
第1の領域101では、多層フィルタ媒体100の層103、104、105を互いに隣接して配置することができる。さらに、第1の領域では、これらの層は互いに接合されていなくてもよい。第1の領域101では、例えば層103、104、105は、その層103、104、105を一緒に接合することのできる第2の領域102とつながっているため、互いに隣接した状態に保持することができる。そのため多層フィルタ媒体100の性能特性は、既知のフィルタ・システムの性能特性を超えることができる。例えば複数の接合された領域(例えば第2の領域)が互いに離れている多層フィルタ媒体100は、同じ層を用いるが公知の相互接続法(例えばさまざまな層を面積全体で接合する方法)を利用したフィルタ媒体と比べて2倍の流体流を実現することができる。
デプス濾過層103は、プレ濾過層として機能させることができる。デプス濾過層103は、熱可塑性物質を含む材料で構成することができる。デプス濾過層103は、メルトブローン・ポリマー・ウェブを含むことができる。メルトブローン・ウェブは、溶融した紡績繊維を収束する加熱空気流に同伴させて極端に細いフィラメントを生成させることによって製造される。メルトブローン処理により、一般に10マイクロメートル未満という比較的小さな直径の繊維を持つサブデニールの連続繊維が形成される。
デプス濾過層103のメルトブローン・ポリマー・ウェブはさまざまなポリマー材料から製造することができる。そのようなポリマー材料として、ポリプロピレン、ポリエステル、ポリアミド、ポリ塩化ビニル、ポリメタクリル酸メチル、ナイロン、ポリエチレンなどがある。これらの中ではポリプロピレンが最も好ましいポリマー材料である。
場合によっては、デプス濾過層103は、静電荷を有する非常に効率的な層を含む少なくとも1つのエレクトレット・フィルタ媒体層を含むことができる。公知のさまざまな技術を利用して電荷をメルトブローン繊維ウェブに与え、その濾過性能を向上させることができる。場合によっては、デプス濾過層103は、そのデプス濾過層103の細い繊維が処理中に摩耗しないよう保護するためのスクリムを含むことができる。スクリムは、例えばポリプロピレン、および/またはナイロン、および/またはポリエステルで構成することができる。
膜濾過層104は、微孔質ポリマー膜で構成することができる。微孔質ポリマー膜は、デプス濾過層103を通過する粒子を捕獲することができる。微孔質ポリマー膜は、流体流からの粒子と生物の除去に際して信頼性を有することがわかっている。膜は、そのポリマー組成、空気透過率、水浸入圧、濾過効率によって特徴づけることができる。好ましい膜濾過層104は、平均空気透過率が少なくとも4フレージャーである。より好ましい膜濾過層104は、平均空気透過率が少なくとも10フレージャーである。
用途での条件に応じ、さまざまな微孔質ポリマー膜を膜濾過層104として用いることができる。膜濾過層104は、以下に例示する1つ以上の材料から構成することができる。その材料とは、ニトロセルロース、トリアセチルセルロース、ポリアミド、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリスルホン、ポリテトラフルオロエチレン、ポリ塩化ビニル、ポリフッ化ビニリデン、アクリレート・コポリマーである。
膜濾過層104は、液体の水が通過するのを阻止できる疎水性材料で構成することが好ましい。それに加え、膜濾過層104は、接合プロセスを通じて元のままの状態を維持できるため、液体の水が通過することを阻止する能力を維持する。したがって多層フィルタ媒体100の膜濾過層104は、いかなる液体も通過させずに、多層フィルタ媒体100に加えた圧力差に耐えることができる。好ましい多層フィルタ媒体100は、水浸入圧が約0.5PSIよりも大きい。より好ましい多層フィルタ媒体100は、水浸入圧が約1.5PSIよりも大きい。
膜濾過層104は、微孔質フルオロポリマー、例えばePTFE、フッ素化エチレンプロピレン(FEP)、ペルフルオロアルコキシポリマー(PFA)、ポリプロピレン(PU)、ポリエチレン(PE)、または超高分子量ポリエチレン(uhmwPE)を含むことが好ましい。最も好ましいのは、膜濾過層104がePTFEを含むことである。適切なePTFE膜は、アメリカ合衆国特許第5,814,405号に記載されている。この特許に記載されている膜は、良好な濾過効率、大きな空気流、大きな破断強度を持つ。適切なePTFE膜の製造方法がこの特許に十分に記載されている。しかし他の手段で構成されたePTFE膜も使用できる。適切なePTFE膜は、W.L.ゴア&アソシエイツ社(ニューアーク、デラウェア州)から入手できる。膜濾過層104は、フィルタのいくつかの特性を改善する充填材料を必要に応じて含んでいてもよい。
支持層105は、特に濾過層を流体流に対して適切な方向に維持するために設けることができる。支持材料は、膜濾過層104とデプス濾過層103を支持するのには十分に堅固だが、膜濾過層104の損傷を避けるのに十分な柔らかさとしなやかさのあるものにすることができる。支持層105は、繊維材料を含むことができる。その繊維材料は熱可塑性材料を含むことができる。支持層105は、例えばスパンボンド熱可塑性繊維、水流交絡熱可塑性繊維、湿式熱可塑性繊維、またはこれらの任意の組み合わせを含むことができる。その繊維は、例えばポリエステル、ナイロン、ポリプロピレン、ポリエチレン、またはこれらの任意の組み合わせを含むことができる。ひだになった配向では、支持層105は、ひだが互いに離れた状態(例えばひだがつぶれることを阻止した状態)でひだの中に空気流チャネルを提供することができる。支持層105の位置は、膜濾過層104の下流(例えば図1に示した状態)でも上流でもよい。
支持層105は、アメリカ合衆国特許第7,138,057号に記載されているような結合材料を有するセルロース紙を含むことができる。セルロース紙の重量と結合材料の重量の比は、例えば4対1〜1.5対1にすることができる。結合材料として熱可塑性物質が可能である。
すでに指摘したように、多層フィルタ媒体100の多数の層は、第2の領域102において一緒に接合される。多層フィルタ媒体100は、複数の第2の領域102を含むことができる。その複数の第2の領域102のそれぞれは、点接合にすることができる。その複数の第2の領域102のそれぞれを局在した領域にし、その領域において多層フィルタ媒体100の多数の層が一緒に接合されているようにすることができる。その複数の第2の領域102を多層フィルタ媒体100全体に配置し、その多層フィルタ媒体100のライフ・サイクルを通じてその多層フィルタ媒体100の多数の層を結び付けることができる。このライフ・サイクルには、例えば製造プロセス(例えばひだを作るプロセス)、輸送、設置、濾過、クリーニングが含まれる。一実施態様では、複数の第2の領域102は、それぞれ、第1の領域101における多層フィルタ媒体100の厚さの最小値の2倍未満の最大横断寸法を持つ。このことは、ひだのある多層フィルタ媒体100の曲げられた領域に位置する可能性のある複数の第2の領域102のうちのどれも十分に小さいため、ダメージを与える応力を多層フィルタ媒体100の第2の領域102が受けないという点で、有利となる場合がある。いくつかの用途では、複数の第2の領域102のそれぞれを5mm未満の最大横断寸法にすることができる。
図1に断面図を例示した第2の領域102は、多層フィルタ媒体100に垂直な視点から観察するとほぼ丸い形状である。他の形状の点接合も利用できるが、円形の点接合が有利である。なぜなら円形の点接合には、応力集中部として作用する可能性のあるコーナーがないからである。
第2の領域102内に、多層フィルタ媒体100の1つ以上の層からの材料を、その多層フィルタ媒体100の他の1つ以上の層からの材料とともに配置することができる。これは、第2の領域102の形成に利用する接合プロセスの間に1つ以上の層からの材料を他の1つ以上の層からの材料の中に流入させることによって実現できる。接合プロセスの間の層からの材料の流入は、例えばその層のための材料の選択と、接合プロセスの間に加えるエネルギーの制御を通じて制御することができる。
図1は、第2の領域102において、デプス濾過層103からの材料を膜濾過層104と支持層105に流入させた典型的な一実施態様を示している。このような構成を形成するための接合プロセスは、以下のように進めることができる。最初に、作ろうとする第2の領域102の領域において、多層フィルタ媒体100にエネルギー(例えば超音波、および/または熱、および/または圧力)を加える。エネルギーをこのように加えることによってデプス濾過層103が溶融して密になる。溶融したデプス濾過層103からの材料は膜濾過層104と支持層105の両方にも流入する。接合プロセスの間には、支持層105からの材料も溶融して密になり、その支持層105からの材料は多層フィルタ媒体100の他の層(例えば膜濾過層104)に流入することができる。エネルギー源を除去して第2の領域102を冷やすと、柔らかくなった、および/または溶融した、および/または流れた材料は固化することができる。この点に関し、一緒に流れた材料は一緒に融合した状態になっている場合がある。
支持層105が熱可塑性結合剤を有するセルロース紙からなる場合、接合プロセスの間に熱可塑性結合剤のいくつかの部分が膜濾過層104に流入することができる。さらに、この構成では、デプス濾過層103が熱可塑性結合剤を有するセルロース紙を含んでいてもよい。
形成後、第2の領域102は、多層フィルタ媒体100の第1の側106に沿って、デプス濾過層103からの密になった材料からなる比較的薄い層を含むことができる。デプス濾過層103からの密になった材料からなる層に隣接してこの層に接続できるのは、膜濾過層104であり、そのとき、デプス濾過層103からの材料が膜濾過層104の空孔を占める。支持材料層105からのいくらかの材料も膜濾過層104の空孔の一部を占めることができる。第2の側107に沿って膜濾過層104に隣接して配置できるのは、接合プロセスの間に溶融して支持層105に流入したデプス濾過層103からの材料と混合した密な支持層105である。したがって、第2の層に直接接合された第1の層からの材料と、第3の層からの材料に直接接合された第1の層からの材料とを含む連続的な接合を、第2の領域102に形成することができる。このようにして、接合後には、第2の領域102を、多層フィルタ媒体100の第1の側106と第2の側107の間に密になった材料または互いに混合した材料からなる途切れていないバンドを含むように構成することができる。
図1の第2の領域102は、上記のように、膜濾過層104と支持層105の両方にデプス濾過層103が流入したものを含んでいる。別の一実施態様では、デプス濾過層103は、例えば膜濾過層104にだけ流入することができる。このような一実施態様では、接合プロセスの間に支持層105の一部が膜濾過層104に流入することができる。この点に関し、この別の実施態様は、デプス濾過層103からの材料と支持層105からの材料を膜濾過層104の中にともに配置することを含んでもよい。
特定の溶融温度と流動特性を持つ材料を多層フィルタ媒体100のさまざまな層のために選択することにより、互いに混合した層からなるさまざまな構成を実現することができることは明らかである。例えば膜濾過層104よりも溶融温度が低い材料をデプス濾過層103と支持層105のために選択することにより、接合プロセスの間にデプス濾過層103が膜濾過層104と支持層105の中に流入した図1の構成を実現できる。別の一例では、デプス濾過層103または膜濾過層104よりも溶融温度が低い材料を支持層105のために選択することにより、点接合プロセスの間に支持層105の材料がデプス濾過層103と膜濾過層104に流入した構成を実現することができる。
第2の領域102の接合強度は、第2の領域102を取り囲む1つ以上の層の剪断強度よりも大きくすることができる。例えばデプス濾過層103がメルトブローン・ウェブから構成される構成では、第2の領域102におけるさまざまな層の間の接合強度をメルトブローン・ウェブの剪断強度よりも大きくすることができる。したがって力を加えて層同士を引き離そうとすると、第2の領域102内でなんらかの破損が起こる前に第2の領域102の外側でメルトブローン・ウェブが破れる可能性があるため、第2の領域102は無傷のまま残る。
複数の第2の領域102があることで、多層フィルタ媒体100の層のうちの1つが除去されることを制限できる。例えば層(例えばデプス濾過層103または支持層105)のうちの1つを除去すると、多層フィルタ媒体100がもはや予期したようには機能できないことがユーザーには明らかであるような形で、多層フィルタ媒体100の残りの層にダメージを与えることができる。
すでに指摘したように、第2の領域102は密にすることができ、膜濾過層104の空孔は少なくとも部分的にデプス濾過層103からの材料で満たされた状態にすることができる。その結果、第2の領域102において多層フィルタ媒体100が流体を通過させる能力は、著しく低下するか、失われる可能性がある。したがって多層フィルタ媒体100のさまざまな層の間の全体的な接合強度は、複数の第2の領域102の合計面積のために流体流が多層フィルタ媒体100を通過できる能力を失うことに対してバランスさせることができる。例えば第2の領域102の合計数と合計面積が大きくなるにつれ、さまざまな層の間の力学的相互接続が強くなる。しかしそれと同時に流体流が多層フィルタ媒体100を通過できる能力が低下する。したがって複数の第2の領域102の合計面積は、多層フィルタ媒体100の合計表面積の10%未満をカバーすることが好ましかろう(例えば第1の領域101の面積とすべての第2の領域102の合計面積との比は9対1よりも大きくすることができる)。より好ましいのは、複数の第2の領域102の合計面積が多層フィルタ媒体100の合計表面積の3%未満をカバーすることである(例えば第1の領域101の面積とすべての第2の領域102の合計面積との比は約32対1よりも大きくすることができる)。
図1に示した第2の領域102は、多層フィルタ媒体100の材料が第2の側107の方向に圧縮された様子を示している。別の構成(例えば第1の側106の方向に圧縮された多層フィルタ媒体100)も利用できる。第2の領域102における多層フィルタ媒体100の全圧縮量は、第2の領域102に形成される連続的な接合の厚さの最小値が第1の領域101における多層フィルタ媒体100の厚さの最大値の半分未満であるようにできる。いくつかの構成では、第2の領域102における連続的な接合の厚さの最小値は、第1の領域101における多層フィルタ媒体100の厚さの最大値の1/4未満にすることができる。
すでに指摘したように、第2の領域102にエネルギーを加えて多層フィルタ媒体100の1つ以上の層からの材料を溶融させ、および/またはその材料を多層フィルタ媒体100の別の1つ以上の層からの材料の中に流入させ、その材料と融合させることができる。この点に関し、多層フィルタ媒体100の層を一緒に接合するのに、さまざまな層を一緒に接合するための追加の材料(例えば接着剤)を導入する必要性をなくすことができる。さらに、第2の領域102に加えるエネルギーの量は、エネルギーを加えるプロセスの間に膜濾過層104の構造が壊れないように選択することができる。例えば第2の領域102に加えるエネルギーの量によってデプス濾過層103からの材料が膜濾過層104の中に流入してその層の中で接合されるとともに、デプス濾過層103からの材料が溶融して支持層105の中に流入してその層の中で接合されるようにできる。この点に関し、膜はその多孔質構造を維持することができ、その構造が、第2の領域102において、デプス濾過層103および/または支持層105からの熱可塑性物質のためのマトリックスとして機能することができる。当業者であれば理解できるように、材料を上記のように流動させるのに加えるエネルギーは、単一のプロセスステップにおいて連続的に加えることができ、その結果として連続的な接合が形成される。
超音波接合装置を用いて局所的にエネルギーを加え、第2の領域102を作り出すことができる。超音波エネルギーを用いて第2の領域102を作り出すことにはいくつかの利点がある。例えば超音波接合装置によってそれぞれの第2の領域102に供給されるエネルギーの量を正確に制御することができる。この点に関し、供給されるエネルギーは、多層フィルタ媒体100の1つまたは2つの層だけが溶融するように選択できる。第2の領域102のサイズと形状は、超音波接合装置で用いるアンビルのサイズおよび形状と、接合プロセスの間に供給されるパワーの大きさとによって決めることができる。
超音波を用いる別の利点は、超音波エネルギーを1回加えるだけですべての層を一緒に接合できることであろう。例えば膜濾過層104の一方の側にデプス濾過層103が配置され、膜濾過層104の他方の側に支持層105が配置された多層フィルタ媒体100は、超音波エネルギー1回加えるだけで一緒に接合することができる。それに加え、多数の個々の第2の領域102を同時に作り出すことができる。あるいは多層フィルタ媒体100の層の一部を一緒に接合した後、別の層をその一部の層に接合することにより、2回以上の別々の接合ステップで接合を完了させることができる。
図2は、多数の材料層を接合するための超音波接合装置200の一例を示す概略図である。超音波接合装置200は、超音波ホーン201とアンビル202を備えることができる。超音波接合装置200などの超音波接合装備の設計と操作は公知である。
多層フィルタ媒体100の多数の層を接合するため、複数の個別の材料シートを同時に超音波接合装置200に供給することができる。例えばデプス濾過層103用の材料ロール203と、膜濾過層104用の材料ロール204と、支持層105用の材料ロール205を、ホーン201とアンビル202の間に同時に供給することができ、その場所で、超音波エネルギーを1回だけ加えることによってこれら3つの層が一緒に接合される。
超音波ホーン201とアンビル202は、適切な任意の構成の1つまたは複数の第2の領域102が作られるように構成できる。例えば複数の第2の領域102を菱形パターン206にして作ることは、対応するパターンをアンビル202に配置することによって可能である。
点接合を作り出すのに別の方法を利用できる。例えば加熱したエレメントを用い、作ろうとする第2の領域102の領域において、多層フィルタ媒体100に熱を移動させることができる。そのためには、一般に、加熱したエレメントと多層フィルタ媒体100を直接接触させる必要があろう。エネルギーを特定の点に移動させる別の方法(例えば赤外線)を用いて第2の領域102を作り出すこともできる。
多層フィルタ媒体100のさまざまな層の厚さを変え、多層フィルタ媒体100のさまざまな性能特性を実現することができる。それぞれの層の透過率を変えてさまざまな性能特性を実現することもできる。
この明細書に記載した原理と方法を利用して別の構成の多層フィルタ媒体を作り出すことができる。例えば図3に示した実施態様において、存在している膜濾過層104と支持層105の間に追加の膜濾過層を付加することができる。2つの膜濾過層が存在することは、例えば第1の膜濾過層が第1の粒子効率を持ち、第2の膜濾過層が第2の粒子効率を持つという点で有利である。このような構成では、第1の膜濾過層は、第2の膜濾過層のプレフィルタとして機能することができるため、多層フィルタ媒体の全体的な性能が向上する。透過性熱可塑性ウェブ層を2つの膜濾過層の間に配置することができる。透過性熱可塑性ウェブ層は、第1の領域において多層フィルタ媒体の全体的な濾過性能に大きな影響を与えない透過率を持つことができる。第2の領域では、透過性熱可塑性ウェブ層が溶融して2つの膜濾過層の両方に流入できるため、これらの層が一緒に接合される。この点に関し、透過性熱可塑性ウェブ層からの材料を、デプス濾過層103および/または支持層105からの材料と直接接合することができる。透過性熱可塑性ウェブ層は、例えばポリエステル、ナイロン、ポリプロピレン、ポリエチレン、ポリウレタン、またはこれらの任意の組み合わせで構成することができる。透過性熱可塑性ウェブ層は、メルトブローン・ウェブを含むことができる。
他の構成には追加の層が含まれていてよい。例えばメルトブローン繊維ウェブを含む第4の層と、スパンボンド熱可塑性繊維ウェブを含む第5の層を有する構成が可能である。このような構成の層は、第3の層が第2の層と第4の層の間に位置し、第4の層が第3の層と第5の層の間に位置するような順番にすることができる。第4の層のメルトブローン繊維ウェブは追加の濾過能力を提供し、第5の層のスパンボンド熱可塑性繊維ウェブは追加の支持能力を提供することができる。
この明細書に記載した空気透過率の値は、フレージャー数試験法に従って決定することができる。この方法では、空気透過率は、直径が約2.75インチで面積が約6平方インチの円形断面を有する空気流測定用ガスケット-フランジ式固定装置の中に試験サンプルを挟むことによって測定される。このサンプル固定装置の上流側は、乾燥した圧縮空気の供給源と直列な流量計に接続される。このサンプル固定装置の下流側は、大気に向かって開かれている。試験は、0.5インチの高さの水に対応する空気圧をサンプルの上流側に加え、直列な流量計(浮子式流量計)を通過する空気の流速を記録することによって実施される。結果をフレージャー数で記録する。フレージャー数は、水圧が0.5インチのときのサンプルの立方フィート/分/平方フィートを単位とする。
図3は、フィルタ組立体300の一例の等角投影図である。このフィルタ組立体300は、接合されていてひだのある多層フィルタ媒体301を備えている。接合されていてひだのある多層フィルタ媒体301は、縁部に沿ってフィルタ周辺部材302で取り囲むことができる。ガスケット303をフィルタ周辺部材302に接続することができる。接合されていてひだのある多層フィルタ媒体301は、この明細書に記載したような多層フィルタ媒体で構成することができる。接合されていてひだのある多層フィルタ媒体301は、図2の菱形のパターン206になった複数の第2の領域102を含んでいる。上述のように、複数の第2の領域102のそれぞれは、ひだを形成するときにその複数の第2の領域の位置を考慮する必要がないほど、それらの横断寸法の最大値を十分に小さくすることができる。あるいは複数の第2の領域は、ひだを配置できる接合されていない領域が残されたあるパターンに分散させることもできる。このようにして、ひだの先端にはその複数の第2の領域が存在していないようにできる。
接合されていてひだのある多層フィルタ媒体301をフィルタ周辺部材302に密封することにより、流体流がその接合されていてひだのある多層フィルタ媒体301の中を通過するのを制限できる。この点に関し、フィルタ組立体300の濾過性能は、接合されていてひだのある多層フィルタ媒体301の濾過性能に対応させることができる。したがって好ましいフィルタ組立体300は、少なくとも約0.5PSIという水浸入圧を持つことができる。より好ましいのは、好ましいフィルタ組立体300が少なくとも約1.5PSIという水浸入圧を持つことである。
さらに、フィルタ組立体300は、空気の速度が2.5cm/秒のときに0.1μmのDOP粒子に関して少なくとも約0.8 1/kraylという比品質を持つことができる。比品質は、フィルタ媒体の濾過性能を比較するための有用な1つの指標である。これは、侵入と空気流抵抗の比であり、その値は、1/k(キロ)raylを単位として表示される。この比が大きくなると、空気流抵抗に対する相対的な粒子回収効率も大きくなる。空気流抵抗は、フィルタを通過したときの圧力低下と面速度の比である。比品質は以下のように定義される。
比品質=-log (侵入)/(フィルタの圧力低下/面速度)×1/1000
ただし、侵入はフィルタへの粒子の侵入であり、フィルタの圧力低下は単位がパスカルであり、面速度は単位がm/秒である。比品質は、粒径と面速度に依存する。
侵入は、自動式効率テスター(例えばTSI社(ショアヴュー、ミネソタ州)のモデル8160)で測定する。試験は、周囲温度(70°F)かつ相対湿度条件(40%)で実施する。DOP溶液を噴霧し、直径が0.03〜0.3マイクロメートルの粒子を含むエーロゾルを生成させる。フィルタのサンプルにエーロゾルを空気の流速を1〜5.3cm/秒にして吹き付ける。2つの凝縮核粒子カウンタで試験サンプルの上流と下流の粒子濃度を同時に測定する。侵入は、上流で吹き付けた粒子がフィルタによって回収された百分率として記録する。
それに加え、フィルタ組立体300の好ましい多層フィルタ媒体301は、約10g/m2よりも大きなダスト保持能力を持つことができる。ダスト保持能力は、以下の方法で決定できる。一定出力噴霧器(TSI社のモデル3096)を用いて5%塩化ナトリウム水溶液を噴霧する。粒子を80℃に加熱して乾燥させた後、クリーンな乾燥空気で希釈する。試験前に直径44.4mmのフィルタ試験サンプルを計量した後、フィルタ・ホルダの中に配置する。面速度を53mm/秒に設定する。フィルタを通過した後の圧力低下を圧力変換器によって連続的にモニタする。フィルタ媒体を通過した後の最終的な圧力低下が750Paに達するまで、フィルタに塩化ナトリウム・エーロゾルを装填する。試験後に試験サンプルを再び計量し、装填された重量を明らかにする。ダスト保持能力は以下のように定義される。
ダスト保持能力=(最終重量−初期重量)/フィルタの面積
ただし、重量の単位はグラムであり、フィルタの面積の単位は平方メートルである。したがってダスト保持能力はg/m2を単位として表わされる。
図3は、フィルタ組立体300の一実施態様であり、このフィルタ組立体は、ほぼ長方形であり、多層フィルタ媒体301はひだにされている。この明細書に記載した多層フィルタ媒体は、別の構成や製品に組み込むことができる。例えばこの明細書に記載した多層フィルタ媒体は、円形フィルタや円筒形フィルタで用いることができる。例えばこの明細書に記載した多層フィルタ媒体は、ひだのない構成で用いることができる。
図4は、フィルタ媒体を製造する方法のフローチャートである。この方法の第1のステップ401では、第1の層と第2の層と第3の層の位置を決めることができる。位置決めは、横方向に広がった範囲の全体で、第1の層と第2の層が隣り合い互いに向かい合った関係になり、第2の層と第3の層が隣り合い互いに向かい合った関係になるようにして、第2の層を第1の層と第3の層の間に配置することを含んでもよい。このステップは、第1の層と第2の層と第3の層をロールから繰り出すことによって実現できる。第1の層は第1の熱可塑性材料を含むことができ、第2の層は第2のフィルタ材料を含むことができ、第3の層は第3の熱可塑性材料を含むことができる。
次のステップ402は、横方向に広がった範囲の中から選択した少なくとも1つの領域にエネルギーを加えることであってよい。エネルギーを加えることにより、その選択した少なくとも1つの領域において、第1の熱可塑性材料のいくつかの部分を第3の熱可塑性材料のいくつかの部分と接合させて、これらの間に連続した接合を規定することができる。
その選択した少なくとも1つの領域は、横方向に広がった範囲の全体に互いに間隔を空けて配置することができる、選択した複数の領域を含むことができる。選択したこれら領域のそれぞれが、1つの点接合を規定することができる。選択したその少なくとも1つの領域内でエネルギーを加えると、第1の材料の少なくとも一部を第2の層を通過させ第3の層に流入させることができる。
エネルギーを加えることにより、選択した少なくとも1つの領域において、第1の層と第2の層と第3の層を、第1の層と第3の層の融点を超えるが第2の層の融点よりも低い温度に加熱することができる。エネルギーを加えることは、超音波エネルギーをこれらの層に加えることを含んでもよい。エネルギーを加えるステップが完了した後に、選択した少なくとも1つの領域の外では第1の層と第2の層と第3の層が互いに接合されていないようにすることができる。
超音波接合を利用して3つの材料層を同時に一緒に接合した。15g/m2のポリプロピレン製スクリムを有する30g/m2のポリプロピレン製の細い繊維からなるメルトブローン媒体である第1の層を、第2の材料(ePTFE膜)および第3の材料(坪量が150g/m2のスパンボンド・ポリエステル基材)と超音波によって一緒に接合した。メルトブローン媒体のためのスクリムは、細い繊維が処理中に摩耗することを保護するためのものであった。メルトブローン媒体の繊維のサイズは1〜5μmであった。ePTFE膜の繊維のサイズは0.1〜0.3μmであり、その坪量は5.0g/m2であった。スパンボンド・ポリエステルの繊維のサイズは30〜50μmであった。
得られたフィルタ媒体は、坪量が200g/m2であった。このフィルタ媒体は、空気透過率が10.7フレージャーであり、水浸入圧が3PSIであった。このフィルタ媒体の濾過効率は、流れが2.5cm/秒のときに0.1μmのDOP(フタル酸ジオクチル)粒子に関して99.785%であった。比品質は、1.2 1/kraylであった。ダスト保持能力は16.8g/m2であった。
フィルタ媒体全体に菱形パターンで複数の点接合を作るパターニングをしたアンビル・ロールを用いてこのフィルタ媒体を接合した。個々の材料ロールを個々のスタンドから繰り出し、ウェブを一緒に合わせて多層ウェブを形成した後に接合した。この複合ウェブを、上側にあって、高周波数運動(20000Hz)の形態の超音波エネルギーと圧力を材料に供給する超音波ホーンと、ウェブの下に位置していて、アンビル表面から突起している複数の点からなるパターンを有する回転する円筒形アンビルとで構成された処理ポイントを通過させた。
丸い個々の点接合は直径が1.6mmであり、点接合の密度は1平方フィートにつき約524個であった。点接合の合計面積は、接合されたフィルタ媒体の合計表面積の2%未満であった。アンビルの表面から接合点が持ち上がっているため、材料は接合点において圧縮され、接合点の間でははるかに小さな圧力を受ける。3つの層の接合は、機械を1回通すことによって完了させた。
この明細書に記載した実施態様に対する追加の変更や拡張は、当業者には明らかであろう。そのような変更や拡張は、以下の請求項によって規定される本発明の範囲に含まれるものとする。

Claims (46)

  1. フィルタ媒体であって、
    第1の熱可塑性物質を含む第1の材料と;
    第2のフィルタ材料と;
    第2の熱可塑性物質を含む第3の材料を含んでいて;
    このフィルタ媒体の第1の領域において、第1の材料の少なくともいくつかの部分が第1の層の中に互いに離して配置され、第2のフィルタ材料の少なくともいくつかの部分が第2の層の中に互いに離して配置され、第3の材料の少なくともいくつかの部分が第3の層の中に互いに離して配置され;
    このフィルタ媒体の第1の領域において、第2の層が第1の層と第3の層の間に配置され;
    このフィルタ媒体の少なくとも1つの第2の領域において、第1の材料の少なくともいくつかの部分と第2のフィルタ材料の少なくともいくつかの部分、および第1の材料の少なくともいくつかの部分と第3の材料の少なくともいくつかの部分が直接接合されて、これらの間に連続した接合が規定されているフィルタ媒体。
  2. 第2の層の空気透過率が少なくとも4フレージャーである、請求項1に記載のフィルタ媒体。
  3. 第2の層の水浸入圧が0.5PSIよりも大きい、請求項2に記載のフィルタ媒体。
  4. 第2のフィルタ材料がePTFEを含み、第2の層が第1のePTFE膜を含む、請求項3に記載のフィルタ媒体。
  5. 第1の材料がフィルタ材料であり、その第1の材料の少なくともいくつかの部分がメルトブローン・ポリマー・ウェブの中に配置され、その第1の材料が、ポリプロピレン、ポリエステル、ナイロン、およびポリエチレンからなるグループの中から選択した材料を含む、請求項4に記載のフィルタ媒体。
  6. 第3の材料が支持材料であり、その第3の材料の少なくともいくつかの部分が繊維の中に配置され、その繊維の選択が、スパンボンド繊維、水流交絡繊維、および湿式繊維からなるグループの中からなされる、請求項5に記載のフィルタ媒体。
  7. 第3の材料が、ポリエステル、ナイロン、ポリプロピレン、およびポリエチレンからなるグループの中から選択した材料を含む、請求項6に記載のフィルタ媒体。
  8. 第2の層が、第2のePTFE膜を含む、請求項6に記載のフィルタ媒体。
  9. 第3の材料が前記フィルタ媒体の構造支持を提供していて、その第3の材料が、セルロース繊維と、フェノール樹脂、アクリル樹脂、およびポリ酢酸ビニルからなるグループの中から選択した熱可塑性結合剤とを含む、請求項5に記載のフィルタ媒体。
  10. 第3の材料の少なくともいくつかの部分が透過性熱可塑性ウェブの中に配置され、その第3の材料が、ポリプロピレン、ポリエステル、ナイロン、ポリエチレン、およびポリウレタンからなるグループの中から選択した材料を含む、請求項5に記載のフィルタ媒体。
  11. 第1の材料の少なくともいくつかの部分が透過性熱可塑性ウェブの中に配置され、その第1の材料が、ポリプロピレン、ポリエステル、ナイロン、ポリエチレン、およびポリウレタンからなるグループの中から選択した材料を含む、請求項4に記載のフィルタ媒体。
  12. 第3の材料が支持材料であり、その第3の材料の少なくともいくつかの部分が繊維の中に配置され、その繊維の選択が、スパンボンド繊維、水流交絡繊維、および湿式繊維からなるグループの中からなされる、請求項11に記載のフィルタ媒体。
  13. 第3の材料が、ポリエステル、ナイロン、ポリプロピレン、およびポリエチレンからなるグループの中から選択した材料を含む、請求項12に記載のフィルタ媒体。
  14. 第3の材料が前記フィルタ媒体の構造支持を提供していて、その第3の材料が、セルロース繊維と、フェノール樹脂、アクリル樹脂、およびポリ酢酸ビニルからなるグループの中から選択した熱可塑性結合剤とを含む、請求項11に記載のフィルタ媒体。
  15. 第2の層の水浸入圧が1.5PSIよりも大きい、請求項3に記載のフィルタ媒体。
  16. 第2の層の空気透過率が少なくとも10フレージャーである、請求項2に記載のフィルタ媒体。
  17. 前記フィルタ媒体の前記第1の領域において第1の層と第2の層と第3の層が互いに接合されていない、請求項1に記載のフィルタ媒体。
  18. 第1の材料が第1の融点を持ち、第2のフィルタ材料が第2の融点を持ち、第3の材料が第3の融点を持ち、第1の融点と第3の融点が第2の融点よりも低い、請求項17に記載のフィルタ媒体。
  19. 第1の領域の面積とすべての第2の領域の合計面積との比が、少なくとも9対1である、請求項18に記載のフィルタ媒体。
  20. 第1の領域の面積とすべての第2の領域の合計面積との比が、少なくとも32対1である、請求項19に記載のフィルタ媒体。
  21. 前記連続した接合の厚さの最小値が、第1の領域における前記フィルタ媒体の厚さの最大値の50%未満である、請求項1に記載のフィルタ媒体。
  22. 前記フィルタ媒体の前記少なくとも1つの第2の領域において、第1の材料の少なくともいくつかの部分と、第2のフィルタ材料の少なくともいくつかの部分と、第3の材料の少なくともいくつかの部分とが直接接合されて、これらの間に連続した接合が規定されている、請求項1に記載のフィルタ媒体。
  23. 前記連続した接合が、前記フィルタ媒体の任意の層がこのフィルタ媒体の他のどの層にもダメージを与えることなく除去されることを制限している、請求項1に記載のフィルタ媒体。
  24. 空気の速度が2.5cm/秒のときに0.1μmのDOP粒子に関して少なくとも約0.8 1/kraylという比品質を持つ、請求項1に記載のフィルタ媒体。
  25. 約10g/m2よりも大きいダスト保持能力を有する、請求項1に記載のフィルタ媒体。
  26. 折り曲げられてひだを形成している、請求項1に記載のフィルタ媒体。
  27. 前記少なくとも1つの第2の領域のうちの1つの横断寸法の最大値が、前記第1の領域における前記フィルタ媒体の厚さの最小値の2倍未満である、請求項26に記載のフィルタ媒体。
  28. メルトブローン繊維ウェブを含む第4の層をさらに含んでいて、第3の層が第2の層と第4の層の間に配置されている、請求項1に記載のフィルタ媒体。
  29. スパンボンド熱可塑性繊維ウェブを含む第5の層をさらに含んでいて、第4の層が第3の層と第5の層の間に配置されている、請求項28に記載のフィルタ媒体。
  30. 複数の第2の領域をさらに含む、請求項1に記載のフィルタ媒体。
  31. 前記複数の第2の領域のそれぞれが1つの点接合を規定する、請求項30に記載のフィルタ媒体。
  32. 上記点接合が超音波接合である、請求項31に記載のフィルタ媒体。
  33. 第2の層の空気透過率が少なくとも4フレージャーである、請求項30に記載のフィルタ媒体。
  34. 第2の層の水浸入圧が0.5PSIよりも大きい、請求項33に記載のフィルタ媒体。
  35. 第2のフィルタ材料がePTFEを含み、第2の層が第1のePTFE膜を含む、請求項34に記載のフィルタ媒体。
  36. 第2の層の水浸入圧が1.5PSIよりも大きい、請求項34に記載のフィルタ媒体。
  37. 第2の層の空気透過率が少なくとも10フレージャーである、請求項33に記載のフィルタ媒体。
  38. 第1の領域の面積とすべての第2の領域の合計面積との比が、少なくとも9対1である、請求項30に記載のフィルタ媒体。
  39. 第1の領域の面積とすべての第2の領域の合計面積との比が、少なくとも32対1である、請求項38に記載のフィルタ媒体。
  40. フィルタ媒体を製造する方法であって、この方法が、
    第1の熱可塑性物質を含む第1の層と、第2のフィルタ材料を含む第2の層と、第3の熱可塑性物質を含む第3の層の位置を決めるステップであって、第1の層と第2の層と第3の層が横方向に広がった範囲の全体で隣り合い互いに向かい合った関係で離れて配置されていて、第2の層が第1の層と第3の層の間に挟まれた状態になるようにする、ステップと;
    前記横方向に広がった範囲の中から選択した少なくとも1つの領域にエネルギーを加えるステップであって、その選択した少なくとも1つの領域において、第1の熱可塑性物質のいくつかの部分を第3の熱可塑性物質のいくつかの部分と接合することによって、連続した接合をこれらの間に規定する、ステップとを含む方法。
  41. エネルギーを加える上記ステップが、選択した複数の領域にエネルギーを加えることを含む、請求項40に記載の方法。
  42. 前記選択した複数の領域のそれぞれが1つの点接合を規定する、請求項41に記載の方法。
  43. エネルギーを加える上記ステップが、位置決めした第1の層と第2の層と第3の層を、第1の層と第3の層の融点を超えるが第2の層の融点よりも低い温度に加熱することを含む、請求項40に記載の方法。
  44. 前記エネルギーに超音波エネルギーが含まれる、請求項43に記載の方法。
  45. エネルギーを加える上記ステップの後、第1の層と第2の層と第3の層が、上記横方向に広がった範囲の中から選択した領域の外では互いに接合されていない、請求項40に記載の方法。
  46. エネルギーを加える上記ステップが、上記横方向に広がった範囲の中から選択した領域において、第1の熱可塑性物質の少なくとも一部を第2の層を通過させ第3の層に流入させることを含む、請求項40に記載の方法。
JP2010511185A 2007-06-08 2008-06-02 多層フィルタ媒体 Pending JP2010528844A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/760,433 US8147583B2 (en) 2007-06-08 2007-06-08 Multiple layer filter media
PCT/US2008/007030 WO2008153878A2 (en) 2007-06-08 2008-06-02 Multiple layer filter media

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013034478A Division JP5856094B2 (ja) 2007-06-08 2013-02-25 多層フィルタ媒体

Publications (1)

Publication Number Publication Date
JP2010528844A true JP2010528844A (ja) 2010-08-26

Family

ID=39941416

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010511185A Pending JP2010528844A (ja) 2007-06-08 2008-06-02 多層フィルタ媒体
JP2013034478A Active JP5856094B2 (ja) 2007-06-08 2013-02-25 多層フィルタ媒体
JP2015146454A Pending JP2015221438A (ja) 2007-06-08 2015-07-24 多層フィルタ媒体

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2013034478A Active JP5856094B2 (ja) 2007-06-08 2013-02-25 多層フィルタ媒体
JP2015146454A Pending JP2015221438A (ja) 2007-06-08 2015-07-24 多層フィルタ媒体

Country Status (8)

Country Link
US (1) US8147583B2 (ja)
EP (1) EP2160230B1 (ja)
JP (3) JP2010528844A (ja)
KR (1) KR101152511B1 (ja)
CN (1) CN101754792B (ja)
AU (1) AU2008262432B2 (ja)
CA (1) CA2690076C (ja)
WO (1) WO2008153878A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523247A (ja) * 2011-07-08 2014-09-11 イー・エム・デイー・ミリポア・コーポレイシヨン 使い捨てバイオテクノロジー方法のための改良されたデプスフィルター

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8066790B2 (en) * 2007-03-16 2011-11-29 3M Innovative Properties Company Fluid filter cartridge and housing
US7981184B2 (en) * 2007-03-16 2011-07-19 3M Innovative Properties Company Fluid filter
EP2304326B1 (en) * 2008-01-14 2018-09-19 Core Energy Recovery Solutions Inc. Cross-pleated membrane cartridges, and method for making cross-pleated membrane cartridges
US8673040B2 (en) 2008-06-13 2014-03-18 Donaldson Company, Inc. Filter construction for use with air in-take for gas turbine and methods
US7648542B1 (en) * 2008-10-13 2010-01-19 Bgf Industries, Inc. Static dissipative glass filtration fabric
US20100139224A1 (en) * 2008-12-05 2010-06-10 E. I. Du Pont De Nemours And Company Filter media with nanoweb layer
EP2408482A1 (en) 2009-03-19 2012-01-25 Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
JP6057716B2 (ja) * 2009-12-10 2017-01-11 インテグリス・インコーポレーテッド 微小環境中に均一に分布した浄化ガスを得るための多孔質バリア
DE102010014060A1 (de) 2010-04-07 2011-10-13 Mahle International Gmbh Wickelfilterelement und Verwendung
ES2886043T3 (es) 2011-04-01 2021-12-16 Emd Millipore Corp Estructuras compuestas que contienen nanofibras
WO2013082381A1 (en) 2011-12-02 2013-06-06 W. L. Gore & Associates, Inc. Heat-stabilized composite filter media and method of making the filter media
MX359078B (es) 2012-01-05 2018-09-13 Bha Altair Llc Medio a prueba de agua y repelente de sal, y filtro.
TWI543811B (zh) * 2012-04-20 2016-08-01 大金工業股份有限公司 以聚四氟乙烯(ptfe)為主成分之組合物、混合粉末、成形用材料及過濾用濾材、空氣過濾單元與多孔膜之製造方法
USD698017S1 (en) 2012-07-25 2014-01-21 Tdc Filter Manufacturing, Inc. Filter adaptor
US9205359B2 (en) 2012-10-09 2015-12-08 W.L. Gore & Associates, Inc. V-panel filters
US9789430B2 (en) 2013-08-23 2017-10-17 American Air Filter Company, Inc. Canister filter with prefiltration
US11845019B2 (en) 2013-11-06 2023-12-19 Bl Technologies, Inc. Large format melt-blown depth filter cartridge
DK3065844T3 (da) 2013-11-06 2017-11-27 Gen Electric Smelteblæst dybdefilter, fremgangsmåde og maskine til at fremstille det
IN2014MU00659A (ja) 2014-02-25 2015-09-25 Mann & Hummel Gmbh
US9737855B2 (en) * 2014-06-17 2017-08-22 W. L. Gore & Associates, Inc. Filtration article containing a filtration material containing fibrous layers having different lengths
US10343095B2 (en) * 2014-12-19 2019-07-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
KR20170117535A (ko) * 2015-02-13 2017-10-23 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 벤팅 장치
KR102206959B1 (ko) 2015-04-17 2021-01-25 이엠디 밀리포어 코포레이션 접선방향 유동 여과 모드에서 작동되는 나노섬유 한외여과막을 사용하여 샘플에서 목적하는 생물학적 물질을 정제하는 방법
WO2016175982A1 (en) 2015-04-28 2016-11-03 General Electric Company Melt-blown depth filter element, method and machine of making it
JP6674025B2 (ja) 2015-11-13 2020-04-01 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated フィルタープリーツ状媒体のための支持部材
DE102016209482A1 (de) * 2016-05-31 2017-11-30 Mahle International Gmbh Verfahren zur Herstellung eines Filtermediums sowie Filtermedium
US11117079B2 (en) * 2017-01-20 2021-09-14 Champion Laboratories, Inc. Filter packs, processes for making filter packs, and air filters comprising filter packs
CN108770347B (zh) * 2017-02-22 2021-09-28 W.L.戈尔及同仁股份有限公司 用于闭合件保护的层状过滤组件
CN107115730B (zh) * 2017-06-29 2022-08-26 上海市建筑科学研究院(集团)有限公司 一种可随净化进程呈现设定图案的空气净化器
KR102290858B1 (ko) * 2019-08-02 2021-08-20 (주)크린앤사이언스 복합 필터 여재 및 이의 제조 방법
US20210379518A1 (en) * 2020-06-08 2021-12-09 W. L. Gore & Associates, Inc. Filter media and methods of making and using
KR20220017163A (ko) * 2020-08-04 2022-02-11 박이빛 ePTFE 멤브레인이 포함된 마스크
DE102021115022A1 (de) * 2021-06-10 2022-12-15 Mann+Hummel Gmbh Gefaltetes Filtermedium
JP2023025511A (ja) * 2021-08-10 2023-02-22 帝人株式会社 積層膜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117526A (ja) * 1994-10-26 1996-05-14 Toyobo Co Ltd エレクトレットフィルター
JPH10314520A (ja) * 1997-05-16 1998-12-02 Japan Vilene Co Ltd 濾過材及びこれを用いたフィルタ
JP2001162742A (ja) * 1999-12-10 2001-06-19 Tonen Chem Corp 積層複合膜
JP2002136812A (ja) * 2000-11-01 2002-05-14 Nitto Denko Corp バグフィルタ用積層体およびこれを用いたバグフィルタ
JP2005177641A (ja) * 2003-12-19 2005-07-07 Nitto Denko Corp エアフィルタユニットおよびその製造方法、並びにエアフィルタユニット集合体
JP2005205305A (ja) * 2004-01-22 2005-08-04 Nitto Denko Corp エアフィルタ濾材
WO2006012495A1 (en) * 2004-07-22 2006-02-02 Gore Enterprise Holdings, Inc. Filter media
WO2006066835A1 (en) * 2004-12-23 2006-06-29 W.L. Gore & Associates Gmbh Turbine air-intake filter
JP2007075739A (ja) * 2005-09-14 2007-03-29 Nitto Denko Corp フィルターユニットおよびフィルター濾材の使用方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA962021A (en) 1970-05-21 1975-02-04 Robert W. Gore Porous products and process therefor
US4114447A (en) * 1976-02-09 1978-09-19 La Barge, Inc. Temperature indicating apparatus
US4878930A (en) 1984-03-15 1989-11-07 W. L. Gore & Associates, Inc. Filter cartridge
GB8503749D0 (en) 1985-02-14 1985-03-20 Craig Med Prod Ltd Gas filter
US5019140A (en) 1988-12-21 1991-05-28 W. L. Gore & Associates, Inc. Irradiated expanded polytetrafluoroethylene composites, and devices using them, and processes for making them
JP2788976B2 (ja) 1989-04-26 1998-08-20 ジャパンゴアテック株式会社 フィルター材
GB8912701D0 (en) 1989-06-02 1989-07-19 Hyman Int Ltd Production of porous materials
US4963170A (en) 1989-12-04 1990-10-16 Global Consumer Services, Inc. Inflow and outflow HEPA vent filter for asbestos work areas
US5108474A (en) 1991-01-03 1992-04-28 W. L. Gore & Associates, Inc. Smoke filter
US5096473A (en) * 1991-03-01 1992-03-17 W. L. Gore & Associates, Inc. Filtration fabric laminates
US5114447A (en) 1991-03-12 1992-05-19 Mott Metallurgical Corporation Ultra-high efficiency porous metal filter
US5560974A (en) * 1991-03-22 1996-10-01 Kappler Safety Group, Inc. Breathable non-woven composite barrier fabric and fabrication process
US5240479A (en) 1991-05-17 1993-08-31 Donaldson Company, Inc. Pleated filter media having a continuous bead of adhesive between layers of filtering material
US5158586A (en) 1992-01-06 1992-10-27 Layton Howard M Hepa filter unit having a metallic membrane
US5238477A (en) 1992-01-06 1993-08-24 Layton Howard M Hepa filter unit having a metallic membrane
US5207812B1 (en) 1992-05-08 1996-10-01 Gore & Ass Filter cartridge
JPH06311A (ja) 1992-06-22 1994-01-11 Japan Gore Tex Inc ろ過材料
US5753343A (en) * 1992-08-04 1998-05-19 Minnesota Mining And Manufacturing Company Corrugated nonwoven webs of polymeric microfiber
DE69328230T2 (de) * 1992-12-01 2000-08-10 Canon Kk Entfernungbildverarbeitungsvorrichtung und -verfahren
US5522908A (en) 1994-05-27 1996-06-04 Hmi Industries, Inc. Filter bag for a vacuum cleaner
US5507847A (en) * 1994-07-29 1996-04-16 W. L. Gore & Associates, Inc. ULPA filter
US5814405A (en) 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
JP2000079332A (ja) 1998-07-08 2000-03-21 Nitto Denko Corp エアフィルタ用ろ材
DE19851667C2 (de) 1998-11-10 2002-07-04 Coronor Composites Gmbh Mehrschichtiges Verbundmaterial
US6334881B1 (en) 1999-04-20 2002-01-01 Gore Enterprise Holdings, Inc. Filter media
JP2001179016A (ja) * 1999-12-22 2001-07-03 Kanai Hiroaki 空気浄化用ろ材及びフィルタ
US6409785B1 (en) 2000-08-07 2002-06-25 Bha Technologies, Inc. Cleanable HEPA filter media
DE10120223B4 (de) 2001-04-24 2005-08-25 Carl Freudenberg Kg Mehrlagiger Luftfilter und dessen Verwendung
US6808553B2 (en) 2001-06-13 2004-10-26 Nitto Denko Corporation Filter medium for turbine and methods of using and producing the same
DE50115833D1 (de) * 2001-12-08 2011-05-12 Ibs Filtran Kunststoff Metall on
US20030145566A1 (en) 2002-02-04 2003-08-07 Parks David P. Disposable filtration bag
DE10225909B4 (de) 2002-06-11 2005-08-04 Intensiv-Filter Gmbh & Co. Kg Verfahren zur Herstellung eines Rohrfilters durch Wickeln sowie Rohrfilter
US20050148261A1 (en) * 2003-12-30 2005-07-07 Kimberly-Clark Worldwide, Inc. Nonwoven webs having reduced lint and slough

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117526A (ja) * 1994-10-26 1996-05-14 Toyobo Co Ltd エレクトレットフィルター
JPH10314520A (ja) * 1997-05-16 1998-12-02 Japan Vilene Co Ltd 濾過材及びこれを用いたフィルタ
JP2001162742A (ja) * 1999-12-10 2001-06-19 Tonen Chem Corp 積層複合膜
JP2002136812A (ja) * 2000-11-01 2002-05-14 Nitto Denko Corp バグフィルタ用積層体およびこれを用いたバグフィルタ
JP2005177641A (ja) * 2003-12-19 2005-07-07 Nitto Denko Corp エアフィルタユニットおよびその製造方法、並びにエアフィルタユニット集合体
JP2005205305A (ja) * 2004-01-22 2005-08-04 Nitto Denko Corp エアフィルタ濾材
WO2006012495A1 (en) * 2004-07-22 2006-02-02 Gore Enterprise Holdings, Inc. Filter media
WO2006066835A1 (en) * 2004-12-23 2006-06-29 W.L. Gore & Associates Gmbh Turbine air-intake filter
JP2007075739A (ja) * 2005-09-14 2007-03-29 Nitto Denko Corp フィルターユニットおよびフィルター濾材の使用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523247A (ja) * 2011-07-08 2014-09-11 イー・エム・デイー・ミリポア・コーポレイシヨン 使い捨てバイオテクノロジー方法のための改良されたデプスフィルター

Also Published As

Publication number Publication date
AU2008262432B2 (en) 2011-11-03
WO2008153878A3 (en) 2009-04-09
CA2690076C (en) 2012-05-08
US8147583B2 (en) 2012-04-03
WO2008153878A2 (en) 2008-12-18
CN101754792A (zh) 2010-06-23
US20080302074A1 (en) 2008-12-11
AU2008262432A1 (en) 2008-12-18
KR20100024480A (ko) 2010-03-05
JP2015221438A (ja) 2015-12-10
EP2160230A2 (en) 2010-03-10
KR101152511B1 (ko) 2012-07-03
CN101754792B (zh) 2012-11-28
JP5856094B2 (ja) 2016-02-09
CA2690076A1 (en) 2008-12-18
EP2160230B1 (en) 2015-05-20
JP2013146730A (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5856094B2 (ja) 多層フィルタ媒体
US7501003B2 (en) Composite filter media
AU2005328687B2 (en) Composite filter media
CA2574455C (en) Filter media
JP5539407B2 (ja) ナノファイバを含む多層流体透過性繊維構造体およびこの構造体の製造方法
CN111629807B (zh) 包含多孔膜的滤袋
JP2005095803A (ja) エアフィルタ用濾材およびそれを用いたエアフィルタユニット
JP2000153122A (ja) フィルタユニット
JPWO2019230983A1 (ja) フィルタ濾材とこれを備えるフィルタユニット
US20220193618A1 (en) Filter medium and filter unit
KR20240054377A (ko) 다공성 멤브레인을 포함하는 필터 백

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120724

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130304

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130322

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130712

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130719