JP2010520701A - 適応的パイロットシンボル割り当ての方法と装置 - Google Patents

適応的パイロットシンボル割り当ての方法と装置 Download PDF

Info

Publication number
JP2010520701A
JP2010520701A JP2009552630A JP2009552630A JP2010520701A JP 2010520701 A JP2010520701 A JP 2010520701A JP 2009552630 A JP2009552630 A JP 2009552630A JP 2009552630 A JP2009552630 A JP 2009552630A JP 2010520701 A JP2010520701 A JP 2010520701A
Authority
JP
Japan
Prior art keywords
wireless communication
communication device
common pilot
reduced density
channel response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009552630A
Other languages
English (en)
Other versions
JP5350278B2 (ja
Inventor
チァン−チン グウェイ,
アフィフ オッセイラン,
Original Assignee
テレフオンアクチーボラゲット エル エム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲット エル エム エリクソン(パブル) filed Critical テレフオンアクチーボラゲット エル エム エリクソン(パブル)
Publication of JP2010520701A publication Critical patent/JP2010520701A/ja
Application granted granted Critical
Publication of JP5350278B2 publication Critical patent/JP5350278B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/025Channel estimation channel estimation algorithms using least-mean-square [LMS] method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

1つの実施形態によれば、無線通信デバイスは、低減密度共通パイロット信号に基づいてチャネル応答を推定する。この場合、低減密度共通パイロット信号は、所望の確度でチャネル応答を推定するために、その低減密度共通パイロット信号が十分である場合には、一定間隔の複数の共通パイロットシンボルを備える(302、304)。所望の確度でチャネル応答を推定するために、その低減密度共通パイロット信号が不十分である場合には、無線通信デバイスは、低減密度共通パイロット信号と、その無線通信デバイスに適応的に割り当てられた1つ以上の追加パイロットシンボルとに基づいてチャネル応答を推定する(308)。

Description

本発明は、一般的に、無線通信システムにおけるパイロットシンボル割り当てに関し、特に、変化するチャネル条件に基づく、パイロットシンボルの適応的な割り当てに関するものである。
無線通信システムにおいては、共通パイロットシンボルと呼ばれる既知のシンボルが、無線通信チャネルを通して、受信デバイスに送信される。受信デバイスは、共通パイロットシンボルを使用してチャネル応答を推定し、その推定したチャネル応答を使用して受信データシンボルのコヒーレント復調を行う。例えば、直交周波数分割多重(OFDM、Orthogonal Frequency Division Multiplex)システムにおいては、共通パイロットシンボルが、時間−周波数平面において送信される。OFDM受信デバイスは、共通パイロットシンボルに基づいてチャネルの時間−周波数応答を推定し、コヒーレントデータシンボル復調を実行する。OFDMチャネルの時間−周波数応答は、ゆっくりと変化する2次元過程であり、共通パイロットシンボルはこの過程を本質的に標本化(サンプル)することになるので、従って、共通パイロットシンボルは受信デバイスが完全な応答を再構築(または補間)できるような十分に高い密度を有する必要がある。
通信チャネル応答をエリアシング・フリーで再構築するために必要な密度の最小値は、標本化定理の中でナイキスト・レート(Nyquist rate)と呼ばれている。ナイキスト・レートは、チャネルの最大遅延ドップラの拡散に反比例している。共通パイロットシンボルはデータ伝送のために使用することができる無線資源を占有するので、パイロットシンボルオーバヘッドは極力低く押さえられる。端末から見て、複数のアンテナを持つ多くの数の基地局が見える最近のセルラ通信システムでは、このことは特に重要な問題である。大きなパイロット信号オーバヘッドは、データ伝送に利用可能な無線資源を大幅に制限してしまう可能性がある。
共通パイロット信号密度は、従来は、最悪の場合のチャネル条件を包含するために、ナイキスト・レートの約2倍に設定されていた。従って、従来の無線通信システムでは、共通パイロットシンボルは、ナイキスト・レートの約2倍に相当する固定値の間隔で送信され、データシンボルはパイロットシンボルの間に挿入された。例えば、共通パイロット信号密度は、従来は、OFDM通信システムに対しては、時間領域および周波数領域の両方において、ナイキスト・レートの約2倍に設定された。搬送波周波数が5GHzで動作する移動システムに対しては、最大ドップラの拡散(v)と最大遅延の拡散(τ)は次式で与えられる。
≒2000(±1000)Hz
τ≒7.8125μsec (1)
ここで、最大ドップラの拡散および最大遅延の拡散は、時速200kmの車両速度および2343.75mより大きな最大散乱体(scatterer)広がりに対応している。
時間領域のナイキスト標本化基準を満足させるために、1つの共通パイロットシンボルは1/v秒ごとに送信される。共通パイロットシンボルの継続時間TはOFDMシステムのシンボル長にちょうど等しいので、2つの連続した共通パイロットシンボルの間には、最大1/(v)個のOFDMデータシンボルがあり得る。同様に、周波数領域において、2つの連続した共通パイロットシンボルの間の副搬送波の数は、最大でT/τとなり得る(巡回プリフィックスを無視)。従って、共通パイロット信号密度の最小値は、(vτ)であり、これは、上記で与えたパラメータに対しては、1/64である。
時間領域と周波数領域の両方において、ナイキスト・レートの2倍で共通パイロットシンボルが送信される場合には、上記で記述した典型的なOFDM環境に対するパイロット信号密度は、約1/16である。搬送波周波数が上昇するに従って、またセルサイズが大きくなるに従って、状況は悪化する。4つの基地局のカバレッジエリアにある端末に対しては、従来では、無線資源の25%が共通パイロット信号によって占有されている。この評価は、MIMO(Multiple Input Multiple Output)システム等の空間多重システムにおける、共通パイロットシンボルを送信するのに使用することができる複数アンテナの場合には当てはまらない。
共通パイロット信号密度が僅かにナイキスト・レート以上でしかない場合には、パイロット観測窓は、データ伝送の領域にまで拡大しなければならない場合がある。その結果生ずる遅延は、適用方式によっては許容できない可能性がある。さらに、固定値の密度を有する共通パイロット信号は、種々の異なるユーザが大きな変動を伴う遅延ドップラの拡散を経験する環境では、非常に非効率的である。固定値でかつ高い密度の共通パイロット信号は、ユーザが非常に速い速度で移動している場合、または、高い分散を持つチャネルを経験している場合等の、極端な場合でしか有利ではない。他の全てのユーザは、チャネル応答を正確に推定するのに、高い密度の共通パイロット信号は必要ではない。従って、データシンボルの代わりに不必要なパイロットシンボルを送信することによって、帯域が不必要に消費されることになる。
本明細書に教示する方法と装置に従えば、従来の高い密度の共通パイロット信号(高密度共通パイロット信号)に代わって、密度を低減した共通パイロット信号(低減密度共通パイロット信号)が利用される。共通パイロット信号は、ナイキスト・レートに近い標本化レートに基づくことにより、低減した密度を有する。実際の標本化レートは、無線環境および移動デバイスの速度等のいくつかのパラメータに依存する。いくつかの実施形態においては、低減密度共通パイロット信号は、ナイキスト・レートの約1.25倍の標本化レートに基づく。他の実施形態においては、標本化レートは、ナイキスト・レートの1.25倍より高いかまたは低くてもよい。これは、ナイキスト・レートよりも低いレートを含む。
従来では、受信デバイスは、従来の高密度共通パイロット信号に基づいて、正確なチャネル推定を実行することができる。これは、従来のパイロット信号が、最悪の場合のチャネル条件に対して設計されているからである。ここでは、全ての受信デバイスが低減密度共通パイロット信号のみに基づいて正確なチャネル推定を実行することは期待されてはいない。しかしながら、低減密度共通パイロット信号は、所望の数の受信デバイスが、低減密度共通パイロット信号のみに基づいて正確なチャネル推定を実行することができるように選択される。
従って、1つ以上の付加的なパイロットシンボル(追加パイロットシンボル)が、必要に応じて受信デバイスに適応的に割り当てられる。この受信デバイスは、低減密度共通パイロット信号のみに基づく場合は所望の正確さ(確度)でチャネル応答を推定することができない受信でバイスである。追加パイロットシンボルの適応的割り当てによって、受信デバイスは、必要であれば低減密度共通パイロット信号と追加パイロット信号との両方に基づいて、チャネル応答を正確に推定することができる。例えば、遅延に対する厳しい要求条件を有するゆえに、一定間隔でスケジュールされた次の共通パイロットシンボルを待つことができない受信デバイスには、1つ以上の追加パイロットシンボルを割り当てることができる。追加パイロットシンボルは、分散の激しいチャネルに支配されている受信デバイスまたは高速度で移動している受信デバイスに割り当てることができる。低減密度共通パイロット信号のみに基づいて正確なチャネル推定を実行できる受信デバイスは、追加パイロットシンボルが割り当てられない。これにより、従来のシステムと比較して、より高いデータシンボル密度の利点を得ることができる。すなわち、単位時間当たり(および、オプションとしてOFDMデバイスに対しては単位周波数あたり)より多くのデータシンボルを受信デバイスに送信することができる。これは、受信デバイスには、より少ない数の共通パイロットシンボルが送信されるからである。追加パイロットシンボルを要求する受信デバイスに追加パイロットシンボルが割り当てられる場合に、その受信デバイスだけが、より低いデータシンボル密度を経験することになる。
受信デバイスは、正確なチャネル推定のための追加パイロットシンボルが必要な場合には、送信デバイスに対してそれを指示することができる。あるいは、送信デバイスは、例えば、受信デバイスによって送信されたパイロット信号に基づいて、この条件のブラインド検出を行うことができる。どちらの様式でも、送信デバイスは、追加パイロットシンボルを要求する受信デバイスに対して、追加パイロットシンボルを適応的に割り当てる。追加パイロットシンボルを要求しない受信デバイスは、低減密度共通パイロット信号のみに基づいてチャネル推定を実行する。一方、追加パイロットシンボルを要求する受信デバイスは、低減密度共通信号とデバイスに適応的に割り当てられた追加パイロットシンボルとの両方に基づいてチャネル推定を実行する。デバイスは、最小平均2乗誤差(MMSE、Minimum Mean−Square Error)推定器等の、線形推定器を使用して、低減密度パイロットシンボルおよび適応的に割り当てられたパイロットシンボルに基づいてチャネル応答推定値を生成することができる。線形推定器は、パイロット観測窓の中で受信した全ての共通パイロットシンボルに対して操作することができる。または、共通パイロットシンボルのサブセットに対して操作し、それによって、チャネル推定の複雑さが軽減し、チャネル推定の動作性能を改善することができる。
1つの実施形態に従えば、無線通信デバイスは、所望の確度でチャネル応答を推定するのに低減密度共通パイロット信号が十分である場合には、一定間隔の複数の共通パイロットシンボルを備える、低減密度共通パイロット信号に基づいてチャネル応答を推定する。無線通信デバイスは、所望の確度でチャネル応答を推定するのに低減密度共通パイロット信号が不十分である場合には、低減密度共通パイロット信号と、無線通信デバイスに適応的に割り当てられた1つ以上の追加パイロットシンボルとに基づいてチャネル応答を推定する。
無論のことながら、本発明は、上記の特徴と利点に限定はされない。当業者は、以下の詳細な記述を読み、また添付の図面を見ることにより、さらなる特徴と利点とを理解するであろう。
無線アクセスネットワークによってサービスを提供される移動デバイスを含む無線通信システムの1つの実施形態のブロック図である。 適応的パイロットシンボル割り当ての方法の1つの実施形態に対する論理フローチャートである。 低減密度共通パイロット信号と適応的に割り当てられたパイロットシンボルとに基づいたチャネル応答推定の方法の、1つの実施形態に対する論理フローチャートである。 従来のOFDMパイロット信号の時間−周波数プロット図である。 低減密度OFDMパイロット信号と適応的に割り当てられたパイロットシンボルの時間−周波数プロット図である。
図1は、無線アクセスネットワーク(RAN、Radio Access Network)102を含む無線通信システム100の1つの実施形態を示す。無線アクセスネットワーク102は、プライベート電話交換ネットワーク(PSTN、Private−Switched Telephone Network)104およびインターネット等のIPネットワーク106と接続している。RAN102は、移動電話機等の移動デバイス108、110に無線通信サービスを提供する。移動デバイス108、110と、RAN102とは、無線通信チャネルを通して通信を行う。それぞれの移動デバイス108、110は、決まった動作(ルーチン)としてチャネル応答の推定を行い、そのチャネル応答推定値を使用して受信データシンボルのコヒーレント復調を実行する。低減密度共通パイロット信号は、順方向通信リンク(forward communication link)(またダウンリンクとも呼ばれる)を通して、RAN102から移動デバイス108、110に送信され、それによりチャネル応答推定が可能になる。低減密度共通パイロット信号は、時間の上で(および、オプションとしてOFDMシステムに対しては周波数の上で)等しい間隔に配置された既知のパイロットシンボルの系列を備える。
低減密度共通パイロットシンボルの間の間隔は、従来の無線通信システムにおいて使用されているパイロットシンボルの間隔と比較して大きく、従って、共通パイロット信号はより低いシンボル密度を有する。低減密度共通パイロット信号は、通信システム100の中では、最悪の場合のチャネル条件に対処するために選択されるのではない。その代わりに、所望の数の移動デバイス108、110(例えば、移動デバイス108、110の70%もしくはそれ以上)が共通パイロット信号のみに基づいて所望の確度でチャネル応答を推定できるように、共通パイロット信号のシンボル密度が選択される。チャネル応答推定の所望の確度は、所望のビット誤り率、信号対雑音比または信号対干渉+雑音比、ビット復号確度等と対応させることができる。特定のチャネル推定確度メトリックに依るのではなくて、正確なチャネル応答推定値を生成するために追加パイロットシンボルを要求する移動デバイス108、110だけに対して、追加パイロットシンボルが適応的に割り当てられる。
すなわち、正確なチャネル推定を実行するためには、正規にスケジュールされた次の共通パイロットシンボルを待つことができない移動デバイス108、110に対しては、1つ以上の追加パイロットシンボルが割り当てられる。これは、遅延に対して厳しい要求条件を有する移動デバイス108、110、および、分散の大きなチャネルまたは非常に高速度等の極端なチャネル条件に支配されている移動デバイス108、110を含むことができる。従って、これらの移動デバイス108、110は、正規に送信された低減密度共通パイロットシンボルとともに、追加パイロットシンボルを使用して、正確なチャネル応答推定を実行することができる。
追加パイロットシンボルを必要とする移動デバイス108、110の数は、低減密度共通パイロット信号に対して選択されたシンボル間隔に依存する。共通パイロットシンボルの間の時間間隔(および、オプションとしてOFDM環境に対しては周波数間隔)が大きくなれば、チャネル応答を正確に推定するために、より多くの数の移動デバイス108、110が追加パイロットシンボルを必要とするであろう。低減密度共通パイロット信号は、ナイキスト・レートに近い標本化レートに基づくことが望ましい。実際の標本化レートは、無線環境および移動デバイスの速度等のいくつかのパラメータに依存している。いくつかの実施形態においては、低減密度共通パイロット信号は、標本化レートが、ナイキスト・レートの2倍ではなくて、ナイキスト・レートの約1.25倍であることに基づいている。その他の実施形態においては、標本化レートはナイキスト・レートの1.25倍より大きいかまたは小さくてよい。この場合、ナイキスト・レートより低いレートを含む。
低減密度共通パイロット信号に対するシンボル間隔は、所望の数の移動デバイス108、110が、低減密度共通パイロット信号のみに基づいて正確なチャネル応答推定値を生成できるように選択することができる。このように、共通パイロットシンボルの適切な密度を選択することにより、所望の数の移動デバイス108、110に対してデータシンボル密度を増加させることができる。低減密度共通パイロット信号に対するシンボル間隔は、展開する特定なシステム100およびシステム環境に依存する。従って、任意の低減密度共通パイロット信号は、本明細書で開示する実施形態の範囲に含まれる。
追加パイロットシンボルは、チャネル応答を正確に推定するために追加パイロットシンボルを必要とする移動デバイス108、110に対して、適応的に割り当てられる。例えば、移動デバイス108、110の内の第1の移動デバイス108は、低減密度共通パイロット信号のみに基づいてチャネル応答を正確に推定することができる。しかし、移動デバイス108、110の内の第2の移動デバイス110は、正規にスケジュールされた次の共通パイロットシンボルが着信する以前に、1つ以上の追加パイロットシンボルを要求することができる。従って、RAN102は、第2の移動デバイス110に対して、正確なチャネル推定が必要になったときには、1つ以上の追加パイロットシンボルを適応的に割り当てる。この様式では、第1の移動デバイス108は、データシンボル密度が増加したことの利点を得ることができる。第2の移動デバイス110だけが追加パイロットシンボルを要求し、従って、単位時間あたり(および、オプションとしてOFDMシステムに対しては単位周波数あたり)のデータシンボル数が減少する。
当業者は、本明細書に開示される適応的なパイロット割り当ての実施形態は、順方向通信リンクおよび逆方向通信リンク(reverse communication link)(これはまた、アップリンクとも呼ばれる)の両方に等しく適用されるということを直ちに理解するであろう。従って、本明細書に開示される実施形態は、説明を容易にするためだけの目的で、ある特定な通信方向を参照しているが、本明細書に開示する教示は順方向の通信および逆方向の通信の両方に適用することができる。例えば、これまでの記述では順方向通信リンクを参照していたが、移動デバイス108、110は、逆方向通信リンクを通してRAN102に低減密度共通パイロット信号を送信することができる。従って、移動デバイス108、110は、逆方向通信リンクのチャネル応答を正確に推定するためにRAN102により要求される場合には、1つ以上の追加パイロットシンボルをRAN102に適応的に割り当てることができる。
この理解を念頭に置いて、次ぎに、順方向リンク通信を参照して、無線通信システム100の動作の、より詳細な説明を行う。この場合、RAN102は送信デバイスであり、移動デバイス108、110は受信デバイスである。しかしながら、本明細書に開示する教示は、移動デバイス108、110が送信デバイスで、RANが受信デバイスである場合にも適用される。また、無線通信システム100は任意の信号変調方式を使用することができる。例えば、通信システム100は、OFDM等のマルチキャリア(搬送波)変調方式、または単一キャリア変調方式を使用することができる。さらに、RAN102は、単一の基地局アンテナ112、またはマルチアンテナアレイ(図示せず)を利用することができる。同様に、移動デバイス108、110はまた、単一のアンテナ114、またはマルチアンテナアレイ(図示せず)を使用することができる。通信システム100は、チャネル応答推定を可能とするために、パイロット信号を使用する任意の無線アクセストポロジー(WCDMA、GSM、GPRS/EDGE、UMTS等)に適合させることができる。説明を容易にする目的だけで、RAN102の動作は、以下では、GPRS/EDGE移動通信標準を基本として記述を行う。しかしながら、当業者は、本明細書で開示する教示は他の無線アクセストポロジーにも等しく適用できるということを直ちに理解するであろう。
RAN102は、RAN102とPSTN104との間のゲートウェイを提供するためのGSMゲートウェイ移動交換センタ(GMSC、GSM Gateway Mobile Switching Center)116を含む。RAN102はまた、回線交換通信を支持するための、移動サービス交換センタ(MSC、Mobile service Switching Center)およびビジタ位置レジスタ(VLR、Visitor Location Register)118を含む。MSC/VLR118は、回線交換機能を実行し、PSTN104との接続を提供し、回線交換サービスを提供するために必要な加入者情報を含む。中央データベース(central database)120は、RAN102の使用を認可されたそれぞれの移動電話機加入者に関する情報を含むホーム位置レジスタ(HLR、Home Location Register)を保持する。
RAN102は、パケット交換通信を支持するための補完要素(complementary component)122、124をさらに含む。サービスGPRS支持ノード(SGSN、Serving GPRS support node)等の、第1のパケット交換通信支持ノード(packet−switched communication support node)122は、RAN102と移動デバイス108、110との間の接続の制御を行う。SGSN122は、セッション管理とハンドオーバおよびページング等のGPRSモビリティ管理を実行する。SGSN122は、中央データベース120によって保持されるGPRSレジスタへのアクセスを有する。中央データベース120は、SGSNアドレスを記憶し、GPRS加入者データおよびルーティング情報を保持する。ゲートウェイGPRS支持ノード(GGSN、Gateway GPRS Support Node)等の第2のパケット交換通信支持ノード124は、RAN102とIPネットワーク106および/または他のGPRSネットワーク(図示せず)との間のゲートウェイを提供する。GGSN124は、認証機能と位置管理機能を実行する。
RAN102はまた、移動デバイス108、110とRAN102との間のトラフィックおよびシグナリングを扱うために、基地局サブシステム(BSS、Base Station Subsystem)等の無線アクセスノード(radio access node)126を含む。BSS126は、通話(スピーチ)チャネルの符号変換を行い、無線チャネルの割り当てを行い、ページングを実行し、エアインタフェースを通した送信と受信の品質管理を行い、また、RAN102に関わる他の多くのタスクを行う。これらは当該技術分野において公知である。BSS126はベースバンドプロセッサ128を含む。ベースバンドプロセッサ128は、逆方向リンク通信に対するチャネル推定およびコヒーレントデータシンボル復調を含む機能を備える。しかし、ベースバンドプロセッサ128が備える機能は、これらに限定はされない。順方向リンク通信に対しては、BSSベースバンドプロセッサ128は、移動デバイス108、110に送信するためのデータシンボルおよび低減密度共通パイロット信号を生成し、そしてまた、チャネル応答を正確に推定するために移動デバイス108、110によって要求された場合には、追加パイロットシンボルを割り当てる。
図2は、適応的パイロットシンボル割り当ての方法の一般的な実施形態を示す。本方法は、BSSベースバンドプロセッサ128によって生成されたパイロットシンボルの送信によって「開始」される(ステップ200)。パイロットシンボルは、BSS126によって送信される低減密度共通パイロット信号の一部である。共通パイロットシンボルは、BSS126と通信線によって接続されている全ての移動デバイス108、110に送信される。BSSベースバンドプロセッサ128は、1つ以上の移動デバイス108、110が低減密度共通パイロット信号に基づいてチャネル応答を正確に推定できるかどうかの判定を行う(ステップ202)。1つの実施形態においては、BSSベースバンドプロセッサ128は、移動デバイス108、110から受信したパイロット信号に基づいて、ブラインドな状態でこの判定を行う。別の実施形態においては、BSSベースバンドプロセッサ128は、正確なチャネル応答推定のために追加パイロットシンボルが必要であるか否かを指示する制御信号を移動デバイス108、110から受信する。
どちらの様式においても、本方法は、BSS126が正規にスケジュールされたデータシンボルを共通パイロットシンボルの間に挿入して、追加パイロットシンボルを要求しない移動デバイス108、110に送信するステップに続く(ステップ204)。この様式では、追加パイロットシンボルを要求しない移動デバイス108、110に対しては、データシンボル密度は減少しない。しかしながら、ある特定の移動デバイス108、110が、次の共通パイロットシンボルを受信する以前に1つ以上の追加パイロットシンボルを要求した場合には、BSSベースバンドプロセッサ128は、その移動デバイス108、110を宛先とした、正規にスケジュールされた1つ以上のデータシンボルをパイロットシンボルで置き換える(ステップ206)。従って、データ送信窓の中で、1つ以上のデータシンボルがパイロットシンボルによって置き換えられるので、データシンボル密度は減少する。
新たに割り当てられたパイロットシンボルと残りのデータシンボルとは、現在のデータ送信窓の中で、宛先の移動デバイス108、110に送信される(ステップ208)。1つの実施形態においては、宛先の移動デバイス108、110は、BSS126によって宛先のデバイス108、110に送信された信号に基づいて、新たに割り当てられたパイロットシンボルを知ることができるようになる。その信号は、新たに割り当てられたパイロットシンボルが、宛先のデバイス108、110によって使用可能であることを示す。別の実施形態においては、宛先の移動デバイス108、110は、新たに割り当てられたパイロットシンボルのブラインド検出を行う。これは、例えば、挿入されたパイロットシンボルに対してデータチャネルを監視することにより行われる。どちらの様式においても、適応的に割り当てられたパイロットシンボルは、正規にスケジュールされた次の共通パイロットシンボルが受信される以前にチャネル応答を正確に推定するために使用される。
本方法は、BSSベースバンドプロセッサ128がデータシンボルの送信を続けるか否かの判定を行うステップに続く(ステップ210)。もし肯定であれば、正規にスケジュールされた次の共通パイロットシンボルが送信される(ステップ200)。そして、上記に記述したように、BSSベースバンドプロセッサ128が、正規にスケジュールされた共通パイロットシンボルの間にデータシンボルを挿入するステップに続く(ステップ202、204、および、206)。反対に、ある特定の移動デバイス108、110に対してさらなるデータシンボルを送信する必要がなければ、BSSベースバンドプロセッサ128はデータシンボル送信を終了する(ステップ212)。
図3は、低減密度共通パイロット信号および適応的に割り当てられたパイロットシンボルに基づいてチャネル応答推定を行う方法の一般的な実施形態を示す。本方法は図4および図5を参照して以下で説明を行う。図4は、通信チャネルのナイキスト・レートの約2倍の標本化レートに基づいた、典型的な従来のOFDM共通パイロット信号を示す。従来の共通パイロット信号は、時間(x軸上のOFDMシンボルインデックスとして示されている)および周波数(y軸上の副搬送波周波数インデックスとして示されている)において一定間隔のパイロットシンボルを含む。共通パイロットシンボルは、5番目のOFDMシンボル毎に、また8番目の副搬送波周波数毎に送信される。
図5は、本明細書で開示される実施形態に従って生成された、典型的な低減密度OFDM共通パイロット信号を示す。図4の共通パイロット信号と同様に、低減密度共通パイロット信号は、時間および周波数において一定間隔のパイロットシンボルを含む。しかしながら、低減密度共通パイロット信号は、図4の従来のOFDM共通パイロット信号が基づく通信チャネルと同じ通信チャネルのナイキスト・レートの約1.25倍の標本化レートに基づいている。低減密度共通パイロット信号は、5番目のOFDMシンボル毎の代わりに、8番目のOFDMシンボル毎に送信される共通パイロットシンボルを含む。従って、パイロットシンボル密度が低減され、それに対応してデータシンボル密度の増加が得られる。説明を容易にするためだけの目的で、図4および図5の共通パイロット信号は、周波数領域においては同じパイロットシンボル間隔を有する。しかし、当業者には、この低減密度共通パイロット信号は、周波数領域においてもパイロットシンボル密度を低減することができると直ちに理解されるであろう。
このことを理解して説明を進める。それぞれの移動デバイス108、110は、順方向通信リンクを通してBSS126から受信した信号を処理するためのベースバンドプロセッサ130を含む。ここで、順方向通信リンクには、チャネル推定およびコヒーレントデータシンボル復調が含まれるが、これらには限定されない。移動ベースバンドプロセッサ130はまた、データシンボル、または、低減密度共通パイロット信号を生成することができる。または、何も生成しなくてもよい。そして、移動ベースバンドプロセッサ130はまた、逆方向通信リンクを通してチャネル応答を正確に推定するためにBSSベースバンドプロセッサ128によって要求された場合には、追加パイロットシンボルを割り当てることができる。本方法は、移動デバイス108、110がBSS126から低減密度共通パイロット信号を受信するステップから「開始」される(ステップ300)。
本方法は、移動デバイス108、110が低減密度共通パイロット信号のみに基づいてチャネル応答を正確に推定できるか否かを判定するステップに続く(ステップ302)。1つの実施形態においては、移動デバイス108、110は、逆方向リンクを通してBSS126にパイロット信号を送信する。BSSベースバンドプロセッサ128は、移動デバイス108、110が1つ以上の追加パイロットシンボルを必要とするか否かを、逆方向リンクのパイロット信号に基づいて、ブラインドな状態で判定する。別の実施形態においては、移動ベースバンドプロセッサ130は、追加パイロットシンボルが必要であるか否かを、例えば、移動デバイスの速度またはチャネルの分散特性に基づいて判定する。そして、移動デバイス108、110はBSS126に制御信号を送信し、正確なチャネル応答推定のために追加パイロットシンボルが必要であるか否かを指示する。
どちらの様式でも、本方法は、チャネル応答を正確に推定するために追加パイロットシンボルが必要ではない場合には、移動ベースバンドプロセッサ130が低減密度共通パイロット信号のみに基づいてチャネル応答を推定するステップへと続く(ステップ304)。しかし、正規にスケジュールされた次の共通パイロットシンボルが着信する以前に1つ以上の追加パイロットシンボルが必要である場合には、BSSベースバンドプロセッサ128は、1つ以上の追加パイロットシンボルを移動デバイス108、110に割り当てる。移動デバイス108、110は、BSSベースバンドプロセッサ128によって割り当てられた1つ以上の追加パイロットシンボルを受信する(ステップ306)。それを受けて、移動ベースバンドプロセッサ130は、以前に受信した共通パイロットシンボルと移動デバイス108、110に割り当てられた1つ以上の追加パイロットシンボルとに基づいてチャネル推定を実行する(ステップ308)。移動デバイス108、110は、チャネル推定を行うために、正規にスケジュールされた次の共通パイロットシンボルを待つことはしない(例えば、図5における160番目のOFDMシンボル)。その代わり、移動ベースバンドプロセッサ130は、BSSベースバンドプロセッサ128によって割り当てられた追加パイロットシンボルの受信に応答してチャネル推定を実行する(例えば、図5における156番目のOFDMシンボル)。移動ベースバンドプロセッサ130によって導出されたチャネル応答推定値を使用して受信データシンボルのコヒーレント復調が行われる(ステップ310)。これは当該技術分野で公知である。
次に、チャネル応答推定処理について、OFDM信号を参照してより詳細に説明する。OFDM信号としたのは、説明の容易さからだけである。受信されたOFDMサンプルの周波数領域での離散値は次式で表すことができる。
X[t,f]=H[t,f]Λ[t,f]+Z[t,f] (2)
ここで、インデックス(t,f)はf番目の副搬送波とt番目のOFDMシンボルに対応する。H[t,f]はその点におけるチャネルの時間−周波数応答であり、Λ[t,f]は送信されたシンボルであり、Z[t,f]は加法性白色ガウス雑音(AWGN、Additive White Gaussian Noise)である。移動ベースバンドプロセッサ130は、順方向リンクの上で、チャネル応答の時間−周波数推定値を使用してコヒーレント復調を実行し、変調されたデータシンボルの再生を行う。同様に、BSSベースバンドプロセッサ128は、逆方向リンクの上で、チャネル応答の時間−周波数推定値を使用してコヒーレント復調を実行し、変調されたデータシンボルの再生を行う。どちらの場合も、時間−周波数チャネル応答推定は、少なくとも一部分は、低減密度共通パイロット信号に基づいて行われる。
低減密度共通パイロットの観測値は、次式で示すように、列ベクトルに構成された行列の形として簡潔に表すことができる。
=Λ+Z (3)
ここで、Λは対角要素に低減密度共通パイロットシンボルを含む対角行列である。X、H、および、Zは、それぞれ、共通パイロットの観測値、チャネル応答、および、雑音に対応した同じサイズの列ベクトルである。下添え字cは、時間および周波数において一定間隔の低減密度共通パイロット信号に対応した観測値を示す。低減密度共通パイロットシンボルの数は、Nで表すことができる。すなわち、ΛはN×Nの行列であり、3つのベクトルX、H、および、Zは、N×1次元である。
同様に、低減密度共通パイロット信号が不十分である場合にチャネル応答を推定するために使用される、適応的に割り当てられるパイロットシンボルに対応した観測値は、下添え字dを使用して次式のように表すことができる。
=Λ+Z (4)
低減密度共通パイロット信号および適応的に割り当てられたパイロット信号に関する観測値は、列ベクトルの形に積み上げて次式のように与えることができる。
Figure 2010520701
ここで、下添え字tを導入し、低減密度パイロットシンボルと適応的に割り当てられたパイロットシンボルとの両方が表現式の中に含まれていることを示すこととする。全パイロット観測値は同様の行列の形で、次式で与えられる。
=Λ+Z (6)
チャネル応答H[t,f]は、2次元の平均値がゼロの広義定常(WSS、Wide Sense Stationary)ガウスランダム過程(Gaussian random process)としてモデル化することができる。それに対応して、その相関は、次式で表すことができる。
Γ[t−t,f−f]≡E{H[t,f]H*[t,f]} (7)
そして、共通に既知であると仮定される。または、過去の観測値から推定することができる。式(3)、(4)および(6)の行列表現とチャネル統計の知識が与えられれば、MMSE推定器等の線形推定器を3つのパイロットの観測値のそれぞれに対して定式化することができる。すなわち、線形推定器は、低減密度共通パイロットの観測値のみ、または適応的に割り当てられたパイロットの観測値のみ、またはそれらの両方に基づいて導出することができる。
図3のステップ304に示される、低減密度共通パイロットの観測値のみに基づいて行うチャネル応答を推定するステップに関し、以下でより詳細に説明する。Hは時間−周波数平面において推定を必要とする位置におけるチャネル応答を含むL×1の列ベクトルを示すとする。例えば、図5に示す典型的な共通パイロット信号に対して、Lは152<t≦156、および、0≦f<120の間の点の数で表され、L=6×120である。共通パイロットシンボルのみに基づいて行うHのMMSE推定値は、観測値Xという条件を課した平均値であり、次式で与えられる。
Figure 2010520701
ここで、ΠHc=E{H }は大きさN×NのHの自己共分散行列(auto covariance matrix)であり、ΠHHc=E{HH }は大きさL×NのHとHとの間の共分散行列であり、また、ΠHXcは同様に定義される、大きさL×NのHとXとの間の共分散行列である。
共分散行列の中の要素は式(7)で与えられるチャネルの相関関数から導出することができるので、MMSE推定器は、大きさN×1の観測値ベクトルを、所望の位置における推定値を含む大きさL×1のベクトルに変換する大きさL×Nの線形演算子となる。同様に、適応的に割り当てられたパイロットの観測値だけに基づいたHのMMSE推定値もまた、式(8)と同じ行列表現を有し、下添え字cをdで置き換えたものである。
式(8)で与えられる共通パイロットの観測値だけに基づくMMSE推定は、時間インデックスが、最後に送信されたパイロットシンボルから離れるに従って、動作性能の劣化を被る。すなわち、最後の共通パイロットシンボルの受信からの時間経過が増せば、式(8)で与えられるMMSE推定の確度は低下する。正規にスケジュールされた次の共通パイロットシンボルを待つことができない場合には、式(6)で与えられる全パイロット観測値Xに基づくMMSE推定器を使用することにより、チャネル推定確度を改善することができる。しかし、Xに基づくMMSE推定器は、サイズの大きなカーネル行列の逆行列を求める操作を伴うので、共通パイロット信号に関わる正規の構造を欠くことになる。
最適ではないが複雑さを低減した手法を次に説明する。この手法は、共通パイロットの観測値と適応的に割り当てられたパイロットの観測値との両方を組み合わせて、チャネル応答推定確度の改善を達成するものである。1つの実施形態においては、MMSE推定器を、適応的に割り当てられたパイロット信号といくつかの近接した共通パイロットシンボルとに基づいて形成し、カーネル行列のサイズを減少させる。別の実施形態においては、MMSE推定器等の線形推定器は、適応的に割り当てられたパイロット信号と、低減密度共通パイロットシンボルのサブセットから導出するチャネル応答の推定値とに基づく。共通パイロットシンボルのサブセットから導出するチャネル応答推定は、推定確度をさらに改善するために、適応的に割り当てられたパイロットシンボルの近くの位置(例えば、時間において、および、OFDMシステムに対してはオプションとして周波数において)で生成されることが望ましい。例えば、図5において、チャネル応答推定値は近接した共通パイロットシンボルから導出される。この近接した共通パイロットシンボルは、適応的に割り当てられたパイロットシンボル(図5において156番目のOFDMシンボル)の以前に位置するもので、送信された最後の共通パイロットシンボル(図5において152番目のOFDMシンボル)を含む。従って、共通パイロットシンボルのサブセット(近接した)から導出されたチャネル応答推定値は、推定されたパイロット位置におけるパイロットの観測値の推定値として機能する。
チャネル応答推定は制御情報を復調するために連続して行われるので、近接した共通パイロットシンボルから導出されるチャネル応答推定値は既に利用可能になっている。Hが推定されたパイロット位置におけるチャネル応答を示すとすると、HのMMSE推定値は次式で与えられる。
Figure 2010520701
ここで、Wは対応する線形演算子である。式(9)において、WはMMSE推定器に限定はされない。Wは過去の共通パイロットシンボルの観測値の任意のサブセットに対して作用する任意の線形演算子であってよい。
パイロットの観測値の推定値H および適応的に割り当てられたパイロットの観測値Xは、列ベクトルに積み上げられた形で表わされ次式で与えられる。
Figure 2010520701
対応するMMSE推定器は次式で表すことができる。
Figure 2010520701
ここで、
Figure 2010520701
である。
カーネル行列ΠXmの次元はΠXtの次元の一部分でしかなく、双方のパイロットの観測値に基づいたMMSE推定器のカーネル行列も同様であり、従って、容易に逆行列を求めることができる。複雑さを低減した推定器における動作性能の劣化は最小に抑えられる。
本明細書で開示した、適応的なパイロットシンボルの割り当てに関する教示は、ナイキスト・レートよりも僅かに高いレートで共通パイロットシンボルを送信することにより、無線通信システム100における総合的なデータシンボル密度を改善するものである。パイロットシンボルの挿入レートを、より少ない数のチャネル条件(例えば、チャネル条件の95%)しか包含しないように設定するとすれば、パイロット信号オーバヘッドをさらに低く抑えることができる。追加パイロットシンボルは、チャネル応答を正確に推定するために追加パイロットシンボルを必要とする受信デバイスだけに、適応的に送信される。これはすなわち、追加パイロットシンボルは、遅延に対する厳しい要求条件を有する受信デバイス、または、極端なチャネル条件、例えば、時間率でたった5%しか生じない条件の中にある受信デバイスに対して、適応的に送信されるということである。本明細書で開示する、最適ではないが複雑さを低減した線形推定器によって、受信機の複雑さが低減される。これは、この線形推定器が、適応的に割り当てられたパイロットシンボルと過去に受信した低減密度共通パイロットシンボルのサブセットとの上で動作をするからである。
上記で述べた範囲の変形と応用を念頭に置くと、本発明はこれまでの記述に限定されるものではなく、また、添付の図面に限定されるものでもない、ということが理解されなければならない。本発明は、以下に示す特許請求の範囲およびそれらの法的均等物によってのみ限定されるものである。

Claims (26)

  1. 無線通信デバイスにおいて、チャネル応答を推定するための方法であって、
    一定間隔の複数の共通パイロットシンボルを含む低減密度共通パイロット信号が所望の確度で前記チャネル応答を推定するのに十分である場合には、前記低減密度共通パイロット信号に基づいて前記チャネル応答を推定するステップ(302、304)と、
    前記低減密度共通パイロット信号が所望の確度で前記チャネル応答を推定するのに不十分である場合には、前記低減密度共通パイロット信号と、前記無線通信デバイスに適応的に割り当てられた1つ以上の追加パイロットシンボルとに基づいて前記チャネル応答を推定するステップ(308)と
    を含むことを特徴とする方法。
  2. 前記低減密度共通パイロット信号と、前記1つ以上の追加パイロットシンボルとに基づいて、最小平均2乗誤差の推定値を算出するステップをさらに含むことを特徴とする請求項1に記載の方法。
  3. 前記1つ以上の追加パイロットシンボルと、選択した前記低減密度共通パイロット信号のサブセットとに基づいて、前記最小平均2乗誤差の推定値を算出するステップをさらに含むことを特徴とする請求項2に記載の方法。
  4. 前記1つ以上の追加パイロットシンボルと、複数の前記追加パイロットシンボルの1つの近くの位置で選択した前記低減密度共通パイロット信号のサブセットから導出されるチャネル応答推定値とに基づいて前記チャネル応答を推定するステップをさらに含むことを特徴とする請求項1に記載の方法。
  5. 前記追加パイロットシンボルの近くの位置で選択した前記低減密度共通パイロット信号のサブセットから前記チャネル応答の線形推定値を導出するステップをさらに含むことを特徴とする請求項4に記載の方法。
  6. 前記追加パイロットシンボルの近くの位置で選択した前記低減密度共通パイロット信号のサブセットから前記チャネル応答の前記最小平均2乗誤差の推定値を導出するステップをさらに含むことを特徴とする請求項5に記載の方法。
  7. 前記1つ以上の追加パイロットシンボルをブラインド検出するステップをさらに含むことを特徴とする請求項1に記載の方法。
  8. 前記1つ以上の追加パイロットシンボルが前記無線通信デバイスに対して適応的に割り当てられたことを示す信号を受信するステップをさらに含むことを特徴とする請求項1に記載の方法。
  9. 無線通信デバイスであって、
    一定間隔の複数の共通パイロットシンボルを含む低減密度共通パイロット信号が所望の確度で前記チャネル応答を推定するのに十分である場合には、前記低減密度共通パイロット信号に基づいて前記チャネル応答を推定し、
    前記低減密度共通パイロット信号が所望の確度で前記チャネル応答を推定するのに不十分である場合には、前記低減密度共通パイロット信号と、前記無線通信デバイスに適応的に割り当てられた1つ以上の追加パイロットシンボルとに基づいて前記チャネル応答を推定する
    ように構成されるベースバンドプロセッサ(128/130)を備えることを特徴とする無線通信デバイス。
  10. 前記ベースバンドプロセッサは、
    前記低減密度共通パイロット信号と、前記1つ以上の追加パイロットシンボルとに基づいて、最小平均2乗誤差の推定値を算出するように構成されることを特徴とする請求項9に記載の無線通信デバイス。
  11. 前記ベースバンドプロセッサは、
    前記1つ以上の追加パイロットシンボルと、選択した前記低減密度共通パイロット信号のサブセットとに基づいて、前記最小平均2乗誤差の推定値を算出するように構成されることを特徴とする請求項10に記載の無線通信デバイス。
  12. 前記ベースバンドプロセッサは、
    前記1つ以上の追加パイロットシンボルと、複数の前記追加パイロットシンボルの1つの近くの位置で選択した前記低減密度共通パイロット信号のサブセットから導出されるチャネル応答推定値とに基づいて前記チャネル応答を推定するように構成されることを特徴とする請求項9に記載の無線通信デバイス。
  13. 前記ベースバンドプロセッサは、さらに
    前記追加パイロットシンボルの近くの位置で選択した前記低減密度共通パイロット信号のサブセットから前記チャネル応答の線形推定値を導出するように構成されることを特徴とする請求項12に記載の無線通信デバイス。
  14. 前記ベースバンドプロセッサは、さらに、
    前記追加パイロットシンボルの近くの位置で選択した前記低減密度共通パイロット信号のサブセットから前記チャネル応答の前記最小平均2乗誤差の推定値を導出するように構成されることを特徴とする請求項13に記載の無線通信デバイス。
  15. 前記ベースバンドプロセッサは、さらに、
    前記1つ以上の追加パイロットシンボルをブラインド検出するように構成されることを特徴とする請求項9に記載の無線通信デバイス。
  16. 前記ベースバンドプロセッサは、さらに、
    前記1つ以上の追加パイロットシンボルが前記無線通信デバイスに対して適応的に割り当てられたことを示す信号を受信するように構成されることを特徴とする請求項9に記載の無線通信デバイス。
  17. 無線通信システム内でパイロットシンボル密度を適応的に変更するための方法であって、
    一定間隔の複数の共通パイロットシンボルを含む低減密度共通パイロット信号を送信するステップ(200)と、
    前記低減密度共通パイロット信号に基づいて、前記無線通信システムと通信を行なう無線通信デバイスが所望の確度でチャネル応答を推定できるか否かを判定するステップ(202)と、
    前記低減密度共通パイロット信号に基づいて、前記無線通信デバイスが所望の確度でチャネル応答を推定できない場合に、1つ以上の追加パイロットシンボルを前記無線通信デバイスに割り当てるステップ(206、208)と
    を含むことを特徴とする方法。
  18. 前記低減密度共通パイロット信号に基づいて、前記無線通信システムと通信を行なう無線通信デバイスが所望の確度でチャネル応答を推定できるか否かを示す、前記無線通信デバイスから受信される信号を処理するステップをさらに含むことを特徴とする請求項17に記載の方法。
  19. 前記無線通信デバイスから受信されるパイロット信号をブラインドで処理するステップをさらに含むことを特徴とする請求項17に記載の方法。
  20. 前記無線通信デバイスに送信するためのスケジュールされた1つ以上のデータシンボルをパイロットシンボルに置き換えるステップをさらに含むことを特徴とする請求項17に記載の方法。
  21. 前記1つ以上の追加パイロットシンボルが前記無線通信デバイスに割り当てられたことを、該無線通信デバイスに示すステップをさらに含むことを特徴とする請求項17に記載の方法。
  22. 無線通信デバイスであって、
    一定間隔の複数の共通パイロットシンボルを含む低減密度共通パイロット信号を生成し、
    前記低減密度共通パイロット信号に基づいて、第1の無線通信デバイスと通信を行なう第2の無線通信デバイスが所望の確度でチャネル応答を推定できるか否かを判定し、
    前記低減密度共通パイロット信号に基づいて、前記第2の無線通信デバイスが所望の確度でチャネル応答を推定できない場合に、1つ以上の追加パイロットシンボルを前記第2の無線通信デバイスに割り当てる
    ように構成されるベースバンドプロセッサ(128/130)を備えることを特徴とする無線通信デバイス。
  23. 前記ベースバンドプロセッサは、さらに
    前記低減密度共通パイロット信号に基づいて、前記第2の無線通信デバイスが所望の確度でチャネル応答を推定できるか否かを示す、前記第2の無線通信デバイスから受信される信号を処理するように構成されることを特徴とする請求項22に記載の無線通信デバイス。
  24. 前記ベースバンドプロセッサは、さらに、
    前記低減密度共通パイロット信号に基づいて、前記第2の無線通信デバイスが所望の確度でチャネル応答を推定できるか否かを判定するために、前記第2の無線通信デバイスから受信されるパイロット信号をブラインドで処理するように構成されることを特徴とする請求項22に記載の無線通信デバイス。
  25. 前記ベースバンドプロセッサは、さらに、
    前記第2の無線通信デバイスに送信するためのスケジュールされた1つ以上のデータシンボルをパイロットシンボルに置き換えるように構成されることを特徴とする請求項22に記載の無線通信デバイス。
  26. 前記ベースバンドプロセッサは、さらに、
    前記1つ以上の追加パイロットシンボルが前記第2の無線通信デバイスに割り当てられたことを、該第2の無線通信デバイスに示す信号を生成するように構成されることを特徴とする請求項22に記載の無線通信デバイス。
JP2009552630A 2007-03-08 2008-03-07 適応的パイロットシンボル割り当ての方法と装置 Expired - Fee Related JP5350278B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US89375507P 2007-03-08 2007-03-08
US60/893,755 2007-03-08
US11/743,332 US7848468B2 (en) 2007-03-08 2007-05-02 Adaptive pilot symbol allocation method and apparatus
US11/743,332 2007-05-02
PCT/SE2008/000183 WO2008108710A2 (en) 2007-03-08 2008-03-07 Adaptive pilot symbol allocation method and apparatus

Publications (2)

Publication Number Publication Date
JP2010520701A true JP2010520701A (ja) 2010-06-10
JP5350278B2 JP5350278B2 (ja) 2013-11-27

Family

ID=39738918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009552630A Expired - Fee Related JP5350278B2 (ja) 2007-03-08 2008-03-07 適応的パイロットシンボル割り当ての方法と装置

Country Status (4)

Country Link
US (1) US7848468B2 (ja)
EP (1) EP2115984A4 (ja)
JP (1) JP5350278B2 (ja)
WO (1) WO2008108710A2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099024A1 (ja) * 2008-02-05 2009-08-13 Sharp Kabushiki Kaisha 移動通信装置、基地局装置、無線制御方法、及び移動通信システム
KR101595425B1 (ko) 2008-03-21 2016-02-24 애플 인크. 공간 멀티플렉싱을 이용한 멀티미디어 브로드캐스트 멀티캐스트 서비스(mbms)
US8406279B2 (en) * 2008-04-09 2013-03-26 Industrial Technology Research Institute System and method for pilot design for data transmitted in wireless networks
US8848764B2 (en) 2008-11-13 2014-09-30 Blackberry Limited Reduced complexity channel estimation for uplink receiver
JP5557543B2 (ja) * 2010-02-05 2014-07-23 シャープ株式会社 無線通信システム、送信装置、受信装置、受信制御方法、及び、受信制御プログラム
CN103124210A (zh) * 2011-03-25 2013-05-29 北京新岸线移动多媒体技术有限公司 无线通信系统中导频的配置方法及装置
WO2014193283A1 (en) * 2013-05-31 2014-12-04 Telefonaktiebolaget L M Ericsson (Publ) Methods and user equipments for data demodulation
WO2014204181A1 (en) 2013-06-19 2014-12-24 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
EP2884684A1 (en) * 2013-12-13 2015-06-17 Siemens Aktiengesellschaft Method of wirelessly transmitting data according to a specific telegram packing and communication system
US9673948B2 (en) * 2014-10-29 2017-06-06 Qualcomm Incorporated Hybrid pilot design for low latency communication
US9985802B2 (en) 2014-10-31 2018-05-29 Qualcomm Incorporated Channel estimation enhancements
CN104883327B (zh) * 2014-11-21 2019-01-08 广东省电信规划设计院有限公司 基于二维插值的信道估计方法和系统
GB2547724B (en) * 2016-02-29 2020-03-25 British Telecomm Adapting reference signal density
US10491350B2 (en) 2016-02-29 2019-11-26 British Telecommunications Public Limited Company Adaptive reference signal patterns
EP3424171B1 (en) 2016-02-29 2020-03-11 British Telecommunications public limited company Controlling adaptive reference signal patterns
WO2017148673A1 (en) 2016-02-29 2017-09-08 British Telecommunications Public Limited Company Adapting reference signal density
WO2019134164A1 (zh) * 2018-01-08 2019-07-11 海能达通信股份有限公司 一种高速移动信道下宽带专网的可靠传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207995A (ja) * 2002-12-25 2004-07-22 Matsushita Electric Ind Co Ltd 通信装置および無線通信システム
WO2005060298A1 (en) * 2003-12-12 2005-06-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
JP2006510315A (ja) * 2002-12-13 2006-03-23 韓國電子通信研究院 Ofdma基盤セルラーシステムの下向リンクのための信号構成方法及び装置
WO2006102909A1 (en) * 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. Adaptive modulation with non-pilot symbols
WO2006132589A2 (en) * 2005-06-09 2006-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Time and frequency channel estimation in an ofdm system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100594086B1 (ko) * 2005-01-04 2006-06-30 삼성전자주식회사 채널 추정을 위한 적응적 파일럿 할당 방법 및 장치
US8125137B2 (en) * 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US7724841B2 (en) * 2006-10-03 2010-05-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for iteratively calculating channel response estimates
EP2203938A1 (en) * 2007-10-26 2010-07-07 Cree Led Lighting Solutions, Inc. Illumination device having one or more lumiphors, and methods of fabricating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510315A (ja) * 2002-12-13 2006-03-23 韓國電子通信研究院 Ofdma基盤セルラーシステムの下向リンクのための信号構成方法及び装置
JP2004207995A (ja) * 2002-12-25 2004-07-22 Matsushita Electric Ind Co Ltd 通信装置および無線通信システム
WO2005060298A1 (en) * 2003-12-12 2005-06-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
WO2006102909A1 (en) * 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. Adaptive modulation with non-pilot symbols
WO2006132589A2 (en) * 2005-06-09 2006-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Time and frequency channel estimation in an ofdm system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012042085; Jie Zhu,Wookwon Lee: 'A LOW-COMPLEXITY CHANNEL ESTIMATION FOR OFDM SYSTEMS IN MULTIPATH FADING CHANNELS' Personal,Indoor and Mobile Radio Communications,2004.PIMRC 2004.15th IEEE Intenational Symposium on vol.3, 20040905, pp.1978-1982 *

Also Published As

Publication number Publication date
US20080219361A1 (en) 2008-09-11
EP2115984A2 (en) 2009-11-11
WO2008108710A3 (en) 2008-10-30
WO2008108710A2 (en) 2008-09-12
JP5350278B2 (ja) 2013-11-27
EP2115984A4 (en) 2014-05-07
US7848468B2 (en) 2010-12-07

Similar Documents

Publication Publication Date Title
JP5350278B2 (ja) 適応的パイロットシンボル割り当ての方法と装置
KR100950652B1 (ko) 직교 주파수 분할 다중 전송 방식에서 순방향 링크의 채널 상태 추정 방법
JP5081891B2 (ja) プロポーショナルフェア型スケジューラ、不完全なcqiフィードバックを用いたスケジューリング方法
US20070149249A1 (en) Method and apparatus for efficient configuration of hybrid sub-carrier allocation
EP2031790B1 (en) Estimating a signal-to-interference ratio in a receiver of a wireless communications system
US20070133695A1 (en) Method and system for channel assignment of OFDM channels
JP2009527187A (ja) 送信時間インターバルのグルーピングを使用してofdmシステムの基準信号を処理する方法及びシステム
KR20110088568A (ko) 업링크 수신기에 대한 감소된 복잡도 채널 추정
US8634351B2 (en) LTE baseband receiver and method for operating same
JP2008160842A (ja) 通信システム
TWI649996B (zh) 指派傳輸時刻至無線電終端之方法、無線電網路節點、無線電終端、及電腦程式產品
US20140140319A1 (en) Method for transmitting data in a communication system, first network node and second network node thereof
US20230156487A1 (en) Method and device in communication nodes for wireless communication
JP2007159139A (ja) Ofdm−cdmaシステムの拡散パラメータの選択方法および装置
US7953046B2 (en) Wireless communications device
WO2009029025A2 (en) Method and apparatus for robust control signaling distribution in ofdm systems
JP2013051713A (ja) 送信方法、送信装置、受信方法及び受信装置
KR20100070478A (ko) 무선 통신 시스템의 채널 및 간섭 추정 방법 및 장치
KR101153321B1 (ko) 트레이닝 시퀀스 코드의 적응적 할당 방법 및 장치, 그 기록 매체, 및 단말기
CN117896829A (zh) 一种被用于无线通信的节点中的方法和装置
CN114726489A (zh) 配置信息处理方法、装置及相关设备
CN117835141A (zh) 一种被用于定位的方法和装置
Lampe Medium Access Scheme for TDMA
KR20070008134A (ko) 광대역 무선통신시스템에서 채널 추정 장치 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees