WO2019134164A1 - 一种高速移动信道下宽带专网的可靠传输方法及装置 - Google Patents

一种高速移动信道下宽带专网的可靠传输方法及装置 Download PDF

Info

Publication number
WO2019134164A1
WO2019134164A1 PCT/CN2018/071759 CN2018071759W WO2019134164A1 WO 2019134164 A1 WO2019134164 A1 WO 2019134164A1 CN 2018071759 W CN2018071759 W CN 2018071759W WO 2019134164 A1 WO2019134164 A1 WO 2019134164A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
user terminal
channel estimation
speed auxiliary
symbol
Prior art date
Application number
PCT/CN2018/071759
Other languages
English (en)
French (fr)
Inventor
梁尧
李鹏
辛小枫
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2018/071759 priority Critical patent/WO2019134164A1/zh
Publication of WO2019134164A1 publication Critical patent/WO2019134164A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of wireless communication physical layer digital signal processing technology, and more particularly to a reliable transmission method and device for a broadband private network under a high speed mobile channel.
  • Broadband LTE has more and more advantages in private network applications due to its high spectral efficiency, low network delay, and support for real-time image transmission.
  • the application scenarios of the private network include high-speed train scheduling systems and rail transit scheduling systems.
  • the PUSCH transmission performance of the physical layer uplink shared channel is greatly challenged, and it is prone to fail to demodulate data, short-term dropped calls, or even off-network, seriously affecting The quality of communication cannot meet the basic requirements of high reliability of private networks.
  • the high-speed movement of the UE causes the frequency offset effect of the received signal, so that the receiver needs to adjust the frequency of the local oscillator in real time to compensate and track the frequency variation of the signal. If the Doppler frequency shift exceeds the range of the receiver frequency tracking, the frequency offset Estimation and compensation will produce phase ambiguity, which will eventually lead to demodulation failure. On the other hand, Doppler spread will cause channel time-varying effects. The receiver needs to track the channel state changes in real time to make accurate equalization to offset the channel fading effect.
  • the present invention provides a transmission method and apparatus for a broadband private network in a high-speed mobile channel, inserting high-speed auxiliary pilot reference information by subcarrier puncturing, performing accurate channel estimation, and improving a broadband private network at a high speed. Demodulation capability under the channel.
  • a transmission method for a broadband private network under a high-speed mobile channel, applied to a wireless base station comprising:
  • Channel estimation is performed on a specific subcarrier of the high speed auxiliary pilot symbol according to the locally known high speed auxiliary pilot reference information, and other subcarrier positions are obtained according to a channel estimation value of a specific subcarrier and a high speed auxiliary pilot interpolation interval. Channel estimation value, thereby obtaining a channel estimation value of the high speed auxiliary pilot symbol;
  • the optimal pilot difference interval is sent to the user terminal through a downlink channel, so that the user terminal synchronously updates the high-speed auxiliary pilot interpolation interval according to the optimal pilot interpolation interval.
  • the receiving the radio frequency signal from the user terminal, and parsing the radio frequency signal to obtain a conventional pilot symbol and a high-speed auxiliary pilot symbol including:
  • the method further includes:
  • calculating according to a coherence coefficient between the pilot symbols, a maximum Doppler shift of the user terminal, and further comprising:
  • the multi-order Wiener filtering interpolation is performed according to a maximum Doppler shift of the user terminal, a coherence coefficient matrix between the pilot symbols, and a channel estimation value of a pilot symbol, to obtain a non-guide Channel estimates for frequency symbols, including:
  • a channel estimation value of the non-pilot symbol is calculated according to the Wiener filter coefficient and the channel estimation value of the pilot symbol.
  • a transmission device for a broadband private network under a high-speed mobile channel, applied to a wireless base station comprising:
  • a parsing unit configured to receive a radio frequency signal from the user terminal, and parse the radio frequency signal to obtain a conventional pilot symbol and a high-speed auxiliary pilot symbol;
  • a first estimating unit configured to perform channel estimation on the regular pilot symbols according to locally known conventional pilot reference information, to obtain channel estimation values of conventional pilot symbols
  • a second estimating unit configured to perform channel estimation on a specific subcarrier of the high speed auxiliary pilot symbol according to the locally known high speed auxiliary pilot reference information, and according to a channel estimation value of a specific subcarrier and a high speed auxiliary pilot Interpolating the interval to obtain channel estimation values of other subcarrier positions, thereby obtaining channel estimation values of high speed auxiliary pilot symbols;
  • an acquiring unit configured to obtain, according to the channel estimation value of the regular pilot symbol and the high-speed auxiliary pilot symbol, a coherence coefficient matrix between pilot symbols, where a coherence coefficient matrix between the pilot symbols includes a pilot symbol Coherence coefficient
  • a first calculating unit configured to calculate a maximum Doppler frequency shift of the user terminal according to a coherence coefficient between the pilot symbols
  • a second calculating unit configured to calculate an optimal pilot interpolation interval according to a maximum Doppler shift of the user terminal
  • An interpolation interval feedback unit configured to send the optimal pilot difference interval to the user terminal by using a downlink channel, so that the user terminal synchronously updates the high-speed auxiliary pilot interpolation interval according to the optimal pilot interpolation interval .
  • the parsing unit comprises:
  • a first parsing subunit configured to receive a radio frequency signal from the user terminal, parse the radio frequency signal according to a location of a conventional pilot symbol specified by a broadband protocol, and extract a conventional pilot symbol;
  • a second parsing sub-unit configured to parse the radio frequency signal according to a high-speed auxiliary pilot interpolating interval agreed with the user terminal, to obtain a punching position of the user terminal on a subcarrier;
  • a obtaining subunit configured to extract, according to the punching position, a high speed auxiliary pilot symbol inserted by the user terminal at the punching position.
  • the device further comprises:
  • a high-speed frequency offset estimation unit configured to perform a coherent summation of the channel estimation values of the conventional pilot symbols and the subcarrier positions of the high-speed auxiliary pilot symbols, and calculate a frequency deviation estimation value of the high-speed scene, and according to The frequency deviation estimation value of the high speed scene compensates the radio frequency signal.
  • the device further comprises:
  • a Wiener filtering interpolation unit configured to perform multi-order Wiener filtering interpolation according to a maximum Doppler shift of the user terminal, a coherence coefficient matrix between the pilot symbols, and a channel estimation value of a pilot symbol, Obtaining a channel estimation value of the non-pilot symbol, and demodulating the radio frequency signal according to the channel estimation value of the non-pilot symbol.
  • a transmission method for a broadband private network under a high-speed mobile channel, applied to a user terminal comprising:
  • the punctured frequency domain data signal is converted into a radio frequency signal for transmission to a wireless base station.
  • the determining the high speed auxiliary pilot interpolation interval comprises:
  • the pilot interpolation interval pre-agreed with the radio base station is determined as the high-speed assist pilot interpolation interval.
  • a transmission device for a broadband private network under a high-speed mobile channel, applied to a user terminal comprising:
  • a determining unit configured to determine a high speed auxiliary pilot interpolation interval
  • An insertion unit configured to perform puncturing on a subcarrier of a symbol for transmitting data specified by a broadband protocol according to the high-speed auxiliary pilot interpolation interval, and insert a preset high-speed auxiliary pilot reference sequence to obtain a punctured Frequency domain data signal;
  • a converting unit configured to convert the punctured frequency domain data signal into a radio frequency signal for transmission to the wireless base station.
  • the present invention also provides an apparatus for a broadband private network under a high speed mobile channel, the apparatus comprising:
  • a transceiver for transmitting and receiving signals
  • the present invention is directed to an excessively wide pilot interval set by the PUSCH protocol of the uplink service shared channel in the existing broadband private network, which results in limited pilot resources in the high-speed mobile channel, causing phase blurring of the conventional frequency offset estimation method and accuracy of data symbol channel estimation.
  • a severely constrained problem is proposed.
  • a method for transmitting a broadband private network in a high-speed mobile channel is proposed. The user terminal punches a subcarrier on a symbol for transmitting data specified by the broadband protocol at a certain interpolation interval, and inserts the pre-interpolation.
  • the high-speed auxiliary pilot reference sequence is designed to minimize the processing flow of the original protocol, is fully compatible with the original protocol, and solves the phase ambiguity problem of the frequency offset estimation under the high-speed mobile channel caused by the limitation of the pilot resources in the prior art. And the time domain interpolation accuracy problem of channel estimation improves the demodulation performance of the high speed channel and ensures the reliable transmission of data.
  • FIG. 1 is a flowchart of a method for transmitting a broadband private network in a high-speed mobile channel according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for transmitting a broadband private network in a high-speed mobile channel according to Embodiment 2 of the present invention
  • FIG. 3 is a flowchart of a method for transmitting a broadband private network in a high-speed mobile channel according to Embodiment 3 of the present invention
  • FIG. 4 is a schematic diagram of a pilot pattern provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of improvement of channel estimation interpolation performance according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a transmission apparatus of a broadband private network in a high-speed mobile channel according to Embodiment 4 of the present invention.
  • FIG. 7 is a flowchart of a method for transmitting a broadband private network in a high-speed mobile channel according to Embodiment 5 of the present invention.
  • FIG. 8 is a flowchart of a method for transmitting a broadband private network in a high-speed mobile channel according to Embodiment 6 of the present invention.
  • FIG. 9 is a schematic structural diagram of a transmission apparatus of a broadband private network in a high-speed mobile channel according to Embodiment 7 of the present invention.
  • this embodiment discloses a method for transmitting a broadband private network in a high-speed mobile channel, which is applied to a wireless base station, and includes the following steps:
  • S101 Receive a radio frequency signal from the user terminal, and parse the radio frequency signal to obtain a conventional pilot symbol and a high-speed auxiliary pilot symbol.
  • the user terminal is a transmitter of a broadband terminal or a transmitter of a broadband repeater.
  • the execution process of S101 is as follows:
  • the user terminal performs puncturing on the symbol subcarrier of the data transmission of the user of the broadband protocol by using the high-speed auxiliary pilot interpolation interval agreed with the wireless base station, and inserts a preset high-speed auxiliary pilot reference sequence.
  • the frequency domain subcarrier resource is replaced with the preset high speed auxiliary pilot reference information, and the processing flow of the original protocol is minimized, wherein a small amount of subcarrier information is lost, and the forward error correction code can be completely restored.
  • the wireless base station receiver processing system is completely incompatible with the original protocol, and the practical value of the transmission method of the broadband private network under the high-speed mobile channel disclosed in the embodiment is improved.
  • S102 Perform channel estimation on the regular pilot symbols according to locally known conventional pilot reference information, to obtain channel estimation values of conventional pilot symbols.
  • S103 Perform channel estimation on a specific subcarrier of the high-speed auxiliary pilot symbol according to the locally known high-speed auxiliary pilot reference information, and obtain other sub-carriers according to channel estimation values of specific subcarriers and high-speed auxiliary pilot interpolation intervals. a channel estimation value of the carrier position, thereby obtaining a channel estimation value of the high speed auxiliary pilot symbol;
  • the specific subcarrier is a subcarrier agreed upon by the user terminal and the radio base station, and the calculation formula of the channel estimation value of the specific subcarrier position is:
  • the H HS is a channel estimation value of a specific subcarrier position
  • Y is a received high speed auxiliary pilot symbol
  • S is a locally known high speed auxiliary pilot reference information.
  • the user terminal performs puncturing on the symbol subcarrier of the data transmission of the user of the broadband protocol by using the high-speed auxiliary pilot interpolation interval agreed with the wireless base station, and inserts a preset high-speed auxiliary pilot reference sequence, where the inserted pre- The high speed auxiliary pilot reference sequence is set to be the same as the locally known high speed auxiliary pilot reference information. It can be understood that the inserted preset high-speed auxiliary pilot reference sequence changes during signal transmission, and the high-speed auxiliary pilot symbol received by the wireless base station is likely to have been preset with the inserted high-speed auxiliary guide.
  • the frequency reference sequences are different, so channel estimation of high speed auxiliary pilot symbols can be performed using locally known high speed auxiliary pilot reference information.
  • each high speed auxiliary pilot symbol includes a plurality of subcarriers, and the locations of other subcarriers of the high speed auxiliary pilot symbols are obtained according to a high speed auxiliary pilot interpolation interval agreed with the user terminal. And obtaining, according to the channel estimation value of the specific subcarrier, a channel estimation value of other subcarrier positions of the high speed auxiliary pilot symbol, and performing channel estimation on each subcarrier of the high speed auxiliary pilot symbol to obtain a channel estimation value of each of the subcarrier positions. That is, the channel estimation value of the high speed auxiliary pilot symbol can be obtained.
  • S104 Obtain a coherence coefficient matrix between pilot symbols according to the channel estimation values of the regular pilot symbol and the high-speed auxiliary pilot symbol, where the coherence coefficient matrix between the pilot symbols includes a coherence coefficient between pilot symbols;
  • R HH E ⁇ H ⁇ H * ⁇
  • R HH is a coherence coefficient matrix between pilot symbols
  • E ⁇ indicates an expected value
  • indicates Hadamard product
  • H is the channel estimation matrix of the pilot symbols.
  • the coherence coefficients between the different pilot symbols form a matrix of coherence coefficients between the pilot symbols.
  • the coherence coefficient between pilot symbols has two manifestations: with among them, For the channel coherence coefficients between different symbols m, n, Is the channel coherence coefficient between m and m of the same symbol.
  • S105 Calculate a maximum Doppler frequency shift of the user terminal according to a coherence coefficient between the pilot symbols.
  • the formula for calculating the maximum Doppler shift is: Where J 0 is a 0-order Bessel function and f d is the maximum Doppler shift sought.
  • J 0 is a 0-order Bessel function and f d is the maximum Doppler shift sought.
  • f d the maximum Doppler shift sought.
  • the channel coherence coefficients between different symbols m, n For the same symbol m, the channel coherence coefficient between m, T is the symbol m, the time interval of n, ⁇ 2 is the noise variance, and the noise variance can generally be obtained by the receiver noise estimation algorithm.
  • S106 Calculate an optimal pilot interpolation interval according to a maximum Doppler shift of the user terminal.
  • the formula for calculating the optimal pilot interpolation interval is:
  • S107 Send the optimal pilot difference interval to the user terminal by using a downlink channel, so that the user terminal synchronously updates the high-speed auxiliary pilot interpolation interval according to the optimal pilot interpolation interval.
  • the radio base station may periodically send the optimal pilot interpolation interval to the user terminal according to actual needs, so that the user terminal obtains an optimal high-speed auxiliary pilot interpolation interval to optimize system scheduling resources.
  • the pilot interval set by the PUSCH protocol of the uplink service shared channel in the existing broadband private network is too wide, which results in limited pilot resources in the high-speed mobile channel, causing phase ambiguity and data symbol channel estimation in the conventional frequency offset estimation method.
  • a problem of severely limited accuracy is proposed.
  • a method for transmitting a broadband private network in a high-speed mobile channel is proposed.
  • the wireless base station parses the received radio frequency signal, extracts conventional pilot symbols and high-speed auxiliary pilot symbols, and respectively according to the local
  • the known conventional pilot reference information and the high-speed auxiliary pilot reference information are used for accurate channel estimation, and finally an optimal high-speed auxiliary pilot interpolation interval is obtained, so that the user terminal synchronously updates the high-speed according to the optimal pilot interpolation interval.
  • the auxiliary pilot interpolation interval solves the problem of time domain interpolation precision of channel estimation caused by the limitation of pilot resources in the prior art, improves the demodulation performance of the high speed channel, and ensures reliable data transmission.
  • the method further includes:
  • S108 Perform coherent summation on the channel estimation values of the conventional pilot symbols and the subcarrier positions of the high speed auxiliary pilot symbols, calculate a frequency offset estimation value of the high speed scene, and according to the frequency of the high speed scene.
  • the offset estimate compensates for the RF signal.
  • the calculation formula of the frequency deviation estimation value of the high-speed scene is:
  • f Offset is an estimated frequency deviation of the high speed scene
  • the unit is Hz
  • H is a channel estimation matrix of pilot symbols
  • H HS is a channel estimation value of a subcarrier position, angle ⁇ (H * ⁇ H HS ) ⁇
  • T is the time interval between the regular pilot symbols and the high speed auxiliary pilot symbols, in seconds.
  • the present embodiment solves the phase ambiguity problem of the conventional frequency offset estimation in the high-speed mobile channel caused by the limitation of the pilot resources of the original system, and improves the frequency offset estimation of the high-speed scene.
  • the method further includes:
  • S109 Perform multi-order Wiener filtering interpolation according to a maximum Doppler frequency shift of the user terminal, a coherence coefficient matrix between the pilot symbols, and a channel estimation value of a pilot symbol, to obtain a non-pilot symbol. a channel estimation value, and demodulating the radio frequency signal according to a channel estimation value of the non-pilot symbol.
  • W is the Wiener filter coefficient
  • R H'H is the coherence coefficient matrix of the non-pilot symbols and the pilot symbols
  • R HH is the coherence coefficient matrix between the pilot symbols
  • ⁇ 2 is the noise variance
  • a channel estimation value of the non-pilot symbol is calculated according to the Wiener filter coefficient and the channel estimation value of the pilot symbol.
  • H w is a channel estimation value of a non-pilot symbol
  • H is a channel estimation value of a pilot symbol
  • the problem of limited pilot resource resources of the original system is solved by inserting preset high-speed auxiliary pilot reference information, and the channel estimation value of the non-pilot symbol is improved by increasing the order of the filter interpolation.
  • the accuracy of the radio frequency signal is demodulated according to the channel estimation value of the high-precision non-pilot symbol, and finally the demodulation performance of the high-speed channel is improved.
  • one subframe contains 14 OFDM symbols, and the high-speed auxiliary pilots are respectively punched and inserted in symbol 0 and symbol 7.
  • the entire pilot structure is shown in FIG.
  • the frequency offset estimation range is plus or minus 1000 Hz.
  • the conventional frequency offset estimation range will generate phase. Blurring, the correct frequency offset estimation cannot be performed, resulting in a serious error in demodulation.
  • the pilot interval is about 0.21 ms, and the frequency offset estimation range is plus or minus 2380 Hz, which greatly improves the high-speed frequency offset estimation range and improves the demodulation performance under the high-speed channel.
  • FIG. 4 is a schematic diagram of improvement of channel estimation interpolation performance according to the embodiment.
  • the original protocol can only perform two-stage Wiener filtering interpolation in one subframe.
  • the present invention introduces two high-speed auxiliary pilot symbols, and the Wiener filtering order can reach the fourth order, which greatly improves the accuracy of channel interpolation. Improve the demodulation performance under high-speed mobile channels against the channel time-varying problem caused by high-speed Doppler spread.
  • the embodiment of the present invention discloses a transmission device for a broadband private network in a high-speed mobile channel, which is applied to a wireless base station, and includes:
  • the parsing unit 101 is configured to receive a radio frequency signal from the user terminal, and parse the radio frequency signal to obtain a conventional pilot symbol and a high-speed auxiliary pilot symbol;
  • the parsing unit 101 includes:
  • a first parsing subunit configured to receive a radio frequency signal from the user terminal, parse the radio frequency signal according to a location of a conventional pilot symbol specified by a broadband protocol, and extract a conventional pilot symbol;
  • a second parsing sub-unit configured to parse the radio frequency signal according to a high-speed auxiliary pilot interpolating interval agreed with the user terminal, to obtain a punching position of the user terminal on a subcarrier;
  • a obtaining subunit configured to extract, according to the punching position, a high speed auxiliary pilot symbol inserted by the user terminal at the punching position.
  • a first estimating unit 102 configured to perform channel estimation on the regular pilot symbols according to locally known conventional pilot reference information, to obtain channel estimation values of conventional pilot symbols;
  • a second estimating unit 103 configured to perform channel estimation on a specific subcarrier of the high speed auxiliary pilot symbol according to the locally known high speed auxiliary pilot reference information, and according to a channel estimation value of a specific subcarrier and a high speed auxiliary guide
  • the frequency interpolation interval obtains channel estimation values of other subcarrier positions, thereby obtaining channel estimation values of high speed auxiliary pilot symbols;
  • the obtaining unit 104 is configured to obtain, according to the channel estimation value of the regular pilot symbol and the high-speed auxiliary pilot symbol, a coherence coefficient matrix between pilot symbols, where a coherence coefficient matrix between the pilot symbols includes between pilot symbols Coherence coefficient
  • the first calculating unit 105 is configured to calculate a maximum Doppler frequency shift of the user terminal according to a coherence coefficient between the pilot symbols;
  • a second calculating unit 106 configured to calculate an optimal pilot interpolation interval according to a maximum Doppler shift of the user terminal
  • the interpolation interval feedback unit 107 is configured to send the optimal pilot difference interval to the user terminal through a downlink channel, so that the user terminal synchronously updates the high-speed auxiliary pilot interpolation according to the optimal pilot interpolation interval. interval.
  • a high-speed frequency offset estimation unit configured to perform a coherent summation of the channel estimation values of the conventional pilot symbols and the subcarrier positions of the high-speed auxiliary pilot symbols, and calculate a frequency deviation estimation value of the high-speed scene, and according to The frequency deviation estimation value of the high speed scene compensates the radio frequency signal.
  • a Wiener filtering interpolation unit configured to perform multi-order Wiener filtering interpolation according to a maximum Doppler shift of the user terminal, a coherence coefficient matrix between the pilot symbols, and a channel estimation value of a pilot symbol, Obtaining a channel estimation value of the non-pilot symbol, and demodulating the radio frequency signal according to the channel estimation value of the non-pilot symbol.
  • the embodiment discloses a method for transmitting a broadband private network in a high-speed mobile channel, which is applied to a user terminal, and specifically includes the following steps:
  • the user terminal is a transmitter of a broadband terminal or a transmitter of a broadband repeater.
  • the high-speed auxiliary pilot interpolation interval is agreed by the user terminal and the wireless base station.
  • S202 Perform puncturing on the subcarriers of the symbol for transmitting data specified by the broadband protocol according to the high-speed auxiliary pilot interpolation interval, insert a preset high-speed auxiliary pilot reference sequence, and obtain the punctured frequency domain data. signal;
  • the user terminal punches a subcarrier of a symbol for transmitting data specified by the broadband protocol by using a high-speed auxiliary pilot interpolation interval agreed with the radio base station, and inserts a preset high-speed auxiliary pilot.
  • the reference sequence replaces the frequency domain subcarrier resource with the preset high-speed auxiliary pilot reference information, and minimizes the processing flow of the original protocol, wherein a small amount of subcarrier information is lost, and the forward error correction code can be completely used.
  • the reduction is performed, and the reception of the final data is hardly affected, and the wireless base station receiver processing system fully compatible with the original protocol improves the practical value of the transmission method of the broadband private network in the high-speed mobile channel disclosed in this embodiment.
  • S203 Convert the punctured frequency domain data signal into a radio frequency signal for transmission to a radio base station.
  • S302 Determine the optimal pilot interpolation interval as a high-speed auxiliary pilot interpolation interval.
  • S303 Determine a pilot interpolation interval pre-agreed with the wireless base station as a high-speed auxiliary pilot interpolation interval.
  • the pilot interpolation interval pre-agreed with the radio base station is determined as the high-speed auxiliary pilot interpolation interval, and the radio base station passes the post-punch guide.
  • the frequency symbol performs channel estimation, obtains an optimal high-speed auxiliary pilot interpolation interval, and feeds the optimal high-speed auxiliary pilot interpolation interval to the user terminal, so that the user terminal feeds the optimal high-speed auxiliary pilot interpolation interval of the wireless base station.
  • the subcarriers of the symbols for transmitting data specified by the broadband protocol are punctured, and preset high-speed auxiliary pilot reference information is inserted.
  • the transmission method of the broadband private network in the high-speed mobile channel is disclosed in the fifth embodiment.
  • the embodiment discloses a transmission device for the broadband private network under the high-speed mobile channel, which is applied to the user terminal, and includes:
  • a determining unit 201 configured to determine a high speed auxiliary pilot interpolation interval
  • the insertion unit 202 is configured to perform puncturing on the subcarriers of the symbol for transmitting data specified by the broadband protocol according to the high-speed auxiliary pilot interpolation interval, and insert a preset high-speed auxiliary pilot reference sequence to obtain the punctured Frequency domain data signal;
  • the converting unit 203 is configured to convert the punctured frequency domain data signal into a radio frequency signal for transmission to the radio base station.
  • a device for a broadband private network under a high-speed mobile channel comprising:
  • a transceiver for transmitting and receiving signals
  • a processor configured to run the program, when the program is run, implementing a transmission method of a broadband private network for a high-speed mobile channel applied to a wireless base station disclosed in the foregoing embodiment
  • the method includes:
  • Channel estimation is performed on a specific subcarrier of the high speed auxiliary pilot symbol according to the locally known high speed auxiliary pilot reference information, and other subcarrier positions are obtained according to a channel estimation value of a specific subcarrier and a high speed auxiliary pilot interpolation interval. Channel estimation value, thereby obtaining a channel estimation value of the high speed auxiliary pilot symbol;
  • the optimal pilot difference interval is sent to the user terminal through a downlink channel, so that the user terminal synchronously updates the high-speed auxiliary pilot interpolation interval according to the optimal pilot interpolation interval.
  • receiving the radio frequency signal from the user terminal parsing the radio frequency signal according to the location of the conventional pilot symbol specified by the broadband protocol, and extracting the conventional pilot symbol;
  • the method further includes:
  • calculating, according to the coherence coefficient between the pilot symbols, a maximum Doppler shift of the user terminal and further comprising:
  • the channel estimate for the symbol including:
  • a channel estimation value of the non-pilot symbol is calculated according to the Wiener filter coefficient and the channel estimation value of the pilot symbol.
  • the method includes:
  • the punctured frequency domain data signal is converted into a radio frequency signal for transmission to a wireless base station.
  • the determining the high speed auxiliary pilot interpolation interval includes:
  • the pilot interpolation interval pre-agreed with the radio base station is determined as the high-speed assist pilot interpolation interval.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供的高速移动信道下宽带专网的传输方法,用户终端以一定的导频插值间隔,在宽带协议规定的用于发送数据的符号的子载波上进行打孔,插入预设的高速辅助导频参考序列,并将打孔后的频域数据信号转换为射频信号发送至无线基站;无线基站对射频信号进行解析,提取常规导频符号和高速辅助导频符号,并分别根据本地已知的常规导频参考信息和高速辅助导频参考信息进行精确的信道估计,以及高速场景的频偏估计,解决了现有技术中导频资源受限导致的高速移动信道下频偏估计的相位模糊问题,以及信道估计的时域插值精度问题,提高了高速信道的解调性能,保证数据的可靠传输。

Description

一种高速移动信道下宽带专网的可靠传输方法及装置 技术领域
本发明涉及无线通信物理层数字信号处理技术领域,更具体的,涉及一种高速移动信道下宽带专网的可靠传输方法及装置。
背景技术
宽带LTE由于具有频谱效率高,网络延迟小,支持实时图像传输等优势在专网应用中越来越广泛。然而专网应用场景包括高速列车调度系统、轨道交通调度系统等。面对如此高速场景下大多普勒频移引起的恶劣的无线通信环境,物理层上行共享信道PUSCH传输性能受到了极大的挑战,容易出现无法解调数据、短期掉话甚至脱网,严重影响通信质量,无法满足专网高可靠性的基本要求。UE高速移动一方面引起接收信号的频偏效应,使得接收机需要实时调整本地振荡器的频率以补偿和跟踪信号的频率变化,如果多普勒频移一旦超过接收机频率跟踪的范围,频偏估计和补偿将产生相位模糊,最终导致解调失败;另一方面带来多普勒扩展导致信道时变效应,需要接收机实时跟踪信道状态的变化以做出准确的均衡来抵消信道衰落效应。
准确的频率偏差以及信道状态信息获取需要足够的导频符号辅助。然而,协议规定的导频资源的时域间隔已经固定,随着UE移动速度的增加,这种导频资源往往不足以支持接收机获得准确的信道状态信息,最终由于时域导频资源受限,接收机性能严重恶化。
发明内容
有鉴于此,本发明提供了一种高速移动信道下宽带专网的传输方法及装置,通过子载波打孔的方式插入高速辅助导频参考信息,进行精确的信道估计,提高宽带专网在高速信道下的解调能力。
具体技术方案如下:
一种高速移动信道下宽带专网的传输方法,应用于无线基站,包括:
接收来自用户终端的射频信号,并对所述射频信号进行解析,得到常规导频符号和高速辅助导频符号;
根据本地已知的常规导频参考信息对所述常规导频符号进行信道估计,得到常规导频符号的信道估计值;
依据所述本地已知的高速辅助导频参考信息对所述高速辅助导频符号的特定子载波进行信道估计,并根据特定子载波的信道估计值和高速辅助导频插值间隔得到其他子载波位置的信道估计值,从而得到高速辅助导频符号的信道估计值;
根据所述常规导频符号与高速辅助导频符号的信道估计值,获取导频符号间的相干系数矩阵,所述导频符号间的相干系数矩阵中包括导频符号间的相干系数;
依据所述导频符号间的相干系数,计算所述用户终端的最大多普勒频移;
根据所述用户终端的最大多普勒频移,计算最优导频插值间隔;
将所述最优导频差值间隔通过下行信道发送到所述用户终端中,使所述用户终端根据所述最优导频插值间隔同步更新高速辅助导频插值间隔。
优选的,所述接收来自用户终端的射频信号,并对所述射频信号进行解析,得到常规导频符号和高速辅助导频符号,包括:
接收来自用户终端的射频信号,根据宽带协议规定的常规导频符号的位置,对所述射频信号进行解析,提取常规导频符号;
按照与所述用户终端约定的高速辅助导频插值间隔,对所述射频信号进行解析,得到所述用户终端在子载波上的打孔位置;
根据所述打孔位置提取所述用户终端在所述打孔位置插入的高速辅助导频符号。
优选的,在所述得到高速辅助导频符号的信道估计值,之后还包括:
对所述常规导频符号与所述高速辅助导频符号的各个所述子载波位置的信道估计值求相干累加和,计算高速场景的频率偏差估计值,并根据所述高速场景的频率偏差估计值对所述射频信号进行补偿。
优选的,在所述依据所述导频符号间的相干系数,计算所述用户终端的最大多普勒频移,之后还包括:
根据所述用户终端的最大多普勒频移、所述导频符号间的相干系数矩阵, 以及导频符号的信道估计值,进行多阶的维纳滤波插值,得到非导频符号的信道估计值,并根据所述非导频符号的信道估计值,对所述射频信号进行解调。
优选的,所述根据所述用户终端的最大多普勒频移、所述导频符号间的相干系数矩阵,以及导频符号的信道估计值,进行多阶的维纳滤波插值,得到非导频符号的信道估计值,包括:
根据所述用户终端的最大多普勒频移和非导频符号与导频符号间的时间间隔,计算非导频符号与导频符号间的相干系数矩阵;
根据所述非导频符号与导频符号间的相干系数矩阵、所述导频符号间的相干系数矩阵,以及噪声方差,计算维纳滤波系数;
根据所述维纳滤波系数和导频符号的信道估计值,计算非导频符号的信道估计值。
一种高速移动信道下宽带专网的传输装置,应用于无线基站,包括:
解析单元,用于接收来自用户终端的射频信号,并对所述射频信号进行解析,得到常规导频符号和高速辅助导频符号;
第一估计单元,用于根据本地已知的常规导频参考信息对所述常规导频符号进行信道估计,得到常规导频符号的信道估计值;
第二估计单元,用于依据所述本地已知的高速辅助导频参考信息对所述高速辅助导频符号的特定子载波进行信道估计,并根据特定子载波的信道估计值和高速辅助导频插值间隔得到其他子载波位置的信道估计值,从而得到高速辅助导频符号的信道估计值;
获取单元,用于根据所述常规导频符号与高速辅助导频符号的信道估计值,获取导频符号间的相干系数矩阵,所述导频符号间的相干系数矩阵中包括导频符号间的相干系数;
第一计算单元,用于依据所述导频符号间的相干系数,计算所述用户终端的最大多普勒频移;
第二计算单元,用于根据所述用户终端的最大多普勒频移,计算最优导频插值间隔;
插值间隔反馈单元,用于将所述最优导频差值间隔通过下行信道发送到所述用户终端中,使所述用户终端根据所述最优导频插值间隔同步更新高速辅助导频插值间隔。
优选的,所述解析单元包括:
第一解析子单元,用于接收来自用户终端的射频信号,根据宽带协议规定的常规导频符号的位置,对所述射频信号进行解析,提取常规导频符号;
第二解析子单元,用于按照与所述用户终端约定的高速辅助导频插值间隔,对所述射频信号进行解析,得到所述用户终端在子载波上的打孔位置;
获取子单元,用于根据所述打孔位置提取所述用户终端在所述打孔位置插入的高速辅助导频符号。
优选的,所述装置还包括:
高速频偏估计单元,用于对所述常规导频符号与所述高速辅助导频符号的各个所述子载波位置的信道估计值求相干累加和,计算高速场景的频率偏差估计值,并根据所述高速场景的频率偏差估计值对所述射频信号进行补偿。
优选的,所述装置还包括:
维纳滤波插值单元,用于根据所述用户终端的最大多普勒频移、所述导频符号间的相干系数矩阵,以及导频符号的信道估计值,进行多阶的维纳滤波插值,得到非导频符号的信道估计值,并根据所述非导频符号的信道估计值,对所述射频信号进行解调。
一种高速移动信道下宽带专网的传输方法,应用于用户终端,包括:
确定高速辅助导频插值间隔;
根据所述高速辅助导频插值间隔,在宽带协议规定的用于发送数据的符号的子载波上进行打孔,插入预设的高速辅助导频参考序列,得到打孔后的频域数据信号;
将所述打孔后的频域数据信号转换为射频信号,以供发送至无线基站。
优选的,所述确定高速辅助导频插值间隔,包括:
判断在预设时间段内是否接收到无线基站发送的最优导频插值间隔;
若是,将所述最优导频插值间隔确定为高速辅助导频插值间隔;
若否,将与所述无线基站预先约定的导频插值间隔确定为高速辅助导频插值间隔。
一种高速移动信道下宽带专网的传输装置,应用于用户终端,包括:
确定单元,用于确定高速辅助导频插值间隔;
插入单元,用于根据所述高速辅助导频插值间隔,在宽带协议规定的用于 发送数据的符号的子载波上进行打孔,插入预设的高速辅助导频参考序列,得到打孔后的频域数据信号;
转换单元,用于将所述打孔后的频域数据信号转换为射频信号,以供发送至无线基站。
本发明还提供一种高速移动信道下宽带专网的装置,所述装置包括:
收发器,用于收发信号;
存储器,用于存储程序;
处理器,用于运行所述程序,当运行所述程序时,实现上述应用于无线基站的高速移动信道下宽带专网的传输方法,或上述应用于用户终端的高速移动信道下宽带专网的传输方法。
相对于现有技术,本发明的有益效果如下:
本发明针对现有宽带专网中上行业务共享信道PUSCH协议设定的导频间隔过宽,导致在高速移动信道下导频资源受限,引起常规频偏估计方法相位模糊以及数据符号信道估计精度严重受限的问题,提出了一种高速移动信道下宽带专网的传输方法,在用户终端以一定的插值间隔对宽带协议规定的用于发送数据的符号的子载波上进行打孔,插入预设的高速辅助导频参考序列,最少化改动原有协议的处理流程,完全兼容原有协议,并解决了现有技术中导频资源受限导致的高速移动信道下频偏估计的相位模糊问题,以及信道估计的时域插值精度问题,提高了高速信道的解调性能,保证数据的可靠传输。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例一公开的一种高速移动信道下宽带专网的传输方法流程图;
图2为本发明实施例二公开的一种高速移动信道下宽带专网的传输方法流程图;
图3为本发明实施例三公开的一种高速移动信道下宽带专网的传输方法流程图;
图4为本发明一个实施样例提供的导频图案示意图;
图5为本发明一个实施样例提供的信道估计插值性能改进示意图;
图6为本发明实施例四公开的一种高速移动信道下宽带专网的传输装置结构示意图;
图7为本发明实施例五公开的一种高速移动信道下宽带专网的传输方法流程图;
图8为本发明实施例六公开的一种高速移动信道下宽带专网的传输方法流程图;
图9为本发明实施例七公开的一种高速移动信道下宽带专网的传输装置结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
请参阅图1,本实施例公开了一种高速移动信道下宽带专网的传输方法,应用于无线基站,包括以下步骤:
S101:接收来自用户终端的射频信号,并对所述射频信号进行解析,得到常规导频符号和高速辅助导频符号;
具体的,用户终端为宽带终端的发射机或宽带中继器的发射机。
优选的,S101的执行过程如下:
接收来自用户终端的射频信号,根据宽带协议规定的常规导频符号的位置,对所述射频信号进行解析,提取常规导频符号;
按照与所述用户终端约定的高速辅助导频插值间隔,对所述射频信号进行解析,得到所述用户终端在子载波上的打孔位置;
根据所述打孔位置提取所述用户终端在所述打孔位置插入的高速辅助导频符号。
需要说明的是,本实施例中用户终端通过与无线基站约定的高速辅助导频插值间隔对宽带协议的用户发送数据的符号子载波上进行打孔,插入预设的高速辅助导频参考序列,将频域子载波资源替换为预设的高速辅助导频参考信息,最少化改动原有协议的处理流程,其中损失了很少量的子载波信息,完全可以通过前向纠错码进行还原,几乎不影响最终数据的接收,完全兼容原有协议的无线基站接收机处理系统,提高了本实施例公开的高速移动信道下宽带专网的传输方法的实用价值。
S102:根据本地已知的常规导频参考信息对所述常规导频符号进行信道估计,得到常规导频符号的信道估计值;
具体的,所述常规导频符号的信道估计值的计算公式为:H=YS H(SS H) -1,其中,H为常规导频符号的信道估计值,Y为接收到的所述常规导频符号,S为本地已知的常规导频参考信息。
S103:依据所述本地已知的高速辅助导频参考信息对所述高速辅助导频符号的特定子载波进行信道估计,并根据特定子载波的信道估计值和高速辅助导频插值间隔得到其他子载波位置的信道估计值,从而得到高速辅助导频符号的信道估计值;
具体的,所述特定子载波是用户终端与无线基站预先约定好的子载波,特定子载波位置的信道估计值的计算公式为:
Figure PCTCN2018071759-appb-000001
其中,H HS为特定子载波位置的信道估计值,Y为接收到的高速辅助导频符号,S为本地已知的高速辅助导频参考信息。
需要说明的是,用户终端通过与无线基站约定的高速辅助导频插值间隔对宽带协议的用户发送数据的符号子载波上进行打孔,插入预设的高速辅助导频参考序列,其中插入的预设的高速辅助导频参考序列与本地已知的高速辅助导频参考信息相同。可以理解的是,所述插入的预设的高速辅助导频参考序列在信号传输过程中发生变化,在无线基站接收到高速辅助导频符号很可能已经与所述插入的预设的高速辅助导频参考序列不同,因此,利用本地已知的高速辅助导频参考信息可以对高速辅助导频符号进行信道估计。
还需要说明的是,每个高速辅助导频符号包括多个子载波,根据与所述用 户终端约定的高速辅助导频插值间隔,获取高速辅助导频符号其他子载波的位置。并根据特定子载波的信道估计值获取高速辅助导频符号其他子载波位置的信道估计值,通过对高速辅助导频符号的各个子载波进行信道估计,得到各个所述子载波位置的信道估计值,即可以得到高速辅助导频符号的信道估计值。
还需要说明的是,通过打孔插入预设的高速辅助导频参考序列后,使得导频间隔缩小,提高了导频符号的信道估计值的精度。
S104:根据所述常规导频符号与高速辅助导频符号的信道估计值,获取导频符号间的相干系数矩阵,所述导频符号间的相干系数矩阵中包括导频符号间的相干系数;
具体的,导频符号间的相干系数矩阵的计算公式为:R HH=E{HοH *},其中,R HH为导频符号间的相干系数矩阵,E{}表示取期望值,“ο”表示Hadamard积,H为导频符号的信道估计矩阵。
不同导频符号间的相干系数组成导频符号间的相干系数矩阵。导频符号间的相干系数有两种表现形式:
Figure PCTCN2018071759-appb-000002
Figure PCTCN2018071759-appb-000003
其中,
Figure PCTCN2018071759-appb-000004
为不同符号m,n间的信道相干系数,
Figure PCTCN2018071759-appb-000005
为相同的符号m,m间的信道相干系数。
S105:依据所述导频符号间的相干系数,计算所述用户终端的最大多普勒频移;
具体的,最大多普勒频移的计算公式为:
Figure PCTCN2018071759-appb-000006
其中,J 0为0阶贝塞尔函数,f d为所求的最大多普勒频移。
Figure PCTCN2018071759-appb-000007
为不同符号m,n间的信道相干系数,
Figure PCTCN2018071759-appb-000008
为相同的符号m,m间的信道相干系数,T为符号m,n的时间间隔,σ 2为噪声方差,噪声方差一般可以通过接收端噪声估计算法获得。
S106:根据所述用户终端的最大多普勒频移,计算最优导频插值间隔;
具体的,最优导频插值间隔的计算公式为:
Figure PCTCN2018071759-appb-000009
S107:将所述最优导频差值间隔通过下行信道发送到所述用户终端中,使所述用户终端根据所述最优导频插值间隔同步更新高速辅助导频插值间隔。
需要说明的是,无线基站可以根据实际需要定期将所述最优导频插值间隔发送到所述用户终端,使用户终端得到最优的高速辅助导频插值间隔,以优化 系统调度资源。
本实施例针对现有宽带专网中上行业务共享信道PUSCH协议设定的导频间隔过宽,导致在高速移动信道下导频资源受限,引起常规频偏估计方法相位模糊以及数据符号信道估计精度严重受限的问题,提出了一种高速移动信道下宽带专网的传输方法,无线基站对接收到的射频信号进行解析,提取常规导频符号和高速辅助导频符号,并分别根据本地已知的常规导频参考信息和高速辅助导频参考信息进行精确的信道估计,最终求得最优的高速辅助导频插值间隔,使所述用户终端根据所述最优导频插值间隔同步更新高速辅助导频插值间隔,解决了现有技术中导频资源受限导致信道估计的时域插值精度问题,提高了高速信道的解调性能,保证数据的可靠传输。
实施例二
请参阅图2,在实施例一的基础上,在S103之后还包括:
S108:对所述常规导频符号与所述高速辅助导频符号的各个所述子载波位置的信道估计值求相干累加和,计算高速场景的频率偏差估计值,并根据所述高速场景的频率偏差估计值对所述射频信号进行补偿。
具体的,所述高速场景的频率偏差估计值的计算公式为:
Figure PCTCN2018071759-appb-000010
其中,f Offset为所述高速场景的频率偏差估计值,单位为Hz,H为导频符号的信道估计矩阵,H HS为子载波位置的信道估计值,angle{∑(H *οH HS)}表示常规导频符号与高速辅助导频符号的各个子载波位置的信道估计值的相干累加和,T为常规导频符号与高速辅助导频符号间的时间间隔,单位为秒。
需要说明的是,本实施例通过插入高速辅助导频参考信息,解决原有系统的导频资源受限导致的高速移动信道下常规频偏估计的相位模糊问题,提高了高速场景的频率偏差估计值的精度,以便无线基站利用所述高速场景的频率偏差估计值对后面的PUSCH子帧进行频偏预补偿,使得PUSCH子帧频偏范围在一个合理的范围。
实施例三
请参阅图3,在实施例一的基础上,在S105之后还包括:
S109:根据所述用户终端的最大多普勒频移、所述导频符号间的相干系数矩阵,以及导频符号的信道估计值,进行多阶的维纳滤波插值,得到非导频符号的信道估计值,并根据所述非导频符号的信道估计值,对所述射频信号进行解调。
具体的,S109的执行过程如下:
根据所述用户终端的最大多普勒频移和非导频符号与导频符号间的时间间隔,计算非导频符号与导频符号间的相干系数矩阵;
根据所述非导频符号与导频符号间的相干系数矩阵、所述导频符号间的相干系数矩阵,以及噪声方差,计算维纳滤波系数;
维纳滤波系数的计算公式为:W:=R H′H(R HH2I) -1
其中,W为维纳滤波系数,R H′H为非导频符号与导频符号的相干系数矩阵,R HH为导频符号间的相干系数矩阵,σ 2为噪声方差,噪声方差一般可以通过接收端噪声估计算法获得。
根据所述维纳滤波系数和导频符号的信道估计值,计算非导频符号的信道估计值。
具体的,非导频符号的信道估计值的计算公式为:H w=WH
其中,H w为非导频符号的信道估计值,H为导频符号的信道估计值。
需要说明的是,本实施例通过插入预设的高速辅助导频参考信息,解决原有系统的导频资源受限的问题,通过增加滤波插值的阶数提高了非导频符号的信道估计值的精度,再根据高精度的非导频符号的信道估计值对所述射频信号进行解调,最终提高高速信道的解调性能。
下面通过一个实施样例对上述实施例的技术方案及有益效果进行进一步说明。
实施样例
以宽带LTE专网为例,一个子帧包含14个OFDM符号,高速辅助导频分别在符号0,符号7上进行打孔插入,整个导频结构如图3所示。
由于LTE专网协议规定的导频DMRS间隔为0.5ms,因此频偏估计范围为正负1000Hz,当高速移动信道下,由于多普勒频偏超过1000Hz时,常规的频偏估计范围将产生相位模糊,无法进行正确的频偏估计,导致解调严重错误。但 是经过插入高速辅助导频符号后,使得导频间隔约为0.21ms,频偏估计范围正负2380Hz,大大提高了高速频偏估计范围,提高高速信道下的解调性能。具体请参阅图4,图4为本实施例提供的信道估计插值性能改进示意图。
此外,原来协议在一个子帧内只能进行两阶的维纳滤波插值,本发明引入了两个高速辅助导频符号,维纳滤波阶数可达到四阶,大大提高了信道插值的精度,提高高速移动信道下的解调性能,对抗高速多普勒扩展引起的信道时变问题。
实施例四
基于实施例一公开的一种高速移动信道下宽带专网的传输方法,请参阅图6,本实施例对应公开了一种高速移动信道下宽带专网的传输装置,应用于无线基站,包括:
解析单元101,用于接收来自用户终端的射频信号,并对所述射频信号进行解析,得到常规导频符号和高速辅助导频符号;
具体的,所述解析单元101包括:
第一解析子单元,用于接收来自用户终端的射频信号,根据宽带协议规定的常规导频符号的位置,对所述射频信号进行解析,提取常规导频符号;
第二解析子单元,用于按照与所述用户终端约定的高速辅助导频插值间隔,对所述射频信号进行解析,得到所述用户终端在子载波上的打孔位置;
获取子单元,用于根据所述打孔位置提取所述用户终端在所述打孔位置插入的高速辅助导频符号。
第一估计单元102,用于根据本地已知的常规导频参考信息对所述常规导频符号进行信道估计,得到常规导频符号的信道估计值;
第二估计单元103,用于依据所述本地已知的高速辅助导频参考信息对所述高速辅助导频符号的特定子载波进行信道估计,并根据特定子载波的信道估计值和高速辅助导频插值间隔得到其他子载波位置的信道估计值,从而得到高速辅助导频符号的信道估计值;
获取单元104,用于根据所述常规导频符号与高速辅助导频符号的信道估计值,获取导频符号间的相干系数矩阵,所述导频符号间的相干系数矩阵中包括导频符号间的相干系数;
第一计算单元105,用于依据所述导频符号间的相干系数,计算所述用户 终端的最大多普勒频移;
第二计算单元106,用于根据所述用户终端的最大多普勒频移,计算最优导频插值间隔;
插值间隔反馈单元107,用于将所述最优导频差值间隔通过下行信道发送到所述用户终端中,使所述用户终端根据所述最优导频插值间隔同步更新高速辅助导频插值间隔。
需要说明的是,本实施例公开的一种高速移动信道下宽带专网的传输装置,还包括:
高速频偏估计单元,用于对所述常规导频符号与所述高速辅助导频符号的各个所述子载波位置的信道估计值求相干累加和,计算高速场景的频率偏差估计值,并根据所述高速场景的频率偏差估计值对所述射频信号进行补偿。
维纳滤波插值单元,用于根据所述用户终端的最大多普勒频移、所述导频符号间的相干系数矩阵,以及导频符号的信道估计值,进行多阶的维纳滤波插值,得到非导频符号的信道估计值,并根据所述非导频符号的信道估计值,对所述射频信号进行解调。
实施例五
请参阅图7,本实施例公开了一种高速移动信道下宽带专网的传输方法,应用于用户终端,具体包括以下步骤:
S201:确定高速辅助导频插值间隔;
具体的,用户终端为宽带终端的发射机或宽带中继器的发射机。
需要说明的是,所述高速辅助导频插值间隔是用户终端与无线基站约定好的。
S202:根据所述高速辅助导频插值间隔,在宽带协议规定的用于发送数据的符号的子载波上进行打孔,插入预设的高速辅助导频参考序列,得到打孔后的频域数据信号;
需要说明的是,本实施例中用户终端通过与无线基站约定的高速辅助导频插值间隔对宽带协议规定的用于发送数据的符号的子载波上进行打孔,插入预设的高速辅助导频参考序列,将频域子载波资源替换为预设的高速辅助导频参考信息,最少化改动原有协议的处理流程,其中损失了很少量的子载波信息,完全可以通过前向纠错码进行还原,几乎不影响最终数据的接收,完全兼容原 有协议的无线基站接收机处理系统,提高了本实施例公开的高速移动信道下宽带专网的传输方法的实用价值。
S203:将所述打孔后的频域数据信号转换为射频信号,以供发送至无线基站。
实施例六
基于实施例五,请参阅图8,S101的执行过程如下:
S301:判断在预设时间段内是否接收到无线基站发送的最优导频插值间隔;若是,执行S302;若否,执行S303;
S302:将所述最优导频插值间隔确定为高速辅助导频插值间隔;
S303:将与所述无线基站预先约定的导频插值间隔确定为高速辅助导频插值间隔。
可以理解的是,当用户终端第一次向无线基站发射射频信号时,将与所述无线基站预先约定的导频插值间隔确定为高速辅助导频插值间隔,无线基站通过对打孔后的导频符号进行信道估计,获得最优的高速辅助导频插值间隔,并将该最优高速辅助导频插值间隔反馈到用户终端,使用户终端将无线基站反馈的最优高速辅助导频插值间隔对宽带协议规定的用于发送数据的符号的子载波上进行打孔,插入预设的高速辅助导频参考信息。
实施例七
基于实施例五公开的一种高速移动信道下宽带专网的传输方法,请参阅图9,本实施例对应公开了一种高速移动信道下宽带专网的传输装置,应用于用户终端,包括:
确定单元201,用于确定高速辅助导频插值间隔;
插入单元202,用于根据所述高速辅助导频插值间隔,在宽带协议规定的用于发送数据的符号的子载波上进行打孔,插入预设的高速辅助导频参考序列,得到打孔后的频域数据信号;
转换单元203,用于将所述打孔后的频域数据信号转换为射频信号,以供发送至无线基站。
基于上述实施例公开的应用于无线基站的高速移动信道下宽带专网的传输方法,以及上述实施例公开的应用于用户终端的高速移动信道下宽带专网的传输方法,本实施例公开了一种高速移动信道下宽带专网的装置,包括:
收发器,用于收发信号;
存储器,用于存储程序;
处理器,用于运行所述程序,当运行所述程序时,实现上述实施例公开的应用于无线基站的高速移动信道下宽带专网的传输方法,
所述方法包括:
接收来自用户终端的射频信号,并对所述射频信号进行解析,得到常规导频符号和高速辅助导频符号;
根据本地已知的常规导频参考信息对所述常规导频符号进行信道估计,得到常规导频符号的信道估计值;
依据所述本地已知的高速辅助导频参考信息对所述高速辅助导频符号的特定子载波进行信道估计,并根据特定子载波的信道估计值和高速辅助导频插值间隔得到其他子载波位置的信道估计值,从而得到高速辅助导频符号的信道估计值;
根据所述常规导频符号与高速辅助导频符号的信道估计值,获取导频符号间的相干系数矩阵,所述导频符号间的相干系数矩阵中包括导频符号间的相干系数;
依据所述导频符号间的相干系数,计算所述用户终端的最大多普勒频移;
根据所述用户终端的最大多普勒频移,计算最优导频插值间隔;
将所述最优导频差值间隔通过下行信道发送到所述用户终端中,使所述用户终端根据所述最优导频插值间隔同步更新高速辅助导频插值间隔。
进一步,接收来自用户终端的射频信号,根据宽带协议规定的常规导频符号的位置,对所述射频信号进行解析,提取常规导频符号;
按照与所述用户终端约定的高速辅助导频插值间隔,对所述射频信号进行解析,得到所述用户终端在子载波上的打孔位置;
根据所述打孔位置提取所述用户终端在所述打孔位置插入的高速辅助导频符号。
进一步,在所述得到高速辅助导频符号的信道估计值,之后还包括:
对所述常规导频符号与所述高速辅助导频符号的各个所述子载波位置的信道估计值求相干累加和,计算高速场景的频率偏差估计值,并根据所述高速场景的频率偏差估计值对所述射频信号进行补偿。
进一步,在所述依据所述导频符号间的相干系数,计算所述用户终端的最大多普勒频移,之后还包括:
根据所述用户终端的最大多普勒频移、所述导频符号间的相干系数矩阵,以及导频符号的信道估计值,进行多阶的维纳滤波插值,得到非导频符号的信道估计值,并根据所述非导频符号的信道估计值,对所述射频信号进行解调。
进一步,所述根据所述用户终端的最大多普勒频移、所述导频符号间的相干系数矩阵,以及导频符号的信道估计值,进行多阶的维纳滤波插值,得到非导频符号的信道估计值,包括:
根据所述用户终端的最大多普勒频移和非导频符号与导频符号间的时间间隔,计算非导频符号与导频符号间的相干系数矩阵;
根据所述非导频符号与导频符号间的相干系数矩阵、所述导频符号间的相干系数矩阵,以及噪声方差,计算维纳滤波系数;
根据所述维纳滤波系数和导频符号的信道估计值,计算非导频符号的信道估计值。
所述处理器运行所述程序时,或实现上述实施例公开的应用于用户终端的高速移动信道下宽带专网的传输方法,
所述方法包括:
确定高速辅助导频插值间隔;
根据所述高速辅助导频插值间隔,在宽带协议规定的用于发送数据的符号的子载波上进行打孔,插入预设的高速辅助导频参考序列,得到打孔后的频域数据信号;
将所述打孔后的频域数据信号转换为射频信号,以供发送至无线基站。
进一步,所述确定高速辅助导频插值间隔,包括:
判断在预设时间段内是否接收到无线基站发送的最优导频插值间隔;
若是,将所述最优导频插值间隔确定为高速辅助导频插值间隔;
若否,将与所述无线基站预先约定的导频插值间隔确定为高速辅助导频插值间隔。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (13)

  1. 一种高速移动信道下宽带专网的传输方法,其特征在于,应用于无线基站,包括:
    接收来自用户终端的射频信号,并对所述射频信号进行解析,得到常规导频符号和高速辅助导频符号;
    根据本地已知的常规导频参考信息对所述常规导频符号进行信道估计,得到常规导频符号的信道估计值;
    依据所述本地已知的高速辅助导频参考信息对所述高速辅助导频符号的特定子载波进行信道估计,并根据特定子载波的信道估计值和高速辅助导频插值间隔得到其他子载波位置的信道估计值,从而得到高速辅助导频符号的信道估计值;
    根据所述常规导频符号与高速辅助导频符号的信道估计值,获取导频符号间的相干系数矩阵,所述导频符号间的相干系数矩阵中包括导频符号间的相干系数;
    依据所述导频符号间的相干系数,计算所述用户终端的最大多普勒频移;
    根据所述用户终端的最大多普勒频移,计算最优导频插值间隔;
    将所述最优导频差值间隔通过下行信道发送到所述用户终端中,使所述用户终端根据所述最优导频插值间隔同步更新高速辅助导频插值间隔。
  2. 根据权利要求1所述的方法,其特征在于,所述接收来自用户终端的射频信号,并对所述射频信号进行解析,得到常规导频符号和高速辅助导频符号,包括:
    接收来自用户终端的射频信号,根据宽带协议规定的常规导频符号的位置,对所述射频信号进行解析,提取常规导频符号;
    按照与所述用户终端约定的高速辅助导频插值间隔,对所述射频信号进行解析,得到所述用户终端在子载波上的打孔位置;
    根据所述打孔位置提取所述用户终端在所述打孔位置插入的高速辅助导频符号。
  3. 根据权利要求1所述的方法,其特征在于,在所述得到高速辅助导频符号的信道估计值,之后还包括:
    对所述常规导频符号与所述高速辅助导频符号的各个所述子载波位置的 信道估计值求相干累加和,计算高速场景的频率偏差估计值,并根据所述高速场景的频率偏差估计值对所述射频信号进行补偿。
  4. 根据权利要求1所述的方法,其特征在于,在所述依据所述导频符号间的相干系数,计算所述用户终端的最大多普勒频移,之后还包括:
    根据所述用户终端的最大多普勒频移、所述导频符号间的相干系数矩阵,以及导频符号的信道估计值,进行多阶的维纳滤波插值,得到非导频符号的信道估计值,并根据所述非导频符号的信道估计值,对所述射频信号进行解调。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述用户终端的最大多普勒频移、所述导频符号间的相干系数矩阵,以及导频符号的信道估计值,进行多阶的维纳滤波插值,得到非导频符号的信道估计值,包括:
    根据所述用户终端的最大多普勒频移和非导频符号与导频符号间的时间间隔,计算非导频符号与导频符号间的相干系数矩阵;
    根据所述非导频符号与导频符号间的相干系数矩阵、所述导频符号间的相干系数矩阵,以及噪声方差,计算维纳滤波系数;
    根据所述维纳滤波系数和导频符号的信道估计值,计算非导频符号的信道估计值。
  6. 一种高速移动信道下宽带专网的传输装置,其特征在于,应用于无线基站,包括:
    解析单元,用于接收来自用户终端的射频信号,并对所述射频信号进行解析,得到常规导频符号和高速辅助导频符号;
    第一估计单元,用于根据本地已知的常规导频参考信息对所述常规导频符号进行信道估计,得到常规导频符号的信道估计值;
    第二估计单元,用于依据所述本地已知的高速辅助导频参考信息对所述高速辅助导频符号的特定子载波进行信道估计,并根据特定子载波的信道估计值和高速辅助导频插值间隔得到其他子载波位置的信道估计值,从而得到高速辅助导频符号的信道估计值;
    获取单元,用于根据所述常规导频符号与高速辅助导频符号的信道估计值,获取导频符号间的相干系数矩阵,所述导频符号间的相干系数矩阵中包括导频符号间的相干系数;
    第一计算单元,用于依据所述导频符号间的相干系数,计算所述用户终端 的最大多普勒频移;
    第二计算单元,用于根据所述用户终端的最大多普勒频移,计算最优导频插值间隔;
    插值间隔反馈单元,用于将所述最优导频差值间隔通过下行信道发送到所述用户终端中,使所述用户终端根据所述最优导频插值间隔同步更新高速辅助导频插值间隔。
  7. 根据权利要求6所述的装置,其特征在于,所述解析单元包括:
    第一解析子单元,用于接收来自用户终端的射频信号,根据宽带协议规定的常规导频符号的位置,对所述射频信号进行解析,提取常规导频符号;
    第二解析子单元,用于按照与所述用户终端约定的高速辅助导频插值间隔,对所述射频信号进行解析,得到所述用户终端在子载波上的打孔位置;
    获取子单元,用于根据所述打孔位置提取所述用户终端在所述打孔位置插入的高速辅助导频符号。
  8. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    高速频偏估计单元,用于对所述常规导频符号与所述高速辅助导频符号的各个所述子载波位置的信道估计值求相干累加和,计算高速场景的频率偏差估计值,并根据所述高速场景的频率偏差估计值对所述射频信号进行补偿。
  9. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    维纳滤波插值单元,用于根据所述用户终端的最大多普勒频移、所述导频符号间的相干系数矩阵,以及导频符号的信道估计值,进行多阶的维纳滤波插值,得到非导频符号的信道估计值,并根据所述非导频符号的信道估计值,对所述射频信号进行解调。
  10. 一种高速移动信道下宽带专网的传输方法,其特征在于,应用于用户终端,包括:
    确定高速辅助导频插值间隔;
    根据所述高速辅助导频插值间隔,在宽带协议规定的用于发送数据的符号的子载波上进行打孔,插入预设的高速辅助导频参考序列,得到打孔后的频域数据信号;
    将所述打孔后的频域数据信号转换为射频信号,以供发送至无线基站。
  11. 根据权利要求10所述的方法,其特征在于,所述确定高速辅助导频 插值间隔,包括:
    判断在预设时间段内是否接收到无线基站发送的最优导频插值间隔;
    若是,将所述最优导频插值间隔确定为高速辅助导频插值间隔;
    若否,将与所述无线基站预先约定的导频插值间隔确定为高速辅助导频插值间隔。
  12. 一种高速移动信道下宽带专网的传输装置,其特征在于,应用于用户终端,包括:
    确定单元,用于确定高速辅助导频插值间隔;
    插入单元,用于根据所述高速辅助导频插值间隔,在宽带协议规定的用于发送数据的符号的子载波上进行打孔,插入预设的高速辅助导频参考序列,得到打孔后的频域数据信号;
    转换单元,用于将所述打孔后的频域数据信号转换为射频信号,以供发送至无线基站。
  13. 一种高速移动信道下宽带专网的装置,其特征在于,包括:
    收发器,用于收发信号;
    存储器,用于存储程序;
    处理器,用于运行所述程序,当运行所述程序时,实现权利要求1-5中任一项所述的方法,或实现权利要求10-11中任一项所述的方法。
PCT/CN2018/071759 2018-01-08 2018-01-08 一种高速移动信道下宽带专网的可靠传输方法及装置 WO2019134164A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071759 WO2019134164A1 (zh) 2018-01-08 2018-01-08 一种高速移动信道下宽带专网的可靠传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071759 WO2019134164A1 (zh) 2018-01-08 2018-01-08 一种高速移动信道下宽带专网的可靠传输方法及装置

Publications (1)

Publication Number Publication Date
WO2019134164A1 true WO2019134164A1 (zh) 2019-07-11

Family

ID=67143600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071759 WO2019134164A1 (zh) 2018-01-08 2018-01-08 一种高速移动信道下宽带专网的可靠传输方法及装置

Country Status (1)

Country Link
WO (1) WO2019134164A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101019400A (zh) * 2004-07-16 2007-08-15 高通股份有限公司 用于信道和干扰估计的增量导频插入
CN101138163A (zh) * 2005-03-09 2008-03-05 三星电子株式会社 将空时编码数据映射到宽带无线通信系统中的副载波的装置及方法
US20080219361A1 (en) * 2007-03-08 2008-09-11 Jiann-Ching Guey Adaptive Pilot Symbol Allocation Method and Apparatus
CN102361465A (zh) * 2004-07-20 2012-02-22 高通股份有限公司 Mimo-ofdm系统的自适应导频插入
CN105191237A (zh) * 2013-03-15 2015-12-23 阿科恩科技公司 Ofdm系统中的块时域信道估计
CN106160830A (zh) * 2004-03-15 2016-11-23 苹果公司 用于具有四根发射天线的ofdm系统的导频设计
CN106341362A (zh) * 2015-07-09 2017-01-18 北京三星通信技术研究有限公司 导频发送方法、导频接收方法及其装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160830A (zh) * 2004-03-15 2016-11-23 苹果公司 用于具有四根发射天线的ofdm系统的导频设计
CN101019400A (zh) * 2004-07-16 2007-08-15 高通股份有限公司 用于信道和干扰估计的增量导频插入
CN102361465A (zh) * 2004-07-20 2012-02-22 高通股份有限公司 Mimo-ofdm系统的自适应导频插入
CN101138163A (zh) * 2005-03-09 2008-03-05 三星电子株式会社 将空时编码数据映射到宽带无线通信系统中的副载波的装置及方法
US20080219361A1 (en) * 2007-03-08 2008-09-11 Jiann-Ching Guey Adaptive Pilot Symbol Allocation Method and Apparatus
CN105191237A (zh) * 2013-03-15 2015-12-23 阿科恩科技公司 Ofdm系统中的块时域信道估计
CN106341362A (zh) * 2015-07-09 2017-01-18 北京三星通信技术研究有限公司 导频发送方法、导频接收方法及其装置

Similar Documents

Publication Publication Date Title
CN108566266B (zh) 一种高速移动信道下宽带专网的可靠传输方法及装置
US8861569B2 (en) Reduced complexity channel estimation for uplink receiver
KR100939941B1 (ko) 채널 추정을 이용한 다중 캐리어 시스템 내 심볼 타이밍수정
JP4584994B2 (ja) パイロットを用いたチャネル推定のための方法および装置
US20110305286A1 (en) Transmission apparatus, transmission method, communication system, and communication method
WO2017024558A1 (zh) 信道估计方法、基站、用户设备和系统
WO2015139590A1 (zh) 一种频偏估计和补偿的方法及装置
WO2013110225A1 (zh) 频偏补偿方法及装置
WO2008001457A1 (en) Digital mobile communication system and its transmission/reception method
CN112398764B (zh) 一种联合dmrs和ptrs的频偏估计方法及系统
US8532161B2 (en) Method and apparatus that facilitates estimating Doppler spread for uplink transmissions
WO2016141529A1 (zh) 一种数据传输设备、方法及系统
TWI479935B (zh) 用於無線鏈結監測之用戶裝置及方法
JP5080400B2 (ja) 無線端末、基地局及びチャンネル特性推定方法
JP2009177341A (ja) 無線受信装置および無線受信方法
CN108834211B (zh) 一种基于5g通信网络的定时调整方法及系统
US9509542B1 (en) Method and apparatus for channel estimation tolerant to timing errors
CN111294917B (zh) 基于pdcch估计定时偏差的方法、装置、存储介质及用户设备
WO2019134164A1 (zh) 一种高速移动信道下宽带专网的可靠传输方法及装置
WO2011127621A1 (en) Determination of frequency offset
CN112788750B (zh) Srs传输方法、装置、网络设备、终端和存储介质
CN111585924B (zh) 频偏校正方法及接收器
KR100391565B1 (ko) 수정된 싱크보간법을 이용한 레일리페이딩 보상방법
KR102013682B1 (ko) 이동 통신 시스템에서의 주파수 오프셋 보상 방법 및 그 장치
CN116545825B (zh) 应用ofdm系统的多普勒频偏估计方法及系统、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898900

Country of ref document: EP

Kind code of ref document: A1