JP2010506134A - 極低温真空遮断熱カプラ - Google Patents

極低温真空遮断熱カプラ Download PDF

Info

Publication number
JP2010506134A
JP2010506134A JP2009532365A JP2009532365A JP2010506134A JP 2010506134 A JP2010506134 A JP 2010506134A JP 2009532365 A JP2009532365 A JP 2009532365A JP 2009532365 A JP2009532365 A JP 2009532365A JP 2010506134 A JP2010506134 A JP 2010506134A
Authority
JP
Japan
Prior art keywords
actuator
cooling device
stage
coupler
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009532365A
Other languages
English (en)
Other versions
JP5271270B2 (ja
JP2010506134A5 (ja
Inventor
ラドビンスキー,アレクセイ,エル.
ズフコフスキー,アレクサンダー
フィッシュマン,バレリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Publication of JP2010506134A publication Critical patent/JP2010506134A/ja
Publication of JP2010506134A5 publication Critical patent/JP2010506134A5/ja
Application granted granted Critical
Publication of JP5271270B2 publication Critical patent/JP5271270B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Thermal Insulation (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

クライオクーラーまたは別の冷却装置を超電導磁石または冷却対象物に結合する新規な熱カプラ装置および方法は、クライオスタット真空を遮断する必要性、または、該超電導磁石または他の冷却対象物を暖気する必要性を要することなく、交換を可能にする。該方法は、結合用の空気圧アクチュエータと、非結合用の収縮可能な機械的アクチュエータとを用いる。中間温度冷却面と低温冷却面との間では、機械的閉塞力が平衡(バランス)され、該冷却対象物に伝達されない。該空気圧アクチュエータは、熱的結合において、機械的閉塞力の下で、持続的制御を提供する。
【選択図】図1B

Description

[関連出願の相互参照]
本出願により、2006年10月10日に出願された米国特許仮出願第60/850,565号、名称「CRYOGENIC VACUUM BREAK PNEUMATIC THERMAL COUPLER」の利益が主張され、該仮出願明細書全体は、参照により本願明細書に組み入れられる。
過去20年間にわたるクライオクーラー(低温クーラー)の進化は、テクノロジーを、ある用途に対しては、液体寒剤のない磁石冷却が、液体ヘリウムを使用したものよりも魅力的な選択である状況に至らせた。寒剤の急速加圧および装置周囲の環境へのヘリウムガスの放出の可能性に伴う問題を避けることができるため、コストおよび利便性に加えて、液体ヘリウムがないことは、安全性の観点から魅力的である。寒剤液体のない磁石は、外部のサブシステムと点検修理が少なくてすみ、また、それに伴って、よりポータブルでもある。
大気圏外や地上での用途に対して、磁石から検出器までの、寒剤フリーの技術に関する多くの用途が実施されてきた。
現在の液体のないクライオクーラーテクノロジーは、現時点での、Gifford−McMahonクライオクーラーの場合の約10000時間の平均故障間隔およびパルスチューブクライオクーラーの場合の20000時間の平均故障間隔により、非常に信頼性が高い。短期間の用途には適しているが、長期間の用途の場合には、メンテナンスのためにユニットを取り換えることのできる手段が必要である。
冷却された対象物のための、およびクライオクーラーのコールドヘッドのための一般的な断熱は、冷表面の真空隔離を含む。カップリングにおいては、真空中での極低温における良好な熱接触および熱伝導性の改善のために、Apiezon Nグリースが用いられている。(切断される必要のない)取外し可能なカップリングにおいては、同じ目的のために、インジウムガスケットが使用されている。インジウムが塑性的に流れる圧力でのカップリングで圧迫されたインジウムガスケットは、高信頼性の取外し可能な接合部を有する接続されたカップリングにおいて、良好な熱接触をもたらす。
いくつかの長期間の用途の場合には、冷温対象物の周りのクライオスタット真空を遮断することなく、および場合によっては、装置を暖気することなく、クライオクーラーのヘッドを交換することが好ましい。冷却装置の暖気を伴わないで、クライオクーラーヘッドを取外すことの必要性は、温度管理システムならびに冷却された磁石を囲む真空という特徴を要する。本発明の目的は、冷却装置の暖気およびクライオクーラーの交換を必要とせず、冷却した対象物の真空に影響を及ぼさずに、迅速に実行することのできる、および、一般的にそれに対して敏感である、冷却すべき対象物に加えられる何らかの力を要することなく実施することのできる、機械的および熱的カプラおよびクライオクーラーの迅速な熱的かつ機械的接続および切断を実行できる方法である。また、可能な限り、冷却装置自体、冷却装置の真空の壁または冷却された対象物の真空の壁のうちのいずれかに対して、何らかの力を加えることなく、クライオクーラーのこのような迅速な熱的かつ機械的接続および切断を実現できることが重要である。良好な熱的カップリングのために、カプラもまた、高信頼性をもたらし、且つ取外し可能な熱的接合部のカプラを介して、クライオクーラーのコールドヘッドと、冷却された対象物のサーマルステーションとの間に、制御可能な接触圧力を生成できなければならない。
(後記「発明を実施するための形態」の欄の冒頭で説明)
2つのステージが係合された状態で、2ステージクライオクーラーと、対応する冷却対象物との間に熱接触をもたらす、部分的に軸方向に対称的な空気圧駆動型カプラの概略断面図である。 クライオクーラーの両ステージが、冷却対象物および中間温度熱経路から切り離されている状態の、図1Aに示すカプラの断面図を示す。 空気圧アクチュエータの概略図を示す。 (切り離し位置における)クライオクーラーの取付けおよび取外しのための嵌め合いウィングおよびフランジ構造を示す、クライオクーラーの第1のステージと、中間温度ステーションとの間のカプラの断面図を示す。 冷却対象物(磁石)への低温熱経路に係合されたクライオクーラーを示す、図1Aの断面図の一部の拡大図を示す。 クライオクーラーが切り離され、かつ間隙36が開いている状態の、図1Bの断面図の一部の拡大図を示す。 クライオクーラーが係合された状態の中間温度熱経路を示す、図1Aの断面図の一部の拡大図を示す。 クライオクーラーが切り離され、かつ間隙38が開いている状態の、図1Bの断面図の一部の拡大図を示す。 間隙136が開いている切り離し構造で示す、1つのみのステージ、カプラおよび冷却対象物を有する一般的な冷却装置の概略断面図である。 係合構造で示す、図6Aに示す装置の概略図である。 冷却装置を、図6Aに示す位置から収縮させて回転させた状態で、線7−7に沿った部分端面で見た、図6Aに示す装置の一部の概略図である。
以下に、請求の範囲に先立って、より詳細な部分的概要を記載する。本願明細書には、クライオクーラーヘッドの迅速な熱的および機械的な接続および切断を実行できるカプラシステムが記載されている。2つの真空が用いられる。クライオクーラー環境に用いられる真空は、冷却対象物真空(クライオスタット真空)とは異なる。機械的手段は、個々の構成要素間に良好な接続を維持して、真空中で熱負荷を効率的に伝達するために、所要の力を加える。2ステージ冷却装置の場合、そのアクチュエータは、クライオクーラーステージと冷却対象物の各熱ステーションとの間の境界に、調節可能な力を生成する。該境界における力は、クライオクーラーとクライオスタット真空とを隔離する壁部と直列に、該アクチュエータを介して反応する。
また、冷却すべき対象物に負荷を伝達しない手段により、真空中の取外し可能な熱接合部の境界全域に、良好な熱接触を確立するのに必要な圧力を生成することが都合がよい。該境界全域の良好な熱伝達のために、圧縮可能なガスケットで設計された面は、該取外し可能な熱接合部を遮断するのが困難であるように固着することができる。該境界における異なる要素の分離に必要な力を生成する手段が開示されている。
図1Aおよび図1Bは、冷却対象物のための、およびクライオクーラーのための2つの別々の真空、ならびに、該冷却対象物のための(低温熱経路用)および中間温度熱経路のための(遮蔽、電流リードおよびその他用)2つの熱経路があるカプラシステムを示す。
図1Aは、係合した冷却装置を示す、本発明の装置の実施形態の断面図である。図1Bは、係合が切り離された該冷却装置を示す、該冷却装置の断面図である。図1Aは、中間温度ステーションおよび低温熱ステーションの両方に係合されたクライオクーラーを示す。図1Bは、中間温度ステーションおよび低温熱ステーションから係合が外されたクライオクーラーを示す。(当業界においては、典型的には、より暖かい温度のステーションは、(低温と室温の間の中間である)中間熱ステーションと呼ばれている。本願明細書において用いる場合、および請求の範囲においては、第1のという用語、または、中間という用語は、典型的には、最も低温のステーションではない熱ステーションを特定するのに用いることができる。請求の範囲においては、典型的には、第1のという用語が用いられており、この明細書においては、典型的には、中間という用語が用いられている。ステーションという用語は、一般的に、低温対象物またはその放射遮蔽部に永続的かつ熱的に接続された構成要素を指すのに用いられている。以下において、ステージという用語は、一般的に、冷却装置の構成要素を指すのに用いられている。
縮尺の関係上、図1Aおよび図1Bには、冷却すべき対象物およびそれを包囲するクライオスタットは図示されていない。典型的には、冷却すべき対象物の質量および寸法は、両方とも該クライオクーラーよりも著しく大きい。例えば、クライオクーラーの質量は、約1000kgの磁石を冷却するために、10kgとすることができる。相対的な物理的寸法は、同様の縮尺になる。
外部環境と冷却対象物真空との間の冷却対象物外部真空境界は、クライオスタット真空壁28と、ベローズ32と、室温フランジ23と、図示されていない端部の他の要素とを含む。低温ステーション30と、低温−中間温度間サポートチューブ12と、中間温度フランジ14と、室温フランジ23に取付けられた中間温度−室温サポートチューブ24とを含む、該クライオクーラースリーブによって確立された該冷却装置真空と冷却対象物真空との間には、内部境界がある。
冷却装置真空は、その内部が、第1のステージ4と第2のステージ6とを有する該冷却装置自体と境界を接しており、その外部は、低温ステーション30、低温−中間温度サポートチューブ12と、中間温度フランジ14と、中間温度−室温サポートチューブ24と、室温フランジ23と、フレキシブルベローズ44と、端部真空フランジ46と、クライオクーラーヘッドフランジ2とを含む、低温対象物真空と部分的に境界を接するいくつかの要素と境を接している。
2つの熱経路がある。低温熱経路は、低温ステーション30および低温サーマルアンカー10を通るクライオクーラーの第2のステージ6を含む。低温サーマルアンカー10は、図示されていない冷却対象物と良好に熱接触している。該冷却対象物が、それによって該低温アンカーに熱的かつ機械的に接続される手段は、該接続が、以下に説明する、該熱経路内への、該冷却装置との熱結合の確立の結果として、冷却すべき対象物に加えられる何らかの力を生じさせない種類のものであることを除いて、重要ではない。典型的には、低温ステーション30および低温アンカー10は、例えば、ボルト、または、永続的な熱接続を確立する他の何らかの適当な機構によって、本質的に永続的に、互いに固定されている。その結果、これらの要素は、まとめて低温ユニット60と考えることができる。実際には、使用されている低温アンカー10および低温ステーション30からなる2つの別々の要素ではなく、単一の低温ユニット60を、いくつかの状況で用いることができる。低温ユニットという用語は、本明細書および添付請求の範囲においては、共に関連している低温アンカー10および低温ステーション30からなる2つの別々の要素、または、これらの機能を実行する単一の要素の両方を指すのに用いられている。
熱伝導を高めるために、熱接合部の面間に、柔軟な層を配置することができる。例えば、クライオクーラー取外し/取付けの間に妨げられない、低温ステーション30と低温サーマルアンカー10との間のより良好な熱接触のために、Apiezon Nグリースをカップリングに用いることができる。インジウムガスケット48は、低温ステーション30に接触しているクライオクーラーの低温ステージ6の表面に固着されている(図4Aおよび図4B参照)。低温熱回路は、該クライオクーラーを収縮させて、クライオクーラーの第2のステージ6と低温ステーション30との間に間隙36を空けることによって遮断される。係合の切り離しおよび取外しの間、インジウムガスケット48は、クライオクーラーの第2のステージ6に付着したままである。(当業界においては、2ステージクライオクーラーの場合、典型的には、より暖かい温度のステージは、第1のステージと呼ばれており、該第1のステージは、(低温と室温の間の中間である)中間温度熱ステーションを冷却するのに用いられる。第2のステージは、該クライオクーラーの最低温度のステージを指し、該第2のステージは、冷却対象物を冷却するのに用いられる。)
中間温度熱経路は、クライオクーラーの第1のステージ4と、クライオクーラーの第1のステージ翼部16と、中間温度ステーション18と、フレキシブルサーマルアンカー26と、中間温度フランジ14と、中間温度熱遮蔽と良好に接触している中間温度フレキシブルサーマルアンカー8とを含む。該中間温度熱遮蔽は、冷却対象物を取り囲み、低温物体、ならびに電流リード、低温体支持部、および冷却対象物と室温の間の温度における他の熱源への熱を妨げるように作用する。中間温度熱経路は、該クライオクーラーが収縮され、中間温度ステーション18とクライオクーラーの第1のステージ翼部16との間の中間温度熱経路内に間隙38が開いたときに遮断される。インジウムガスケット54は、クライオクーラーの第1のステージ翼部16に付着されており、クライオクーラーの収縮時に取外される。
アクチュエータは、空気圧アクチュエータ加圧チューブ40を通る、動作温度で液化または固化しないガス(例えば、ヘリウム)が充填されている変形可能な要素20(例えば、ベローズ)を含む。該アクチュエータが加圧されない場合、非結合位置と見なされ、これは、中間温度ステーションおよび低温ステーションから機械的かつ熱的に結合されていない冷却装置のステージ、およびそれに伴って、冷却すべき対象物に対応する。該アクチュエータが、加圧により膨張するように動力供給された場合、該ベローズは膨張し、大きさが等しく且つ反対方向の力が、中間温度ステーション18および空気圧アクチュエータ支持体22に加わる。
収縮アクチュエータ34は、クライオクーラーの主軸Cと同じ方向に動かすことのできる直動アクチュエータとして図示されている。該アクチュエータは、フレキシブル収縮アクチュエータベローズ58を介して、クライオクーラー空間真空にアクセスでき、該ベローズは、真空遮断を伴わないクライオクーラーの切り離しのための、収縮アクチュエータ34の軸方向移動を可能にする。収縮リミッタ52は、固定されており、該クライオクーラーの収縮中に、クライオクーラーの第1のステージ翼部16に接触し、中間温度熱経路中に間隙38を、および低温経路中に間隙36を開くのに必要な力を提供する。
空気圧ベローズ20は、一端が空気圧アクチュエータ支持体22に取付けられており、他方の端部は、中間温度ステーション18に対向している(図2参照)。収縮リミッタ52は、アクチュエータベローズ間の、空気圧アクチュエータ支持体22および中間温度ステーション18の翼部の下に配置されている。
本発明の目的は、冷却装置との熱結合または非熱結合により、冷却すべき対象物に何らかの力を加えることなく、迅速な接続および切り離しを可能にするように、2つのステージを備えるクライオクーラーを、冷却対象物の中間温度ステーションおよび低温ステーションに取付ける手段を提供することである。この作業は、冷却対象物真空を遮断する必要性、または、熱放射遮蔽、電流リードおよび冷却対象物を暖気する必要性を伴わない、定期的な保守ならびに不定期の保守のためのクライオクーラーヘッド交換に必要である。冷却対象物は、超電導磁石、検出器、モータ、または他の冷却装置とすることができ、一方、中間温度熱ステーションは、冷却対象物の熱負荷を最小限にするために、電流リードに、および/または熱放射遮蔽に、および/または冷却対象物の機械的支持体に、熱的に接続することができる。
限定として解釈すべきではない、有用な実施形態の実施例として、上記中間温度は、25〜90Kであり、一方、冷却対象物は、2K〜30Kとすることができる。低温超電導磁石を用いた用途の場合、中間温度は、約40〜70Kとすることができ、一方、冷却対象物(超電導磁石)の温度は、3K〜12Kである。
次に、係合シーケンスについて説明する(図1Aおよび図1Bを参照)。まず、空気圧アクチュエータベローズ20による係合を可能にするために、収縮アクチュエータ34がリセットされる。該クライオクーラーの第1のステージ翼部16が、空気圧アクチュエータ支持体22および中間温度ステーション18のスロットを通過するように、該クライオクーラーが配置された後、該クライオクーラーは、該クライオクーラーの第1のステージの翼部16が、中間温度ステーション18と収縮体リング56の間に直接配置される。クライオクーラーヘッド2の真空フランジ46は、クライオクーラー真空を密封するように密封される(上述したように境界を接する)。該クライオクーラー真空の空間は、排気される。
該アクチュエータは、このとき、非結合位置にある。次に、空気圧アクチュエータ加圧チューブ42を介してガスを供給することにより、空気圧アクチュエータベローズ20内のヘリウムガスの圧力を増加させることによって係合が行われ、空気圧アクチュエータベローズ20がカップリング位置まで伸びて、中間温度ステーション18に力を及ぼし、空気圧アクチュエータ支持体22に、大きさが等しく反対方向の力を与える。該中間温度ステーションは、(フランジ14とのフレキシブル接続により)移動し、中間温度経路内の間隙38を閉塞する。中間ステーション18に対する力は、該クライオクーラーの第1のステージ4に取付けられた翼部16に、および該クライオクーラーの硬いボディを介して低温の第2のステージ6へ伝達され、該ボディを低温ステーション30の方へ(図示するような右側へ)押し込み、間隙36を閉塞する。空気圧アクチュエータ支持体22に対する(図示するような左側への)バランス力は、堅く接続された中間温度―室温間支持チューブ24、中間温度フランジ14、低温−中間温度支持チューブ12および低温ステーション30を介して伝達される。一旦、間隙36および38が閉じると、クライオクーラー4、6のステージは、アクチュエータ20における圧力が増すにつれて、元は間隙36および38であった境界における圧力の増加を伴って、中間温度ステーション18と低温ステーション30との間に挟まれる。
一旦、該アクチュエータが結合位置に入り、該間隙が閉じられると、該アクチュエータは、増大していく力を接触要素に対して加え続け、該増大していく力は、クライオクーラーコールドヘッド6、2つのステージ間のクライオクーラー本体および第1のステージヘッド4に沿って反応され、熱経路中に良好な熱結合を確立する。
該クライオクーラーが、該低温対象物およびその放射遮蔽の熱ステーションに抗して圧縮される際には、該低温対象物(およびその放射遮蔽)には、力は伝達されない、または、加えられない。この状況は、該クライオクーラーの第1の熱伝達面16および第2の熱伝達面6が、反対方向に対向した場合に実現することができる。このことは、中間温度ステーション18における各開口を貫通する翼部16を有する該クライオクーラーの第1のステージ4によって、容易にされる。
最初の取付け時、および低温対象物が暖気できるようになっている場合の交換時、該クライオクーラーは、該中間温度熱経路および低温熱経路に係合して、該アクチュエータが通電された後に、オンにされる。
低温にとどまっている低温対象物の場合、該クライオクーラーを始動するための少なくとも2つの選択肢がある。一つの方法は、空気圧アクチュエータベローズ20を起動(加圧)し、該クライオクーラーを該中間温度熱経路および低温熱経路に接続する前に、該クライオクーラーをオンにして、部分的に冷却できるようにする。別法として、別の方法においては、空気圧アクチュエータベローズ20が起動されて、暖かいクライオクーラーと冷たい中間温度ステーション18および低温ステーション30との間に接触が確立される。該間隙が閉塞され、該中間温度回路および低温熱回路が再び確立された後に、該クライオクーラーがオンにされる。
等しい大きさだが反対方向の力が、低温熱経路および中間温度熱経路がその全面に確立される、低温ステーション30の表面および中間温度ステーション18の表面に作用する。中間温度ステーション18および低温ステーション30における接触面積は、適切な接触圧力が、十分な熱伝達のために両ステージに印加されるように選択される。該中間温度熱経路および低温熱経路における合わせ面間には、真空中の熱伝導を最大限にするために、該中間温度熱経路には、柔軟な構成要素、例えば、図2におけるインジウムガスケット54が、該低温熱経路には、インジウムガスケット48(図4Aおよび図4B参照)が配置される。
該中間温度および低温熱回路の取外し可能な接合部の接触圧力は、空気圧アクチュエータ20におけるガスの圧力を変化させることによって調節することができる。該ベローズ内の有益なガスは、ヘリウムである。空気圧アクチュエータは、正確な圧力を生成することができ、それによって、熱結合における圧力制御を、クライオクーラーの全稼働時間中の非常に広範囲の温度変動に対して実行できるため、機械ばね式アクチュエータ等の他の何らかのアクチュエータに優る著しい利点がある。
中間温度−室温間サポートチューブ24の端部の一方は、室温フランジ23の側で室温であり、他方の端部は、中間温度フランジ14に接触している。同様に、低温−中間温度間サポートチューブ12は、一端部が中間温度フランジ14に接触しており、他端が、低温ステーション30と接触している。過剰な熱負荷を防ぐために、これらのチューブは、薄肉スチールからなり、負荷を支持するのに十分な厚さであるが、該端部間で低熱伝導を維持するのに十分な薄さである。該チューブに沿った高温・低温の熱経路の長さを増大させ、該チューブに沿った熱伝達を低下させるために、該チューブは、図に示すように、ステンレス鋼スペーサリング11、13、21および25に溶接された複数のチューブからなる再入可能なアセンブリとして形成することができる。
空気圧アクチュエータ20が加圧されると、第1のステージ4と第2のステージ6との間のクライオクーラー本体が圧縮状態になる。該クライオクーラーの構造上の問題が、空気圧アクチュエータ20によって加えられる力を制限する可能性がある。その場合、補強クロスバーを、該クライオクーラーの第1および第2のステージフランジ間に設けることができる。該補強クロスバーは、低熱伝導性の材料、例えば、ガラス繊維材料からなってもよい。別の制限は、空気圧アクチュエータ20のベローズの圧力制限である。
空気圧アクチュエータベローズ20のガスに対する圧力を単純に除去することは、上記中間温度ステーションおよび低温ステーションの係合を切り離すのに十分ではない。インジウムガスケットとの結合における機械的付着を断つには、かなりの力を加える必要がある。この力を加えるためのいくつかの手段がある。図は、例えば、収縮アクチュエータ34を示す。
次に、クライオクーラーの切り離しおよび取外し方法について説明する。上記低温対象物が、非持続性の超電導磁石である場合、該磁石は、該クライオクーラーの交換操作中に、優先的に通電がオフにされる。空気圧アクチュエータ20は減圧される。そして、収縮アクチュエータ34は、該クライオクーラーを切り離すための力を与えるのに用いられる。次いで、どちらの間隙が、すなわち、該中間温度熱経路内の間隙38、または、低温熱経路内の間隙36が、最初に開くかにより、2つの可能性のある結果が生じる。
該低温熱経路内の間隙36が最初に開いた場合、クライオクーラーの第2のステージ6は、低温ステーション30から離れて動く。クライオクーラーの第1のステージ翼部16は、低温ステーション30からある程度離れた後、収縮リミッタ52に接触する。収縮アクチュエータ34の適用が続くと、クライオクーラーの第1のステージ翼部16を、中間温度ステーション18との接触から切り離す力が加えられることになる。間隙38が、該中間温度熱経路内に開いた後、該クライオクーラーは、もはや上記システムに熱的または機械的に取付けられていない。
間隙38が最初に開いた場合には、収縮アクチュエータ34のさらなる適用は、収縮翼部56が、最終的にクライオクーラーの第1のステージ翼部16に接触するまで、中間温度ステーション18を、クライオクーラーの第1のステージ翼部16から離して動かす。その結果、収縮アクチュエータ34の適用の継続が、クライオクーラーの第2のステージ6を低温ステーション30から切り離し、該低温経路内に間隙36を開く。どちらの場合も、クライオクーラーの切り離しは、該クライオクーラーヘッドおよび収縮アクチュエータ34の位置によって確認することができる。
低温経路内の間隙36および中間温度熱経路内の間隙38の両方が開いた後、該クライオクーラーの(上述したように境界を形成している)真空空間は、ヘリウムガスが充填される。凝縮性ガスが、該クライオクーラーの真空空間に近づき、低温面に凝縮するのを防ぐために、(外部のガス源からの)ガスが、該クライオクーラーの真空空間中に導入される(ガス供給ラインは、図示されていない)。クライオクーラーヘッド2は、クライオクーラーヘッド2を真空フランジ46に接続しているボルトを取外すことにより、真空フランジ46から切断され、該クライオクーラーの真空空間に空気が入って、低温面に凝縮するのを防ぐためのヘリウムガスの安定した流量が維持される。次いで、該クライオクーラーは、クライオクーラーの第1のステージ翼部16が、中間ステーション18内の翼部を取り除くように回転される。この時点で、該クライオクーラーはクリアとなり、取外すことができる。真空フランジ46は、空気が入って、低温面に凝縮するのを防ぐための一時カバーによって密封される。
該クライオクーラーの交換は、(最初の取付け時および低温対象物を暖気できるようになっているメンテナンス時の)室温近傍の低温対象物の場合、および該低温対象物が低温にとどまる場合の両方に対して上述されている。
低温ステーション30と低温サーマルアンカー10との間の真空中に良好な熱接触をもたらすために、それらを一緒にはんだ付けすることができる、または、熱伝導性の変形可能な材料からなる薄層を、組立て前に該面に導入してもよい。例えば、有用な材料は、Apiezon Nグリースである。低温ステーション30と低温サーマルアンカー10との間の接続は、一組のねじによって確立され、クライオクーラーの収縮時には、該接続は解除されず、メンテナンス作業中は、低温のままである。
クライオクーラーのコールドヘッド6と熱ステーション30の間の取外し可能な接触は、動作温度においても延性にとどまる薄い延性金属、例えば、インジウムによって形成される。クライオクーラーの取外し中には、インジウムガスケットを取外すことが必要であり、その結果、インジウムガスケット48は、クライオクーラーの第2のステージ6に付着する。同様に、インジウムガスケット54は、クライオクーラーの第1のステージ翼部16に取付けられており、該クライオクーラーヘッドによって取り除かれる。Apiezon Nグリースは、真空中で機能する接合部における温度降下を少なくするために、あらゆる極低温非切断熱結合で使用される材料である。
収縮アクチュエータ34は、該低温熱経路と接触していない。収縮アクチュエータ34は、中間温度の要素と接触しており、該クライオクーラーの第1のステージに対して、小さな追加的熱負荷を呈する。
ベローズアクチュエータ20は、比較的暖かい中間温度−室温間サポートチューブ24および空気圧アクチュエータ支持体22から、中間温度ステーション18および該クライオクーラーの第1のステージへの熱伝導により、該クライオクーラーの第1のステージに対して、追加的な熱負荷を呈する。この熱負荷は、低熱伝導ステンレス鋼ベローズの薄肉、ならびに中間温度フランジ18との金属間接触を避けるために、該ベローズの底部に結合された(例えば、繊維ガラス複合材からなる)断熱ディスクによって制限される。空気圧アクチュエータ加圧チューブ40による、該クライオクーラーの第1のステージに対する熱負荷は、非常に大きな相対長さ(長さ/直径)を有する小径(2〜3mm)の薄肉チューブ用いることによって制限することができる。空気圧アクチュエータ加圧チューブ40および空気圧アクチュエータ20の内部を流れる室温領域からの熱対流も、該クライオクーラーの第1のステージに対して、追加的な熱負荷を呈する可能性がある。この熱負荷が問題である場合、空気圧アクチュエータ加圧チューブ40は、チューブ内のガスによる対流熱負荷を強く制限するために、(例えば、圧縮ステンレス鋼ワイヤまたはチップ、あるいは、高密度の金属またはセラミック発泡体で形成された)複数の内部多孔質プラグを備えることができる。さらに、該ベローズの内径に近い直径を有し、該ベローズの低温の底部に取付けられた断熱チューブ内に挿入された薄いガラス繊維スペーサを備えるいくつかの鋼箔ディスクからなるパッケージは、低温面および該クライオクーラーの第1のステージに対する、該ベローズ内部の対流および放射熱負荷を最小限にすることができる。該ディスクおよびシリンダは、非常に小さな穴を有し、このことが、該ベローズ内部での等しい圧力を可能にして、排出を可能にする。
クライオクーラーの交換時、該クライオクーラーの真空は、(雰囲気ガスおよび低温面の水分の凝縮および凝固を回避するために)ヘリウムガスを空間内に充填し、該クライオクーラーの真空空間内の深部(正確な位置は図示されていない)にヘリウムガスを導入することにより、遮断される。大気圧またはそれよりわずかに高い圧力でのヘリウムガスの存在は、中間温度および低温の両熱回路に対して熱負荷を呈しないが、該クライオクーラーを迅速に交換して、該中間温度熱経路および低温熱経路の相当の加熱の前に、真空を再確立することが可能である。
該クライオクーラーおよびカプラは、略水平方向、または垂直方向、あるいは間のいずれかの方向に伸びている該クライオクーラーのステージと方向を合わせることができる。
係合の前に、該クライオクーラーは、そのヘッド2で支持され、ステージ4および6を含む該本体は、該ヘッドから水平方向に片持ちされる。必要な場合には、片持ちされた該本体を、重力による傾斜に抗して支持するために、または、キャビティ内での適切なアラインメントを維持するために、アラインメント支持部を設けることができる。係合すると、該クライオクーラーは、元は間隙36および38であった境界に、圧縮力に垂直に生じる摩擦力によって、30で機械的に支持され、および18で部分的に支持される。暖かい端部においては、該クライオクーラーヘッドの重量負荷が、フランジ46、ベローズ44、フランジ23、ベローズ32、主クライオスタット壁部28およびアラインメント支持部によって受けられる。係合が解除されると、該クライオクーラーの重量は、上述したように、フランジ46および他の部材によってのみ支持される。該中間温度熱経路および低温熱経路を確立するのに必要な大きな軸方向の力は、該力を受ける構成要素内で自己抑制され、該構成要素内でバランスが取られる。該クライオクーラーの主軸Cに垂直な方向における該クライオクーラーの振動は、フレキシブルベローズ44および32の存在によって減衰される。しかし、軸方向の振動は、低温ステーション30に伝達される。低温対象物におけるこれらの振動を防ぐ必要がある場合、フレキシブルな低温サーマルアンカー10の部位を有することが可能である。該中間温度熱経路における構成要素の振動は、フレキシブルサーマルアンカー26により、および8の柔軟性によって減衰される。
本願明細書に開示されている本発明の魅力的な特徴は、上記クライオクーラーの配置、動作および取外し中には、該クライオクーラーから該低温対象物または熱放射遮蔽へ、力が伝達されず、または、加えられないということである。該中間温度熱経路および低温熱経路の両方に良好な熱伝導を確立するのに必要な力は、自己抑制される。良好な熱接触は、接触面積の適切な選択により、および空気圧アクチュエータ20内の十分な圧力の印加によって、確実に実現される。該冷却対象物に対する良好な熱伝導は、堅い低温サーマルアンカー10を用いることによって実現される。
該クライオクーラーと冷却対象物との間に熱的接続が確立されていようがいまいが、該クライオクーラーから該冷却対象物へは、力は加えられない。上記アクチュエータによって生成される力は、該クライオクーラーおよびそのステージ4、6、および該クライオクーラー真空の真空壁24、12を含む構造的な構成要素内で阻止される。該低温熱ステーションは、例えば、ボルト35によって、低温サーマルアンカー10に堅固に取り付けられる。
図示の実施例においては、固定具が、アクチュエータの直線状の膨張、およびそれによって生じる等しい大きさで反対方向の力を、その中間温度ステージおよび低温ステージにおいて、該冷却装置に加えられる、等しい大きさで反対方向の圧縮力に変換する。代替的なアクチュエータおよび固定具の設計も可能である。必要なことは、冷却すべき対象物と冷却する物体との間の熱伝導路の係合が、該冷却すべき対象物に外部から加えられる何らかのアンバランスな力を伴うことなく行われることである。熱結合における該力は、2つのステージ間の該冷却装置の一部、アクチュエータ、および該冷却装置の真空壁からなる回路内で自己抑制される。代替的な設計は、中間温度ステージと低温ステージの間の該冷却装置に対して張力を生成することができる。該アクチュエータは、線形または空気圧式である必要はない。該アクチュエータは、回転式、リンク型、圧縮型等とすることができる。該アクチュエータは、電子機械式、空気圧式、油圧式等とすることができる。一般的に、該アクチュエータに動力が供給されると、該冷却装置は、低温ユニット60との結合位置にされ、その結果、冷却すべき対象物が冷却される。リニアアクチュエータの場合、該アクチュエータは、動力が供給されて膨張する。他のアクチュエータは、動力を供給して、構成要素を結合位置に回転させることができる。ヘリウム等のガスによって動力が供給される空気圧アクチュエータは、極低温という関連においては、上述した制御上の利点をもたらさない。
上記のことは、2つのステージ、すなわち、本願明細書においては、中間温度ステージと呼んでいる第1のステージと、本願明細書においては、時には低温(最も低い温度)ステージと呼んでいる第2のステージとを有するクライオクーラーについて説明している。異なる用途に対しては、異なる冷却装置が用いられる。該冷却装置は、1つまたは2つのステージ(1つまたは2つの温度レベル)を有するパルスチューブ、ギフォード・マクマホンまたはスターリング型、低温液体を有するクライオスタット、(1つ、2つまたは3つのレベルの冷却温度を有する)極低温冷凍機等の異なる種類のクライオクーラーとすることができる。2ステージクライオクーラーは、典型的には、(冷却対象物と接続される)2つのステージを有する結合冷却システムを有する。また、2つ以上のステージを設けることも可能である。例えば、極低温冷凍機は、冷却に利用できる3つのステージ(例えば、78K、20K、2.0K)を有することができる。通常、最も低い温度は、冷却対象物を冷却するのに用いられ、より高い温度は、冷却対象物、電流リード、低温質量支持体等の周囲の熱放射遮蔽(1つまたは2つ)を冷却するのに用いられる。このような冷却スキームは、冷却に必要な電力を減少させる。
ステージは、2つではなく、1つのみであってもよい。以下に、単一のステージ構成を、図6Aおよび図6Bと共に説明し、該図面は、図6Aに示す切り離し構造および図6Bに示す係合(結合)構造の急速解除熱カプラと共に、単一ステージ冷却装置および冷却対象物を示す。図6Bは、図6Aに示す装置の一部のみを示す。図7は、図6Aに示す装置の線7−7を通る断面を示す。冷却すべき対象物およびその周囲のクライオスタットは、図1Aおよび図1Bには、縮尺通りには図示されていない。一般に、それらは該冷却装置よりもはるかに大きい。
適当な種類の1ステージ冷却装置102は、熱カプラ119に係合する。該カプラは、アクチュエータ支持体122と、固定具168と、低温ステーション130およびアクチュエータ120a、120b等を含み、参照数字119は、以下に述べるように、これら全ての構成要素をまとめてカプラとして示している。該冷却装置コールドヘッド106は、例えば、銅とすることのできる熱伝導材料で形成された翼部によって、コールドヘッド拡張部107に熱伝導的に固定されている(例えば、永久ボルトによって)。翼部107を有するコールドヘッド拡張部と、固定されている低温ステーション130との間には、間隙136が図示されている。固定されている低温ステーション130は、低温アンカー162を介して低温対象物137に熱伝導的に結合されている。低温アンカー162および低温対象物137は、フランジ163と低温ステーション130との間のボルト135等の永続的な手段により、低温ステーション130に固定されている。真空中での良好な熱伝達のために、これらの要素(低温アンカー、フランジおよび低温ステーション)は、一緒にはんだ付けし、インジウムガスケットの適用またはApiezon Nグリースの塗布によって接続することができる。
上述した2ステージ装置と同様に、(フランジ163を有する)低温アンカー162および低温ステーション130の2つの別々の要素は、互いに本質的かつ永続的に固定され、その結果、本願明細書および請求の範囲において、低温ユニット161と呼ぶことができ、または、これらの機能は、本願明細書において、低温ユニットとも呼ばれる単一の要素によって果たすことができる。
アクチュエータは、該カプラの長手方向軸Cと平行に配置された、図6Aおよび図6Bに示されている複数のベローズユニット120bおよび120eを有する。アクチュエータ支持体122は、固定具168により、固定されている低温ステーション130に堅く結合されている。図7の断面図に示すように、図示されている実施形態は、4つのベローズからなる2つの群に配置された8つのベローズ120a〜120hを有し、これら全てのベローズは、同じ空気圧供給部125およびコントローラ(図示せず)によって同時に制御される。コールドヘッド拡張部107は、周方向リングセグメントとして翼部を有することができる。2つの反対方向の翼部167aおよび167bは、アクチュエータ支持体122内の対応する形状の開口部を通り、以下に説明するように、定位置での固定を可能にする。各々が、フランジ要素間に対応する開口部を有する、2つ、3つ、4つまたはそれ以上の翼部があってもよい。アクチュエータは、翼部に作用する。
低温対象物真空コンテナ108は、低温対象物137を囲んでおり、また、再入可能エンクロージャ壁部材109によって、固定低温ステーション130に結合されている。別の真空コンテナ124は、該冷却装置を部分的に囲んでおり、リング114を介して、低温対象物真空コンテナ108に堅く結合されている。該冷却装置の真空コンテナ124は、フレキシブル壁部144およびフランジ123を介して、端部真空フランジ170に柔軟に取り付けられている。壁部材109は、該低温対象物と暖かい周囲との間の熱経路の長さを増加させるために、任意に再入可能である。壁部144は、図に示すように、様々な部材が温度を変化させた際のサイズの変化に適応するために、および挿入および取外しの際の該冷却装置の動きに適応するために、フレキシブルとすることができる。
該単一ステージの装置の場合の係合シーケンスは、次の通りである。まず、上記クライオクーラーが、該カプラに挿入される。次に、該クライオクーラーは、翼部107が、ベローズ120b、120e等に対向する位置まで回転される。次いで、フランジ114が密封され、該クライオクーラーの真空空間が排気される。次に、アクチュエータベローズ120a〜120hは、ガス、例えば、ヘリウムの外部供給源からの中央供給ライン125によって供給される、供給ライン121e、121bを介して供給される、該ベローズのチャンバ内に充填されるガスの膨張によって係合する。該アクチュエータの各ベローズの空気圧チャンバを充填するように圧力が加えられると、該チャンバは膨張して、コールドヘッド拡張部の翼部107を、固定されているアクチュエータ支持体122から強制的に離す。コールドヘッド拡張部107を有する該クライオクーラーは、低温ステーション130の方へ移動して、間隙136を閉塞する。該アクチュエータは、完全に伸長して、該コールドヘッド拡張部を低温ステーション130内に堅固に押圧し、それにより、該コールドヘッド拡張部に付着されたインジウムガスケット169を介して、コールドヘッド106から冷却対象物137までの熱経路が確立される。
該熱経路を確立するのに必要な力は、平衡力がアクチュエータ支持体122および低温ステーション130に作用した状態で、ベローズ120b、120e等を膨張させることによって確立されるため、該冷却対象物には、不平衡な外部の力は加えられない。インジウムガスケットは、低温ステーション130に対向するコールドヘッド拡張部107の面に付着することができる。冷却対象物137は、例えば、ボルト135により、低温アンカー162を介して低温ステーション130と熱的に接続される。不平衡な力は、該カプラから該冷却対象物、冷却装置本体および該冷却装置または冷却対象物の真空壁には加えられない。熱結合における結合力は、該冷却装置のコールドヘッドの拡張部、アクチュエータ、および該低温ステーションに接続されているアクチュエータ支持体からなる回路内で自己抑制される。
図6Bは、間隙136が閉塞され、かつ該コールドヘッド拡張部が、インジウムガスケット169を介して、該低温ステーションの冷却装置面を堅固に押圧している状態の該カプラを示す。
図7は、該冷却装置が、図6Aおよび図6Bに示す位置から離れて回転し、および翼部167aおよび167bが該アクチュエータの端部と同じレベルにあるように収縮している状態の、図6Aのライン7−7に沿った該カプラの端部の図であるが、該冷却装置がどのように該カプラに挿入され、また、該カプラから取外されるかを説明するのに役に立つ。上述したように、一般的に、各冷却装置の部分周方向フランジおよび該カプラの部分は、該冷却装置が、該カプラに対して第1の回転方向にあるときに、該カプラの開口部を介して、該冷却装置を通ることが可能なように、および該冷却装置が該第1の回転方向にないときは、このような挿入(および取外し)および通過を防ぐように、形成および寸法決めされる。
例えば、コールドヘッド拡張部107は、該冷却装置の中心軸Cを横断して対向して配置されている一組の翼部167aおよび167bを有することができ、該翼部は、アクチュエータ支持体122の周方向の対応する形状の開口部に嵌るように、寸法決めされている。該冷却装置を挿入するために、翼部167aおよび167bは、各開口部と整列しており、該冷却装置は、軸Cに沿って挿入される。該コールドヘッド拡張部が開口部131を通った後、該拡張部は、軸C周りに90°回転され、その結果、該翼部は、ベローズ120a〜120hと位置合わせされ、それによって取外しに抗して固定される。該翼部は、低温ステーション130内の、ベローズ120a〜120h間の空間内で、小距離、平行移動することができる。
翼部や合わせ開口部ではなく、比較的迅速な切り離しおよび再係合のための他の機械的スキームも用いることができる。そのような実施例は、限定するものではないが、バヨネット式のピンおよびスロット、例えば、自動車ディスクブレーキにほぼ似た様々な種類のクラッチ、周囲の壁部、径方向に拡張可能なアームまたは他の部材に係合する膨張可能な円筒形部を含む。
図6A、図6Bおよび図7は、図1Aに示す2ステージカプラの収縮アクチュエータのハンドルおよびロッド34に似た、低温対象物107からコールドヘッド106を切り離すための何らかのアクチュエータを示していない。例えば、ヘッド102をつかんで引っ張ることによって、何らかの適切な手段を、該冷却装置を収縮するのに用いることができる。この場合、張力が該冷却装置本体に伝達される。該張力は、座屈の危険性をもたらす圧縮力よりも、損傷に対する可能性が少ない。しかし、どのような場合であっても、該冷却対象物には、力は伝達されない。また、コールドヘッド拡張部107を(図に示すように)左側へ引っ張る収縮アクチュエータロッド(図示せず)を用いることもできる。この場合も、実際に、該冷却装置には力は伝達されない。
冷却対象物は、低温対象物真空コンテナ108、共用再入可能壁部109および低温熱ステーション130と隣接する、それ自体の独立した真空空間を有する。該冷却装置は、低温ステーション130、共用再入可能壁部109、冷却装置真空コンテナ124、フランジ123、フレキシブルベローズ壁部144および端部フランジ170に隣接するそれ自体の真空空間を有する。該冷却装置の真空を遮断することは、該冷却対象物の真空に何ら影響を及ぼさない。該冷却装置は、冷却対象物の真空を遮断することなく、交換することができる。
上述した2ステージの実施形態と同様に、固定具およびアクチュエータの構成は、図示する必要はない。必要なことは、該固定具およびアクチュエータが、何らかの不平衡な力を外部から、冷却すべき対象物、冷却装置本体、および該冷却装置または冷却対象物の真空壁部に加えることなく、該冷却すべき対象物と冷却対象物との間の熱伝導経路の係合を実行できることである。
図6Aに示すタイプの1ステージの実施形態の場合、別の有益な効果は、冷却対象物が、両実施形態におけるこのような力のないままであるのと同じ方法で、該冷却装置自体が何らかの外部の不平衡な力を圧縮または受ける必要はないことである。図に示すように、低温ステージ翼部拡張部107は、低温アンカー162が、低温ステーション130にボルトで固定されている(または、他の方法で取付けられている)のと同じ方法で、低温ステージ106にボルトで固定されている。したがって、熱経路を確立するための係合および追加的な加圧時に、該冷却装置は圧縮されない。該冷却装置に加わる唯一の力は、他の何らかの方法で翼部107にボルトで固定または締め付けられているフランジにある。しかし、この接合は接合要素内に封じ込められており、係合圧力の増加によって変化することはない。
図に示すような1ステージ装置のさらなる有益性は、該冷却対象物の真空エンクロージャ108、または、該冷却装置の真空エンクロージャ124のいずれかの壁部に、力が生じないことである。
2ステージの実施形態において、該アクチュエータは、該冷却装置の第1のより暖かいステージに直接作用するように図示されている。しかし、このことは、そうである必要ではない。該アクチュエータは、別法として、例えば、1ステージの実施形態(この場合、該冷却装置本体では、2つのステージの間に張力を加えることができる)における翼部107と類似の翼部に取り付けられている場合、該冷却装置のより温度の低い第2のステージに、あるいは、両方のステージに直接作用するように配置されていたかもしれない。該アクチュエータが、両ステージに直接作用しているこのような設計は、該冷却装置本体に、圧縮力が伝達されないようにすることを可能にする。
特定の実施形態を図示して、説明してきたが、当業者には、幅広い態様における本開示から逸脱することなく、様々な変形および変更が可能なことが理解されよう。上記の説明に含まれている、および添付図面に示されている全ての事柄は、例示的なものであって、限定的に解釈すべきではないことが意図されている。
上記冷却対象物は、超電導磁石、(極低温において、非常に低い電気抵抗を有する非超電導ワイヤで形成された)極低温磁石、(例えば、暗視および温度測定用の)赤外線検出器、地球の温度測定用の宇宙機器(ボロメータ)、種々の電子機器、冷凍医療および冷凍手術器具および機器等とすることができる。これら全ての装置に共通する重要な特徴は、冷却源および冷却対象物の両方に対する個別の真空断熱と、冷却対象物の断熱真空を遮断することなく、冷却源を切断して、該冷却対象物を(温めずに)交換する能力である。
本発明の重要な装置の実施形態は、少なくとも1つの冷却ステージを有する冷却装置を、冷却すべき対象物に熱結合するカプラである。該カプラは、冷却装置の低温ステージに結合するように構成され、かつ冷却すべき対象物に接続するように構成された低温ステーションを備える。低温ステーションには、アクチュエータ支持体が堅固に機械的に接続されており、アクチュエータ支持体と低温ステーションの間において、該冷却装置の低温ステージが移動可能に嵌合する。大きさが実質的に等しく且つ反対方向の力を、該低温ステージおよび該アクチュエータ支持体に加えて、それにより、該低温ステージが該低温ステーションに接触した状態で、冷却すべき対象物に何らかの力が加えられることなく、該低温ステージを、非結合構造から結合構造に強制的にするように、結合アクチュエータが配置されている。また、該装置は、該低温ステーションを備える、該冷却装置の周りに冷却装置の真空を収容するように形成および寸法決めされた冷却装置真空エンクロージャと、該低温ステーションを備え、冷却すべき対象物を収容するように形成および寸法決めされ、該冷却装置真空から油圧的に独立している冷却対象物真空を収容するように配置された冷却対象物真空エンクロージャとを備える。
関連する重要な実施形態において、該低温ステージは、該冷却装置に何らかの力が加えられることなく、該低温ステーションに接触する。また、該低温ステージは、該冷却装置真空エンクロージャに、何らかの力が加えられることなく、該低温ステーションに接触することも可能である。関連する重要な実施形態は、該冷却対象物真空エンクロージャに何らかの力が加えられることなく、該低温ステージを該低温ステーションに接触させる。また、該低温ステージが、該冷却装置、該冷却装置真空エンクロージャまたは冷却対象物真空エンクロージャのうちのいずれかに何らかの力が加えられることなく、該低温ステーションに接触することが可能である。
本願明細書中の関連する発明の全てに関して、該低温ステーションが、冷却すべき対象物に固定接続するように構成されることが有利である。
本願明細書に開示されているいずれかの発明の場合、インジウムガスケットが、該低温ステージに熱結合されていることが有用である。
非常に重要な実施形態に関して、上記アクチュエータは、空気圧アクチュエータを備える。該アクチュエータは、並行して動作するように配置された複数の空気圧アクチュエータを備えてもよく、該複数のアクチュエータは、ベローズとすることができる。該空気圧アクチュエータは、有利には、ヘリウムによって動力を供給されるアクチュエータである。
一般的には、上記アクチュエータ支持体が、該低温ステーションに実質的に対向して配置された面を備えることが有用である。このような場合、該アクチュエータは、該アクチュエータ支持体面に結合され、通電時に、該冷却装置の低温ステージを、該低温ステーションに向かって押し込む、直線状に伸長可能な部材を備える。
追加的な重要関連実施形態は、該低温ステージを該カプラに解除可能に結合する解除可能結合をさらに備える。このような場合、該低温ステージは、装置周縁フランジを備えることができる。該解除可能結合は、該冷却装置が第1の回転位置にある状態で、該低温ステージの該カプラに対する平行移動が挿入位置の範囲に制限され、該冷却装置が第2の回転位置にある状態で、該低温ステージの該カプラに対する平行移動が、挿入位置の範囲を越えて自由に移動できるように、該装置のフランジおよび該カプラのフランジが形成され、かつ配置されている状態で、該低温ステーションに接続されたカプラ周縁フランジを備える。該解除可能結合は、別法として、クラッチを備えてもよい。
本発明のさらに別の関連実施形態の場合、該冷却装置は、クライオクーラーを備える。
さらに別の重要な実施形態の場合、冷却すべき対象物は、磁石を備える。
本発明の装置の実施形態は、冷却すべき対象物と、該冷却すべき対象物に機能的に結合された装置とをさらに備える。このような実施形態の場合、該冷却すべき対象物は、磁石を有利に備えることができ、さらに、該冷却すべき対象物に機能的に結合された装置は、磁気共鳴撮像装置を備えることができる。
本発明の装置の関連する実施形態は、冷却装置をさらに備え、該冷却装置は、クライオクーラーとすることができる。
本発明の装置の実施形態の各々の場合、該低温ステージに結合された収縮アクチュエータがあってもよく、該収縮アクチュエータは、結合アクチュエータとは異なるアクチュエータであり、該収縮アクチュエータは、該低温ステージを結合位置から非結合位置へ動かすように配置されている。
本発明の装置の重要な実施形態は、冷却装置を、冷却すべき対象物に熱結合するカプラであり、この場合、該冷却装置は、少なくとも第1および第2のより低温の、冷却ステージを有するタイプであり、これらのステージは、互いに堅固に結合されている。該カプラは、該冷却装置の第1のステージに解除可能に結合するように構成された中間温度ステーションと、該冷却すべき対象物に固定接続するように、かつ該冷却装置の第2のより低温のステージに解除可能に結合するように構成された低温ステーションと、該低温ステーションをアクチュエータ支持体に堅固に接続する固定具とを備える。また、この実施形態は、該アクチュエータ支持体を該中間温度ステーションに結合するアクチュエータも含み、該アクチュエータおよび固定具は、該アクチュエータの通電が、i.該中間温度ステーションを、該アクチュエータ支持体から離して移動させ、および該中間温度ステーションを該冷却装置の第1のステージに、かつ該冷却装置のより低温のステージを該低温ステーションに接触させるように構成されている。それにより、該第1のステージおよびより低温のステージに対して力が生じ、該力は、該低温対象物に何らかの力が加えられることなく、大きさが互いに実質的に等しく、かつ反対方向である。また、この実施形態は、該低温ステーションを備える、該冷却装置周辺に冷却装置の真空を収容するように形成および寸法決めされた冷却装置真空エンクロージャと、冷却すべき対象物を収容するように形成および寸法決めされた冷却対象物真空エンクロージャであって、該冷却装置真空エンクロージャ内の真空を、該冷却対象物真空エンクロージャ内の真空を遮断することなく遮断できるように、該冷却装置真空エンクロージャと油圧的に独立している冷却対象物真空エンクロージャとを備える。
より具体的には、該冷却装置は、本体の第1の端部と第2の端部との間の第1の位置に該第1のステージを有する該本体を備えることができ、該より低温のステージは、該本体の第2の端部に位置している。該固定具は、該冷却装置が中に嵌合するエンクロージャを備え、該エンクロージャは、該アクチュエータ支持体に固定され、かつそこから該中間温度ステーションを越えて、さらに該低温ステーションに向かって伸び、該冷却装置が該固定具内に挿入されたときに、該冷却装置のより低温のステージを越えて伸びる堅固な壁部を備える。関連するアクチュエータは、通電時に、該アクチュエータの可動端部が該中間温度ステーションに接触するまで、該アクチュエータの可動端部を、該低温ステーションの方向へ、および該アクチュエータ支持体から離して移動させ、さらに、該中間温度ステーションを、該冷却装置のより低温のステージの方向へ移動させて、該中間温度ステーションと該冷却装置の第1のステージとの間に接触を生じさせ、また、冷却すべき対象物に何らかの力が加えられることなく、該より低温のステージと該低温ステーションとが接合する境界、および該中間温度ステーションと該冷却装置の第1のステージとが接合する境界とで、圧力が増加するように、該第1のステージ、および、該第2のより低温のステージを含む該冷却装置全体を、該冷却装置のより低温のステージの方向へ移動させる、直線状に伸長可能なアクチュエータを備える。
本発明の装置の重要な変形例に関して、該アクチュエータは、非結合位置を有し、上記カプラは、該アクチュエータが非結合位置にある状態で、該中間温度ステーションと第1のステージとが、機械的かつ熱的に非結合になっており、また、該低温ステーションと該より低温のステージとが、機械的かつ熱的に非結合になっているように構成されている。このような装置の場合、該アクチュエータは、動き幅を有し、該カプラは、該アクチュエータが結合位置にある状態で、該中間温度ステーションと、該冷却装置の第1のステージとが、機械的かつ熱的に結合されているように構成されている。このような装置の該カプラは、さらに、該アクチュエータが結合位置にある状態で、該低温ステーションと該冷却装置のより低温のステージとが、機械的かつ熱的に結合されるように構成することができる。一つの変形例によれば、該カプラは、該アクチュエータが結合位置にある状態で、該アクチュエータが動力供給されて膨張するにつれて、該低温ステーションと、該冷却装置のより低温のステージとの間の圧力および熱結合が、冷却すべき対象物に何らかの力が加えられることなく、増強するように構成することができる。
上述した単一ステージの冷却装置の実施形態と同様に、2つ以上のステージの場合、該アクチュエータは、単一または複数の空気圧アクチュエータを備えることができ、複数のアクチュエータを並列に配置することができる。該アクチュエータは、ヘリウムガスの供給によって動力を供給することができる。
有利な実施形態は、該低温ステーションに実質的に対向して配置された面を備えるアクチュエータ支持部材を有し、該アクチュエータは、該アクチュエータが通電されたときに、該冷却装置を該アクチュエータ支持体から離して、該冷却装置のより低温の端部に向かって押し込むために、該アクチュエータ支持体面および該冷却装置の低温ステージに結合された、直線状に伸長可能な部材を備える。
このようなカプラは、該冷却装置を該カプラに解除可能に結合する結合をさらに備えることができる。このような場合、該冷却装置は、装置フランジを備えることができ、また、該中間温度ステーションは、フランジ要素を備えることができる。該装置フランジおよび中間温度ステーションのフランジ要素は、該冷却装置が第1の回転位置にある状態で、該第1のステージの該カプラに対する平行移動が、挿入位置の範囲に制限され、および該冷却装置が第2の回転位置にある状態で、該第1のステージが、挿入位置の範囲を越えて該カプラに対して自由に移動できるように形成され、かつ配置されている。このことを実現するのに都合のよい構成は、開口部を備える中間温度ステーションのフランジ要素を有し、該アクチュエータ支持体は開口部を備え、該冷却装置の第1のステージは翼部を備え、該翼部は、該中間温度ステーションのフランジ要素の開口部および該アクチュエータ支持体の開口部に嵌合する。
1ステージクーラーの実施形態と同様に、2つ以上のステージの実施形態の場合、該冷却装置は、クライオクーラーを備えることができる、また、冷却すべき対象物は、磁石を備えることができる。冷却すべき対象物に機能的に結合された装置は、磁気共鳴撮像装置または陽子ビーム照射処理装置を備えることができる。さらに、該冷却装置は、該カプラの一部とすることができる。そして、該第1のステージに結合された収縮アクチュエータとすることができ、該収縮アクチュエータは、該結合アクチュエータとは異なるアクチュエータであり、該収縮アクチュエータは、該第1のステージを結合位置から非結合位置へ動かすように配置されている。
該係合アクチュエータは、図示するように、該中間ステーションを、該冷却装置の中間ステージの方に向かって直接押し込むように適用することができる、または、該アクチュエータは、該冷却装置の低温ステージを、該低温ステーションの方に向かって直接押し込んで、低温ステーションに接触するように適用することができる、あるいは、該アクチュエータは、該冷却装置の中間ステージおよび低温ステージの両方に直接接触するように接続することができる。または、各ステージに対して1つのアクチュエータがあるような2つのアクチュエータがあってもよい。
本願明細書に開示されている重要な態様は、いくつかの方法でもあり、重要な実施形態は、少なくとも1つの冷却ステージを有する冷却装置を、冷却すべき対象物に熱結合する方法である。該方法は、冷却すべき対象物に接続され、かつ該冷却装置の低温ステージに結合するように構成された低温ステーションと、該低温ステーションとの間に、該低温ステージが移動可能に嵌合する、該低温ステーションに機械的に堅固に接続されたアクチュエータ支持体とを備える熱カプラを設けるステップを備える。該低温ステージに接続された、少なくとも1つの翼部拡張部は、少なくとも1つの対応する開口部を介して、該アクチュエータ支持体内に嵌合するように構成されており、係合アクチュエータは、通電時に、大きさが実質的に等しく、かつ反対方向の力を、該低温ステージの少なくとも1つの翼部拡張部および該アクチュエータ支持体に加えて、それにより、冷却すべき対象物に何らかの力を加えることなく、該低温ステージを、非結合位置から結合位置へ移動させて、該低温ステーションに接触させるように配置されている。また、該カプラの一部は、該低温ステーションを備える、該冷却装置の周りに冷却装置の真空を収容するように形成および寸法決めされた冷却装置真空エンクロージャであり、また、該冷却装置の真空から油圧的に独立している冷却対象物の真空を収容するように配置された、冷却すべき対象物を収容するように形成および寸法決めされた冷却対象物真空エンクロージャである。また、該方法は、該冷却装置を該冷却装置真空エンクロージャ内に導入し、その結果、該少なくとも1つの翼部拡張部が、該アクチュエータ支持体の対応する開口部を通るステップと、該冷却装置の低温ステージを、該アクチュエータ支持体と低温ステーションとの間の非結合位置に位置決めするステップと、該少なくとも1つの翼部拡張部が、該アクチュエータの反対側になるように、該冷却装置を回転させるステップとを含む。この方法の全般的な説明の最後のステップは、冷却すべき対象物に何らかの力を加えることなく、該アクチュエータが該翼部拡張部に係合し、それによって、該低温ステージを非結合位置から結合位置へ強制させて、該低温ステーションに接触させるように該アクチュエータを通電させることである。
上述した装置の実施形態と同様に、本発明の方法の実施形態は、上述した多くの装置を用いて実現することができる。例えば、該アクチュエータは、空気圧アクチュエータを備えることができ、また、該アクチュエータを通電させるステップは、該アクチュエータに供給されるガスの圧力を増加させることを備えてもよい。該ガスは、ヘリウムとすることができる。該アクチュエータは、単一または複数とすることができ、複数の場合、並行に動作させることができる。
該方法は、該冷却装置真空エンクロージャ内に真空を確立し、その後、該冷却装置を起動させるステップをさらに備えることができる。該冷却装置を起動させることは、該アクチュエータを通電させる前または後に行うことができる。
結合の方法における最終ステップは、該低温ステージに結合された収縮アクチュエータを設けることによって実現される分離ステップとすることができ、該収縮アクチュエータは、該結合アクチュエータとは異なるアクチュエータであり、該結合するための方法は、該低温ステージを結合位置から非結合位置へ移動させるように、該収縮アクチュエータを通電させるステップをさらに備える。
本発明の非常に重要な実施形態は、第1および第2のより低温の冷却ステージを有する冷却装置を、冷却すべき対象物に熱結合する方法である。該冷却装置のステージは、互いに堅固に接続されている。該方法は、例えば、該冷却装置の第1のステージに解除可能に結合するように構成された中間温度ステーションと、該冷却すべき対象物に固定接続するように、かつ該冷却装置の第2のより低温のステージに解除可能に結合するように構成された低温ステーションと、該低温ステーションをアクチュエータ支持体に堅固に接続する固定具とを備える、概して上述したタイプの熱カプラを設けるステップを備える。該第1のステージに接続された少なくとも1つの翼部拡張部は、少なくとも1つの対応する開口部を介して該中間温度ステーションに嵌合するように構成されている。アクチュエータは、該アクチュエータ支持体を該中間温度ステーションに結合する。該アクチュエータおよび固定具は、該アクチュエータの通電が、該中間温度ステーションを、該アクチュエータ支持体から離して移動させて、該中間温度ステーションを、該冷却装置の第1のステージに接触させるように、および該冷却装置のより低温のステージを該低温ステーションに接触させるように構成されている。それにより、該冷却すべき対象物に何らかの力を加えることなく、互いに大きさが実質的に等しく、かつ反対方向の力が、該第1のステージおよび該より低温のステージに対して確立される。また、設けられる該装置は、該低温ステーションを備える、該冷却装置を囲む冷却装置真空を収容するように形成および寸法決めされた冷却装置真空エンクロージャと、冷却すべき対象物を収容するように形成および寸法決めされた冷却対象物真空エンクロージャであって、該冷却対象物真空エンクロージャは、該冷却対象物真空エンクロージャ内の真空を遮断することなく、該冷却装置真空エンクロージャ内の真空を遮断できるように、該冷却装置真空エンクロージャと油圧的に独立している冷却対象物真空エンクロージャとを備える。また、該結合の方法は、該少なくとも1つの翼部拡張部が、該アクチュエータ支持体の対応する開口部を通るように、該冷却装置を該冷却装置真空エンクロージャ内に導入するステップと、該少なくとも1つの翼部拡張部が、該中間温度ステーションの反対側にあるように、該冷却装置を回転させることにより、該冷却装置の第1のステージを非結合位置に位置決めするステップと、該冷却装置の第1のステージを有する該中間温度ステーションと該低温ステーションを有する該冷却装置のより低温のステージとの間に、接触が生じるように、該アクチュエータを通電させるステップとを含む。
重要な実施形態の場合、該アクチュエータは、空気圧アクチュエータを備え、該アクチュエータを通電させるステップは、該アクチュエータに供給されるガスの圧力を増加させることを備える。
2ステージの実施形態を結合する方法は、該冷却装置真空エンクロージャ内に真空を確立した後、該冷却装置を起動させるステップをさらに備えることができる。該冷却装置を起動させることは、該アクチュエータを通電させる前か後に行うことができる。
ヘリウムガスを、該冷却装置真空エンクロージャに導入してもよい。
1ステージの構成と同様に、該冷却装置に結合された収縮アクチュエータが設けられていてもよく、該収縮アクチュエータは、該結合アクチュエータとは異なるアクチュエータであり、該結合する方法は、該低温ステージを結合位置から非結合位置に移動させるように、該収縮アクチュエータを通電させるステップをさらに備えることができる。
本願明細書において、本発明の多くの方法および態様を説明してきた。当業者は、これらの方法の多くを、用途に関して具体的に記載されていなくとも、他の開示された方法と共に用いることができることを理解するであろう。例えば、2つ以上のステージの冷却装置の場合、上記結合アクチュエータは、該中間温度ステーションまたは低温ステージに、あるいはそれら両方に直接結合することができる。同様に、該収縮アクチュエータは、いずれかまたは両方のステージに直接結合することができる。アクチュエータ支持体、および該支持体を該低温ステーション堅固に接続する固定具の具体的な構成は、該低温ステージによって該低温ステーションに加えられる力と大きさが等しく、方向が反対である平衡力を該低温ステーションに加えることが可能であり、その結果、該低温対象物に影響を及ぼす不平衡な力が残らない限り、異なる幾何学的経路または形状をとることができる。図示したタイプの固定具は、翼部および開口フランジ型クイック接続メカニズム、またはクラッチ、あるいは、他の何らかの解除可能結合メカニズムと共に用いることができる。該アクチュエータは、直線状に膨張する必要はなく、回転式または他の何らかの構成とすることができる。
この開示は、1つ以上の発明について説明および開示している。本発明は、本願明細書の請求の範囲、およびこの開示に基づくいずれかの特許の出願手続き中に提出され、かつ展開された関連文献に記載されている。本発明者らは、後に判断される際に、従来技術によって許容されている制限に対して、様々な発明の全てを主張するつもりである。本願明細書に記載されている特徴は、本願明細書に開示されている各発明に対して必要不可欠なものではない。したがって、本発明者らは、本願明細書に記載されているが、この開示に基づくいずれかの特許の特定の請求の範囲に主張されていない特徴は、そのようないずれかの請求の範囲に組込むべきではないと考える。
ハードウェアのいくつかのアセンブリ、または、ステップの群は、本願明細書において、発明と呼ぶ。しかし、これは、特に、1つの特許出願、または発明の単一性において審査されるであろう発明の数に関連する法令によって意図されているように、そのような何らかのアセンブリまたは群が、必ずしも特許性のある明確な発明であるという承認ではない。本発明の実施形態を述べることの近道であることが意図されている。
要約書が、本願明細書と共に提出されている。この要約書は、審査官または他の調査者が、技術的開示の主題を迅速に確認できる要約書を要求する規定に適合するように記載されていることに重点が置かれている。本願明細書は、特許局の規則により約束されているように、請求の範囲または意図を解釈または限定するのに用いられないという理解と共に提出されている。
前述の論考は、例示的なものとして理解すべきであり、いかなる意味においても、限定的に考えるべきではない。本発明を、好適な実施形態を参照して具体的に図示し、かつ説明してきたが、当業者には、請求の範囲によって定義される本発明の趣旨および範囲から逸脱することなく、構成および詳細に関して様々な変形が可能であることは理解されるであろう。
請求の範囲における全ての手段またはステップあるいは機能的要素の対応する構造、材料、動作および等価物は、具体的に主張されている他の主張された要素と共に機能を実行する何らかの構造、材料または動作を含むことが意図されている。

Claims (62)

  1. 少なくとも1つの冷却ステージを有する冷却装置を、冷却すべき対象物に熱的に結合するカプラであって、
    a.冷却装置の低温ステージに結合するように構成され、かつ冷却すべき対象物に接続するように構成された低温ステーションと、
    b.前記低温ステーションに、機械的に堅固に接続されたアクチュエータ支持体であって、該アクチュエータ支持体と前記低温ステーションとの間において、前記冷却装置の低温ステージが移動可能に嵌合する、アクチュエータ支持体と、
    c.大きさがほぼ等しく且つ反対方向の力を、前記低温ステージおよび前記アクチュエータ支持体に加えて、それにより、前記低温ステージが該低温ステーションに接触した状態で、前記冷却すべき対象物に何らかの力が加えられることなく、前記低温ステージを、非結合構造から結合構造に強制的にするように配設された結合アクチュエータと、
    d.前記低温ステーションを備える、前記冷却装置の周りに冷却装置の真空を収容するように形成および寸法決めされた冷却装置真空エンクロージャと、
    e.前記低温ステーションを備える、冷却すべき対象物を収容するように形成および寸法決めされた冷却対象物真空エンクロージャであって、前記冷却装置の真空から圧力的に独立している冷却対象物の真空を収容するように配置された冷却対象物真空エンクロージャと、
    を備えるカプラ。
  2. さらに、前記低温ステージは、前記冷却装置に何らかの力が加えられることなく、前記低温ステーションに接触する、請求項1に記載のカプラ。
  3. さらに、前記低温ステージは、前記冷却装置真空エンクロージャに何らかの力が加えられることなく、前記低温ステーションに接触する、請求項1に記載のカプラ。
  4. さらに、前記冷却対象物真空エンクロージャに何らかの力が加えられることなく、前記低温ステージが前記低温ステーションに接触する、請求項1に記載のカプラ。
  5. さらに、前記低温ステーションは、冷却すべき対象物に固定接続するように構成される、請求項1に記載のカプラ。
  6. 前記低温ステージに熱結合されるインジウムガスケットをさらに備える、請求項1に記載のカプラ。
  7. 前記アクチュエータが空気圧アクチュエータを備える、請求項1に記載のカプラ。
  8. 前記空気圧アクチュエータが、並行して動作するように配置された複数の空気圧アクチュエータを備える、請求項7に記載のカプラ。
  9. 前記空気圧アクチュエータが、並行して動作するように配置された複数の空気圧ベローズを備える、請求項7に記載のカプラ。
  10. 前記アクチュエータ支持体が、前記低温ステーションに実質的に対向して配置された面を備え、前記アクチュエータが、前記アクチュエータ支持体の面に結合され、且つ通電時に前記冷却装置の前記低温ステージを前記低温ステーションに向かって押し込む、直線状に伸長可能な部材を備える、請求項1に記載のカプラ。
  11. 前記低温ステージを前記カプラに解除可能に結合する解除可能結合をさらに備える、請求項1に記載のカプラ。
  12. 前記低温ステージは、装置周縁フランジを備え、
    前記解除可能結合は、
    a.前記冷却装置が第1の回転位置にある状態で、前記低温ステージの前記カプラに対する平行移動が挿入位置の範囲に制限され、
    b.前記冷却装置が第2の回転位置にある状態で、前記低温ステージの前記カプラに対する平行移動が挿入位置の範囲を越えて自由に移動できるように、
    前記装置のフランジおよび前記カプラのフランジが形成され配置されている状態で、前記低温ステーションに接続されたカプラ周縁フランジを備える、
    請求項11に記載のカプラ。
  13. 前記解除可能結合は、クラッチを備える、請求項11に記載のカプラ。
  14. 前記冷却装置は、クライオクーラーを備える、請求項1に記載のカプラ。
  15. 前記冷却すべき対象物は、磁石を備える、請求項1に記載のカプラ。
  16. 前記空気圧アクチュエータは、ヘリウムガスを作動源として用いるアクチュエータを備える、請求項7に記載のカプラ。
  17. a.冷却すべき対象物と、
    b.前記冷却すべき対象物に機能的に結合された装置と、
    をさらに備える、請求項1に記載のカプラ。
  18. 前記冷却すべき対象物が磁石を備える、請求項17に記載のカプラ。
  19. 前記冷却すべき対象物に機能的に結合された装置が、磁気共鳴撮像装置を備える、請求項17に記載のカプラ。
  20. 冷却装置をさらに備える、請求項1に記載のカプラ。
  21. 前記冷却装置がクライオクーラーを備える、請求項20に記載のカプラ。
  22. 前記低温ステージに結合された収縮アクチュエータをさらに備え、前記収縮アクチュエータは、前記結合アクチュエータとは異なるアクチュエータであり、前記収縮アクチュエータは、前記低温ステージを、前記結合位置から非結合位置へ動かすように配置されている、請求項1に記載のカプラ。
  23. 少なくとも第1の冷却ステージおよび第2のより低温の冷却ステージを有する冷却装置であって、これらのステージが互いに堅固に結合されている冷却装置を、冷却すべき対象物に熱的に結合するカプラであって、
    a.前記冷却装置の第1のステージに解除可能に結合するように構成された中間温度ステーションと、
    b.前記冷却すべき対象物に固定接続するように、且つ前記冷却装置の第2のより低温のステージに解除可能に結合するように構成された低温ステーションと、
    c.前記低温ステーションをアクチュエータ支持体に堅固に接続する固定具と、
    d.前記アクチュエータ支持体を前記中間温度ステーションに結合するアクチュエータであって、前記アクチュエータおよび固定具は、該アクチュエータの通電が前記中間温度ステーションを前記アクチュエータ支持体から離して移動させ、並びに、
    i.前記中間温度ステーションを、前記冷却装置の第1のステージに接触させ、及び、
    ii.前記冷却装置のより低温のステージを前記低温ステーションに接触させるように構成され、それによって、前記第1のステージ及びより低温のステージに対する力を確立し、当該力は、前記低温対象物に何らかの力が加えられることなく、大きさが互いにほぼ等しく且つ反対方向である、アクチュエータと、
    e.前記低温ステーションを備える、前記冷却装置周辺に冷却装置の真空を収容するように形成および寸法決めされた冷却装置真空エンクロージャと、
    f.冷却すべき対象物を収容するように形成および寸法決めされた冷却対象物真空エンクロージャであって、前記冷却装置真空エンクロージャ内の真空を、前記冷却対象物真空エンクロージャ内の真空を遮断することなく遮断できるように、前記冷却装置真空エンクロージャと圧力的に独立している冷却対象物真空エンクロージャと、
    を備えるカプラ。
  24. 前記冷却装置は、その第1の端部と第2の端部との間の第1の位置に前記第1のステージを有する本体を備え、前記より低温のステージは、該本体の第2の端部に配置されており、
    前記固定具は、前記冷却装置が中に嵌合するエンクロージャを備え、該エンクロージャは、前記アクチュエータ支持体に固定されると共に、そこから前記中間温度ステーションを越えてさらに前記低温ステーションに向かって伸び、前記冷却装置が当該固定具内に挿入されたときに前記冷却装置のより低温のステージを越えて伸びる堅い壁部を備え、
    前記アクチュエータは、直線状に伸長可能なアクチュエータを備え、この直線状に伸長可能なアクチュエータは、通電時に、
    a.前記アクチュエータの可動端部が前記中間温度ステーションに接触するまで、当該アクチュエータの可動端部を、前記低温ステーションの方向へ、および前記アクチュエータ支持体から離して移動させ、
    b.さらに、前記中間温度ステーションを、前記冷却装置の前記より低温のステージの方向へ移動させて、前記中間温度ステーションと前記冷却装置の前記第1のステージとの間に接触を生じさせ、また、冷却すべき対象物に何らかの力が加えられることなく、前記より低温のステージと前記低温ステーションとが接合する境界、および前記中間温度ステーションと前記冷却装置の第1のステージとが接合する境界で、圧力が増加するように、前記第1のステージ、および、前記第2のより低温のステージを含む前記冷却装置全体を、該冷却装置のより低温のステージの方向へ移動させる、ものである、
    請求項23に記載のカプラ。
  25. 前記アクチュエータは、非結合位置を有し、前記カプラは、該アクチュエータが非結合位置にある状態で、前記中間温度ステーションと前記第1のステージとが、機械的かつ熱的に非結合状態になり、また、前記低温ステーションと前記より低温のステージとが、機械的かつ熱的に非結合になるように構成されている、請求項23に記載のカプラ。
  26. 前記アクチュエータは、動き幅を有し、前記カプラは、該アクチュエータが結合位置にある状態で、前記中間温度ステーションと前記冷却装置の第1のステージとが、機械的かつ熱的に結合されるように構成されている、請求項25に記載のカプラ。
  27. 前記カプラは、前記アクチュエータが結合位置にある状態で、前記低温ステーションと、前記冷却装置のより低温のステージとが、機械的かつ熱的に結合されるように構成されている、請求項26に記載のカプラ。
  28. 前記カプラは、前記アクチュエータが結合位置にある状態で、前記アクチュエータが動力供給されて膨張するにつれて、前記低温ステーションと前記冷却装置のより低温のステージとの間の圧力が、冷却すべき対象物に何らかの力が加えられることなく、増大するように構成されている、請求項26に記載のカプラ。
  29. 前記カプラは、前記アクチュエータが結合位置にある状態で、前記アクチュエータが動力供給されて膨張するにつれて、前記低温ステーションと前記冷却装置のより低温のステージとの間の熱結合が、冷却すべき対象物に何らかの力が加えられることなく、増強するように構成されている、請求項26に記載のカプラ。
  30. 前記アクチュエータは、空気圧アクチュエータを備える、請求項23に記載のカプラ。
  31. 前記空気圧アクチュエータは、並行に動作する複数の空気圧アクチュエータを備える、請求項30に記載のカプラ。
  32. 前記アクチュエータ支持部材は、前記低温ステーションにほぼ対向して配置された面を備え、前記アクチュエータは、該アクチュエータが通電されたときに、前記冷却装置を前記アクチュエータ支持体から離して、前記冷却装置のより低温の端部に向かって押し込むために、前記アクチュエータ支持体の面および前記冷却装置の低温ステージに結合された、直線状に伸長可能な部材を備える、請求項23に記載のカプラ。
  33. 前記冷却装置を前記カプラに解除可能に結合する結合をさらに備える、請求項23に記載のカプラ。
  34. 前記冷却装置は装置フランジを備え、
    前記中間温度ステーションはフランジ要素を備え、
    前記装置フランジおよび前記中間温度ステーションのフランジ要素は、
    a.前記冷却装置が第1の回転位置にある状態で、前記第1のステージの前記カプラに対する平行移動が、挿入位置の範囲に制限され、および
    b.前記冷却装置が第2の回転位置にある状態で、前記第1のステージが、挿入位置の範囲を越えて前記カプラに対して自由に移動できる、
    ように形成され、且つ配置されている、請求項33に記載のカプラ。
  35. 前記中間温度ステーションのフランジ要素は開口部を有し、
    前記アクチュエータ支持体は開口部を備え、
    前記冷却装置の第1のステージは翼部を備え、該翼部は、前記中間温度ステーションのフランジ要素の開口部および前記アクチュエータ支持体の開口部に嵌合する、
    請求項34に記載のカプラ。
  36. 前記冷却装置は、クライオクーラーを備える、請求項23に記載のカプラ。
  37. 前記冷却すべき対象物は、磁石を備える、請求項23に記載のカプラ。
  38. 前記空気圧アクチュエータは、ヘリウムガスで起動するアクチュエータを備える、請求項30に記載のカプラ。
  39. a.冷却すべき対象物と、
    b.前記冷却すべき対象物に機能的に結合された装置と、
    をさらに備える、請求項23に記載のカプラ。
  40. 前記冷却すべき対象物が磁石を備える、請求項39に記載のカプラ。
  41. 前記冷却すべき対象物に機能的に結合された装置は、磁気共鳴撮像装置を備える、請求項39に記載のカプラ。
  42. 前記冷却すべき対象物に機能的に結合された装置は、陽子ビーム照射処理装置を備える、請求項39に記載のカプラ。
  43. 冷却装置をさらに備える、請求項23に記載のカプラ。
  44. 前記冷却装置がクライオクーラーを備える、請求項43に記載のカプラ。
  45. 前記第1のステージに結合された収縮アクチュエータをさらに備え、該収縮アクチュエータは、前記結合アクチュエータとは異なるアクチュエータであり、該収縮アクチュエータは、前記第1のステージを、結合位置から非結合位置へ動かすように配置されている、請求項23に記載のカプラ。
  46. 少なくとも1つの冷却ステージを有する冷却装置を、冷却すべき対象物に熱的に結合する方法であって、
    a.熱カプラを提供するステップであって、当該熱カプラが、
    i.前記冷却すべき対象物に接続され、かつ前記冷却装置の低温ステージに結合するように構成された低温ステーションと、
    ii.前記低温ステーションとの間に、前記低温ステージが移動可能に嵌合する、前記低温ステーションに機械的に堅固に接続されたアクチュエータ支持体と、
    iii.前記低温ステージに接続され、少なくとも1つの対応する開口部を介して、前記アクチュエータ支持体内に嵌合するように構成された、少なくとも1つの翼部拡張部と、
    iv.通電時に、大きさがほぼ等しく且つ反対方向の力を、前記低温ステージの少なくとも1つの翼部拡張部および前記アクチュエータ支持体に加えて、それにより、冷却すべき対象物に何らかの力を加えることなく、前記低温ステージを、非結合位置から結合位置へ移動させて、前記低温ステーションに接触させるように配設された係合アクチュエータと、
    v.前記低温ステーションを備える、前記冷却装置の周りに冷却装置の真空を収容するように形成および寸法決めされた冷却装置真空エンクロージャと、
    vi.前記冷却装置の真空から油圧的に独立している冷却対象物の真空を収容するように配置された、冷却すべき対象物を収容するように形成および寸法決めされた冷却対象物真空エンクロージャと、
    を備える、熱カプラ提供ステップと、
    b.前記冷却装置を前記冷却装置真空エンクロージャ内に導入し、その結果、前記少なくとも1つの翼部拡張部が、前記アクチュエータ支持体の対応する開口部を通り、前記冷却装置の低温ステージを、前記アクチュエータ支持体と前記低温ステーションとの間の非結合位置に位置決めするステップと、
    c.前記少なくとも1つの翼部拡張部が、前記アクチュエータの反対側になるように、前記冷却装置を回転させるステップと、
    d.前記冷却すべき対象物に何らかの力を加えることなく、前記アクチュエータが前記翼部拡張部に係合し、それによって、前記低温ステージを非結合位置から結合位置へ強制移動させて、前記低温ステーションに接触させるように前記アクチュエータを通電させるステップと、
    を備える方法。
  47. 前記アクチュエータは、空気圧アクチュエータを備え、前記アクチュエータを通電させるステップは、前記アクチュエータに供給されるガスの圧力を増加させることを備える、請求項46に記載の方法。
  48. 前記熱カプラを提供するステップは、前記低温ステージに付着されたインジウムガスケットを設けることをさらに備える、請求項46に記載の方法。
  49. 前記アクチュエータは、空気圧アクチュエータを備え、前記アクチュエータを通電させるステップは、前記アクチュエータに供給されるヘリウムガスの圧力を増加させることを備える、請求項46に記載の方法。
  50. 前記冷却装置真空エンクロージャ内に真空を確立するステップをさらに備える、請求項46に記載の方法。
  51. 前記冷却装置を起動させるステップをさらに備える、請求項46に記載の方法。
  52. 前記冷却装置を起動させるステップは、前記アクチュエータを通電させるステップの前に行われる、請求項51に記載の方法。
  53. 前記冷却装置を起動させるステップは、前記アクチュエータを通電させるステップの後に行われる、請求項51に記載の方法。
  54. 前記カプラを提供するステップは、前記低温ステージに結合された収縮アクチュエータを設けるステップを備え、該収縮アクチュエータは、前記結合アクチュエータとは異なるアクチュエータであり、その結合の方法は、前記低温ステージを前記結合位置から非結合位置へ動かすように、前記収縮アクチュエータを通電させるステップを備える、請求項46に記載の方法。
  55. 互いに堅固に接続された、第1の冷却ステージおよび第2のより低温の冷却ステージを有する冷却装置を、冷却すべき対象物に熱的に結合する方法であって、
    a.熱カプラを提供するステップであって、該熱カプラが、
    i.前記冷却装置の第1のステージに解除可能に結合するように構成された中間温度ステーションと、
    ii.前記冷却すべき対象物に固定接続するように、かつ前記冷却装置の第2のより低温のステージに解除可能に結合するように構成された低温ステーションと、
    iii.前記低温ステーションをアクチュエータ支持体に堅固に接続する固定具と、
    iv.前記第1のステージに接続され、少なくとも1つの対応する開口部を介して前記中間温度ステーションに嵌合するように構成された、少なくとも1つの翼部拡張部と、
    v.前記アクチュエータ支持体を前記中間温度ステーションに結合するアクチュエータであって、前記アクチュエータおよび固定具は、該アクチュエータの通電が、前記中間温度ステーションを、前記アクチュエータ支持体から離して移動させ、更に、
    A.前記中間温度ステーションを、前記冷却装置の第1のステージに接触させ、及び
    B.前記冷却装置のより低温のステージを前記低温ステーションに接触させ、
    それにより、前記冷却すべき対象物に何らかの力を加えることなく、互いに大きさがほぼ等しく且つ反対方向の力が、前記第1のステージ及びより低温のステージに対して確立されるように構成されている、アクチュエータと、
    vi.前記低温ステーションを備える、前記冷却装置を囲む冷却装置真空を収容するように形成および寸法決めされた冷却装置真空エンクロージャと、
    vii.冷却すべき対象物を収容するように形成および寸法決めされた冷却対象物真空エンクロージャであって、該冷却対象物真空エンクロージャは、該冷却対象物真空エンクロージャ内の真空を遮断することなく、前記冷却装置真空エンクロージャ内の真空を遮断できるように、前記冷却装置真空エンクロージャから圧力的に独立している冷却対象物真空エンクロージャと、
    を備える、熱カプラ提供ステップと、
    b.前記少なくとも1つの翼部拡張部が前記アクチュエータ支持体の対応する開口部を通るように、前記冷却装置を前記冷却装置真空エンクロージャ内に導入するステップと、
    c.前記少なくとも1つの翼部拡張部が前記中間温度ステーションの反対側にあるように、前記冷却装置を回転させることにより、前記冷却装置の第1のステージを非結合位置に位置決めするステップと、
    d.前記アクチュエータを通電させるステップであって、
    i.前記冷却装置の第1のステージを有する前記中間温度ステーションと、
    ii.前記低温ステーションを有する前記冷却装置のより低温のステージとの間に、接触が生じるように、前記アクチュエータを通電させるステップと、
    を備える方法。
  56. 前記アクチュエータが空気圧アクチュエータを備え、前記アクチュエータを通電させるステップが、前記アクチュエータに供給されるガスの圧力を増大させることを備える、請求項55に記載の方法。
  57. 前記冷却装置真空エンクロージャ内に真空を確立するステップをさらに備える、請求項55に記載の方法。
  58. 前記冷却装置を起動させるステップをさらに備える、請求項55に記載の方法。
  59. 前記冷却装置を起動させるステップは、前記アクチュエータを通電させるステップの前に行われる、請求項58に記載の結合する方法。
  60. 前記冷却装置を起動させるステップは、前記アクチュエータを通電させるステップの後に行われる、請求項58に記載の結合する方法。
  61. 前記カプラを提供するステップは、前記冷却装置に結合される収縮アクチュエータを設けるステップを備え、該収縮アクチュエータは、前記結合アクチュエータとは異なるアクチュエータであり、
    当該方法は、前記低温ステージを結合位置から非結合位置へ移動させるように前記収縮アクチュエータを通電させるステップをさらに備える、請求項55に記載の方法。
  62. 前記冷却装置真空エンクロージャ内にヘリウムガスを導入するステップをさらに備える、請求項61に記載の方法。
JP2009532365A 2006-10-10 2007-10-05 極低温真空遮断熱カプラ Active JP5271270B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US85056506P 2006-10-10 2006-10-10
US60/850,565 2006-10-10
US11/881,990 US8069675B2 (en) 2006-10-10 2007-07-30 Cryogenic vacuum break thermal coupler
US11/881,990 2007-07-30
PCT/US2007/021381 WO2008105845A2 (en) 2006-10-10 2007-10-05 Cryogenic vacuum break thermal coupler

Publications (3)

Publication Number Publication Date
JP2010506134A true JP2010506134A (ja) 2010-02-25
JP2010506134A5 JP2010506134A5 (ja) 2012-12-27
JP5271270B2 JP5271270B2 (ja) 2013-08-21

Family

ID=39358522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009532365A Active JP5271270B2 (ja) 2006-10-10 2007-10-05 極低温真空遮断熱カプラ

Country Status (7)

Country Link
US (2) US8069675B2 (ja)
EP (1) EP2074358A4 (ja)
JP (1) JP5271270B2 (ja)
KR (1) KR101441639B1 (ja)
CA (1) CA2665170C (ja)
TW (1) TWI394924B (ja)
WO (1) WO2008105845A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818375B2 (en) 2007-04-25 2014-08-26 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for seamless handover in a wireless communication network
JP2014157011A (ja) * 2013-01-15 2014-08-28 Kobe Steel Ltd 極低温装置及びこれを用いた被冷却体の冷却方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2259664B1 (en) 2004-07-21 2017-10-18 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8291717B2 (en) * 2008-05-02 2012-10-23 Massachusetts Institute Of Technology Cryogenic vacuum break thermal coupler with cross-axial actuation
GB0904500D0 (en) * 2009-03-16 2009-04-29 Oxford Instr Superconductivity Cryofree cooling apparatus and method
JP5917153B2 (ja) * 2012-01-06 2016-05-11 住友重機械工業株式会社 極低温冷凍機、ディスプレーサ
US9182464B2 (en) * 2012-07-27 2015-11-10 General Electric Company Retractable current lead
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
EP2900325B1 (en) 2012-09-28 2018-01-03 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
JP6121544B2 (ja) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームの集束
TW201438787A (zh) 2012-09-28 2014-10-16 Mevion Medical Systems Inc 控制粒子治療
WO2014052709A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
JP6523957B2 (ja) 2012-09-28 2019-06-05 メビオン・メディカル・システムズ・インコーポレーテッド 磁場を変更するための磁性シム
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
EP2901821B1 (en) 2012-09-28 2020-07-08 Mevion Medical Systems, Inc. Magnetic field regenerator
JP6254600B2 (ja) 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器
GB201217782D0 (en) 2012-10-04 2012-11-14 Tesla Engineering Ltd Magnet apparatus
US9570220B2 (en) * 2012-10-08 2017-02-14 General Electric Company Remote actuated cryocooler for superconducting generator and method of assembling the same
GB2513151B (en) * 2013-04-17 2015-05-20 Siemens Plc Improved thermal contact between cryogenic refrigerators and cooled components
US10181372B2 (en) * 2013-04-24 2019-01-15 Siemens Healthcare Limited Assembly comprising a two-stage cryogenic refrigerator and associated mounting arrangement
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
DE102014218773B4 (de) * 2014-09-18 2020-11-26 Bruker Biospin Gmbh Automatische thermische Entkopplung eines Kühlkopfs
DE102014219849B3 (de) * 2014-09-30 2015-12-10 Bruker Biospin Gmbh Kühlvorrichtung mit Kryostat und Kaltkopf mit verringerter mechanischer Kopplung
US9875826B2 (en) * 2014-11-14 2018-01-23 Novum Industria Llc Field makeable cryostat/current connections for an HTS tape power cable
GB2538512A (en) * 2015-05-19 2016-11-23 Siemens Healthcare Ltd Refrigerator de-coupling device
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
DE102016206435B4 (de) 2016-04-15 2018-05-17 Bruker Biospin Ag Kühlvorrichtung, umfassend einen Kryostaten und einen Kaltkopf, mit verbesserter Entkopplung zu einem Kühlsystem und zugehöriqe NMR-Messanordnung
EP3481503B1 (en) 2016-07-08 2021-04-21 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
EP3645111A1 (en) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
GB2567130B (en) 2017-07-25 2022-11-30 Tesla Engineering Ltd Cryostat arrangements and mounting arrangements for cryostats
JP7068032B2 (ja) * 2018-05-17 2022-05-16 株式会社東芝 極低温冷却装置
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
JP7186132B2 (ja) * 2019-05-20 2022-12-08 住友重機械工業株式会社 極低温装置およびクライオスタット
CN110440477B (zh) * 2019-08-26 2024-05-28 西南交通大学 一种可插拔式低温容器
JP7365944B2 (ja) * 2020-03-11 2023-10-20 東京エレクトロン株式会社 温度センサと温度測定装置及び温度測定方法
US10866036B1 (en) 2020-05-18 2020-12-15 Envertic Thermal Systems, Llc Thermal switch

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763483A (en) * 1986-07-17 1988-08-16 Helix Technology Corporation Cryopump and method of starting the cryopump
JPH03116909A (ja) * 1989-08-17 1991-05-17 General Electric Co <Ge> 冷凍式磁気共鳴マグネット支持装置
JPH09190912A (ja) * 1995-09-12 1997-07-22 General Electric Co <Ge> 極低温熱ジョイント用の確実に動作する牽引機構
JPH09287838A (ja) * 1996-04-24 1997-11-04 Kobe Steel Ltd クライオスタットにおける極低温冷凍機の接続構造
JP2004294041A (ja) * 2003-03-28 2004-10-21 Aisin Seiki Co Ltd 極低温冷凍機
JP2005265301A (ja) * 2004-03-18 2005-09-29 Sumitomo Heavy Ind Ltd 極低温冷却装置
WO2005116515A1 (en) * 2004-05-25 2005-12-08 Siemens Magnet Technology Ltd Cooling apparatus comprising a thermal interface and method for recondensing a cryogen gas

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3430455A (en) * 1967-04-17 1969-03-04 500 Inc Thermal switch for cryogenic apparatus
US3483709A (en) * 1967-07-21 1969-12-16 Princeton Gamma Tech Inc Low temperature system
US4667487A (en) * 1986-05-05 1987-05-26 General Electric Company Refrigerated penetration insert for cryostat with rotating thermal disconnect
US4667486A (en) * 1986-05-05 1987-05-26 General Electric Company Refrigerated penetration insert for cryostat with axial thermal disconnect
US4930318A (en) * 1988-07-05 1990-06-05 General Electric Company Cryocooler cold head interface receptacle
US5121292A (en) * 1990-01-23 1992-06-09 International Business Machines Corporation Field replaceable cryocooled computer logic unit
US5235818A (en) * 1990-09-05 1993-08-17 Mitsubishi Denki Kabushiki Kaisha Cryostat
US5111665A (en) * 1991-02-19 1992-05-12 General Electric Company Redundant cryorefrigerator system for a refrigerated superconductive magnet
US5222366A (en) * 1992-02-10 1993-06-29 General Electric Company Thermal busbar assembly in a cryostat dual penetration for refrigerated superconductive magnets
US5216889A (en) * 1992-02-10 1993-06-08 General Electric Company Cold head mounting assembly in a cryostat dual penetration for refrigerated superconductive magnets
US5394129A (en) * 1992-09-03 1995-02-28 General Electric Company Superconducting switch thermal interface for a cryogenless superconducting magnet
US5430423A (en) * 1994-02-25 1995-07-04 General Electric Company Superconducting magnet having a retractable cryocooler sleeve assembly
DE19511405A1 (de) * 1995-03-28 1996-10-02 Hofmann Werkstatt Technik Spannvorrichtung zum Aufspannen von auszuwuchtenden Rotationskörpern, insbesondere von Kraftfahrzeugrädern, auf einer Hauptwelle einer Auswuchtmaschine
US5737927A (en) * 1996-03-18 1998-04-14 Kabushiki Kaisha Toshiba Cryogenic cooling apparatus and cryogenic cooling method for cooling object to very low temperatures
US5682751A (en) * 1996-06-21 1997-11-04 General Atomics Demountable thermal coupling and method for cooling a superconductor device
FR2776762B1 (fr) * 1998-03-31 2000-06-16 Matra Marconi Space France Dispositif de liaison thermique pour machine cryogenique
US6209443B1 (en) * 1998-07-09 2001-04-03 Hiflex Technologies Inc. Low pressure actuator
US6112530A (en) * 1999-03-03 2000-09-05 Packard Bioscience Company Non-linear thermal coupling for cryogenic coolers
US6144274A (en) * 1999-11-16 2000-11-07 General Electric Company Magnetic resonance imaging cryocooler positioning mechanism
US6438966B1 (en) * 2001-06-13 2002-08-27 Applied Superconetics, Inc. Cryocooler interface sleeve
JP4040626B2 (ja) * 2002-12-16 2008-01-30 住友重機械工業株式会社 冷凍機の取付方法及び装置
US6807812B2 (en) * 2003-03-19 2004-10-26 Ge Medical Systems Global Technology Company, Llc Pulse tube cryocooler system for magnetic resonance superconducting magnets
JP4749661B2 (ja) * 2003-10-15 2011-08-17 住友重機械工業株式会社 単結晶引上げ装置用超電導磁石装置における冷凍機の装着構造及び冷凍機のメンテナンス方法
GB0408425D0 (en) * 2004-04-15 2004-05-19 Oxford Instr Superconductivity Cooling apparatus
DE102005002011B3 (de) * 2005-01-15 2006-04-20 Bruker Biospin Ag Quenchverschluß
US8291717B2 (en) * 2008-05-02 2012-10-23 Massachusetts Institute Of Technology Cryogenic vacuum break thermal coupler with cross-axial actuation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763483A (en) * 1986-07-17 1988-08-16 Helix Technology Corporation Cryopump and method of starting the cryopump
JPH03116909A (ja) * 1989-08-17 1991-05-17 General Electric Co <Ge> 冷凍式磁気共鳴マグネット支持装置
JPH09190912A (ja) * 1995-09-12 1997-07-22 General Electric Co <Ge> 極低温熱ジョイント用の確実に動作する牽引機構
JPH09287838A (ja) * 1996-04-24 1997-11-04 Kobe Steel Ltd クライオスタットにおける極低温冷凍機の接続構造
JP2004294041A (ja) * 2003-03-28 2004-10-21 Aisin Seiki Co Ltd 極低温冷凍機
JP2005265301A (ja) * 2004-03-18 2005-09-29 Sumitomo Heavy Ind Ltd 極低温冷却装置
WO2005116515A1 (en) * 2004-05-25 2005-12-08 Siemens Magnet Technology Ltd Cooling apparatus comprising a thermal interface and method for recondensing a cryogen gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818375B2 (en) 2007-04-25 2014-08-26 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for seamless handover in a wireless communication network
US9426710B2 (en) 2007-04-25 2016-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for seamless handover in a wireless communication network
US9877252B2 (en) 2007-04-25 2018-01-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for seamless handover in a wireless communication network
US10187837B2 (en) 2007-04-25 2019-01-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for seamless handover in a wireless communication network
USRE49808E1 (en) 2007-04-25 2024-01-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for seamless handover in a wireless communication network
JP2014157011A (ja) * 2013-01-15 2014-08-28 Kobe Steel Ltd 極低温装置及びこれを用いた被冷却体の冷却方法

Also Published As

Publication number Publication date
EP2074358A4 (en) 2013-09-18
TWI394924B (zh) 2013-05-01
US20120073310A1 (en) 2012-03-29
KR101441639B1 (ko) 2014-09-22
CA2665170A1 (en) 2008-09-04
TW200829847A (en) 2008-07-16
EP2074358A2 (en) 2009-07-01
CA2665170C (en) 2014-12-02
US8069675B2 (en) 2011-12-06
KR20090089307A (ko) 2009-08-21
JP5271270B2 (ja) 2013-08-21
US20080104968A1 (en) 2008-05-08
WO2008105845A3 (en) 2008-11-13
WO2008105845A2 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP5271270B2 (ja) 極低温真空遮断熱カプラ
US8291717B2 (en) Cryogenic vacuum break thermal coupler with cross-axial actuation
US6438967B1 (en) Cryocooler interface sleeve for a superconducting magnet and method of use
EP0696380B1 (en) Superconducting magnet
JP2000049010A (ja) ゼロボイルオフ型超伝導磁石用の熱伝導ガスケット
US10006579B1 (en) Flexible quick-connect heat transfer coupling for cryocoolers
JP6438584B2 (ja) 冷却喪失時に超伝導マグネットシステム内の真空を維持するシステムおよび方法
EP0772013B1 (en) Positive retraction mechanism for cryogenic thermal joints
US20210262701A1 (en) Remotely driven cryocooler for a superconducting generator
JP3863050B2 (ja) 超伝導磁石のための低温冷却器インターフェイススリーブおよびその使用方法
EP0350266B1 (en) Coupling a cryogenic cooler to a body to be cooled
GB2538512A (en) Refrigerator de-coupling device
US11959845B1 (en) Cryogenic analysis systems and methods
JP2023006063A (ja) コールドヘッド装着構造および極低温装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120906

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120913

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20121109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Ref document number: 5271270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250