JP2010285764A - 構造部材、及び構造部材を有する構造物 - Google Patents

構造部材、及び構造部材を有する構造物 Download PDF

Info

Publication number
JP2010285764A
JP2010285764A JP2009138638A JP2009138638A JP2010285764A JP 2010285764 A JP2010285764 A JP 2010285764A JP 2009138638 A JP2009138638 A JP 2009138638A JP 2009138638 A JP2009138638 A JP 2009138638A JP 2010285764 A JP2010285764 A JP 2010285764A
Authority
JP
Japan
Prior art keywords
concrete
blast furnace
mass
cement
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009138638A
Other languages
English (en)
Inventor
Hiroto Takatsu
比呂人 高津
Tetsuo Mochida
哲雄 持田
Atsushi Kamibayashi
厚志 上林
Hassane Ousalem
ハッサン ウサレム
Yasumasa Miyauchi
靖昌 宮内
Toshio Yonezawa
敏男 米澤
Tateo Mitsui
健郎 三井
Kazumasa Inoue
和政 井上
Yosaku Ikeo
陽作 池尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2009138638A priority Critical patent/JP2010285764A/ja
Publication of JP2010285764A publication Critical patent/JP2010285764A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Abstract

【課題】鋼材の腐食を抑制することを目的する。
【解決手段】柱14を構成する硬化体20は、普通コンクリートと比較して、補強鋼材22の防錆効果を呈するアルカリ性が弱い。この対策として硬化体20の表面に遮蔽材24を設け、硬化体20に埋設された補強鋼材22の錆の発生を抑制している。従って、補強鋼材22の強度低下を低減しつつ、弱アルカリコンクリートで硬化体20を形成することができる。
【選択図】図2

Description

本発明は、構造部材、及び構造部材を有する構造物に関する。
一般的に、建築構造物では鉄筋コンクリートが多用されている。鉄筋コンクリートは、鉄筋及びコンクリートの複合材料である。このコンクリートは、水、セメント、骨材(細骨材、粗骨材)及び各種の混和材から構成されている。セメントには、石灰石、ケイ石等の原料を細かく砕いたものを、約1450℃の高温で焼成したポルトランドセメントが一般的に用いられる。
ここで、ポルトランドセメントの焼成には、多量のエネルギーを消費するだけでなく、焼成に伴って多量の二酸化炭素が発生するため、省エネ化や地球温暖化等への環境対策が求められている。
環境対策としては、高炉スラグ微粉末を用いた高炉セメント(JISR5211)が知られている。この高炉セメントは、ポルトランドセメントの一部を高炉スラグ微粉末(高炉で銑鉄を製造する際に生成される副産物)で置換したものであり、高炉スラグ微粉末の分量によってA種(5〜30質量%)、B種(30〜60質量%)、C種(60〜70質量%)に分類されている。このようにポルトランドセメントを高炉スラグ微粉末で置換することで、石灰石等の原料の消費量を削減することができ、更に、二酸化炭素の排出量を実質的に削減することができる。
しかしながら、ポルトランドセメントの分量を減らすと、ポルトランドセメントの水和反応によって生成される水酸化カルシウム等のアルカリ性物質が減少する。従って、高炉セメントを用いた鉄筋コンクリート造の構造部材では鉄筋等の鋼材が腐食し易く、鋼材腐食に伴う体積膨張によってひび割れの発生が懸念される。そのため、高炉セメント、特に高炉セメントC種は、柱や梁等の構造部材として利用し難いのが実情である。
一方、特許文献1には、大気中の二酸化炭素を吸収する二酸化炭素固定化構造部材が提案されている。この二酸化炭素固定化構造部材には、その内部へ大気を導く通気孔が形成されており、この通気孔から供給された大気中の二酸化炭素がコンクリートに吸収される。
ところで、二酸化炭素固定化構造部材中の水酸化カルシウムが二酸化炭素と反応すると炭酸カルシウムに変化し、アルカリ性が失われて鉄筋等の鋼材の防錆効果が低下してしまう。この対策として特許文献1の二酸化炭素固定化構造部材では、吸収された二酸化炭素と鉄筋付近の水酸化カルシウムが反応しないように、鋼材から離れた位置に上記の通気孔を形成している。そのため、大気中の二酸化炭素を二酸化炭素固定化構造部材に固定化しつつ、鋼材の腐食を抑制することができる。
この特許文献1は、大気中の二酸化炭素を二酸化炭素固定化構造部材に固定化することを目的とするため、通気孔の存在が前提となっている。また、二酸化炭素固定化構造部材はポルトランドセメントを用いて製造するため、その製造工程(ポルトランドセメントの焼成)において多量の二酸化炭素が発生する。
特開2007−246375号公報
本発明は、上記の事実を考慮し、補強鋼材の腐食を抑制することを目的する。
請求項1に記載の構造部材は、高炉スラグ微粉末を60質量%以上含有する水硬性セメントが水和反応して硬化した硬化体と、前記硬化体に埋設された補強鋼材と、前記補強鋼材の錆を抑制する防錆手段と、を備えている。
上記の構成によれば、構造部材は、水硬性セメントが水和反応して硬化した硬化体を備えている。水硬性セメントは、高炉スラグ微粉末を60質量%以上含有している。このように高炉スラグ微粉末を多く含有することにより、石灰石等の原料の消費量を低減することができる。更に、石灰石等の原料の消費量が少なくなるため、石灰石の熱分解や燃焼による二酸化炭素の排出量を低減することができる。
一方、高炉スラグ微粉末の含有量が多い本発明の硬化体は、普通コンクリートと比較して、鉄筋等の防錆効果を呈するアルカリ性が弱い。この対策として本願発明は、防錆手段を設け、硬化体に埋設された補強鋼材の錆の発生を抑制している。従って、補強鋼材の強度低下を低減しつつ、硬化体で構造部材を構成することができる。よって、製造エネルギー、及び二酸化炭素の排出量を実質的に低減することができる。
請求項2に記載の構造部材は、請求項1に記載の構造部材において、前記防錆手段が、前記補強鋼材の表面を覆う防錆材である。
上記の構成によれば、補強鋼材の表面が防錆材で覆われている。このように、防錆材で補強鋼材の表面を覆うことにより、単純な構成で、補強鋼材の腐食を抑制することができる。
請求項3に記載の構造部材は、請求項1に記載の構造部材において、前記防錆手段が、前記硬化体の表面を覆い、該硬化体内への大気の浸透を抑制する遮蔽材である。
上記の構成によれば、硬化体の表面が遮蔽材で覆われている。この遮蔽材によって硬化体内への大気の浸透が抑制されるため、補強鋼材の酸化反応が抑制される。よって、補強鋼材の腐食を抑制することができる。
請求項4に記載の構造部材は、請求項1に記載の構造部材において、前記防錆手段が、前記硬化体の表層に設けられ、該表層へ浸透する酸素と酸化反応する金属材料である。
上記の構成によれば、硬化体の表層には、金属材料が設けられている。この金属材料が酸素と酸化反応(腐食)することにより、硬化体の表層へ浸透する酸素を消費する。従って、硬化体の内部へ浸透する酸素が減少するため、補強鋼材の腐食が抑制される。
請求項5に記載の構造物は、請求項1〜4の何れか1項に記載の構造部材を有している。
上記の構成によれば、請求項1〜4の何れか1項に記載の構造部材を有することで、鋼材の腐食を抑制しつつ、製造エネルギー及び二酸化炭素の排出量が低減された構造物を構築することができる。
本発明は、上記の構成としたので、補強鋼材の腐食を抑制することができる。
本発明の第1実施形態に係る構造部材が適用された構造物を示す平面図である。 本発明の第1実施形態に係る柱を示す断面図である。 本発明の第2実施形態に係る柱を示す断面図である。 本発明の第3実施形態に係る柱を示す断面図である。 参考例に係る柱を示す斜視図である。 (A)は、本発明の第1実施形態が適用された床を示す、厚さ方向の断面図であり、(B)は、本発明の第2実施形態が適用された床を示す、厚さ方向の断面図である。 本発明の第1、第3実施形態が適用された床を示す、厚さ方向の断面図である。 (A)及び(B)は、本発明の第3実施形態が適用された床を示す、厚さ方向の断面図である。
以下、図面を参照しながら、本発明の実施形態に係る構造部材について説明する。
先ず、第1実施形態に係る構造部材について説明する。図1は、構造物12の一部を示す概略平面図であり、構造物12を構成する柱14、梁16、及び床18が示されており、図2には、第1実施形態に係る構造部材としての柱14の断面図(柱14の材軸と直交する断面)が示されている。
構造部材としての柱14は、硬化体20と、この硬化体20に埋設される補強鋼材22と、硬化体20の表面を覆う遮蔽材(防錆手段)24と、を備えている。硬化体20は、後述する弱アルカリコンクリートが硬化したものであり、角柱形状に形成されている。
補強鋼材22は、鉄筋、PC鋼線、又はPC鋼棒等の鋼材からなり、硬化体20の材軸方向に沿って複数(図2では、12本)配筋されており、硬化体20に作用する引張り力を負担する。これらの補強鋼材22はせん断補強筋26によって連結され、補強されている。
ここで、硬化体20の表面は、遮蔽材24によって覆われている。この遮蔽材24は、硬化体20の表面に塗布されたエポキシ樹脂塗料等によって形成されており、この遮蔽材24によって硬化体20の全表面が被膜され、硬化体20内への大気の浸透が抑制(遮蔽)されている。これにより、硬化体20に埋設された補強鋼材22及びせん断補強筋26の酸化が抑制され、即ち、補強鋼材22及びせん断補強筋26の腐食が抑制されている。
次に、第1実施形態に係る構造部材の作用について説明する。
建築構造物ではコンクリートが多用されており、我が国のセメント(ポルトランドセメント)の年間生産量は、約6000〜7000万tに昇っている。このポルトランドセメントの製造時に発生する二酸化炭素は、1t当たりの焼成エネルギーで約350kg/t、原材料の石灰石から約450kg/t、合計約750kg/tと非常に膨大な量となっており、我が国の産業分野全体の約4%を占めている。そこで、近年の省エネルギー化や地球温暖化等の環境対策として、高炉で銑鉄を製造した際に副産物として生成される高炉スラグを用いたセメントが提案されている。具体的には、高炉セメント、高硫酸塩スラグセメント等が挙げられる。これらのセメントは、ポルトランドセメントを高炉スラグ微粉末で置換することにより、ポルトランドセメントの主材料となる石灰石、ケイ石等の原料の消費量を削減すると共に、石灰石等の焼成時に発生する二酸化炭素の排出量を実質的に削減している。
更に、高炉スラグ微粉末に、無水石膏を添加すると共に、高炉スラグ微粉末のアルカリ反応を促進させるアルカリ刺激材として、再生コンクリート微粉末を用いることで、水酸化カルシウム、水酸化ナトリウム、炭酸ナトリウム等の工業材料の消費量を削減している。
しかしながら、ポルトランドセメントの分量を減らすと、ポルトランドセメントの水和反応によって生成される水酸化カルシウム等のアルカリ性物質が減少する。従って、これらの高炉セメントC種、高硫酸塩スラグセメント等を用いた鉄筋コンクリート造の構造部材は、普通コンクリートと比較して中性化が速く、鉄筋等の鋼材の表面に形成された不動態皮膜が破壊され易い。従って、鋼材が腐食し始めるまでの時間が短くなり、鋼材の寿命が短くなる。また、鋼材が腐食すると、その体積膨張によって構造部材のひび割れ等が懸念される。従って、構造部材として利用し難いのが実情である。
この対策として、本実施形態の柱14には、硬化体20の表面を覆う遮蔽材24が設けられている。この遮蔽材24によって硬化体20内へ浸透する大気を抑制したことにより、補強鋼材22及びせん断補強筋26の酸化反応、即ち、腐食が抑制されている。従って、腐食による補強鋼材22の断面欠損(強度低下)を低減しつつ、普通コンクリートよりも防錆効果に劣る弱アルカリコンクリートで硬化体20を形成することができる。よって、従来の鉄筋コンクリート造の柱と同等の強度、耐力を保持しつつ、製造エネルギー、及び二酸化炭素の排出量を実質的に低減することができる。
また、本実施形態では、硬化体20の表面に塗布されたエポキシ樹脂塗料によって遮蔽材24を形成することにより、柱14の構成を単純化することができる。従って、柱14の製造性を向上させることができる。
なお、遮蔽材24は、硬化体20の全表面を覆っても良いし、表面の一部を覆っても良い。遮蔽材24は、補強鋼材22のかぶり厚(硬化体20の表面から補強鋼材22までの距離)に応じて適宜設ければ良い。特に、かぶり厚が小さくなる部位に設けることが効果的である。
また、本実施形態では、遮蔽材24をエポキシ樹脂塗料で形成したがこれに限らない。遮蔽材24は、硬化体20へ浸透する大気を抑制できる材料であれば良く、例えば、各種の樹脂材料、仕上げ塗料やセメント系左官材料、低通気性のタイルや壁紙等の仕上げ材、鋼板を用いても良い。また、硬化体20の表面を覆うものではないが、防錆手段として硬化体20の表層から余剰水を除去して水セメント比を低減し、硬化体20の表層を緻密化して、大気の浸透を抑制することも可能である。
なお、普通コンクリートとは、ポルトランドセメント、又は高炉スラグ微粉末を主成分(高炉スラグ微粉末の含有量が60質量%未満)とした水硬性セメントに、水、混和材料、骨材(細骨材、粗骨材)等を混ぜ合わせ、水との水和反応によって硬化したコンクリートである。ポルトランドセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、低熱ポルトランドセメント等の各種のポルトランドセメントや、高炉セメント、フライアッシュセメント、シリカセメント等の各種の混合セメント等が挙げられる。
次に、第2実施形態に係る構造部材について説明する。なお、第1実施形態と同じ構成のものは同符号を付すると共に、適宜省略して説明する。
図3には、構造部材としての柱14の断面図(柱14の材軸と直交する断面)が示されている。硬化体20の表層20Aには金属材料(防錆手段)28が設けられている。この金属材料28が設けられた領域は、硬化体20の内部20Bへの大気(酸素)の浸透を低減する酸素遮断層とされている。
金属材料28は、例えば、鉄粉、鉄繊維、又は鉄よりもイオン化傾向が大きい金属(例えば、アルミニウム、亜鉛等)、若しくはこれらの組み合わせた材料が用いられる。この金属材料28が、硬化体20の表層20Aへ浸透する大気中の酸素と酸化反応(腐食)し、当該酸素を消費する。これにより、硬化体20の内部20Bへ浸透する酸素が減少し、補強鋼材22の腐食が抑制されている。
なお、硬化体20の表層20Aとは、硬化体20の外周部であって、硬化体20の表面と補強鋼材22との間の部位を指し、硬化体20の内部20Bとは、表層よりも内側の部位を差す。また、図3では、表層20Aに金属材料28が部分的に示されているが、金属材料28は、表層20A全体に設けられている。
ここで、柱14の製造方法は、例えば、硬化した内部20Bが設置された型枠内に、金属材料28が混入された弱アルカリコンクリートを打設し、内部20Bの周囲に表層20Aを形成する。若しくは、先ず、中空形状(環状形状)の表層20A内に、補強鋼材22等を配筋すると共に、弱アルカリコンクートを打設し、内部20Bを形成する。この場合、表層20Aと内部20Bとの境界面に、表層20Aと内部20Bとの付着性、一体性を高めるためのコッター、スタッド等を適宜設けても良い。なお、上記した柱14の製造方法は一例であって、種々の方法によって柱14を製造することができる。
次に、第2実施形態に係る構造部材の作用について説明する。
硬化体20の表層20Aには金属材料28が設けられている。この金属材料28が、硬化体20の表層20Aへ浸透する大気中の酸素と酸化反応(腐食)し、当該酸素を消費する。これにより、硬化体20の内部20Bへ浸透する酸素が減少し、補強鋼材22の腐食が抑制される。従って、補強鋼材22の強度低下を低減しつつ、普通コンクリートよりも防錆効果に劣る弱アルカリコンクリートで硬化体20を形成することができる。よって、従来の鉄筋コンクリート造の柱と同等の強度、耐力を保持しつつ、製造エネルギー、及び二酸化炭素の排出量を実質的に低減することができる。
また、硬化体20の表層20Aをプレキャスト化し、型枠(外殻プレキャスト型枠)として用いることにより、現場での内部20Bの型枠が不要となるため、施工性が向上する。
なお、金属材料28は、表層20Aの全体に設けても良いし、表層20Aの一部に設けても良い。金属材料28は、補強鋼材22のかぶり厚(硬化体20の表面から補強鋼材22までの距離)に応じて適宜設ければ良い。特に、かぶり厚が小さくなる部位に設けることが効果的である。また、金属材料28の分量を増減することにより、硬化体20の内部20Bへ浸透する酸素量を調整することができる。
なお、せん断補強筋26についても必要に応じて、後述する防錆材32で防錆しても良い。
次に、第3実施形態に係る構造部材について説明する。なお、第1、第2実施形態と同じ構成のものは同符号を付すると共に、適宜省略して説明する。
図4には、構造部材としての柱14の断面図(柱14の材軸と直交する断面)が示されている。硬化体20に埋設された補強鋼材22の表面は、エポキシ樹脂塗料の防錆材(防錆手段)32によって覆われている。この防錆材32によって、補強鋼材22の腐食が抑制されている。
次に、第3実施形態に係る構造部材の作用について説明する。
補強鋼材22の表面は、防錆材32によって覆われており、この防錆材32によって補強鋼材22の腐食が抑制されている。従って、補強鋼材22の強度低下を低減しつつ、普通コンクリートよりも防錆効果に劣る弱アルカリコンクリートで硬化体20を形成することができる。よって、従来の鉄筋コンクリート造の柱と同等の強度、耐力を保持しつつ、製造エネルギー、及び二酸化炭素の排出量を実質的に低減することができる。
なお、防錆材32は、エポキシ樹脂塗料に限らず、例えば、鉛系錆止め(鉛丹、ジンクロメート、シアナミド鉛、亜酸化鉛)、ジンクリッチペイント錆止め、各種のメッキ(ステンレスメッキ、亜鉛メッキ)等を用いることができる。特に、亜鉛メッキ鉄筋は、弱アルカリコンクリートに適している。亜鉛メッキ鉄筋は、鉄よりもイオン化傾向が高い亜鉛を優先的に腐食させ、鉄の腐食を抑制するという犠牲陽極作用を有している。この犠牲陽極作用は、アルカリ性が強い普通コンクリート中(PH12.6以上、通常PH13.5以上)においても発現し得る。従って、普通コンクリートが中性化する過程において全ての亜鉛が腐食、溶解してしまい、普通コンクリートが中性化され、鉄筋が腐食し易い環境が形成されたときに、犠牲陽極作用を奏しないことがある。これに対して、弱アルカリコンクリートは、普通コンクリートよりも中性化の速度が速い。従って、弱アルカリコンクリートが中性化する過程において全ての亜鉛が腐食、溶解する可能性は低く、弱アルカリコンクリートが中性化した後も、犠牲陽極作用を奏することができる。従って、亜鉛メッキ鉄筋は、普通コンクリートよりも弱アルカリコンクリートに適している。
また、ステンレス鉄筋は、クロム等の酸化反応によって生成された不動態皮膜を備えるステンレスによって鉄筋が被膜されているため、高い耐食性を有している。
また、補強鋼材22の表面を耐候性鋼等で覆い、若しくは、補強鋼材22自体を耐候性鋼で構成して防錆しても良い。耐候性鋼とは、表面に保護性錆が形成されるように設計された低鉄合金鋼である。塗装等をせずに使用しても耐食性に優れており、表面に形成される保護性錆は緻密で、鋼材内部まで腐食が進行し難くなっている。
また、参考までに、補強鋼材22に替えて、炭素繊維、ガラス繊維、有機繊維(ポリピロピレン、ビニロン、アラミド等)等をエポキシ樹脂、ビニルエステル樹脂、熱可塑性樹脂などの収束材で収束した連続繊維補強材を使用することもできる。例えば、図5に示されるように、硬化体20には、柱14の材軸方向に沿って複数(図5では、4本)の連続繊維補強材60が埋設されている。これらの連続繊維補強材60は、せん断補強筋26によって補強されている。ここで、連続繊維補強材60は耐食性が高く、腐食による強度低下が少ない。従って、普通コンクリートよりも防錆効果に劣る硬化体20に埋設することが可能であり、柱14の強度、耐力を保持することができる。
なお、上記第1〜3実施形態では柱14を例に説明したが、梁、柱、床、壁、ブレース、コンクリートブロック、レンガ等の種々の構造部材に適用可能である。例えば、図6(A)には、上記第1実施形態が適用された床18の断面図(床18の厚さ方向の断面)が示されている。構造部材としての床18には、硬化体40と、この硬化体40に埋設された補強鋼材22と、硬化体40の表面を覆う遮蔽材(防錆手段)42と、を備えている。硬化体40は、弱アルカリコンクリートが硬化したものであり、板状(版状)に形成されている。なお、床18は、H型鋼ならなる梁19によって支持されている。
硬化体40の表面は、遮蔽材42によって覆われている。この遮蔽材42は、硬化体40の上面及び下面に塗布されたエポキシ樹脂塗料等によって形成されており、この遮蔽材24によって硬化体40の上面及び下面が被膜され、硬化体40内への大気の浸透が抑制(遮蔽)されている。これにより、硬化体40に埋設された補強鋼材22及びせん断補強筋26の酸化が抑制され、即ち、補強鋼材22及びせん断補強筋26の腐食を抑制することができる。
また、図6(B)には、上記第2実施形態が適用された床18の断面図が示されている。硬化体40の表層40Aには金属材料(防錆手段)28が設けられ、硬化体40の内部40Bへの酸素の浸透を低減する酸素遮断層とされている。この金属材料28が、硬化体40の表層40Aへ浸透する大気中の酸素と酸化反応(腐食)し、当該酸素を消費する。これにより、硬化体40の内部40Bへ浸透する酸素が低減され、補強鋼材22の腐食が抑制されている。
また、上記第1〜3実施形態に係る構造部材には、現場打ち工法、プレキャスト工法、ハーフプレキャスト工法等の種々の工法を適用することができる。例えば、図7には、ハーフプレキャスト工法で施工された床180の断面図が示されている。
図7に示される床(構造部材)180は、プレキャスト化された硬化体182と、この硬化体182の上に弱アルカリコンクリートを打設して構築された硬化体184と、を備えており、H型鋼ならなる梁185の上に載置されている。硬化体182は弱アルカリコンクリートが硬化したものであり、工場等において製造されている。この硬化体182の下面には、鋼板からなる遮蔽材(防錆手段)186が設けられている。この遮蔽材186は、硬化体182の表面を保護すると共に、床180に作用する引張り力、曲げモーメント等を負担している。また、この遮蔽材186によって、硬化体182の下面から硬化体182内へ浸透する大気が抑制されている。なお、遮蔽材186の硬化体182との接触面には、防錆材等によって防錆処理を施すことが望ましい。また、遮蔽材186は適宜省略可能である。
この硬化体182の上には、現場において鉄筋188及びせん断補強筋190が配筋されると共に、硬化する前の弱アルカリコンクリートが打設され、硬化体184が構築される。鉄筋188の表面には、防錆材191が塗布されており、腐食が抑制されている。なお、せん断補強筋190につても防錆材等によって防錆処理を施すことが望ましい。
一方、図8(A)に示される床(構造部材)196は、プレキャスト化された硬化体192と、この硬化体192の上に弱アルカリコンクリートを打設して構築された硬化体194と、を備えており、H型鋼ならなる梁185の上に載置されている。プレキャスト化された硬化体192には、PC鋼線、PC鋼棒等からなるPC鋼材195が埋設されている。このPC鋼材195は、張力が付与された状態で硬化体192に埋設されている。これにより、硬化体192にプレストレス(圧縮力)が導入されている。なお、PC鋼材195の表面には、防錆材191が塗布されており、PC鋼材195の腐食が抑制されている。このPC鋼材195によるプレストレスは、プレテンションでも良いし、ポストテンションでも良い。
硬化体192の上には、現場において鉄筋188及びせん断補強筋190が配筋されると共に、硬化する前の弱アルカリコンクリートが打設され、硬化体198が構築されている。
また、図8(B)に示される床(構造部材)200は、プレキャスト化された普通コンクリート202と、この普通コンクリート202の上に弱アルカリコンクリートを打設して構築された硬化体204と、を備えている。普通コンクリート202は、一般的な鉄筋コンクリート造とされており、鉄筋206及びせん断補強筋208が埋設されている。なお、普通コンクリート202は、アルカリ性が強く(PH12.6以上、通常PH13.5以上)、硬化体204と比較して中性化までの時間が長いため、鉄筋206及びせん断補強筋208の防錆処理を省略することが可能である。
この普通コンクリート202の上には、現場において鉄筋210及びせん断補強筋212が配筋されると共に、硬化する前の弱アルカリコンクリートが打設され、硬化体204が構築される。なお、鉄筋210の表面には、エポキシ樹脂塗料等の防錆材191が塗布されており、鉄筋210の腐食が抑制されている。
このように、ハーフプレキャスト工法を適用することにより、現場における型枠の仮設作業や、撤去作業等を減らすことができるため、施工性が向上する。また、普通コンクリート202と硬化体204とを適宜組み合わせて、一つの構造部材を構成することも可能である。
また、上記第1〜第3実施形態では、硬化体を弱アルカリコンクリート(コンクリート硬化体)で形成したが、普通コンクリートよりもアルカリ性が弱いモルタル硬化体又はグラウト硬化体で形成しても良い。
更に、上記第1〜第3実施形態は、種々の構造部材に適用することができる。また、例えば、上記第1〜第3実施形態を梁に適用した場合は、当該梁自体が本発明の権利範囲に含まれる。更には、現場打ち工法、プレキャスト工法等の種々の工法を用いることができる。また、これらの構造部材は、構造物の一部に用いても良いし、構造物の全てに用いても良い。更に、種々の構造の新築構造物や改修構造物に適用することができる。なお、構造物とは、建築構造物、及び土木構造物(例えば、橋梁、ダムなど)を含む概念である。
<第二硬化体>
次に、第二硬化体(弱アルカリコンクリート(コンクリート硬化体)、モルタル硬化体、グラウト硬化体)について説明する。
第二硬化体には、高炉スラグ微粉末を60質量%以上含有する水硬性セメントが水和反応して硬化した硬化体である。この水硬性セメントとしては、例えば、高炉スラグセメントC種、高硫酸塩スラグセメントや、高炉スラグ微粉末に、石膏、及びアルカリ刺激材を添加したものを用いることができる。このように、高炉スラグ微粉末が60質量%と高い含有率を占める水硬性セメントを用いることにより、セメント製造時における二酸化炭素の排出量を抜本的に削減することができる。
第二硬化体としては、コンクリート硬化体、モルタル硬化体、グラウト硬化体が挙げられる。弱アルカリコンクリートは、前述の水硬性セメント、水、細骨材、粗骨材、混和材料等を含有する組成物が、水硬性セメントの水和反応によって硬化したものである。モルタル硬化体は前述の水硬性セメント、水、細骨材(砂)等を含有し、グラウト硬化体は前述の水硬性セメント、水を含有し、何れも水硬性セメントの水和反応によって硬化した硬化体である。
従来、用いる高炉スラグ微粉末の粉末度や置換率がコンクリート組成物に及ぼす影響について報告されている(例えば、「高炉スラグ微粉末を用いたコンクリートの技術の現状」、日本建築学会編、1992年、3頁)。ここでは、普通ポルトランドセメントに対する高炉スラグ微粉末の使用量が多くなると、普通ポルトランドセメント単独使用に比べて、初期強度が低下し、中性化が早くなり、乾燥収縮が大きくなる等、コンクリート物性のマイナス傾向が顕著になることが報告されている。別に、かかる高炉スラグ微粉末等に加えて各種の混和材を用いたいくつかの提案も報告されている(例えば、特開昭62−158146号公報、特開昭63−2842号公報、特開平1−167267号公報、特開平10−114555号公報、特開2000−143326号公報、特開2003−306359号公報、特開2005−281123号公報、特開2007−217197号公報、特開2007−297226号公報)。しかし、これらの従来提案には実際のところ、高炉スラグ微粉末の使用量を多くすると、1)良好な施工性を確保できない、2)硬化体の乾燥収縮率を抑えることが難しい、3)硬化体の圧縮強度の低下が大きい等、何らかの点で重大な支障をきたすという問題がある。
これに対して、以下に説明する本実施形態に係る第二硬化体は、高炉スラグ微粉末の使用割合を高くすることにより二酸化炭素の排出量を抑制しつつ、1)調製したコンクリート組成物の経時的な流動性の低下や空気量の低下を抑えて良好な施工性を確保すること、2)得られる第二硬化体の乾燥収縮率が高炉セメントB種を用いた場合に比べて大きくならないようにすること、3)得られる第二硬化体の必要な強度を発現すること、以上の1)〜3)の基本的な諸性能を同時に発現することができる。
なお、硬化体は、普通コンクリートと比較して中性化速度が速く、鉄筋等の防錆作用を呈する期間が短くなる傾向があるが、上記実施形態に係る構造部材では、防錆手段によって硬化体に埋設された補強鋼材の錆を抑制している。従って、硬化体の中性化を抑制することは特に必要としない。
以下、第二硬化体として、弱アルカリコンクリートの具体例を挙げて説明する。以下に説明する弱アルカリコンクリートは、建設現場で打設されるコンクリート組成物としてだけでなく、コンクリート製品工場で加工される二次製品用のコンクリート組成物としても適用できる。
<第1の弱アルカリコンクリート>
先ず、第1の弱アルカリコンクリートについて説明する。なお、ここでは、弱アルカリコンクリートをコンクリート組成物といい、水硬性セメントを高炉スラグ組成物という場合がある。
第1の弱アルカリコンクリートは、少なくとも、結合材、水、細骨材、粗骨材及び混和材を含有して成るコンクリート組成物であって、結合材として下記の高炉スラグ組成物(水硬性セメント)を用い、且つ水/該高炉スラグ組成物の質量比を30〜60%に調製して成る。
高炉スラグ組成物:粉末度が3000〜13000cm/gの高炉スラグ微粉末を80〜95質量%及び石膏を5〜20質量%(合計100質量%)の割合で含有する混合物100質量部当たり、解体コンクリートから分離した水酸化カルシウム含有率が3〜15質量%の再生コンクリート微粉末を3〜15質量部の割合で添加した高炉スラグ組成物。
即ち、コンクリート組成物は、少なくとも、結合材、水、細骨材、粗骨材及び混和材を含有して成るものである。本発明のコンクリート組成物は結合材として特定の高炉スラグ組成物を用いたものであり、かかる高炉スラグ組成物は、粉末度が3000〜13000cm/gの高炉スラグ微粉末を80〜95質量%及び石膏を5〜20質量%(合計100質量%)の割合で含有する混合物100質量部当たり、解体コンクリートから分離した水酸化カルシウム含有率が3〜15質量%の再生コンクリート微粉末を3〜15質量部の割合で添加したものである。
高炉スラグ微粉末は、粉末度が3000〜13000cm/gのものを使用するが、好ましくは3000〜8000cm/gのものを使用し、より好ましくは3500〜6500cm/gのものを使用する。粉末度が3000〜13000cm/gの範囲を外れたものを使用すると、調製したコンクリート組成物の流動性が悪くなったり、得られる硬化体の強度発現が低下したりする。なお、粉末度はブレーン法(JIS R 5201(1997年)による比表面積で表したものである。また、粉末度は、高炉水砕スラグを粉砕する時の粉砕方法、粉砕条件や粉砕後の分級により制御することができる。
また石膏としては、無水石膏、二水石膏、半水石膏が挙げられるが、無水石膏が好ましい。無水石膏としては、それを90質量%以上の純度で含有するものであれば使用でき、天然無水石膏や副産無水石膏等を使用できる。粉末度は、3000〜8000cm/gのものが好ましく、3500〜6500cm/gのものがより好ましい。
再生コンクリート微粉末としては、粉末度が2000〜7000cm/gのものを使用するのが好ましい。また水酸化カルシウム含有率が3〜15質量%のものを使用するが、好ましくは6〜12質量%のものを使用する。解体コンクリートから分離する方法は特に限定されず、これには例えば、破砕機を用いて破砕する方法や破砕物どうしを機械ですりもむ方法が挙げられる。
解体コンクリートから分離された再生コンクリート微粉末は、例えば、解体コンクリートから粗骨材や細骨材を取り除くことにより得ることができる。このとき解体コンクリートから分離された粗骨材や細骨材も再生品として使用することができる。
解体コンクリートから分離した再生コンクリート微粉末であって、水酸化カルシウムを上記の含有率で含む再生コンクリート微粉末を得る手段としては、機械擦りもみ方式が好ましく、機械擦りもみ方式のなかでは偏心ロータ方式がより好ましい。以下、このような再生コンクリート微粉末の製造方法について説明する。
本実施形態における好ましい再生コンクリート微粉末は、加熱を行わない機械擦りもみ方式により製造されることが、製造時の二酸化炭素の削減及び得られる微粉末の品質にばらつきがないという観点から好適である。特に、偏心ロータ方式や遊星ミル等の機械擦りもみ装置で製造する際に、機械すりもみプロセスを密閉された空間内で行い、空間内の空気中のCOを除去する方法、或いは、チッソガスなどの不活性ガスを封入する方法をとることで、処理中の炭酸化による水酸化カルシウム含有率の減少を抑制した再生コンクリート微粉末は本発明における如き、アルカリ刺激材として使用するのに最適な水酸化カルシウム含有率の微粉末を得ることができる。
他方、解体コンクリート塊をジョークラッシャーやインペラーブレーカー等の破砕機を用いて破砕する方法においては、骨材とモルタル・ぺーストが同時に破砕されるため、再生コンクリート微粉末中に骨材粉が多くなり易く、また、微粉中の骨材粉とモルタル・ぺースト粉の比率もコンクリートの配(調)合によっては相当変化することとなり、高炉スラグ微粉末のアルカリ刺激材として用いるには、品質のコントロールが極めて困難であり、また、加熱と機械擦りもみによって骨材を取り出す加熱すりもみ方式で製造した微粉末は骨材粉が少なく、アルカリ刺激材として適しているものの、加熱によって解体コンクリート中の水和物が変化する懸念があり、また、製造エネルギーが大きくなり、セメント製造時のCOを削減するという観点からも好適とは言い難い。
細骨材としては、公知の川砂、砕砂、山砂等を使用でき、粗骨材としては、公知の川砂利、砕石、軽量骨材等を使用できる。
このコンクリート組成物では、水/高炉スラグ組成物の質量比を30〜60%に調製するが、好ましくは35〜55%に調製する。かかる質量比が60%より大きいと、得られる硬化体の乾燥収縮が大きくなり過ぎたり、強度の低下が著しくなる。逆に、かかる質量比が30%より小さいと、調製したコンクリート組成物の流動性や空気量の経時的な低下が大きくなり、施工性が低下する。尚、水/高炉スラグ組成物の質量比は、(用いた水の質量/用いた高炉スラグ組成物の質量)×100で求められるものである。
混和材としては、従来公知のコンクリート用に用いられるものが挙げられる。これには例えば、セメント分散剤、乾燥収縮低減剤、膨張材等が挙げられる。このコンクリート組成物では、セメント分散剤と乾燥収縮低減剤を、またセメント分散剤と膨張材を、更にはセメント分散剤と乾燥収縮低減剤と膨張材を混和材として使用することができる。
セメント分散剤としては、リグニンスルホン酸塩、グルコン酸塩、ナフタレンスルホン酸ホルマリン高縮合物塩、メラミンスルホン酸ホルマリン高縮合物塩、ポリカルボン酸系の水溶性ビニル共重合体等が挙げられる。なかでも、セメント分散剤としては、ポリカルボン酸系の水溶性ビニル共重合体が好ましく、その構成単位の種類や組成比率及び分子量等の適切なポリカルボン酸系の水溶性ビニル共重合体がより好ましい。かかるポリカルボン酸系の水溶性ビニル共重合体としては、メタクリル酸(塩)から形成された単位を構成単位にもつ共重合体(例えば特開昭58−74552号公報、特開平1−226757号公報等に記載されているもの)、またマレイン酸(塩)から形成された単位を構成単位にもつ共重合体(例えば特開昭57−118058号公報、特開昭63−285140号公報、特開2005−132956号公報等に記載されているもの)が挙げられるが、そのなかでもセメント分散剤としては、メタクリル酸(塩)から形成された単位を構成単位にもつ水溶性ビニル共重合体がより好ましく、分子中に下記の構成単位Aを45〜85モル%、下記の構成単位Bを15〜55モル%及び下記の構成単位Cを0〜10モル%(合計100モル%)の割合で有する質量平均分子量2000〜80000(GPC法、プルラン換算、以下同じ)の水溶性ビニル共重合体が特に好ましい。
構成単位A:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位B:分子中に5〜150個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位
構成単位C:(メタ)アリルスルホン酸塩から形成された構成単位及びメチルアクリレートから形成された構成単位から選ばれる一つ又は二つ以上
以上説明したポリカルボン酸系の水溶性ビニル共重合体からなるセメント分散剤それ自体は公知の方法で合成できる。それがメタクリル酸(塩)から形成された単位を構成単位にもつ共重合体の場合は、例えば特開昭58−74552号公報、特開平1−226757号公報等に記載されている方法で合成でき、またマレイン酸(塩)から形成された単位を構成単位にもつ共重合体の場合は、例えば特開昭57−118058号公報、特開2005−132956号公報、特開2008−273766号公報等に記載されている方法で合成できる。これらのポリカルボン酸系の水溶性ビニル共重合体からなるセメント分散剤の使用量は、高炉スラグ組成物100質量部当たり、0.1〜1.5質量部の割合とするのが好ましい。
乾燥収縮低減剤としては、公知のものを使用でき、特に限定されないが、ポリアルキレングリコールモノアルキルエーテルからなる乾燥収縮低減剤が好ましく、なかでもジエチレングリコールモノブチルエーテル及びジプロピレングリコールジエチレングリコールモノブチルエーテルから選ばれるものが好ましい。かかる乾燥収縮低減剤の使用量は、高炉スラグ組成物100質量部当たり、0.2〜4.0質量部の割合とするのが好ましい。
膨張材としては、公知のものを使用でき、大別してカルシウムスルホアルミネート系のものと石灰系のものとの2種類が挙げられる。いずれも水和反応によりエトリンガイト及び水酸化カルシウムを生成して膨張する無機系の混和材であり、コンクリート用膨張材として、JIS−A6202の規格を満足するものが好ましい。かかる膨張材の使用量は、コンクリート組成物1m当たり、10〜25kgの割合とするのが好ましい。
以下、第1の弱アルカリコンクリートの構成及び効果をより具体的にするため、実施例等を挙げるが、当該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。
(実施例)
試験区分1(水溶性ビニル共重合体の合成)
・水溶性ビニル共重合体(p−1)の合成
メタクリル酸60g、メトキシポリ(オキシエチレン単位数が23個、以下n=23とする)エチレングリコールメタクリレート300g、メタリルスルホン酸ナトリウム5g、3−メルカプトプロピオン酸4g及び水490gを反応容器に仕込んだ後、48%水酸化ナトリウム水溶液58gを加え、攪拌しながら部分中和して均一に溶解した。反応容器内の雰囲気を窒素置換した後、反応系の温度を温水浴にて60℃に保ち、過硫酸ナトリウムの20%水溶液25gを加えてラジカル重合反応を開始し、5時間反応を継続して反応を終了した。その後、48%水酸化ナトリウム水溶液23gを加えて反応物を完全中和し、メタクリル酸塩から形成された単位を構成単位にもつポリカルボン酸系の水溶性ビニル共重合体(p−1)の40%水溶液を得た。水溶性ビニル共重合体(p−1)を分析したところ、メタクリル酸ナトリウムから形成された構成単位/メトキシポリ(n=23)エチレングリコールメタクリレートから形成された構成単位/メタリルスルホン酸ナトリウムから形成された構成単位=70/27/3(モル%)の割合で有する質量平均分子量が33800の水溶性ビニル共重合体であった。
・水溶性ビニル共重合体(p−2)〜(p−4)及び(pr−1)〜(pr−4)の合成
水溶性ビニル共重合体(p−1)の合成と同様にして、水溶性ビニル共重合体(p−2)〜(p−4)及び(pr−1)〜(pr−4)を合成した。以上で合成した各水溶性ビニル共重合体の内容を表1にまとめて示した。
Figure 2010285764
表1において、
構成単位A〜C:各構成単位を形成することとなる単量体で表示した。
A−1:メタクリル酸ナトリウム
A−2:メタクリル酸
B−1:メトキシポリ(n=23)エチレングリコールメタクリレート
B−2:メトキシポリ(n=68)エチレングリコールメタクリレート
B−3:メトキシポリ(n=9)エチレングリコールメタアクリレート
C−1:メタリルスルホン酸ナトリウム
C−2:アリルスルホン酸ナトリウム
C−3:メチルアクリレート
試験区分2(高炉スラグ組成物の調製)
表2に記載の調合条件で、高炉スラグ微粉末、無水石膏、再生コンクリート微粉末を混合して高炉スラグ組成物を調製し、高炉スラグ組成物(S−1)〜(S−4)及び(R−1)〜(R−5)を得た。
Figure 2010285764
表2において、
sg−1:粉末度が4100cm/gの高炉スラグ微粉末
sg−2:粉末度が5900cm/gの高炉スラグ微粉末
sg−3:粉末度が1020cm/gの高炉スラグ微粉末
gp−1:粉末度が4150cm/gの無水石膏
gp−2:粉末度が5800cm/gの無水石膏
rc−1:粉末度が5860cm/g且つ水酸化カルシウム含有率が9.2%の再生コンクリート微粉末
rc−2:粉末度が4620cm/g且つ水酸化カルシウム含有率が6.5%の再生コンクリート微粉末
rc−3:粉末度が4350cm/g且つ水酸化カルシウム含有率が1.5%の再生コンクリート微粉末
試験区分3(コンクリート組成物の調製)
実施例1〜16
表3に記載の配合条件で、50リットルのパン型強制練りミキサーに、練り混ぜ水(水道水)、高炉スラグ組成物、細骨材(大井川水系産川砂、密度=2.58g/cm)の各所定量を投入し、またセメント分散剤、乾燥収縮低減剤、膨張材等の混和材の各所定量を投入して、更に空気量調節剤(竹本油脂社製のAE剤、商品名AE−300)を投入し、45秒間練り混ぜた。最後に、粗骨材(岡崎産砕石、密度=2.68g/cm)の所定量を投入し、60秒間練り混ぜて、目標スランプが18±1cm、目標空気量が4.5±1%とした水/高炉スラグ組成物比が45%又は40%のコンクリート組成物を調製した。
比較例1〜12
表3に記載の配合条件で、実施例と同様な練り混ぜ方法により、水/高炉スラグ組成物比が45%のコンクリート組成物を調製した。
比較例13及び14
表3に記載の配合条件で、実施例と同様な練り混ぜ方法により、高炉セメントB種を用いた水/高炉スラグ組成物比が45%又は50%のコンクリート組成物を調製した。
Figure 2010285764
表3において、
二酸化炭素排出量:コンクリート組成物1mを製造する場合の二酸化炭素の排出量(kg/コンクリート1m)。但し、石膏及び再生コンクリート微粉末の製造に必要なエネルギーに由来する二酸化炭素の排出量を除いて計算した値
セメント分散剤の種類:表1に記載した水溶性ビニル共重合体又は下記のP−5
P−5:ポリカルボン酸系の水溶性ビニル共重合体からなるセメント分散剤として、竹本油脂社製の商品名チューポールHP−11W(マレイン酸とα−アリル−ω−メチル−ポリオキシエチレンとの共重合体塩)
使用量:高炉スラグ組成物100質量部当たりの、セメント分散剤、乾燥収縮低減剤又は膨張材の固形分としての質量部
高炉スラグ組成物の種類:表2に記載したもの
*1:ジエチレングリコールモノブチルエーテル
*2:ジプロピレングリコールジエチレングリコールモノブチルエーテル
*3:太平洋マテリアル社製の商品名が太平洋ハイパーエクスパン(石灰系膨張材)
*4:高炉セメントB種(密度=3.04g/cm、ブレーン値3850cm/g)
試験区分4(調製したコンクリート組成物の評価)
調製した各例のコンクリート組成物について、空気量、スランプ、スランプ残存率を下記のように求めた。また各コンクリート組成物から得た硬化体について、乾燥収縮率及び圧縮強度を下記のように求めた。
・空気量(容量%):練り混ぜ直後のコンクリート組成物及び更に60分間静置後のコンクリート組成物について、JIS−A1128に準拠して測定した。
・スランプ(cm):空気量の測定と同時に、JIS−A1101に準拠して測定した。
・スランプ残存率(%):(60分間静置後のスランプ/練り混ぜ直後のスランプ)×100で求めた。
・乾燥収縮率:JIS−A1129に準拠し、各例のコンクリート組成物を20℃×60%RHの条件下で保存した材齢26週の供試体についてコンパレータ法により乾燥収縮ひずみを測定し、乾燥収縮率を求めた。この数値は小さいほど、乾燥収縮が小さいことを示す。
・圧縮強度(N/mm):各例のコンクリート組成物について、JIS−A1108に準拠し、材齢7日及び材齢28日で測定した。
結果を表4にまとめて示した。各実施例で調製したコンクリート組成物は、高炉セメントB種を用いた場合に比べて、コンクリート1mを製造するための二酸化炭素の排出量が少なく、またコンクリート組成物の経時的な流動性に優れ、得られる硬化体の乾燥収縮率が800×10−6よりも小さく、必要とされる充分な圧縮強度が得られている。
Figure 2010285764
表4において、
比較例2、3及び10〜12:目標とする流動性(スランプ値)が得られなかったので測定しなかった。
<第2の弱アルカリコンクリート>
次に、第2の弱アルカリコンクリートについて説明する。なお、ここでは、弱アルカリコンクリートをコンクリート組成物といい、水硬性セメントを高炉セメント組成物という場合がある。また、第1の弱アルカリコンクリートと同じものは適宜省略して説明する。
第2の弱アルカリコンクリートは、少なくとも、結合材、水、細骨材、粗骨材及び混和材を含有して成るコンクリート組成物であって、結合材として下記の高炉セメント組成物(水硬性セメント)を用い、且つ水/該高炉セメント組成物の質量比を30〜60%に調製して成る。
高炉セメント組成物:粉末度が3000〜13000cm/gの高炉スラグ微粉末を60〜90質量%、石膏を5〜20質量%及びポルトランドセメントを5〜35質量%(合計100質量%)の割合で含有する混合物100質量部当たり、解体コンクリートから分離した水酸化カルシウム含有率が3〜15質量%の再生コンクリート微粉末を10〜30質量部の割合で添加した高炉セメント組成物。
即ち、第2の弱アルカリコンクリートは、少なくとも、結合材、水、細骨材、粗骨材及び混和材を含有して成るものである。このコンクリート組成物は結合材として特定の高炉セメント組成物を用いたものであり、かかる高炉セメント組成物は、粉末度が3000〜13000cm/gの高炉スラグ微粉末を60〜90質量%、石膏を5〜20質量%及びポルトランドセメントを5〜35質量%(合計100質量%)の割合で含有する混合物100質量部当たり、解体コンクリートから分離した水酸化カルシウム含有率が3〜15質量%の再生コンクリート微粉末を10〜30質量部の割合で添加したものである。
ポルトランドセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント等が挙げられるが、汎用の普通ポルトランドセメントが好ましい。
また、コンクリート組成物では、水/高炉セメント組成物の質量比を30〜60%に調製するが、好ましくは35〜55%に調製する。かかる質量比が60%より大きいと、得られる硬化体の乾燥収縮が大きくなり過ぎたり、強度の低下が著しくなる。逆に、かかる質量比が30%より小さいと、調製したコンクリート組成物の流動性や空気量の経時的な低下が大きくなり、施工性が低下する。尚、本発明において水/高炉セメント組成物の質量比は、(用いた水の質量/用いた高炉セメント組成物の質量)×100で求められるものである。
混和材としては、従来公知のコンクリート用に用いられるものが挙げられる。これには例えば、セメント分散剤、乾燥収縮低減剤、膨張材等が挙げられる。このコンクリート組成物では、セメント分散剤と乾燥収縮低減剤を組み合せて、またセメント分散剤と膨張材を、更にはセメント分散剤と乾燥収縮低減剤と膨張材を組み合せて混和材として使用することができ、第1の弱アルカリコンクリートと同様のものを使用することができる。
なお、再生コンクリート微粉末、粗骨材、細骨材については、第1の弱アルカリコンクリートと同様のものを使用することができる。
以下、第2の弱アルカリコンクリートの構成及び効果をより具体的にするため、実施例等を挙げるが、当該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。
(実施例)
試験区分1(水溶性ビニル共重合体の合成)
・水溶性ビニル共重合体(p−1)〜(p−4)及び(pr−1)〜(pr−4)は、第1の弱アルカリコンクリートの実施例で示したものと同様の方法で合成を合成した。合成した各水溶性ビニル共重合体の内容は表1と同様である。
試験区分2(高炉セメント組成物の調製)
表5に記載の調合条件で、高炉スラグ微粉末、無水石膏、ポルトランドセメント及び再生コンクリート微粉末を混合して高炉セメント組成物を調製し、高炉セメント組成物(S−1)〜(S−5)及び(R−1)〜(R−6)を得た。
Figure 2010285764
表5において、
sg−1:粉末度が4100cm/gの高炉スラグ微粉末
sg−2:粉末度が5900cm/gの高炉スラグ微粉末
sg−3:粉末度が1020cm/gの高炉スラグ微粉末
gp−1:粉末度が4150cm/gの無水石膏
gp−2:粉末度が5800cm/gの無水石膏
pc−1:普通ポルトランドセメント
pc−2:早強ポルトランドセメント
rc−1:粉末度が5860cm/g且つ水酸化カルシウム含有率が9.2%の再生コンクリート微粉末
rc−2:粉末度が4620cm/g且つ水酸化カルシウム含有率が6.5%の再生コンクリート微粉末
rc−3:粉末度が4350cm/g且つ水酸化カルシウム含有率が1.5%の再生コンクリート微粉末
rc−4:、粉末度が1200cm/g且つ水酸化カルシウム含有率が6.1%の再生コンクリート微粉末
試験区分3(コンクリート組成物の調製)
実施例1〜17
表6に記載の配合条件で、50リットルのパン型強制練りミキサーに、練り混ぜ水(水道水)、高炉セメント組成物、細骨材(大井川水系産川砂、密度=2.58g/cm)の各所定量を投入し、またセメント分散剤、乾燥収縮低減剤、膨張材等の混和材の各所定量を投入して、更に空気量調節剤(竹本油脂社製のAE剤、商品名AE−300)を投入し、45秒間練り混ぜた。最後に、粗骨材(岡崎産砕石、密度=2.68g/cm)の所定量を投入し、60秒間練り混ぜて、目標スランプが18±1cm、目標空気量が4.5±1%とした水/高炉セメント組成物比が45%又は40%のコンクリート組成物を調製した。
比較例1〜13
表6に記載の配合条件で、実施例と同様な練り混ぜ方法により、水/高炉セメント組成物比が45%のコンクリート組成物を調製した。
比較例14及び15
表6に記載の配合条件で、実施例と同様な練り混ぜ方法により、高炉セメントB種を用いた水/高炉セメント組成物比が45%又は50%のコンクリート組成物を調製した。
Figure 2010285764
表6において、
二酸化炭素排出量:コンクリート組成物1mを製造する場合の二酸化炭素の排出量(kg/コンクリート1m)。但し、石膏及び再生コンクリート微粉末の製造に必要なエネルギーに由来する二酸化炭素の排出量を除いて計算した値
セメント分散剤の種類:表5に記載した水溶性ビニル共重合体又は下記のP−5
P−5:ポリカルボン酸系の水溶性ビニル共重合体からなるセメント分散剤として、竹本油脂社製の商品名チューポールHP−11W(マレイン酸とα−アリル−ω−メチル−ポリオキシエチレンとの共重合体塩)
使用量:高炉セメント組成物100質量部当たりの、セメント分散剤、乾燥収縮低減剤又は膨張材の固形分としての質量部
高炉セメント組成物の種類:表9に記載したもの
*1:ジエチレングリコールモノブチルエーテル
*2:ジプロピレングリコールジエチレングリコールモノブチルエーテル
*3:太平洋マテリアル社製の商品名が太平洋ハイパーエクスパン(石灰系膨張材)
*4:高炉セメントB種(密度=3.04g/cm、ブレーン値3850cm/g)
試験区分4(調製したコンクリート組成物の評価)
調製した各例のコンクリート組成物について、空気量、スランプ、スランプ残存率を下記のように求めた。また各コンクリート組成物から得た硬化体について、乾燥収縮率及び圧縮強度を下記のように求めた。
・空気量(容量%):練り混ぜ直後のコンクリート組成物及び更に60分間静置後のコンクリート組成物について、JIS−A1128に準拠して測定した。
・スランプ(cm):空気量の測定と同時に、JIS−A1101に準拠して測定した。
・スランプ残存率(%):(60分間静置後のスランプ/練り混ぜ直後のスランプ)×100で求めた。
・乾燥収縮率:JIS−A1129に準拠し、各例のコンクリート組成物を20℃×60%RHの条件下で保存した材齢26週の供試体についてコンパレータ法により乾燥収縮ひずみを測定し、乾燥収縮率を求めた。この数値は小さいほど、乾燥収縮が小さいことを示す。
・圧縮強度(N/mm):各例のコンクリート組成物について、JIS−A1108に準拠し、材齢7日及び材齢28日で測定した。
結果を表7にまとめて示した。各実施例で調製したコンクリート組成物は、高炉セメントB種を用いた場合に比べて、コンクリート1mを製造するための二酸化炭素の排出量が少なく、またコンクリート組成物の経時的な流動性に優れ、得られる硬化体の乾燥収縮率が800×10−6よりも小さく、必要とされる充分な圧縮強度が得られている。
Figure 2010285764
表7において、
比較例2、3及び11〜13:目標とする流動性(スランプ値)が得られなかったので測定しなかった。
<第3の弱アルカリコンクリート>
次に、第3の弱アルカリコンクリートについて説明する。なお、ここでは、弱アルカリコンクリートをコンクリート組成物といい、水硬性セメントを高炉スラグ組成物という場合がある。また、第1、第2の弱アルカリコンクリートと同じものは適宜省略して説明する。
第3の弱アルカリコンクリートは、少なくとも、結合材、水、細骨材、粗骨材及び混和材を含有して成るコンクリート組成物であって、結合材として下記の高炉スラグ組成物(水硬性セメント)を用い、且つ水/該高炉スラグ組成物の質量比を30〜60%に調製して成る。
高炉スラグ組成物:粉末度が3000〜13000cm/gの高炉スラグ微粉末を80〜95質量%及び石膏を5〜20質量%(合計100質量%)の割合で含有する混合物100質量部当たり、アルカリ刺激材を0.5〜1.5質量部又は5〜45質量部の割合で添加した高炉スラグ組成物。
即ち、第3の弱アルカリコンクリートは、少なくとも、結合材、水、細骨材、粗骨材及び混和材を含有して成るものである。このコンクリート組成物は結合材として特定の高炉スラグ組成物を用いたものであり、かかる高炉スラグ組成物は、粉末度が3000〜13000cm/gの高炉スラグ微粉末を80〜95質量%及び石膏を5〜20質量%(合計100質量%)の割合で含有する混合物100質量部当たり、アルカリ刺激材を0.5〜1.5質量部又は5〜45質量部の割合で添加したものである。
アルカリ刺激材としては、水酸化カルシウム、生石灰、軽焼マグネシア、軽焼ドロマイト、水酸化ナトリウム、炭酸ナトリウム、再生コンクリート微粉末等が挙げられる。なかでも、アルカリ刺激材としては、水と接触したときに徐々に水酸化カルシウムを生成する性質を持つアルカリ刺激材が好まく、かかる性質を有するアルカリ刺激材として、ポルトランドセメントが好ましい。ポルトランドセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント等の各種ポルトランドセメントが挙げられるが、汎用の普通ポルトランドセメントが好ましい。
このコンクリート組成物では、水/高炉スラグ組成物の質量比を30〜60%に調製するが、好ましくは35〜55%に調製する。かかる質量比が60%より大きいと、得られる硬化体の乾燥収縮が大きくなり過ぎたり、強度の低下が著しくなる。逆にかかる質量比が30%より小さいと、調製したコンクリート組成物の流動性や空気量の経時的な低下が大きくなり、施工性が低下する。尚、本発明において水/高炉スラグ組成物の質量比は、(用いた水の質量/用いた高炉スラグ組成物の質量)×100で求められるものである。
なお、再生コンクリート微粉末、粗骨材、細骨材、混和材等については、第1の弱アルカリコンクリートと同様のものを使用することができる。
以下、第3の弱アルカリコンクリートの構成及び効果をより具体的にするため、実施例等を挙げるが、当該該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。
(実施例)
試験区分1(水溶性ビニル共重合体の合成)
・水溶性ビニル共重合体(p−1)〜(p−4)及び(pr−1)〜(pr−4)は、第1の弱アルカリコンクリートの実施例で示したものと同様の方法で合成を合成した。合成した各水溶性ビニル共重合体の内容は表1と同様である。
試験区分2(高炉スラグ組成物の調製)
表8に記載の調合条件で、高炉スラグ微粉末、無水石膏及びアルカリ刺激材を混合して高炉スラグ組成物を調製し、高炉スラグ組成物(S−1)〜(S−10)及び(R−1)〜(R−10)を得た。
Figure 2010285764
表8において、
sg−1:粉末度が4100cm/gの高炉スラグ微粉末
sg−2:粉末度が5900cm/gの高炉スラグ微粉末
sg−3:粉末度が1020cm/gの高炉スラグ微粉末
gp−1:粉末度が4150cm/gの無水石膏
gp−2:粉末度が5800cm/gの無水石膏
rc−1:普通ポルトランドセメント
rc−2:早強ポルトランドセメント
試験区分3(コンクリート組成物の調製)
実施例1〜36
表9に記載の配合条件で、50リットルのパン型強制練りミキサーに、練り混ぜ水(水道水)、高炉スラグ組成物、細骨材(大井川水系産川砂、密度=2.58g/cm)の各所定量を投入し、またセメント分散剤、乾燥収縮低減剤、膨張材等の混和材の各所定量を投入して、更に空気量調節剤(竹本油脂社製のAE剤、商品名AE−300)を投入し、45秒間練り混ぜた。最後に、粗骨材(岡崎産砕石、密度=2.68g/cm)の所定量を投入し、60秒間練り混ぜて、目標スランプが18±1cm、目標空気量が4.5±1%とした水/高炉スラグ組成物の質量比が45%又は40%のコンクリート組成物を調製した。
比較例1〜27
表10に記載の配合条件で、実施例と同様な練り混ぜ方法により、水/高炉スラグ組成物の質量比が45%のコンクリート組成物を調製した。
比較例28及び29
表10に記載の配合条件で、実施例と同様な練り混ぜ方法により、高炉セメントB種を用いた水/高炉セメントの質量比が45%又は50%のコンクリート組成物を調製した。
Figure 2010285764
Figure 2010285764
表9、表10において、
二酸化炭素排出量:コンクリート組成物1mを製造する場合の二酸化炭素の排出量(kg/コンクリート1m)。但し、石膏及び再生コンクリート微粉末の製造に必要なエネルギーに由来する二酸化炭素の排出量を除いて計算した値
セメント分散剤の種類:表1に記載した水溶性ビニル共重合体又は下記のP−5
P−5:ポリカルボン酸系の水溶性ビニル共重合体からなるセメント分散剤として、竹本油脂社製の商品名チューポールHP−11W(マレイン酸とα−アリル−ω−メチル−ポリオキシエチレンとの共重合体塩)
使用量:高炉スラグ組成物(比較例28及び29は高炉セメントB種)100質量部当たりの、セメント分散剤、乾燥収縮低減剤又は膨張材の固形分としての質量部
高炉スラグ組成物の種類:表8に記載したもの
*1:ジエチレングリコールモノブチルエーテル
*2:ジプロピレングリコールジエチレングリコールモノブチルエーテル
*3:太平洋マテリアル社製の商品名が太平洋ハイパーエクスパン(石灰系膨張材)
*4:高炉セメントB種(密度=3.04g/cm、ブレーン値3850cm/g)
試験区分4(調製したコンクリート組成物の評価)
調製した各例のコンクリート組成物について、空気量、スランプ、スランプ残存率を下記のように求めた。また各コンクリート組成物から得た硬化体について、乾燥収縮率及び圧縮強度を下記のように求めた。
・空気量(容量%):練り混ぜ直後のコンクリート組成物及び更に60分間静置後のコンクリート組成物について、JIS−A1128に準拠して測定した。
・スランプ(cm):空気量の測定と同時に、JIS−A1101に準拠して測定した。
・スランプ残存率(%):(60分間静置後のスランプ/練り混ぜ直後のスランプ)×100で求めた。
・乾燥収縮率:JIS−A1129に準拠し、各例のコンクリート組成物を20℃×60%RHの条件下で保存した材齢26週の供試体についてコンパレータ法により乾燥収縮ひずみを測定し、乾燥収縮率を求めた。この数値は小さいほど、乾燥収縮が小さいことを示す。
・圧縮強度(N/mm):各例のコンクリート組成物について、JIS−A1108に準拠し、材齢7日及び材齢28日で測定した。
結果を表11及び表12にまとめて示した。各実施例で調製したコンクリート組成物は、高炉セメントB種を用いた場合に比べて、コンクリート組成物1mを製造するための二酸化炭素の排出量が少なく、またコンクリート組成物の経時的な流動性に優れ、得られる硬化体の乾燥収縮率が800×10−6よりも小さく、必要とされる充分な圧縮強度が得られている。
Figure 2010285764
Figure 2010285764
表12において、
比較例1、2、6、7、21〜23及び25〜27:目標とする流動性(スランプ値)が得られなかったので測定しなかった。
<第4の弱アルカリコンクリート>
次に、第4の弱アルカリコンクリートについて説明する。なお、ここでは、弱アルカリコンクリートをコンクリート組成物といい、水硬性セメントを高炉セメントという場合がある。また、第1〜第3の弱アルカリコンクリートと同じものは適宜省略して説明する。
第4の弱アルカリコンクリートは、少なくとも、セメント、水、細骨材、粗骨材及び混和材を含有して成るコンクリート組成物であって、セメントとして下記の高炉セメント(水硬性セメント)を用い、且つ水/該高炉セメント比を20〜60%に調製し、また該高炉セメント100質量部当たり、混和材の少なくとも一部として下記のA成分を0.1〜1.5質量部含有して成る。
高炉セメント:粉末度が3000〜13000cm/gの高炉スラグ微粉末とポルトランドセメントとからなり、且つ該高炉スラグ微粉末を60〜80質量%及びポルトランドセメントを20〜40質量%(合計100質量%)の割合で含有する高炉セメント。
A成分:下記の水溶性ビニル共重合体P及び下記の水溶性ビニル共重合体Qから選ばれる一つ又は二つ以上の水溶性ビニル共重合体からなるセメント分散剤。
水溶性ビニル共重合体P:分子中に下記の構成単位Xを45〜85モル%、下記の構成単位Yを15〜55モル%及び下記の構成単位Zを0〜10モル%(合計100モル%)の割合で有する質量平均分子量2000〜80000の水溶性ビニル共重合体。
構成単位X:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位Y:分子中に5〜150個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位
構成単位Z:(メタ)アリルスルホン酸塩から形成された構成単位及びメチルアクリレートから形成された構成単位から選ばれる一つ又は二つ以上
水溶性ビニル共重合体Q:分子中に下記の構成単位Lを40〜60モル%及び下記の構成単位Mを60〜40モル%(合計100モル%)の割合で有する質量平均分子量2000〜50000の水溶性ビニル共重合体。
構成単位L:マレイン酸から形成された構成単位及びマレイン酸塩からから形成された構成単位から選ばれる一つ又は二つ以上
構成単位M:分子中に5〜100個のオキシエチレン単位で構成されたポリオキシエチレン基を有するα−アリル−ω−メチル−ポリオキシエチレンから形成された構成単位及び分子中に5〜100個のオキシエチレン単位で構成されたポリオキシエチレン基を有するα−アリル−ω−ヒドロキシ−ポリオキシエチレンから形成された構成単位から選ばれる一つ又は二つ以上
第4の弱アルカリコンクリートには、混和材の少なくとも一部として、適宜、下記のB成分を0.2〜4.0質量部、下記のC成分を0.1〜5.0質量部の割合で加えて含有してもよい。この場合、混和材の少なくとも一部として、下記B成分又は下記C成分を加えても良いし、下記B成分及び下記C成分を加えても良い。
B成分:乾燥収縮低減剤
C成分:凝結促進剤
即ち、第4の弱アルカリコンクリートは、少なくとも結合材、水、細骨材、粗骨材及び混和材を用い、結合材として特定の高炉セメントを含有し、また特定の混和剤を所定割合で含有して成るものである。かかる高炉セメントは、粉末度が3000〜13000cm/gの高炉スラグ微粉末を60〜80質量%及びポルトランドセメントを20〜40質量%(合計100質量%)の割合で含有するものである。
結合材として用いる高炉セメント(水硬性セメント)は、前記の高炉スラグ微粉末を60〜80質量%及びポルトランドセメントを20〜40質量%(合計100質量%)の割合で含有するものであるが、前記の高炉スラグ微粉末を64〜76質量%及びポルトランドセメントを24〜36質量%(合計100質量%)の割合で含有するものが好ましい。したがって、このコンクリート組成物において結合材として用いる高炉セメントには、JIS−R5211の規格に適合する高炉セメントC種が含まれる。
このコンクリート組成物は、水/高炉セメントの質量比を20〜60%に調製したものであるが、好ましくは25〜50%に調製したものとする。かかる質量比が60%より大きいと、得られる硬化体の乾燥収縮が大きくなり過ぎたり、強度の低下が著しくなる。逆にかかる質量比が20%より小さいと、調製したコンクリート組成物の流動性や空気量の経時的な低下が大きくなり、施工性が低下する。尚、水/高炉セメントの質量比は、(用いた水の質量/用いた高炉セメントの質量)×100で求められるものである。
また、コンクリート組成物は、混和材として、A成分のセメント分散剤を含有している。この混和材には、B成分の乾燥収縮低減剤、C成分の凝結促進剤を適宜、加えて含有しても良い。この場合、混和材の少なくとも一部として、下記B成分又は下記C成分を加えても良いし、下記B成分及び下記C成分を加えても良い。
A成分のセメント分散剤は、水溶性ビニル共重合体P及び水溶性ビニル共重合体Qから選ばれる一つ又は二つ以上の水溶性ビニル共重合体からなるものである。ここで水溶性ビニル共重合体Pは、分子中に下記の構成単位Xを45〜85モル%、下記の構成単位Yを15〜55モル%及び下記の構成単位Zを0〜10モル%(合計100モル%)の割合で有する質量平均分子量2000〜80000(GPC法、プルラン換算、以下同じ)の水溶性ビニル共重合体である。
構成単位X:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位Y:分子中に5〜150個、好ましくは7〜90個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位
構成単位Z:(メタ)アリルスルホン酸塩から形成された構成単位及びメチルアクリレートから形成された構成単位から選ばれる一つ又は二つ以上
A成分のセメント分散剤として用いる前記の水溶性ビニル共重合体Pそれ自体は公知の方法で合成できる。例えば特開昭58−74552号公報、特開平1−226757号公報等に記載されている方法で合成できる。かかる水溶性ビニル共重合体Pからなるセメント分散剤の使用量は、高炉セメント100質量部当たり、0.1〜1.5質量部、好ましくは0.2〜1.0質量部の割合とする。
また水溶性ビニル共重合体Qは、分子中に下記の構成単位Lを40〜60モル%及び下記の構成単位Mを40〜60モル%(合計100モル%)の割合で有する質量平均分子量2000〜50000の水溶性ビニル共重合体である。
構成単位L:マレイン酸から形成された構成単位及びマレイン酸塩からから形成された構成単位から選ばれる一つ又は二つ以上
構成単位M:分子中に5〜100個のオキシエチレン単位で構成されたポリオキシエチレン基を有するα−アリル−ω−メチル−ポリオキシエチレンから形成された構成単位及び分子中に5〜100個のオキシエチレン単位で構成されたポリオキシエチレン基を有するα−アリル−ω−ヒドロキシ−ポリオキシエチレンから形成された構成単位から選ばれる一つ又は二つ以上
A成分のセメント分散剤として用いる前記の水溶性ビニル共重合体Qそれ自体は公知の方法で合成できる。例えば特開昭57−118058号公報、特開2005−132955号公報、特開2008−273766号公報等に記載されている方法で合成できる。かかる水溶性ビニル共重合体Qからなるセメント分散剤の使用量は、高炉セメント100質量部当たり、0.1〜1.5質量部、好ましくは0.2〜1.0質量部の割合とする。
B成分の乾燥収縮低減剤としては、ポリアルキレングリコールモノアルキルエーテルからなるものが好ましく、なかでもジエチレングリコールモノブチルエーテル及びジプロピレングリコールジエチレングリコールモノブチルエーテルから選ばれる一つ又は二つ以上がより好ましい。かかる乾燥収縮低減剤の使用量は、高炉セメント100質量部当たり、0.2〜4.0質量部、好ましくは0.6〜3.5質量部の割合とする。
C成分の凝結促進剤としては、炭酸ナトリウム、炭酸カリウム、炭酸リチウム等の炭酸塩の他に、塩化カルシウム、亜硝酸塩、チオシアン酸塩、硫酸塩等が挙げられるが、なかでも、初期強度の増進効果において炭酸塩及び塩化カルシウムが好ましく、炭酸ナトリウムがより好ましい。かかる凝結促進剤の使用量は、高炉セメント100質量部当たり、0.1〜5.0質量部、好ましくは0.3〜3.0質量部の割合とする。
なお、粗骨材、細骨材等については、第1の弱アルカリコンクリートと同様のものを使用することができる。
以下、第4の弱アルカリコンクリートの構成及び効果をより具体的にするため、実施例等を挙げるが、当該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。
(実施例)
試験区分1(A成分のセメント分散剤としての水溶性ビニル共重合体の合成)
・水溶性ビニル共重合体(ap−1)の合成
メタクリル酸60g、メトキシポリ(オキシエチレン単位数が23個、以下n=23とする)エチレングリコールメタクリレート300g、メタリルスルホン酸ナトリウム5g、3−メルカプトプロピオン酸6g及び水490gを反応容器に仕込んだ後、48%水酸化ナトリウム水溶液58gを加え、攪拌しながら部分中和して均一に溶解した。反応容器内の雰囲気を窒素置換した後、反応系の温度を温水浴にて60℃に保ち、過硫酸ナトリウムの20%水溶液25gを加えてラジカル重合反応を開始し、5時間反応を継続して反応を終了した。その後、48%水酸化ナトリウム水溶液24gを加えて反応物を完全中和し、水溶性ビニル共重合体(ap−1)の40%水溶液を得た。水溶性ビニル共重合体(ap−1)を分析したところ、メタクリル酸ナトリウムから形成された構成単位/メトキシポリ(n=23)エチレングリコールメタクリレートから形成された構成単位/メタリルスルホン酸ナトリウムから形成された構成単位=70/27/3(モル%)の割合で有する質量平均分子量が31700の水溶性ビニル共重合体であった。
・水溶性ビニル共重合体(ap−2)〜(ap−4)及び(apr−1)〜(apr−4)の合成
水溶性ビニル共重合体(ap−1)の合成と同様にして、水溶性ビニル共重合体(ap−2)〜(ap−4)及び(apr−1)〜(apr−4)を合成した。以上で合成した各水溶性ビニル共重合体の内容を表13にまとめて示した。
Figure 2010285764
表13において、
構成単位X〜Z:各構成単位を形成することとなる単量体で表示した。
X−1:メタクリル酸ナトリウム
X−2:メタクリル酸
Y−1:メトキシポリ(n=23)エチレングリコールメタクリレート
Y−2:メトキシポリ(n=68)エチレングリコールメタクリレート
Y−3:メトキシポリ(n=9)エチレングリコールメタアクリレート
Z−1:メタリルスルホン酸ナトリウム
Z−2:アリルスルホン酸ナトリウム
Z−3:メチルアクリレート
・水溶性ビニル共重合体(aq−1)の合成
無水マレイン酸98g及びα−アリル−ω−メチル−ポリオキシエチレン(n=33)512gを反応容器に仕込み、攪拌しながら均一に溶解した後、反応容器内の雰囲気を窒素置換した。反応系の温度を温水中にて80℃に保ち、アゾビスイソブチロニトリル3gを投入してラジカル重合反応を開始した。更にアゾビスイソブチロニトリル5gを分割投入し、ラジカル重合反応を4時間継続して反応を完結した。得られた共重合体に水を加えて加水分解して水溶性ビニル共重合体(aq−1)の40%水溶液を得た。水溶性ビニル共重合体(aq−1)を分析したところ、マレイン酸から形成された構成単位/α−アリル−ω−メチル−ポリオキシエチレン(n=33)から形成された構成単位=50/50(モル比)の割合で有する質量平均分子量23000の水溶性ビニル共重合体であった。
・水溶性ビニル共重合体(aq−2)〜(aq−4)及び(aqr−1)〜(aqr−4)の合成
水溶性ビニル共重合体(aq−1)の合成と同様にして、水溶性ビニル共重合体(aq−2)〜(aq−4)及び(aqr−1)〜(aqr−4)を合成した。以上で合成した各水溶性ビニル共重合体の内容を表14にまとめて示した。
Figure 2010285764
表14において、
構成単位L及びM:各構成単位を形成することとなる単量体で表示した。
L−1:マレイン酸
L−2:マレイン酸ナトリウム
M−1:α−アリル−ω−メチル−ポリオキシエチレン(n=33)
M−2:α−アリル−ω−メチル−ポリオキシエチレン(n=68)
M−3:α−アリル−ω−ヒドロキシ−ポリオキシエチレン(n=33)
M−4:α−アリル−ω−ヒドロキシ−ポリオキシエチレン(n=23)
試験区分2(コンクリート組成物の調製)
実施例1〜23
表15に記載の配合番号の条件で、50リットルのパン型強制練りミキサーに、練混ぜ水(水道水)、高炉スラグ微粉末を65%及び普通ポルトランドセメントを35%(合計100%)の割合で含有する高炉セメント(密度=2.99g/cm、粉末度4020cm/g)、細骨材(大井川水系産川砂、密度=2.58g/cm)、A成分のセメント分散剤として水溶性ビニル共重合体(ap−1)、B成分の乾燥収縮低減剤としてジエチレングリコールモノブチルエーテル(b−1)、C成分の凝結促進剤として炭酸ナトリウム(c−1)の各所定量を順次投入し、更に空気量調節剤(竹本油脂社製のAE剤で、商品名AE−300)を投入して、次に粗骨材(岡崎産砕石、密度=2.68g/cm)を投入して60秒間練り混ぜ、目標スランプが18±1cm、目標空気量が4.5±1%とした実施例1の水/高炉セメントの質量比が50%のコンクリート組成物を調製した。同様の方法で、実施例2〜23の水/高炉セメントの質量比が30〜50%のコンクリート組成物を調製した。
比較例1〜23
実施例1と同様の方法で比較例1〜23の水/高炉セメントの質量比が45〜50%のコンクリート組成物を調製した。実施例も含め、以上の各例で調製したコンクリート組成物の内容を表16にまとめて示した。
Figure 2010285764
表15において、
s−1:高炉スラグ微粉末を65%及び普通ポルトランドセメントを35%(合計100%)の割合で含有する高炉セメント(密度=2.99g/cm、粉末度4020cm/g)
s−2:高炉スラグ微粉末を70%及び普通ポルトランドセメントを30%(合計100%)の割合で含有する高炉セメント(密度=2.98g/cm、粉末度4040cm/g)
s−3:高炉スラグ微粉末を75質量%及び普通ポルトランドセメントを25質量%(合計100%)の割合で含有する高炉セメント(密度=2.96g/cm、粉末度4050cm/g)
sr−1:高炉セメントB種(密度=3.04g/cm、粉末度3850cm/g)
Figure 2010285764
表16において、
添加量:高炉セメント100質量部当たりの固形分質量部
*1:リグニンスルホン酸塩を主成分とするセメント分散剤(竹本油脂社製の商品名チューポールEX20)
*2:ナフタレンスルホン酸ホルマリン高縮合物塩を主成分とするセメント分散剤(竹本油脂社製の商品名ポールファイン510AN)
*3:メラミンスルホン酸ホルマリン高縮合物塩を主成分とするセメント分散剤(竹本油脂社製の商品名ポールファインMF)
ap−1〜ap−4及びapr−1〜apr−4:表13に記載したセメント分散剤としての水溶性ビニル共重合体
aq−1〜aq−4及びaqr−1〜aqr−4:表14に示したセメント分散剤としての水溶性ビニル共重合体
b−1:ジエチレングリコールモノブチルエーテル
b−2:ジプロピレングリコールジエチレングリコールモノブチルエーテル
c−1:炭酸ナトリウム
c−2:炭酸カリウム
c−3:塩化カルシウム
試験区分3(調製したコンクリート組成物の評価)
調製した各例のコンクリート組成物について、空気量、スランプ、スランプ残存率を下記のように求めた。また各例のコンクリート組成物から得た硬化体について、乾燥収縮率及び圧縮強度を下記のように求めた。
・空気量(容量%):練り混ぜ直後のコンクリート組成物及び更に60分間静置後のAEコンクリートについて、JIS−A1128に準拠して測定した。
・スランプ(cm):空気量の測定と同時に、JIS−A1101に準拠して測定した。
・スランプ残存率(%):(60分間静置後のスランプ/練り混ぜ直後のスランプ)×100で求めた。
・乾燥収縮率:JIS−A1129に準拠し、各例のコンクリート組成物を20℃×60%RHの条件下で保存した材齢26週の供試体についてコンパレータ法により乾燥収縮ひずみを測定し、乾燥収縮率を求めた。この数値は小さいほど、乾燥収縮が小さいことを示す。
・圧縮強度(N/mm):各例のコンクリート組成物について、JIS−A1108に準拠し、材齢7日及び材齢28日で測定した。
・二酸化炭素排出量:コンクリート組成物1mを製造する場合の二酸化炭素の排出量(kg/コンクリート1m)。但し、石膏及び再生コンクリート微粉末の製造に必要なエネルギーに由来する二酸化炭素の排出量を除いて計算した値
結果を表17及び表18にまとめて示した。各実施例のコンクリート組成物は、結合材として高炉セメントB種を用いた比較例23に比べて、高炉スラグ微粉末の使用量が多い分だけコンクリート組成物1mを製造するための二酸化炭素の排出量が少なく、また調整したコンクリート組成物の経時的な流動性に優れ、更に得られる硬化体の乾燥収縮率が800×10−6よりも小さく、必要とされる充分な圧縮強度が得られている。
Figure 2010285764
Figure 2010285764
表18において、
比較例4、14〜16及び18〜20:目標とする流動性(スランプ値)が得られなかったので測定しなかった。
なお、以上説明した本実施形態に係る第二硬化体をまとめると以下のようになる。即ち、第1に、第二硬化体は、少なくとも、結合材、水、細骨材、粗骨材及び混和材を含有して成るコンクリート組成物であって、結合材として下記の高炉スラグ組成物(水硬性セメント)を用い、且つ水/該高炉スラグ組成物の質量比を30〜60%に調製して成るコンクリート組成物が硬化してなる。
高炉スラグ組成物:粉末度が3000〜13000cm/gの高炉スラグ微粉末を80〜95質量%及び石膏を5〜20質量%(合計100質量%)の割合で含有する混合物100質量部当たり、解体コンクリートから分離した水酸化カルシウム含有率が3〜15質量%の再生コンクリート微粉末を3〜15質量部の割合で添加した高炉スラグ組成物。
第2に、第二硬化体は、少なくとも、結合材、水、細骨材、粗骨材及び混和材を含有して成るコンクリート組成物であって、結合材として下記の高炉セメント組成物(水硬性セメント)を用い、且つ水/該高炉セメント組成物の質量比を30〜60%に調製して成るコンクリート組成物が硬化してなる。
高炉セメント組成物:粉末度が3000〜13000cm/gの高炉スラグ微粉末を60〜90質量%、石膏を5〜20質量%及びポルトランドセメントを5〜35質量%(合計100質量%)の割合で含有する混合物100質量部当たり、解体コンクリートから分離した水酸化カルシウム含有率が3〜15質量%の再生コンクリート微粉末を10〜30質量部の割合で添加した高炉セメント組成物。
第3に、第二硬化体は、少なくとも、結合材、水、細骨材、粗骨材及び混和材を含有して成るコンクリート組成物であって、結合材として下記の高炉スラグ組成物(水硬性セメント)を用い、且つ水/該高炉スラグ組成物の質量比を30〜60%に調製して成るコンクリート組成物が硬化してなる。
高炉スラグ組成物:粉末度が3000〜13000cm/gの高炉スラグ微粉末を80〜95質量%及び石膏を5〜20質量%(合計100質量%)の割合で含有する混合物100質量部当たり、アルカリ刺激材を0.5〜1.5質量部又は5〜45質量部の割合で添加した高炉スラグ組成物。
第4に、第二硬化体は、少なくとも、セメント、水、細骨材、粗骨材及び混和材を含有して成るコンクリート組成物であって、セメントとして下記の高炉セメント(水硬性セメント)を用い、且つ水/該高炉セメントの質量比を20〜60%に調製し、また該高炉セメント100質量部当たり、混和材の少なくとも一部として下記のA成分を0.1〜1.5質量部含有して成るコンクリート組成物が硬化してなる。
高炉セメント:粉末度が3000〜13000cm/gの高炉スラグ微粉末とポルトランドセメントとから成り、且つ該高炉スラグ微粉末を60〜80質量%及びポルトランドセメントを20〜40質量%(合計100質量%)の割合で含有する高炉セメント。
A成分:下記の水溶性ビニル共重合体P及び下記の水溶性ビニル共重合体Qから選ばれる一つ又は二つ以上の水溶性ビニル共重合体からなるセメント分散剤。
水溶性ビニル共重合体P:分子中に下記の構成単位Xを45〜85モル%、下記の構成単位Yを15〜55モル%及び下記の構成単位Zを0〜10モル%(合計100モル%)の割合で有する質量平均分子量2000〜80000の水溶性ビニル共重合体。
構成単位X:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位Y:分子中に5〜150個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位
構成単位Z:(メタ)アリルスルホン酸塩から形成された構成単位及びメチルアクリレートから形成された構成単位から選ばれる一つ又は二つ以上
水溶性ビニル共重合体Q:分子中に下記の構成単位Lを40〜60モル%及び下記の構成単位Mを60〜40モル%(合計100モル%)の割合で有する質量平均分子量2000〜50000の水溶性ビニル共重合体。
構成単位L:マレイン酸から形成された構成単位及びマレイン酸塩からから形成された構成単位から選ばれる一つ又は二つ以上
構成単位M:分子中に5〜100個のオキシエチレン単位で構成されたポリオキシエチレン基を有するα−アリル−ω−メチル−ポリオキシエチレンから形成された構成単位及び分子中に5〜100個のオキシエチレン単位で構成されたポリオキシエチレン基を有するα−アリル−ω−ヒドロキシ−ポリオキシエチレンから形成された構成単位から選ばれる一つ又は二つ以上
なお、混和材の一部として、下記のB成分を0.2〜4.0質量部、下記のC成分を0.1〜5.0質量部の割合で含有しても良い。この場合、混和材の一部として、下記B成分又は下記C成分を加えても良いし、下記B成分及び下記C成分を加えても良い。
B成分:乾燥収縮低減剤
C成分:凝結促進剤
以上、本発明の第1〜第3実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、第1〜第3実施形態を組み合わせて用いてもよいし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。
12 構造物
14 柱(構造部材)
16 梁(構造部材)
18 床(構造部材)
20 硬化体
20A 表層
22 補強鋼材
24 遮蔽材(防錆手段)
28 金属材料(防錆手段)
32 防錆材(防錆手段)
40 硬化体
40A 表層
42 遮蔽材(防錆手段)
180 床(構造部材)
182 硬化体
184 硬化体
186 遮蔽材(防錆手段)
191 防錆材(防錆手段)
192 硬化体
194 硬化体
195 PC鋼材(補強鋼材)
196 床(構造部材)
198 硬化体
200 床(構造部材)
204 硬化体
210 鉄筋(補強鋼材)

Claims (5)

  1. 高炉スラグ微粉末を60質量%以上含有する水硬性セメントが水和反応して硬化した硬化体と、
    前記硬化体に埋設された補強鋼材と、
    前記補強鋼材の錆を抑制する防錆手段と、
    を備える構造部材。
  2. 前記防錆手段が、前記補強鋼材の表面を覆う防錆材である請求項1に記載の構造部材。
  3. 前記防錆手段が、前記硬化体の表面を覆い、該硬化体内への大気の浸透を抑制する遮蔽材である請求項1に記載の構造部材。
  4. 前記防錆手段が、前記硬化体の表層に設けられ、該表層へ浸透する酸素と酸化反応する金属材料である請求項1に記載の構造部材。
  5. 請求項1〜4の何れか1項に記載の構造部材を有する構造物。
JP2009138638A 2009-06-09 2009-06-09 構造部材、及び構造部材を有する構造物 Pending JP2010285764A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138638A JP2010285764A (ja) 2009-06-09 2009-06-09 構造部材、及び構造部材を有する構造物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138638A JP2010285764A (ja) 2009-06-09 2009-06-09 構造部材、及び構造部材を有する構造物

Publications (1)

Publication Number Publication Date
JP2010285764A true JP2010285764A (ja) 2010-12-24

Family

ID=43541671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138638A Pending JP2010285764A (ja) 2009-06-09 2009-06-09 構造部材、及び構造部材を有する構造物

Country Status (1)

Country Link
JP (1) JP2010285764A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020532693A (ja) * 2017-09-07 2020-11-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 内側容器と外側スリーブとを備えるタンクおよび当該タンクを製造する方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217520A (ja) * 1995-01-31 1996-08-27 Sumikin Kashima Kouka Kk コンクリート系製品およびその製造方法
JP2006069831A (ja) * 2004-09-01 2006-03-16 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP3852179B2 (ja) * 1997-10-01 2006-11-29 株式会社大林組 防食被覆コンクリート構造部材の目地部構造
JP2009067652A (ja) * 2007-09-14 2009-04-02 Hitachi Cement Kk 高炉セメント組成物およびフレッシュコンクリート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217520A (ja) * 1995-01-31 1996-08-27 Sumikin Kashima Kouka Kk コンクリート系製品およびその製造方法
JP3852179B2 (ja) * 1997-10-01 2006-11-29 株式会社大林組 防食被覆コンクリート構造部材の目地部構造
JP2006069831A (ja) * 2004-09-01 2006-03-16 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2009067652A (ja) * 2007-09-14 2009-04-02 Hitachi Cement Kk 高炉セメント組成物およびフレッシュコンクリート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020532693A (ja) * 2017-09-07 2020-11-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 内側容器と外側スリーブとを備えるタンクおよび当該タンクを製造する方法

Similar Documents

Publication Publication Date Title
US9505657B2 (en) Method of accelerating curing and improving the physical properties of pozzolanic and cementitious-based material
KR101533093B1 (ko) 실리콘 폐슬러지를 이용한 시멘트 콘크리트 조성물 및 이를 이용한 콘크리트 포장 보수공법
JP5613386B2 (ja) 構造部材、及び構造部材を有する構造物
JP5259094B2 (ja) 鉄筋を有する耐中性化に優れた水和硬化体
JP2010285764A (ja) 構造部材、及び構造部材を有する構造物
CN102936964A (zh) 一种高延性混凝土嵌入式构造柱的施工方法
JP7085050B1 (ja) セメント混和材、急硬モルタルコンクリート材料、急硬モルタルコンクリート組成物、及び硬化体
JP6735624B2 (ja) コンクリートの表面改質材およびそれを用いたコンクリートの表層品質を改善する方法
KR100519605B1 (ko) 내산성 단면복구 모르타르의 제조방법 및 조성물
Bubshait et al. Use of microsilica in concrete construction: Reviews state‐of‐the‐art silica fume concrete and discusses the influence silica fume has on the various properties of concrete and the effect on the bond between parent concrete and new concrete
JP2010285763A (ja) 構造部材、及び構造部材を有する構造物
JP5030248B2 (ja) コンクリート構造物の補修工法
JP2010285762A (ja) 構造部材、及び構造部材を有する構造物
KR102004223B1 (ko) 친환경 골재 및 보강재를 이용한 콘크리트 구조물의 방수 및 보수 보강 공법
US20210040001A1 (en) A setting and hardening accelerator for a cement, mortar or concrete composition, optionally comprising supplementary cementitious materials, and use of this accelerator
AU2015200172A1 (en) Concrete mix composition, mortar mix composition and method of making and curing concrete or mortar and concrete or mortar objects and structures
KR102583735B1 (ko) 친환경 초속경 콘크리트 구조물 보수 시공방법
JP4791200B2 (ja) 水和硬化体およびその製造方法
KR102582810B1 (ko) 조립형 앵커체 및 패널을 이용한 콘크리트 구조물의 파손부 보수 보강 공법
JP6985548B1 (ja) 補修モルタル材料、補修モルタル組成物及び硬化体
JP4882257B2 (ja) 耐塩害性に優れた鉄筋を有する水和硬化体
Bashandy et al. The Performance of Self-curing Concrete Cast using Seawater
JP4827548B2 (ja) 水和硬化体
JP2007210848A (ja) 水和硬化体
JP2024003453A (ja) コンクリート組成物、コンクリート硬化体、及び、桟橋構造を含む橋梁プレストレストコンクリート構造物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701