JP2010284691A - Narrow gap welding method of thick steel plate and thick steel tube - Google Patents

Narrow gap welding method of thick steel plate and thick steel tube Download PDF

Info

Publication number
JP2010284691A
JP2010284691A JP2009140856A JP2009140856A JP2010284691A JP 2010284691 A JP2010284691 A JP 2010284691A JP 2009140856 A JP2009140856 A JP 2009140856A JP 2009140856 A JP2009140856 A JP 2009140856A JP 2010284691 A JP2010284691 A JP 2010284691A
Authority
JP
Japan
Prior art keywords
welding
groove
rectangular insert
welding method
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009140856A
Other languages
Japanese (ja)
Other versions
JP5594813B2 (en
Inventor
Hiroyuki Inoue
裕之 井上
Hiroshi Imaizumi
啓 今泉
Hideaki Nakajima
秀秋 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Sangyo Co Ltd
Original Assignee
Aichi Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Sangyo Co Ltd filed Critical Aichi Sangyo Co Ltd
Priority to JP2009140856A priority Critical patent/JP5594813B2/en
Publication of JP2010284691A publication Critical patent/JP2010284691A/en
Application granted granted Critical
Publication of JP5594813B2 publication Critical patent/JP5594813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding technology capable of executing the narrow groove welding of a thick-wall steel plate or steel tube without need of any machining by using a conventional gas cutting or plasma cutting in the beveling. <P>SOLUTION: A method for executing the narrow groove welding of two steel plates or a steel tube as a workpiece to be welded includes: a step of executing the beveling by the gas cutting or the plasma cutting; a step of constituting a joint part by executing the temporary welding of a rectangular insert held by a joint part; a step of coating a deep penetration active material on an inner surface of a groove of the rectangular insert in the groove; and a step of executing the arc welding of the joint part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、深溶け込み活性剤を塗布して行う溶接方法に関する。さらには、板厚が厚く開先を狭くした狭開先溶接に関する溶接方法である。   The present invention relates to a welding method performed by applying a deep penetration activator. Furthermore, it is a welding method related to narrow groove welding in which the plate thickness is large and the groove is narrowed.

厚板の鋼板や鋼管の裏波溶接へ狭開先(ナローギャップ・狭隘開先)を採用すると生産性を大幅に改善出来るため、狭開先技術は広く用いられており、その開先形状・寸法は溶接結果を左右する重要な要因の一つである。   Narrow bevel technology is widely used because narrow gaps (narrow gaps and narrow bevels) can be used for the welding of thick steel plates and steel pipes. The dimension is one of the important factors affecting the welding result.

そして、従来より狭開先溶接を行う場合、図3(1)、(2)に示すように開先ルート部は円形か矩形に加工する必要がある。この加工には、バイト等による機械加工が要求される。この際、施工物が小さい鋼板や鋼管であれば機械加工も可能であるが、板厚が厚い場合や鋼板寸法が大型の場合、例えばプラントに使用される円筒形の圧力容器等においてはその直径が6mにもなる場合があり、このような場合の開先加工においては機械加工が困難となる。仮に可能であっとしても、開先加工の準備期間と加工時間を考えると、長時間及び莫大なコストを要するため狭開先溶接のメリットを大きく損ねることになる。   And when performing narrow groove welding conventionally, as shown in FIG. 3 (1), (2), it is necessary to process a groove root part into circular or a rectangle. This processing requires machining with a tool or the like. At this time, if the construction is a small steel plate or steel pipe, machining is possible, but if the plate thickness is large or the steel plate size is large, for example, in the case of a cylindrical pressure vessel used in a plant, its diameter May be as long as 6 m, and in such a case, machining becomes difficult in the groove processing. Even if possible, considering the preparation period and machining time of the groove machining, a long time and enormous cost are required, so the merit of narrow groove welding is greatly impaired.

また、開先加工手段としてはガス切断があるが、ガス切断は直線加工しかできないため狭開先加工をすることが出来ない。さらに、もしガス切断で鋼板を切断するとその端面は直線となり、2枚の鋼板を合わせると接合部はV字形状となり裏波溶接は出来ないことになる。また、ギャップをあけても溶接することは困難である。   Further, as a groove processing means, there is a gas cutting. However, since the gas cutting can be performed only by a straight line, a narrow groove processing cannot be performed. Further, if the steel plate is cut by gas cutting, the end face becomes a straight line, and if the two steel plates are joined, the joint becomes V-shaped and the back wave welding cannot be performed. Moreover, it is difficult to weld even if a gap is formed.

その一方、溶接技術に関しては、より深い溶け込みを得られる深溶け込み活性剤(フラックス)が開発されてきており、また、狭開先の溶接を効率よく行うことが出来る狭開先溶接装置が開発されている(例えば、特許文献1参照。)。   On the other hand, with regard to welding technology, deep penetration activators (flux) that can achieve deeper penetration have been developed, and narrow groove welding equipment that can efficiently perform narrow groove welding has been developed. (For example, refer to Patent Document 1).

実用新案登録第3139345号公報Utility Model Registration No. 3139345

そこで、本発明の目的は、開先加工に従来のガス切断やプラズマ切断を使い、機械加工を必要とせず、厚板の鋼板や鋼管においても狭開先溶接施工を可能にする溶接技術を提供するものである。   Therefore, an object of the present invention is to provide a welding technique that uses conventional gas cutting or plasma cutting for groove processing, does not require machining, and enables narrow groove welding work even on thick steel plates and steel pipes. To do.

前記目的を達成するため、本発明の裏波溶接方法は、被溶接物である2枚の鋼板又は鋼管の狭開先溶接において、ガス切断又はプラズマ切断で開先加工する工程と、継手部に矩形状インサートをはさみ仮付溶接を行い継手部を構成する工程と、開先内の矩形状インサート開先内表面に深溶け込み活性剤を塗布した工程と、継手部をアーク溶接する工程からなる。
また、裏波溶融金属の酸化防止と溶融金属の落下防止のため裏当材又は不活性ガスで保護することが好適である。
In order to achieve the above object, the reverse wave welding method of the present invention includes a step of performing groove processing by gas cutting or plasma cutting in narrow groove welding of two steel plates or steel pipes to be welded, and a joint portion. It consists of a step of sandwiching a rectangular insert and performing a tack welding to form a joint portion, a step of applying a deep penetration activator to the inner surface of the rectangular insert groove in the groove, and a step of arc welding the joint portion.
Further, it is preferable to protect the back surface molten metal with a backing material or an inert gas in order to prevent oxidation of the back surface molten metal and prevent the molten metal from falling.

さらに、前記目的を達成するため、本発明の溶接方法は、被溶接物である2枚の鋼板又は円筒形容器の突合せ溶接を両側開先加工して狭開先溶接を行う場合において、ガス切断又はプラズマ切断で開先加工する工程と、中央部に矩形状インサートをはさみ仮付溶接を行い継手部を構成する工程と、開先内の矩形状インサート開先内表面に深溶け込み活性剤を塗布する工程と、継手部表面をアーク溶接する工程と、その後裏側から矩形状インサートの開先内裏面に深溶け込み活性剤を塗布する工程と、継手部裏面をアーク溶接する工程からなる。
また、表面側から形成した溶融接合部と裏面側から形成した溶融接合部は板厚の中央部で重なり合っていることが好適である。
Furthermore, in order to achieve the above-mentioned object, the welding method of the present invention is a gas cutting method in the case of performing narrow groove welding by performing both-side groove processing of butt welding of two steel plates or cylindrical containers that are workpieces. Alternatively, the process of groove processing by plasma cutting, the process of forming a joint part by sandwiching a rectangular insert in the center and performing temporary welding, and applying the deep penetration activator to the inner surface of the rectangular insert groove in the groove And a step of arc welding the surface of the joint portion, a step of applying a deep penetration activator from the back side to the inner back surface of the groove of the rectangular insert, and a step of arc welding the rear surface of the joint portion.
Further, it is preferable that the melt-bonded portion formed from the front surface side and the melt-bonded portion formed from the back surface side overlap each other at the center portion of the plate thickness.

また、前記2つの溶接方法におけるアーク溶接が、偏芯電極回転によるアーク・ウィービング溶接法に加えて平行ウィービング運動を周期制御するTIG溶接装置によるTIG溶接により行われることが好適である。   Further, it is preferable that the arc welding in the two welding methods is performed by TIG welding by a TIG welding apparatus that periodically controls the parallel weaving motion in addition to the arc weaving welding method by rotating the eccentric electrode.

また、前記2つの溶接方法において、被溶接物である対象鋼材はステンレスまたは低炭素鋼であることが好適であり、開先の角度は2°〜10°が好ましい。   In the two welding methods, the target steel material to be welded is preferably stainless steel or low carbon steel, and the groove angle is preferably 2 ° to 10 °.

前述のように、本発明は、開先加工に従来のガス切断やプラズマ切断を使い、機械加工を必要としないものである。ガス切断で鋼板を切断するとその端面は直線となるが、この間に矩形状インサートを挟み込み仮付溶接して継手部を形成し、深溶け込み活性剤を塗布し、アーク溶接、好ましくはTIG溶接を行うものである。深溶け込み活性剤を使用するのは、本願のような厚板の鋼板や鋼管の狭開先溶接には、矩形状インサートに十分な厚みが必要とされるからである。
これにより、開先加工に機械加工を必要とせず、極めて効率的に溶接を行うことができるものである。
As described above, the present invention uses conventional gas cutting or plasma cutting for groove processing and does not require machining. When the steel sheet is cut by gas cutting, the end face becomes a straight line, but a rectangular insert is sandwiched between them to form a joint by temporary welding, a deep penetration activator is applied, and arc welding, preferably TIG welding is performed. Is. The deep penetration activator is used because a sufficient thickness is required for the rectangular insert for the narrow groove welding of thick steel plates and steel pipes as in the present application.
This makes it possible to perform welding extremely efficiently without requiring machining for the groove processing.

ここで使用する深溶け込み活性剤は、市販の深溶け込み活性剤のうち品質が高く深い溶け込みを得られるものであればよい。現在でも8mm程度の溶け込み溶接が可能な深溶け込み活性剤が販売されており、そのような8mm以上の溶け込みが可能な活性剤を使用しても本願の目的を達成できるが、特に愛知産業株式会社が市販している深溶け込み活性剤(商品名:PATIG−SA)を利用すると最大12mmまで溶け込み溶接が可能であり、本願の目的を最も効率的に達成することができる。旧来の溶け込み活性剤を利用した手動TIG溶接と深溶け込み活性剤(商品名:PATIG−SA)を利用した自動溶接との比較を以下に示す。   The deep penetration activator used here may be any commercially available deep penetration activator as long as the quality is high and a deep penetration can be obtained. Currently, deep penetration activators capable of penetration welding of about 8 mm are on the market, and even if such activators capable of penetration of 8 mm or more can be used, the purpose of this application can be achieved. Uses a commercially available deep penetration activator (trade name: PATIG-SA), penetration welding up to a maximum of 12 mm is possible, and the object of the present application can be achieved most efficiently. A comparison between manual TIG welding using a conventional penetration activator and automatic welding using a deep penetration activator (trade name: PATIG-SA) is shown below.

Figure 2010284691
Figure 2010284691

また、深溶け込み活性剤塗布後の溶接方法としては、市販の種々の狭開先溶接装置により、TIG溶接等のアーク溶接を利用して行う。しかしながら、厚板に矩形状インサートを挟み込み、その部分に適切に溶接するには、未だ大変な労力と時間を必要とする。   Further, as a welding method after applying the deep penetration activator, arc welding such as TIG welding is performed by using various commercially available narrow groove welding apparatuses. However, it takes a lot of labor and time to insert a rectangular insert into a thick plate and weld it appropriately.

そこで、偏芯電極回転によるアーク・ウィービング溶接法に加えて平行ウィービング運動を周期制御するTIG溶接装置、特に出願人が開発した、実用新案登録第3139345号公報に示す偏芯電極回転によるアーク・ウィービング溶接法に加えて平行ウィービング運動を周期制御するTIG溶接装置(以下複合ウィービング装置という。)を使用することが最も好適である。これにより、極めて短時間で適切な箇所に溶接を行うことができ、本願の方法の効果を最大限に発揮することができる。   Therefore, a TIG welding apparatus that periodically controls parallel weaving motion in addition to the arc weaving welding method by rotating the eccentric electrode, particularly arc weaving by rotating the eccentric electrode shown in Utility Model Registration No. 3139345, developed by the applicant. In addition to the welding method, it is most preferable to use a TIG welding apparatus (hereinafter referred to as a composite weaving apparatus) that periodically controls parallel weaving motion. Thereby, welding can be performed at an appropriate location in an extremely short time, and the effect of the method of the present application can be maximized.

当該実用新案登録第3139345号に示されている狭開先TIG溶接装置は、 (1)狭開先の内で回転させワイヤを溶融させる電極であって、当該電極は30°〜45°の角度で研磨した偏芯形状の電極であること、(2)また、溶接進行方向を基準として前記偏芯形状の電極の前方及び後方から送給される2つのワイヤを有すること、(3)又、前記2つのワイヤにおいて、偏芯形状の電極の前方から送給されるワイヤが加熱され、後方から送給されるワイヤは加熱しないで送給されるワイヤであること、(4)又、前記2つのワイヤにおいて、偏芯形状の電極の前方から送給されるワイヤ及び後方から送給されるワイヤの両方のワイヤが加熱して送給されるワイヤであること、(5)又、狭開先の巾と偏芯形状の電極径の大きさの組合せによって、偏芯形状の電極の回転角度が開先中心に電極先端が指向している位置を基準として、±45°〜±90°であること、(6)又、偏芯形状の電極を左右に回転させる時に金属側壁の両端において、停止させると同時に流す電流と、溶接進行方向に対して反対方向に移動させる時に流す電流が異なった電流であること、(7)さらに、偏芯形状の電極を保持するTIGトーチが偏芯形状の電極外径に対し同心円の内径が+1.0〜1.8mm大きく、かつ当該外径角度が18°〜22°の円錐形状のノズルを有し、さらにその外側にもうひとつのガスノズルを持ち、その内側の円錐角度が12°〜16°であるTIGトーチ先端形状を有し、それぞれの空隙に流量の異なる不活性ガスを流す当該空隙を有すること、を特徴とする溶接装置である。   The narrow groove TIG welding apparatus shown in the utility model registration No. 3139345 is (1) an electrode that rotates within the narrow groove to melt the wire, and the electrode has an angle of 30 ° to 45 °. (2) having two wires fed from the front and rear of the eccentric electrode on the basis of the welding direction, (3) In the two wires, the wire fed from the front of the eccentric electrode is heated, and the wire fed from the rear is a wire fed without heating. (4) Of the two wires, both the wire fed from the front of the eccentric electrode and the wire fed from the back are heated and fed. (5) Also, the narrow gap Depending on the combination of electrode width and eccentric electrode diameter The rotation angle of the eccentric electrode is ± 45 ° to ± 90 ° with reference to the position where the electrode tip is oriented at the groove center. (6) Also, the eccentric electrode is rotated left and right. The current that flows simultaneously with stopping at both ends of the metal side wall is different from the current that flows when moving in the direction opposite to the welding progress direction. (7) Furthermore, the eccentric electrode is held. The TIG torch has a conical nozzle whose concentric inner diameter is +1.0 to 1.8 mm larger than the eccentric outer electrode diameter, and the outer diameter angle is 18 ° to 22 °. Welding having one gas nozzle, having a TIG torch tip shape with an inside cone angle of 12 ° to 16 °, and having the corresponding gaps for flowing an inert gas having a different flow rate in each gap Device.

上記複合ウィービング装置を使用した場合は、2つのオシレート制御をもつことを利用し平行ウィービングと回転ウィービングを同期を取りながら複合ウィービング式回転偏芯電極ナローギャップ溶接法を使用することで超極厚のナローギャップ溶接を容易に解決することができる。
即ち、ルート部裏波溶接から板厚70mmまでは偏芯電極を回転させて溶接を行い、板厚70mm以上では偏芯電極ウィービングと平行ウィービングを同期させて複合ウィービングで溶接をする方法を採用する。
即ち、開先中央部分ではトーチ本体が平行ウィービングを行い両端停止時には偏芯電極は側壁にアークを発生させて充分溶け込みを確保することができる。(図4(2)に示す通り。)
この場合の各パラメータ波形は図5に示す。又ウィービング軌跡は図6の通りである。この複合ウィービング回転偏芯電極ナローギャップ溶接でもセンターガス及びシールドガスが電極先端から43mm及び71mmに位置しており充分なシールド効果を発揮する。
When the above composite weaving device is used, it is possible to achieve ultra-thickness by using the composite weaving rotary eccentric electrode narrow gap welding method while synchronizing the parallel weaving and the rotary weaving using the fact that there are two oscillation controls. Narrow gap welding can be easily solved.
That is, from the root part reverse wave welding to the plate thickness of 70 mm, the eccentric electrode is rotated and welding is performed, and when the plate thickness is 70 mm or more, the eccentric electrode weaving and the parallel weaving are synchronized to perform welding by composite weaving. .
That is, the torch main body performs parallel weaving at the center portion of the groove, and when the both ends are stopped, the eccentric electrode can generate an arc on the side wall to ensure sufficient melting. (As shown in Fig. 4 (2).)
Each parameter waveform in this case is shown in FIG. The weaving locus is as shown in FIG. Even in this composite weaving rotation eccentric electrode narrow gap welding, the center gas and the shield gas are located at 43 mm and 71 mm from the tip of the electrode, so that a sufficient shielding effect is exhibited.

このように、複合ウィービング装置を利用してTIG溶接することで、両側の厚板と矩形状インサート接合部に適切にアークを向けることが出来るので、溶接が極めて短時間に容易に行うことが可能であり、また活性剤の効果で裏波溶接をすることが出来るものである。   In this way, TIG welding using a composite weaving device makes it possible to properly direct the arc to the thick plate on both sides and the rectangular insert joint, so welding can be performed easily in a very short time. In addition, backside welding can be performed by the effect of the activator.

また、矩形型インサートの厚みが厚くなれば裏当材で支える必要がある。またステンレス鋼に関しては不活性ガス(アルゴン)で酸化防止をすることで健全なる溶接金属を確保することが出来る。   Further, if the thickness of the rectangular insert is increased, it must be supported by a backing material. For stainless steel, a sound weld metal can be secured by preventing oxidation with an inert gas (argon).

板厚がさらに厚くなり両側開先を採用する場合、板厚の中央部に矩形状インサートを挟み仮付け溶接を行う。この場合、裏波溶接をしないで深溶け込み活性剤の能力を利用し両側から溶接することで、重なる溶け込みを確保することを利用することが出来るので、矩形状インサートの厚みを最大18mmまで厚くすることが出来る。   When the plate thickness is further increased and both side grooves are adopted, a rectangular insert is sandwiched at the center of the plate thickness, and temporary welding is performed. In this case, it is possible to use the ability to ensure overlapping penetration by welding from both sides using the ability of deep penetration activator without reverse wave welding, so the thickness of the rectangular insert is increased to a maximum of 18 mm. I can do it.

溶接電流・電圧・溶接速度等の溶接条件については、板厚・素材・使用する深溶け込み活性剤・溶接機械によりそれぞれ異なるものであり、それぞれの条件に合わせて適宜設定すればよいものである。
本発明の具体的溶接条件の例として、片側、即ち開先内表面の裏波溶接の試験記録(溶接条件)を一例として下記表に示す。なお、鋼板厚19mm、矩形状インサート9mm(幅)X3mm(厚)、特願2008−232932に記載の深溶け込み活性剤(PATIGーSA)、溶接装置には複合ウィービング装置を使用した溶接である。
The welding conditions such as the welding current, voltage, and welding speed differ depending on the plate thickness, material, deep penetration activator used, and welding machine, and may be set as appropriate according to each condition.
As an example of specific welding conditions of the present invention, a test record (welding conditions) of one side, that is, a groove welding inner surface, is shown in the following table as an example. In addition, the steel plate thickness is 19 mm, the rectangular insert is 9 mm (width) X 3 mm (thickness), the deep penetration activator described in Japanese Patent Application No. 2008-232932 (PATIG-SA), and welding is performed using a composite weaving device.

Figure 2010284691
Figure 2010284691

このように、矩形状インサートを1パスで溶接することができ、厚板の鋼板や鋼管の狭開先溶接の効率が飛躍的に向上したものである。
なお、矩形状インサートの両側から溶接を行う場合も上記表と類似の溶接条件で行うことができる。
In this way, the rectangular insert can be welded in one pass, and the efficiency of narrow groove welding of thick steel plates and steel pipes has been dramatically improved.
In addition, also when welding from both sides of a rectangular insert, it can carry out on the welding conditions similar to the said table | surface.

開先加工に従来のガス切断やプラズマ切断を使い、機械加工を必要とせず、厚板の鋼板や鋼管においても狭開先溶接施工を可能にすることが出来る。   Conventional gas cutting or plasma cutting is used for groove processing, and machining is not required, and narrow groove welding can be performed even on thick steel plates and steel pipes.

図1(1)〜(4)は本発明の裏波溶接方法を示す図であり、図1(1)は矩形状インサートが鋼板間の下部に挟まれ仮付溶接されている状態を示す図であり、図1(2)は矩形状インサートの開先内表面に深溶け込み活性剤が塗布されている状態を示す図であり、図1(3)は複合ウィービング装置を使ってTIG溶接を行っている状態を示す図であり、図1(4)は裏波溶接が完了した状態を示している。FIGS. 1 (1) to (4) are diagrams illustrating a backside welding method according to the present invention, and FIG. 1 (1) is a diagram illustrating a state in which a rectangular insert is sandwiched between steel plates and tack welded. FIG. 1 (2) is a view showing a state in which a deep-penetration activator is applied to the inner surface of the groove of the rectangular insert, and FIG. 1 (3) is a TIG welding process using a composite weaving device. FIG. 1 (4) shows a state in which the back wave welding is completed. 図2(1)〜(5)は、表面側と裏面側、即ち両側への溶接を示す図であり、図2(1)は、矩形状インサートが鋼板間の中央部に挟まれ仮付溶接されている状態を示す図であり、図2(2)は、矩形状インサートの開先内表面に深溶け込み活性剤が塗布されている状態を示す図であり、図2(3)は矩形状インサートの開先内表面(継手部表面)に溶接が行われた状態を示す図であり、図2(4)は、矩形状インサートの開先内裏面に深溶け込み活性剤が塗布されている状態を示す図であり、図2(5)は、矩形状インサートの開先内裏面(継手部裏面)に溶接が行われた状態を示す図である。2 (1) to 2 (5) are diagrams showing welding on the front side and the back side, that is, both sides, and FIG. 2 (1) shows a temporary welding in which a rectangular insert is sandwiched between the center portions between steel plates. 2 (2) is a view showing a state in which a deep-penetrating active agent is applied to the groove inner surface of the rectangular insert, and FIG. 2 (3) is a rectangular shape. It is a figure which shows the state by which welding was performed to the groove inner surface (joint part surface) of an insert, and FIG.2 (4) is the state by which the deep penetration active agent is apply | coated to the groove inner back surface of a rectangular insert. FIG. 2 (5) is a diagram showing a state in which welding is performed on the back surface in the groove (back surface of the joint portion) of the rectangular insert. 図3(1)、(2)は従来の狭開先の開先形状を示す図であり、図3(1)はU形開先を示す図であり、図3(2)はH形開先を示す図である。3 (1) and 3 (2) are diagrams showing a conventional narrow groove shape, FIG. 3 (1) is a diagram showing a U-shaped groove, and FIG. 3 (2) is an H-shaped groove. It is a figure which shows a tip. 図4(1)、(2)は偏芯電極を回転させることでナローギャップ側壁に直接アークを発生させ溶け込み不良のない溶接を確保する溶接方法を示す図であり、図4(1)は板厚が25mm〜80mmの場合を示す図であり、図4(2)は板厚が80mm〜300mmの場合を示す図である。4 (1) and 4 (2) are diagrams showing a welding method for ensuring arc-free welding by generating an arc directly on the narrow gap side wall by rotating the eccentric electrode, and FIG. It is a figure which shows the case where thickness is 25 mm-80 mm, and FIG. 4 (2) is a figure which shows the case where plate | board thickness is 80 mm-300 mm. 各パラメータの波形を示す図である。It is a figure which shows the waveform of each parameter. ウィービングの軌跡を示す図である。It is a figure which shows the locus | trajectory of weaving.

本発明の実施の形態の一例を図面にしたがって説明する。   An example of an embodiment of the present invention will be described with reference to the drawings.

図1(1)〜(4)は、本発明の裏波溶接方法を示す図である。図1が示すように、被溶接物1、2はガス切断又はプラズマ切断により直線上の開先となっている。
図1(1)は、開先角度が4°〜10°であって、継手部に幅6〜10mm、厚さ2〜6mmの矩形状インサート3が鋼板間の下部に挟まれ、外れたりしないように外側から仮付溶接4され、継手部を形成した状態を示している。
1 (1) to 1 (4) are diagrams showing the back wave welding method of the present invention. As shown in FIG. 1, the workpieces 1 and 2 are grooved on a straight line by gas cutting or plasma cutting.
In FIG. 1 (1), the groove angle is 4 ° to 10 °, and the rectangular insert 3 having a width of 6 to 10 mm and a thickness of 2 to 6 mm is sandwiched between the steel plates and does not come off. In this manner, a state in which the joint is formed by the temporary welding 4 from the outside is shown.

図1(2)は、矩形状インサート3の開先内表面に深溶け込み活性剤(フラックス)7が塗布されている状態を示している。当該図が示すように、深溶け込み活性剤7は少なくとも矩形状インサート3の開先内表面に塗布されることが必要であるが、好ましくは被溶接物1,2との接合部周囲まで塗布される。   FIG. 1 (2) shows a state in which a deep-melt active agent (flux) 7 is applied to the groove inner surface of the rectangular insert 3. As shown in the figure, the deep-penetration activator 7 needs to be applied to at least the inner surface of the groove of the rectangular insert 3, but is preferably applied to the periphery of the joint with the workpieces 1 and 2. The

図1(3)は、複合ウィービング装置の偏芯電極5の回転によりTIG溶接を行っている状態を示しており、上部直線の矢印は平行ウィービングの方向を、下部の半円形の曲線の矢印は偏芯電極回転ウィービングの方向を示している。   FIG. 1 (3) shows a state in which TIG welding is performed by rotation of the eccentric electrode 5 of the composite weaving device. The upper straight arrow indicates the direction of parallel weaving, and the lower semicircular curved arrow indicates The direction of eccentric electrode rotation weaving is shown.

図1(4)は、裏波溶接が完了した状態を示している。又、図番号6は溶接接合部(溶接された部分)を示す。   FIG. 1 (4) shows a state in which the back wave welding is completed. Moreover, the figure number 6 shows a welding junction (welded part).

図2(1)〜(5)は、表側(表面側)、裏側(裏面側)、即ち両側(両面)への溶接(TIG溶接)を示す図であり、図2(1)は、被溶接物1、2の厚さが40〜250mmまたはそれ以上に厚い場合で、開先角度が2°〜10°であって、幅6〜12mm、厚み6〜18mmの矩形状インサート3が中央部で挟まれ仮付溶接4されている状態を示している。
なお、矩形状インサート3を中央部で挟み両側から狭開先溶接を行えるように、被溶接物1,2はガス切断又はプラズマ切断により表裏両側から直線的に加工されている。
2 (1) to (5) are diagrams showing welding (TIG welding) to the front side (front side), the back side (back side), that is, both sides (both sides), and FIG. In the case where the thicknesses of the objects 1 and 2 are thicker than 40 to 250 mm or more, the groove angle is 2 ° to 10 °, the rectangular insert 3 having a width of 6 to 12 mm and a thickness of 6 to 18 mm is formed at the center. The state where it is sandwiched and is tack-welded 4 is shown.
In addition, the to-be-welded objects 1 and 2 are processed linearly from both front and back sides by gas cutting or plasma cutting so that the rectangular insert 3 can be sandwiched between the center portions and narrow groove welding can be performed from both sides.

図2(2)は、矩形状インサート3の開先内表面(表側)に深溶け込み活性剤7が塗布されている状態を示している。   FIG. 2 (2) shows a state in which the deep penetration active agent 7 is applied to the groove inner surface (front side) of the rectangular insert 3.

図2(3)は、図1(3)と同様に複合ウィービング装置の偏芯電極5の回転によりを使ってTIG溶接を行った結果(図4、5、6参照)、矩形状インサート3の開先内表側の溶接が完了したことを示している図である。   2 (3) shows the result of TIG welding using the rotation of the eccentric electrode 5 of the composite weaving device as in FIG. 1 (3) (see FIGS. 4, 5 and 6). It is a figure showing that welding on the front side in the groove has been completed.

図2(4)は、矩形状インサート3の開先内裏面(裏側)に深溶け込み活性剤7が塗布されている状態を示している。     FIG. 2 (4) shows a state in which the deep-melt active agent 7 is applied to the inner back surface (back side) of the groove of the rectangular insert 3.

図2(5)は、矩形状インサート3の開先内表面及び裏面にTIG溶接が行われた状態を示している図である。当該図で示すように、表面側から形成した溶融接合部6と裏面側から形成した溶融接合部6は板厚の中央部で重なり合っている。     FIG. 2 (5) is a view showing a state in which TIG welding is performed on the inner surface and the rear surface of the groove of the rectangular insert 3. As shown in the figure, the melt-bonded portion 6 formed from the front surface side and the melt-bonded portion 6 formed from the back surface side are overlapped at the center of the plate thickness.

図3(1)、(2)は従来の狭開先(ナローギャップ)の開先形状を示す図であり、図3(1)は被溶接物の厚さ40〜200mm、開先角度4°〜10°、ルート半径R4〜R10、ルート面14〜2,0mm、ギャップ0+1、0mmであるU形開先を示す図である。   3 (1) and 3 (2) are diagrams showing a conventional narrow groove (narrow gap) groove shape, and FIG. 3 (1) shows a thickness of a workpiece to be welded of 40 to 200 mm and a groove angle of 4 °. It is a figure which shows U-shaped groove | channel which is 10 degrees, route radius R4-R10, route surface 14-20,0 mm, gap 0 + 1, 0 mm.

図3(2)は、被溶接物の厚さ40〜250mm、開先角度4〜°10°、ルート半径R4〜R10、ルート面14〜2,0mmであるH形開先を示す図である。   FIG. 3B is a diagram showing an H-shaped groove having a thickness of 40 to 250 mm, a groove angle of 4 to 10 °, a route radius R4 to R10, and a route surface of 14 to 20 mm. .

図4(1)、(2)は偏芯電極5を回転させることでナローギャップ側壁(被溶接物)1、2に直接アークを発生させ溶け込み不良のない溶接を確保する溶接方法である。   4 (1) and 4 (2) show a welding method in which an arc is directly generated on the narrow gap side walls (workpieces) 1 and 2 by rotating the eccentric electrode 5 so as to ensure welding with no penetration failure.

図4(1)は板厚が25mm〜80mmの場合であって、ダブルフラックス(二重集束)トーチから電極のみを突き出して電極を回転させるナローギャップ溶接法を採用する。開先角度は6〜20mmであり、偏芯電極5が±45°回転する状態を示している。   FIG. 4A shows a case where the plate thickness is 25 mm to 80 mm, and adopts a narrow gap welding method in which only the electrode is protruded from a double flux (double focusing) torch and the electrode is rotated. The groove angle is 6 to 20 mm, and the eccentric electrode 5 is rotated ± 45 °.

図4(2)は板厚が80mm〜300mmの場合であって、開先角度が20mm以上の場合であり、偏芯電極5が±90°回転する状態を示している。   FIG. 4 (2) shows a case where the plate thickness is 80 mm to 300 mm, the groove angle is 20 mm or more, and the eccentric electrode 5 rotates ± 90 °.

1・2 被溶接物
3 矩形状インサート
4 仮付溶接部
5 偏芯電極
6 溶接接合部
7 深溶け込み活性剤
1.2 Workpiece 3 Rectangular insert 4 Temporary weld 5 Eccentric electrode 6 Welded joint 7 Deep penetration activator

Claims (6)

被溶接物である2枚の鋼板又は鋼管の狭開先溶接において、
ガス切断又はプラズマ切断で開先加工する工程と、
継手部に矩形状インサートをはさみ仮付溶接を行い継手部を構成する工程と、
開先内の矩形状インサート開先内表面に深溶け込み活性剤を塗布した工程と、
継手部をアーク溶接する工程と、
からなる裏波溶接方法。
In narrow gap welding of two steel plates or steel pipes to be welded,
A process of groove processing by gas cutting or plasma cutting;
A step of sandwiching a rectangular insert to the joint part and performing temporary welding to configure the joint part;
A step of applying a deep penetration active agent to the inner surface of the rectangular insert groove in the groove;
Arc welding the joint part;
A back wave welding method comprising:
被溶接物である2枚の鋼板又は円筒形容器の突合せ溶接を両側開先加工して狭開先溶接を行う場合において、
ガス切断又はプラズマ切断で開先加工する工程と、
中央部に矩形状インサートをはさみ仮付溶接を行い継手部を構成する工程と、
開先内の矩形状インサート開先内表面に深溶け込み活性剤を塗布する工程と、
継手部表面をアーク溶接する工程と、
その後裏側から矩形状インサートの開先内裏面に深溶け込み活性剤を塗布する工程と、
継手部裏面をアーク溶接する工程と、
からなる溶接方法。
In the case of performing narrow groove welding by performing both-side groove processing of butt welding of two steel plates or cylindrical containers that are to be welded,
A process of groove processing by gas cutting or plasma cutting;
A step of sandwiching a rectangular insert in the center portion and performing temporary welding to form a joint portion;
Applying a deep penetration active agent to the inner surface of the rectangular insert groove in the groove;
Arc welding the joint surface,
Then, from the back side, applying a deep-melt active agent to the inner surface of the groove of the rectangular insert,
Arc welding the joint back surface;
A welding method comprising:
前記アーク溶接が、偏芯電極回転によるアーク・ウィービング溶接法に加えて平行ウィービング運動を周期制御するTIG溶接装置によるTIG溶接により行われることを特徴とする請求項1又は2に記載の溶接方法。 The welding method according to claim 1 or 2, wherein the arc welding is performed by TIG welding by a TIG welding apparatus that periodically controls parallel weaving motion in addition to the arc weaving welding method by rotating an eccentric electrode. 請求項1に記載する溶接方法において、裏波溶融金属の酸化防止と溶融金属の落下防止のため裏当材又は不活性ガスで保護することを特徴とする溶接方法。   The welding method according to claim 1, wherein protection is performed with a backing material or an inert gas to prevent oxidation of the backside molten metal and prevention of falling of the molten metal. 請求項1又は2の溶接法において、被溶接物である対象鋼材はステンレスまたは低炭素鋼であることを特徴とする溶接方法。   3. The welding method according to claim 1, wherein the target steel material to be welded is stainless steel or low carbon steel. 請求項2記載の溶接方法において、表面側から形成した溶融接合部と裏面側から形成した溶融接合部は板厚の中央部で重なり合っていることを特徴とする溶接方法。   3. The welding method according to claim 2, wherein the melt-bonded portion formed from the front surface side and the melt-bonded portion formed from the back surface side are overlapped at the center portion of the plate thickness.
JP2009140856A 2009-06-12 2009-06-12 Narrow groove welding method for thick steel plates and steel pipes Active JP5594813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009140856A JP5594813B2 (en) 2009-06-12 2009-06-12 Narrow groove welding method for thick steel plates and steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009140856A JP5594813B2 (en) 2009-06-12 2009-06-12 Narrow groove welding method for thick steel plates and steel pipes

Publications (2)

Publication Number Publication Date
JP2010284691A true JP2010284691A (en) 2010-12-24
JP5594813B2 JP5594813B2 (en) 2014-09-24

Family

ID=43540810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009140856A Active JP5594813B2 (en) 2009-06-12 2009-06-12 Narrow groove welding method for thick steel plates and steel pipes

Country Status (1)

Country Link
JP (1) JP5594813B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801808A (en) * 2014-03-06 2014-05-21 上海振华重工(集团)股份有限公司 Narrow-gap melting polar reactive gas shielded arc welding technology
JP2015208771A (en) * 2014-04-28 2015-11-24 株式会社石井鐵工所 Groove shrinkage restraining method of automatic tig back wave welding
CN111822823A (en) * 2020-07-02 2020-10-27 大连船舶重工集团有限公司 Ultra-thick plate narrow gap welding process method
CN114749764A (en) * 2022-04-28 2022-07-15 鞍钢股份有限公司 Stainless steel and carbon steel narrow gap gas shield welding process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108080773A (en) * 2016-11-23 2018-05-29 中国石油天然气股份有限公司 A kind of all positon ultra-narrow gap high frequency heated filament TIG weld method of multiple tube

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159276A (en) * 1983-03-01 1984-09-08 Ishikawajima Harima Heavy Ind Co Ltd Arc oscillating method in tig welding method
JPH1043862A (en) * 1996-07-30 1998-02-17 Kawasaki Heavy Ind Ltd Consumable electrode type arc welding method and equipment
JP2000102890A (en) * 1998-09-29 2000-04-11 Mitsubishi Heavy Ind Ltd Welding method, welding joint and welding structure
JP2006130510A (en) * 2004-11-02 2006-05-25 Aiko Engineering Kk Butt welding method for thick plate metal
JP2006159226A (en) * 2004-12-06 2006-06-22 Hitachi Ltd Back-bead welding method
JP2007196266A (en) * 2006-01-27 2007-08-09 Hitachi Ltd Both-side welding method and weld structure thereby

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159276A (en) * 1983-03-01 1984-09-08 Ishikawajima Harima Heavy Ind Co Ltd Arc oscillating method in tig welding method
JPH1043862A (en) * 1996-07-30 1998-02-17 Kawasaki Heavy Ind Ltd Consumable electrode type arc welding method and equipment
JP2000102890A (en) * 1998-09-29 2000-04-11 Mitsubishi Heavy Ind Ltd Welding method, welding joint and welding structure
JP2006130510A (en) * 2004-11-02 2006-05-25 Aiko Engineering Kk Butt welding method for thick plate metal
JP2006159226A (en) * 2004-12-06 2006-06-22 Hitachi Ltd Back-bead welding method
JP2007196266A (en) * 2006-01-27 2007-08-09 Hitachi Ltd Both-side welding method and weld structure thereby

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801808A (en) * 2014-03-06 2014-05-21 上海振华重工(集团)股份有限公司 Narrow-gap melting polar reactive gas shielded arc welding technology
CN103801808B (en) * 2014-03-06 2016-01-06 上海振华重工(集团)股份有限公司 Narrow clearance melting electrode metal active gas arc welding technique
JP2015208771A (en) * 2014-04-28 2015-11-24 株式会社石井鐵工所 Groove shrinkage restraining method of automatic tig back wave welding
CN111822823A (en) * 2020-07-02 2020-10-27 大连船舶重工集团有限公司 Ultra-thick plate narrow gap welding process method
CN111822823B (en) * 2020-07-02 2022-04-08 大连船舶重工集团有限公司 Ultra-thick plate narrow gap welding process method
CN114749764A (en) * 2022-04-28 2022-07-15 鞍钢股份有限公司 Stainless steel and carbon steel narrow gap gas shield welding process
CN114749764B (en) * 2022-04-28 2024-03-19 鞍钢股份有限公司 Gas-shielded welding process for stainless steel and carbon steel with narrow gap

Also Published As

Publication number Publication date
JP5594813B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5571745B2 (en) Double wire welding torch and related methods
US8546720B2 (en) Hybrid welding apparatus and system and method of welding
US8890030B2 (en) Hybrid welding apparatuses, systems and methods
US10328513B2 (en) Welding process, welding system, and welded article
JP5594813B2 (en) Narrow groove welding method for thick steel plates and steel pipes
JP2010201507A (en) Method of joining two metallic portions by tungsten inert gas welding and apparatus for carrying out this method
JPH06339775A (en) Welding method of ni-ni alloy material
JP2005334974A (en) Laser welding method
Torbati et al. Optimization procedures for GMAW of bimetal pipes
CN104907696A (en) Laser-arc hybrid welding method with welding current value considered
WO2014140763A2 (en) System and method of welding stainless steel to copper
CN107824943A (en) A kind of depth melts arc-welding double welding gun welding procedure
JP6034058B2 (en) Laser welding jig and laser welding apparatus provided with the same
JP5354236B1 (en) Submerged arc welding method for steel sheet
JP2011177769A (en) Tig welding method
CN107081528A (en) A kind of method for laser welding of high-grade pipe line steel
CN104646831B (en) Hybrid welding apparatus, system, and method for spatially offset components
JP2003245786A (en) Ac mig pulse arc combined with laser welding method
JP2018039017A (en) Joining method
US20050211688A1 (en) Method for hybrid multiple-thickness laser-arc welding with edge welding
US20130240490A1 (en) Welding method
JP5483553B2 (en) Laser-arc combined welding method
JP2646024B2 (en) Arc welding method and apparatus
JP6918895B2 (en) Plating removal method, welding method, welded material, structure
Manh et al. A Study on Vertical Upward Welding of Dissimilar Material and Thickness of Thin Plates Using Novel TIG Welding Process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140801

R150 Certificate of patent or registration of utility model

Ref document number: 5594813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250