JP2010283390A - Circuit base material of multilayer circuit substrate - Google Patents

Circuit base material of multilayer circuit substrate Download PDF

Info

Publication number
JP2010283390A
JP2010283390A JP2010207035A JP2010207035A JP2010283390A JP 2010283390 A JP2010283390 A JP 2010283390A JP 2010207035 A JP2010207035 A JP 2010207035A JP 2010207035 A JP2010207035 A JP 2010207035A JP 2010283390 A JP2010283390 A JP 2010283390A
Authority
JP
Japan
Prior art keywords
layer
resin layer
polyimide
insulating resin
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010207035A
Other languages
Japanese (ja)
Inventor
Fumihiko Matsuda
田 文 彦 松
Hirobumi Matsumoto
本 博 文 松
Chikafumi Omachi
町 親 文 大
Atsushi Miyagawa
川 篤 宮
Shoji Takano
野 祥 司 高
Mitsunobu Shomura
村 光 信 庄
Kiwamu Tokuhisa
久 極 徳
Takamasa Tanaka
中 孝 征 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Mektron KK
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK, Nippon Steel Chemical Co Ltd filed Critical Nippon Mektron KK
Priority to JP2010207035A priority Critical patent/JP2010283390A/en
Publication of JP2010283390A publication Critical patent/JP2010283390A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit base material suitable for manufacture of a multilayer circuit board including, as a cable part, a build-up layer by connection using a conductive projection. <P>SOLUTION: The circuit base material is composed of a metal foil having a plurality of conductive projections of ≥10 μm in height erected on at least one surface and an insulating resin layer having a multilayer structure laminated on the one surface of the metal foil and fixed in a state wherein the conductive projections penetrate it. The insulating resin layer of the circuit base has a low-thermal-expansion polyimide layer (a) of ≤30×10<SP>-6</SP>[1/K] in linear expansion coefficient of at least one layer, and an adhesive layer (b) positioned at an outermost layer from the metal foil and having a peel strength of ≥0.7 kN/m in peel strength when thermally applied to a copper foil having no conductive projection, and the linear expansion coefficient of the whole insulating resin layer is ≤35×10<SP>-6</SP>[1/K]. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、多層回路基板の回路基材に係わり、詳しくは導電性突起で層間の接続を行う多層回路基板、特に可撓性ケーブル部を有する多層回路基板の回路基材に関する。   The present invention relates to a circuit board of a multilayer circuit board, and more particularly to a circuit board of a multilayer circuit board in which layers are connected by conductive protrusions, and in particular, a multilayer circuit board having a flexible cable portion.

近年、電子機器の小型化および高機能化は益々促進されてきており、そのために回路基板に対する高密度化の要求が高まってきている。そこで、回路基板を片面から両面や三層以上の多層回路基板とすることにより、回路基板の高密度化を図っている。   In recent years, downsizing and higher functionality of electronic devices have been promoted more and more, and therefore, there is an increasing demand for higher density of circuit boards. In view of this, the circuit board is made to be a multi-layer circuit board from one side to both sides or three or more layers to increase the density of the circuit board.

この一環として、多層回路基板間を接続する可撓性ケーブル部を構成していた別体のフレキシブル基板やフレキシブルフラットケーブルを一体化した多層フレックスリジッド基板、あるいは多層フレキシブル基板などの多層回路基板が、携帯電話などの小型電子機器を中心に広く普及している。この多層回路基板の代表的な構造は、内層にスルーホール接続を有する2〜6層程度の多層コア回路基板にビアホール接続の1〜2層程度のビルドアップ層を両面あるいは片面に有する構造であり、フレキシブル基板によるケーブル部は、多層コア回路基板またはビルドアップ層に設ける構造である。   As a part of this, multilayer circuit boards such as a separate flexible board that constitutes the flexible cable part connecting the multilayer circuit boards, a multilayer flex rigid board integrated with a flexible flat cable, or a multilayer flexible board, Widely used mainly in small electronic devices such as mobile phones. A typical structure of this multilayer circuit board is a structure in which about 2 to 6 layers of multilayer core circuit boards having through-hole connections in the inner layer have 1 to 2 layers of build-up layers connected to via holes on both sides or one side. The cable portion by the flexible substrate is provided on the multilayer core circuit substrate or the build-up layer.

従来、多層コア回路基板やビルドアップ層の層間接続には、レーザー、NCドリル、プラズマエッチング、化学エッチング等による開孔後、メッキ処理を行う手法が採用されている。しかし、メッキ処理工程自体の歩留まりが悪いという欠点と、絶縁樹脂層の導通をとるための工程が煩雑であるという欠点を有する。   Conventionally, a method of performing a plating process after opening by laser, NC drill, plasma etching, chemical etching, or the like has been adopted for interlayer connection of a multilayer core circuit board or buildup layer. However, it has the disadvantage that the yield of the plating process itself is poor and the process for conducting the insulating resin layer is complicated.

このビルドアップ層は部品実装部であり、実装密度および配線密度を向上させる目的で、ビルドアップ層の電気的な接続を従来のメッキ法によるビアホール接続から、所謂、導電ペーストによる印刷バンプやメッキまたはエッチングによる金属バンプなどの導電性突起を用いた接続に置き換える手法が開発されている。   This build-up layer is a component mounting part. For the purpose of improving the mounting density and wiring density, the electrical connection of the build-up layer is changed from a via hole connection by a conventional plating method, so-called printing bumps or plating by a conductive paste or plating. A method of replacing the connection with conductive protrusions such as metal bumps by etching has been developed.

特許文献1には、金属板の表面に縦断面形状が山形の複数の導電性バンプ(導電性突起部)が形成され、この金属板上に絶縁シートが設けられた回路基材が示されている。   Patent Document 1 discloses a circuit substrate in which a plurality of conductive bumps (conductive protrusions) having a mountain-like longitudinal cross-sectional shape are formed on the surface of a metal plate, and an insulating sheet is provided on the metal plate. Yes.

図3および図4は、従来工法による、導電性突起を用いた接続によるビルドアップ層をケーブル部とする多層回路基板の製造法を示す、工程図である。多層回路基板の製造の際に、図3(1)に示すように、導電性突起1を、銅箔2上に印刷、エッチング、メッキ等の手法で形成する。   3 and 4 are process diagrams showing a method of manufacturing a multilayer circuit board using a build-up layer formed by connection using conductive protrusions as a cable portion according to a conventional method. When the multilayer circuit board is manufactured, as shown in FIG. 3A, the conductive protrusion 1 is formed on the copper foil 2 by a technique such as printing, etching, or plating.

次に図3(2)に示すように、両面に熱可塑性ポリイミドを有するポリイミドフィルム19を、導電性突起が立設された面にプレス、ラミネーター等で貼り付ける。この後、図3(3)に示すように、導電性突起1の頂部をポリイミドフィルム19から露出させるために、研磨等を行う。   Next, as shown in FIG. 3 (2), a polyimide film 19 having thermoplastic polyimide on both sides is attached to the surface on which the conductive protrusions are erected by a press, a laminator or the like. Thereafter, as shown in FIG. 3 (3), polishing or the like is performed to expose the top of the conductive protrusion 1 from the polyimide film 19.

このときには熱可塑性ポリイミドの接着性はなく、導電性突起1がポリイミドフィルム19に突き刺さっている状態である。ここまでの工程で、導電性突起1がポリイミドフィルム19を貫通した基材20を得る。   At this time, there is no adhesive property of the thermoplastic polyimide, and the conductive protrusion 1 is stuck into the polyimide film 19. The base material 20 in which the conductive protrusion 1 penetrates the polyimide film 19 is obtained through the steps so far.

図3(4)〜図4(2)に、多層コア回路基板の製造方法を示す。図3(4)に示すような両面銅張り積層板7を用意する。   3 (4) to 4 (2) show a method for manufacturing a multilayer core circuit board. A double-sided copper-clad laminate 7 as shown in FIG.

次に図3(5)に示すように、NCドリル、金型等の手法で導通用孔8を形成する。この後、図3(6)に示すように、導電化処理、無電解メッキ等の処理を施した後、電解メッキ9で導通用孔8を介しての両面間の導通をとる。   Next, as shown in FIG. 3 (5), a conduction hole 8 is formed by a technique such as an NC drill or a mold. Thereafter, as shown in FIG. 3 (6), after conducting a treatment such as a conductive treatment or electroless plating, the electroplating 9 establishes conduction between both surfaces through the conduction hole 8.

次に図4(1)に示すように、定法により、両面の回路11を形成する。続いて、図4(2)に示すように、金型等で基板の不要な部分を抜き加工する。ここまでの工程によって、多層コア回路基板13が製造される。基板を構成する層数が増えた場合でも、基本的に同様の工程で製造される。   Next, as shown in FIG. 4A, a double-sided circuit 11 is formed by a conventional method. Subsequently, as shown in FIG. 4B, unnecessary portions of the substrate are punched out with a mold or the like. The multilayer core circuit board 13 is manufactured through the steps so far. Even when the number of layers constituting the substrate is increased, the substrate is basically manufactured by the same process.

次いで、図4(3)に示すように、多層コア回路基板13に、導電性突起がポリイミドフィルムを貫通した基材21,22を積層する。必要に応じて、予め導電性突起がポリイミドフィルムを貫通した基材を金型等で枠抜きしてから積層する。   Next, as shown in FIG. 4 (3), base materials 21 and 22 in which conductive protrusions penetrate the polyimide film are laminated on the multilayer core circuit board 13. If necessary, the base material through which the conductive protrusion has penetrated the polyimide film is previously framed with a mold or the like and then laminated.

この後、図4(4)に示すように、定法により積層した基材の銅箔に回路パターン23,24を形成する。さらに定法により、カバーフィルムおよびソルダーレジスト層の形成や無電解ニッケル、金メッキ等を行い、多層回路基板18を得る。
特開平6−350258号公報 特開2002−141629号公報 特開平8−46321号公報 特開平2−234494号公報
Thereafter, as shown in FIG. 4 (4), circuit patterns 23 and 24 are formed on the copper foil of the base material laminated by a conventional method. Further, the multilayer circuit board 18 is obtained by forming a cover film and a solder resist layer, electroless nickel, gold plating and the like by a conventional method.
JP-A-6-350258 JP 2002-141629 A JP-A-8-46321 JP-A-2-234494

上述のように、導電性突起を用いた接続によるビルドアップ層の層間絶縁材を、可撓性のある例えば両面に熱可塑性ポリイミド等の接着性樹脂を有するポリイミドフィルムで形成し、ビルドアップ層をケーブル部とする構造がある。   As described above, the build-up layer interlayer insulating material by connection using conductive protrusions is formed of a flexible polyimide film having an adhesive resin such as thermoplastic polyimide on both sides, and the build-up layer is formed. There is a structure to be a cable part.

この構造は、銅箔上の導電性突起がポリイミドを貫通した構造の基材を、予め作製された多層コア回路基板に積層プレスすることで、多層回路基板として製造される。   This structure is manufactured as a multilayer circuit board by laminating and pressing a base material having a structure in which conductive protrusions on a copper foil penetrate polyimide on a multilayer core circuit board prepared in advance.

しかしながら、この多層回路基板は、ケーブル部に相当する部分のポリイミドが、積層プレスで押切れずにポリイミドと銅箔との密着が得られないことがある、という問題がある。さらに、ポリイミドフィルムは、導電性突起を用いた接続では直接貫通することができないため、特許文献2に記載されているように、導電性突起の頂部を露出させるための研磨等の工程に掛かる手間が大きい、という問題もある。   However, this multilayer circuit board has a problem that polyimide in a portion corresponding to a cable portion is not cut by a lamination press and adhesion between the polyimide and the copper foil may not be obtained. Furthermore, since the polyimide film cannot be directly penetrated by the connection using the conductive protrusions, as described in Patent Document 2, it is troublesome to perform a process such as polishing for exposing the top of the conductive protrusions. There is also a problem that is large.

また、特許文献3には、ポリイミドフィルムを予め穴明けして、接着層のみに導電性突起を貫通させる製造方法が記載されている。   Further, Patent Document 3 describes a manufacturing method in which a polyimide film is punched in advance and a conductive protrusion is passed through only an adhesive layer.

しかし、穴明けの工程が煩雑であることや、穴と導電性突起との位置合わせの問題があり、上記問題を解決するには到っていない。   However, the drilling process is complicated and there are problems of alignment between the holes and the conductive protrusions, and the above problems have not been solved.

また、ケーブル部に相当する部分の層間絶縁材を可撓性のある熱可塑性の樹脂、例えば熱可塑性ポリイミドだけで形成する場合には、上記問題に加え、特許文献3に記載されている樹脂の流れ出しという問題もある。   In addition, in the case where the interlayer insulating material corresponding to the cable portion is formed of only a flexible thermoplastic resin, for example, thermoplastic polyimide, in addition to the above problem, the resin described in Patent Document 3 There is also a problem of running out.

結局、導電性突起による貫通性、金属箔との密着性、高温接合に絶える耐熱性、高密度接続および高密度実装のための寸法安定性、そして、フレキシブル基板としての可撓性や耐屈曲性などの屈曲特性とを同時に満たす適切な絶縁樹脂が無い、という問題がある。   After all, penetration by conductive protrusions, adhesion to metal foil, heat resistance to high temperature bonding, dimensional stability for high density connection and high density mounting, and flexibility and flex resistance as a flexible substrate There is a problem that there is no appropriate insulating resin that satisfies the bending characteristics such as the above.

このような背景から、従来の工法では、導電性突起を用いた接続による回路層をケーブル部とする多層回路基板を安価かつ安定的に製造することは困難である。   From such a background, it is difficult for the conventional construction method to inexpensively and stably manufacture a multilayer circuit board having a circuit layer formed by connection using conductive protrusions as a cable portion.

本発明は、上述の点を考慮してなされたもので、導電性突起を用いた接続によるビルドアップ層やコア回路層をケーブル部とする多層回路基板の回路基材を提供することを目的とする。   The present invention has been made in consideration of the above-described points, and an object thereof is to provide a circuit base material for a multilayer circuit board having a cable portion as a build-up layer or a core circuit layer by connection using conductive protrusions. To do.

上記目的達成のため、本願では、下記の発明を提供する。   In order to achieve the above object, the present invention provides the following inventions.

本発明によれば、少なくとも一面に高さ10μm以上の複数の導電性突起が立設された金属箔とこの金属箔の前記一面に積層されて前記導電性突起が貫通した状態で固定される複層構造の絶縁樹脂層とからなる回路基材であって、前記絶縁樹脂層は、少なくとも1層の線膨張係数が30×10−6[1/K]以下の低熱膨張性ポリイミド樹脂層(a)と前記金属箔から最外層に位置し、導電性突起を有さない銅箔と熱圧着した場合のピール強度が0.7kN/m以上を与える接着層(b)とを有し、絶縁樹脂層全体の線膨張係数が35×10−6[1/K]以下であることを特徴とする。 According to the present invention, a metal foil in which a plurality of conductive protrusions having a height of 10 μm or more are erected on at least one surface and a metal foil laminated on the one surface of the metal foil and fixed in a state where the conductive protrusion penetrates. A circuit base material comprising an insulating resin layer having a layer structure, wherein the insulating resin layer has a low thermal expansion polyimide resin layer (a) having a linear expansion coefficient of at least one layer of 30 × 10 −6 [1 / K] or less. And an adhesive layer (b) which is located on the outermost layer from the metal foil and does not have conductive protrusions, and an adhesive layer (b) which gives a peel strength of 0.7 kN / m or more when thermocompression bonded. The linear expansion coefficient of the entire layer is 35 × 10 −6 [1 / K] or less.

これらの特徴により、本発明は次のような効果を奏する。   Due to these features, the present invention has the following effects.

本発明によれば、回路基材の絶縁樹脂層に線膨張係数の低いポリイミド樹脂を用いるので、反りがなく寸法安定性に優れた回路基材を得ることが出来る。また、その絶縁樹脂層の最外層は金属との接着性に優れることから、金属との剥離の生じない回路基材とすることができ、主に多層回路基板の可撓性ケーブル部用の基材として好適に用いられる。   According to the present invention, since the polyimide resin having a low linear expansion coefficient is used for the insulating resin layer of the circuit substrate, a circuit substrate having no warpage and excellent dimensional stability can be obtained. In addition, since the outermost layer of the insulating resin layer is excellent in adhesion to metal, it can be used as a circuit base material that does not peel off from the metal, and is mainly used for a flexible cable portion of a multilayer circuit board. It is suitably used as a material.

この結果、本発明によれば、従来の製造方法では困難であった可撓性ケーブル部をビルドアップ層に有する多層回路基板が安価かつ安定的に提供できる。   As a result, according to the present invention, a multilayer circuit board having a flexible cable portion in a buildup layer, which has been difficult with the conventional manufacturing method, can be stably provided at a low cost.

まず、本発明に係る多層回路基板に用いる複層構造の絶縁樹脂層、つまり温度250℃で圧縮弾性率が15GPa以上であるポリイミド系樹脂からなるコア樹脂層と、前記導電性突起が当接される面に被着される接着層とを有する複層構造の絶縁樹脂層について説明する。   First, an insulating resin layer having a multilayer structure used for the multilayer circuit board according to the present invention, that is, a core resin layer made of a polyimide resin having a compression elastic modulus of 15 GPa or more at a temperature of 250 ° C., and the conductive protrusion are brought into contact with each other. An insulating resin layer having a multilayer structure having an adhesive layer applied to the surface to be adhered will be described.

ここで、コア樹脂層とは、温度250℃における圧縮弾性率が15Gpa以上であるポリイミド系樹脂により構成される層であり、好ましくは、線膨張係数が30×10-6[1/K]以下のものを言う。接着層以外の層が2層以上からなる場合、コア樹脂層は接着層以外の最も厚い層である。   Here, the core resin layer is a layer composed of a polyimide resin having a compressive elastic modulus at a temperature of 250 ° C. of 15 Gpa or more, and preferably has a linear expansion coefficient of 30 × 10 −6 [1 / K] or less. Say things. When the layer other than the adhesive layer is composed of two or more layers, the core resin layer is the thickest layer other than the adhesive layer.

絶縁樹脂層は、2以上の樹脂層から形成されており、その少なくとも1層は、線膨張係数が30×10−6[1/K]以下の低熱膨張性ポリイミド樹脂層(a)であり、また導電性突起を有する金属箔から最も離れた最外樹脂層は、導電性突起部を有さない銅箔と熱圧着して測定されるピール強度が0.7KN/m以上の接着層(b)である。また、ピール強度の測定方法は、後記する実施例による。 The insulating resin layer is formed of two or more resin layers, at least one of which is a low thermal expansion polyimide resin layer (a) having a linear expansion coefficient of 30 × 10 −6 [1 / K] or less, The outermost resin layer farthest from the metal foil having conductive protrusions is an adhesive layer (b) having a peel strength of 0.7 KN / m or more measured by thermocompression bonding with a copper foil having no conductive protrusions. ). Moreover, the measuring method of peel strength is based on the Example mentioned later.

したがって、本発明の多層回路基板用の導電性突起が絶縁樹脂層を貫通した基材の絶縁樹脂層は、少なくとも2層の異なる種類の樹脂層を有する。好ましくは、絶縁樹脂層の全てをポリイミド樹脂層とすることで、他の樹脂を接着層として使用した場合などに生じる特性低下を招くことなく、高耐熱で寸法安定性にも優れた絶縁樹脂層を形成することができる。   Therefore, the insulating resin layer of the base material in which the conductive protrusion for the multilayer circuit board of the present invention penetrates the insulating resin layer has at least two different types of resin layers. Preferably, all of the insulating resin layer is a polyimide resin layer, so that the insulating resin layer has high heat resistance and excellent dimensional stability without causing deterioration in characteristics when other resins are used as an adhesive layer. Can be formed.

ここで、本発明におけるポリイミド樹脂層とは、分子中にイミド結合を持った重合体を含有する樹脂層を指し、好ましくは主成分がポリイミドまたはポリアミドイミドからなるものをいう。この種のポリイミド樹脂としては、例えば特許2746555号公報や特許3034838号公報記載のものが挙げられる。   Here, the polyimide resin layer in the present invention refers to a resin layer containing a polymer having an imide bond in the molecule, and preferably means that the main component is composed of polyimide or polyamideimide. Examples of this type of polyimide resin include those described in Japanese Patent No. 2746555 and Japanese Patent No. 3034838.

また、下記説明において、金属箔は導電性突起を有する金属箔を、a層は圧縮弾性率が15Gpa以上であるポリイミド樹脂により構成されるコア樹脂層または線膨張係数が30×10-6[1/K]以下の低熱膨張性ポリイミド樹脂層(a)を、b層はピール強度0.7KN/m以上の接着層(b)を意味する。また、α層は、限定されない任意の絶縁樹脂層である。   In the following description, the metal foil is a metal foil having conductive protrusions, and the a layer is a core resin layer made of a polyimide resin having a compressive elastic modulus of 15 Gpa or more, or has a linear expansion coefficient of 30 × 10 −6 [1. / K] represents a low thermal expansion polyimide resin layer (a) or less, and b layer represents an adhesive layer (b) having a peel strength of 0.7 KN / m or more. The α layer is an arbitrary insulating resin layer that is not limited.

そして、本発明に用いる絶縁樹脂層に金属箔を加えた構成例を示すと、次の(i)〜(iv)の通りである。   And when the structural example which added metal foil to the insulating resin layer used for this invention is shown, it is as following (i)-(iv).

(i) 金属箔/a層/b層
(ii) 金属箔/α層/a層/b層
(iii) 金属箔/a層/α層/b層
(iv) 金属箔/α層/a層/α層/b層
図5に、上記(iv)に係る回路基材の断面構成図を示す。
(I) Metal foil / a layer / b layer (ii) Metal foil / α layer / a layer / b layer (iii) Metal foil / a layer / α layer / b layer (iv) Metal foil / α layer / a layer / Α layer / b layer FIG. 5 is a cross-sectional view of the circuit substrate according to (iv).

本発明に係る多層回路基板用の導電性突起が絶縁樹脂層を貫通した基材においては、絶縁樹脂層の全厚さに対して、低熱膨張性ポリイミド樹脂層(a)の厚さは、40〜80%の範囲とすることが好ましい。また、接着層の厚さ(b)と低熱膨張性ポリイミド樹脂層の厚さ(a)との厚み比(b/a)であるb/aは、0.05〜1.7の範囲とすることが好ましい。 In the base material in which the conductive protrusion for the multilayer circuit board according to the present invention penetrates the insulating resin layer, the thickness of the low thermal expansion polyimide resin layer (a) is 40 with respect to the total thickness of the insulating resin layer. It is preferable to make it into the range of -80%. Further, the thickness of the adhesive layer (b t) and the thickness of the low thermal expansion polyimide resin layer (a t) and the thickness ratio of (b t / a t) b t / a t is 0.05 Is preferably in the range of .7.

このように厚みを設定することで、絶縁樹脂層全体の低熱膨張性を維持することができ、また、接着特性とのバランスも良好となる。絶縁樹脂層の低熱膨張性ポリイミド樹脂層(a)は、多層回路基板の反りや工程上のハンドリング等の問題から、線膨張係数が30×10−6[1/K]以下であることを必要とする。このような低熱膨張性を示すポリイミド樹脂としては、下記一般式(1)で表されるポリイミド構造単位を80モル%以上含むものが好ましい。

Figure 2010283390
By setting the thickness in this way, the low thermal expansion property of the entire insulating resin layer can be maintained, and the balance with the adhesive properties is improved. The low thermal expansion polyimide resin layer (a) of the insulating resin layer needs to have a linear expansion coefficient of 30 × 10 −6 [1 / K] or less because of problems such as warpage of the multilayer circuit board and handling in the process. And As such a polyimide resin exhibiting low thermal expansion, those containing 80 mol% or more of a polyimide structural unit represented by the following general formula (1) are preferable.
Figure 2010283390

ここで、式中のRは下記式(2)または(3)で表される基であり、Rは下記式(4),(5),(6)または(7)で表される基から選択される少なくとも1種の基である。なお、下記式(2)中、XはSO、COまたは直結合を示す。

Figure 2010283390
Here, R 1 in the formula is a group represented by the following formula (2) or (3), and R 2 is represented by the following formula (4), (5), (6) or (7). It is at least one group selected from the group. In the following formula (2), X represents SO 2 , CO, or a direct bond.
Figure 2010283390

絶縁樹脂層の接着層(b)は、ピール強度0.7KN/m以上を示すものであり、特に100〜350℃の範囲の軟化温度を有するものが好ましい。本発明においては、ピール強度0.7KN/m以上の接着層を金属層から最外層に位置させることで、後に、接着層と接する材料との接着性を発現させることができる。接着層(b)は、特に銅箔に例示される金属と良接着性を示す樹脂材料である、上記一般式(1)で表されるポリイミド構造を有するものが好ましい。   The adhesive layer (b) of the insulating resin layer exhibits a peel strength of 0.7 KN / m or more, and particularly preferably has a softening temperature in the range of 100 to 350 ° C. In the present invention, an adhesive layer having a peel strength of 0.7 KN / m or more is positioned on the outermost layer from the metal layer, so that the adhesiveness with the material in contact with the adhesive layer can be developed later. The adhesive layer (b) preferably has a polyimide structure represented by the above general formula (1), which is a resin material exhibiting good adhesion to metals exemplified in copper foil.

ここで、式中のRは上記式 (2),(3)で表される基から選択される少なくとも1種の基であり、Rは上記式(5),(7)または(8)で表される基から選択される少なくとも1種の基である。 Here, R 1 in the formula is at least one group selected from the groups represented by the above formulas (2) and (3), and R 2 is the above formula (5), (7) or (8 And at least one group selected from the groups represented by:

絶縁樹脂層の接着層(b)としては、シリコーンユニットを有するシロキサン変性ポリイミド樹脂を用いてもよい。   As the adhesive layer (b) of the insulating resin layer, a siloxane-modified polyimide resin having a silicone unit may be used.

このシリコーンユニットを有するポリイミド樹脂は、下記一般式(9)および(10)の構成単位を有するものとして例示することができる。

Figure 2010283390
The polyimide resin which has this silicone unit can be illustrated as what has a structural unit of the following general formula (9) and (10).
Figure 2010283390

上記一般式(9)中、Rは4価の芳香族基を示し、R,Rは2価の炭化水素基を示し、R〜Rは炭素数1〜6の炭化水素基を示し、nは1〜20の整数を示す。

Figure 2010283390
In the general formula (9), R 3 represents a tetravalent aromatic group, R 4 and R 9 represent a divalent hydrocarbon group, and R 5 to R 8 represent a hydrocarbon group having 1 to 6 carbon atoms. N represents an integer of 1-20.
Figure 2010283390

上記一般式(10)において、R10は4価の芳香族基を示し、R11は2価の芳香族基または下記一般式(11)で示される3価もしくは4価の芳香族基を示している。Xは水酸基、アミノ基、カルボキシル基を示し、mは1または2である。

Figure 2010283390
In the general formula (10), R 10 represents a tetravalent aromatic group, R 11 represents a divalent aromatic group or a trivalent or tetravalent aromatic group represented by the following general formula (11). ing. X represents a hydroxyl group, an amino group, or a carboxyl group, and m is 1 or 2.
Figure 2010283390

接着層(b)は、上記シロキサン変性ポリイミド樹脂だけで形成してもよいが、シロキサン変性ポリイミドに、エポキシ樹脂1〜40重量%を配合して得られるものが好ましい。シロキサン変性ポリイミドの構造単位中に、上記式(11)の部位を有しない場合には、特にエポキシ樹脂硬化剤1〜40重量%を配合することで好ましい態様となる。   The adhesive layer (b) may be formed of only the siloxane-modified polyimide resin, but is preferably obtained by blending 1 to 40% by weight of an epoxy resin with the siloxane-modified polyimide. In the case where the structural unit of the siloxane-modified polyimide does not have the site of the above formula (11), a preferable embodiment is obtained by adding 1 to 40% by weight of an epoxy resin curing agent.

本発明において、絶縁樹脂層中における低熱膨張性ポリイミド樹脂層(a)と接着層(b)との厚み割合は、導電性突起が絶縁樹脂層を貫通した基材の寸法安定性、接着性との関係に影響するので、各層の厚み範囲には好ましい範囲がある。絶縁樹脂層に占める低熱膨張性ポリイミド樹脂層(a)の厚み割合は、40〜80%であることが好ましい。   In the present invention, the thickness ratio between the low thermal expansion polyimide resin layer (a) and the adhesive layer (b) in the insulating resin layer is such that the dimensional stability and adhesiveness of the base material through which the conductive protrusion penetrates the insulating resin layer Therefore, there is a preferable range for the thickness range of each layer. The thickness ratio of the low thermal expansion polyimide resin layer (a) in the insulating resin layer is preferably 40 to 80%.

この割合が40%に満たないと、上記基材の寸法安定性が悪くなり易く、一方80%を超えると接着層の厚みが確保できないため、後に接着層と接する部材との接着性が不十分なものとなる恐れがある。また、接着層の厚さ(b)と低熱膨張性ポリイミド樹脂層の厚さ(a)との厚み比(b/a)は、b/a=0.05から1.7の範囲とすることが好ましい。 If this ratio is less than 40%, the dimensional stability of the substrate is likely to deteriorate. On the other hand, if it exceeds 80%, the thickness of the adhesive layer cannot be ensured, so that the adhesiveness to the member that comes into contact with the adhesive layer later is insufficient. There is a risk that The thickness ratio of the thickness of the adhesive layer and (b t) and the thickness of the low thermal expansion polyimide resin layer (a t) (b t / a t) from b t / a t = 0.05 1 . A range of 7 is preferable.

厚み比がこの範囲から外れると、寸法安定性と接着性との両立が難しくなる。絶縁樹脂層には、低熱膨張性ポリイミド樹脂層(a)および接着層(b)以外に、他の絶縁樹脂層を有していてもよい。   If the thickness ratio is out of this range, it becomes difficult to achieve both dimensional stability and adhesiveness. In addition to the low thermal expansion polyimide resin layer (a) and the adhesive layer (b), the insulating resin layer may have other insulating resin layers.

ただし、絶縁樹脂層全体の線膨張係数が35×10−6[1/K]を超えると、多層回路基板としての寸法安定性が低下したり、金属箔の線膨張係数との差が大きくなったりして、基板全体が反り易くなる。したがって、絶縁樹脂層全体の線膨張係数は35×10−6[1/K]以下とすることが必要である。 However, when the linear expansion coefficient of the entire insulating resin layer exceeds 35 × 10 −6 [1 / K], the dimensional stability as a multilayer circuit board is lowered or the difference from the linear expansion coefficient of the metal foil is increased. As a result, the entire substrate is easily warped. Therefore, the linear expansion coefficient of the entire insulating resin layer needs to be 35 × 10 −6 [1 / K] or less.

導電性突起部は、その高さが10μm以上あることが必要である。この高さは、金属箔平面部からの高さを意味し、この高さが10μmに満たないと、圧接後、金属箔の粗化表面と同じ高さになり、回路層間で短絡する。一方、高さが、200μmを超えると、導電性突起部間ピッチが大きくなり、微細配線が不可能となる。   The conductive protrusion needs to have a height of 10 μm or more. This height means the height from the flat part of the metal foil. If this height is less than 10 μm, after pressure welding, it becomes the same height as the roughened surface of the metal foil and shorts between the circuit layers. On the other hand, if the height exceeds 200 μm, the pitch between the conductive protrusions becomes large and fine wiring becomes impossible.

この金属箔上に存在している導電性突起部の形成方法は印刷、メッキ、エッチング等特に制限されないが、例えば、金属板表面に形成しようとする導電性突起部の大きさにあったメタルマスクを用意し、上記メタルマスク上から導電性ペーストを印刷し、乾燥させることにより、導電性突起部を有する金属箔を形成するという方法が挙げられる。   The method for forming the conductive protrusions present on the metal foil is not particularly limited, such as printing, plating, etching, etc. For example, a metal mask suitable for the size of the conductive protrusions to be formed on the surface of the metal plate Is prepared, a conductive paste is printed on the metal mask, and dried to form a metal foil having conductive protrusions.

導電性突起部を有する金属箔の材質としては、銅、アルミニウム、金が例示される。金属箔の平面部と導電性突起部との材質は同じであっても異なってもよい。好ましくは、両部分は銅で形成される。   Examples of the material of the metal foil having conductive protrusions include copper, aluminum, and gold. The material of the flat portion of the metal foil and the conductive protrusion may be the same or different. Preferably both parts are made of copper.

また、この金属箔の厚さは、すなわち、導電性突起部を有する部分以外の厚さは、ほぼ一定であり、一般的には、5〜75μmの厚さ範囲であり、5〜35μmの範囲が好ましい。   Further, the thickness of the metal foil, that is, the thickness other than the portion having the conductive protrusion is substantially constant, and is generally in the thickness range of 5 to 75 μm, and in the range of 5 to 35 μm. Is preferred.

以下、実施例につき具体的に説明するが、本発明は、これら実施例に限定されるものではない。なお、本発明における線膨張係数、接着力、圧縮弾性率の評価は、下記評価に基づくものである。   Hereinafter, although an example is described concretely, the present invention is not limited to these examples. In addition, evaluation of the linear expansion coefficient in this invention, adhesive force, and a compression elastic modulus is based on the following evaluation.

[線膨張係数]
線膨張係数は、イミド化反応が充分に終了した試料を使用し、セイコー電子工業(株)製サーモメカニカルアナライザー(TMA100)を用いて250℃に昇温後、10℃/分の温度で冷却し、240℃から100℃の範囲における平均の線膨張係数を求めたものである。
[Linear expansion coefficient]
For the linear expansion coefficient, a sample in which the imidization reaction was sufficiently completed was used, and the temperature was raised to 250 ° C. using a thermomechanical analyzer (TMA100) manufactured by Seiko Denshi Kogyo Co., Ltd., and then cooled at a temperature of 10 ° C./min. The average linear expansion coefficient in the range of 240 ° C. to 100 ° C. is obtained.

[ピール強度(接着力)]
突起部を有しない銅箔上に、絶縁樹脂層を設けて得た積層体を試料として使用し、この樹脂面上に厚さ35μmの電解銅箔(三井金属鉱業製3EC−III箔、Rz=6.0μm)粗化面を重ね、ガラス転移温度または軟化点温度で、圧力3MPa、時間1時間熱圧着した。これを引張試験機(東洋精機製テンシロンテスター)にて幅10mmの樹脂付き銅箔(導電性突起部なし)の樹脂側を両面テープによりアルミ板に固定し、銅を180度方向に5mm/分の速度で剥離して求めた。
[Peel strength (adhesive strength)]
A laminate obtained by providing an insulating resin layer on a copper foil having no protrusions was used as a sample, and an electrolytic copper foil having a thickness of 35 μm (3EC-III foil manufactured by Mitsui Mining & Mining, Rz = 6.0 μm) The roughened surfaces were stacked and thermocompression bonded at a glass transition temperature or a softening point temperature at a pressure of 3 MPa for 1 hour. Using a tensile tester (Tensilon tester manufactured by Toyo Seiki Co., Ltd.), the resin side of a 10 mm wide copper foil with resin (no conductive protrusion) is fixed to the aluminum plate with double-sided tape, and copper is 5 mm / min in the 180 ° direction. It peeled and calculated | required.

[圧縮弾性率]
圧縮弾性率は、(株)島津製作所製微小硬度計(DUH−W201)を用いて250℃に昇温後、直径20μmのフラット面を持つ微小圧子によって13.24mN/sで試験力196mNまで負荷を掛けて2秒保持し、その後、13.24mN/sで除荷したときの、除荷弾性変形領域における応力およびひずみを基に計算した。
[Compressive modulus]
The compression modulus was raised to 250 ° C using a Shimadzu Corporation micro hardness tester (DUH-W201) and then loaded to a test force of 196 mN at 13.24 mN / s with a micro indenter having a flat surface with a diameter of 20 µm. And held for 2 seconds, and then calculated based on the stress and strain in the unloading elastic deformation region when unloading at 13.24 mN / s.

(実施例で使用した原料の略号)
1,3−BAB:1,3−ビス(4−アミノフェノキシ)ベンゼン
BAPP: 2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン
DADMB:4,4’−ジアミノ−2,2’−ジメチルビフェニル
PMDA: 無水ピロメリット酸
BPDA: 3,3’,4,4’−ビフェニルテトラカルボン酸二無水物
PSX−X:平均分子量740のジアミノシロキサン
DMAc: N,N−ジメチルアセトアミド
DSDA: 3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物
HAB: 4,4’−ジアミノ−3,3’−ヒドロキシ−ビフェニル
次に、本発明の実施例で用いた樹脂の合成例1ないし3につき、上記した原料の略号を用いて説明する。
(Abbreviations of raw materials used in Examples)
1,3-BAB: 1,3-bis (4-aminophenoxy) benzene BAPP: 2,2′-bis [4- (4-aminophenoxy) phenyl] propane DADMB: 4,4′-diamino-2,2 '-Dimethylbiphenyl PMDA: pyromellitic anhydride BPDA: 3,3', 4,4'-biphenyltetracarboxylic dianhydride PSX-X: diaminosiloxane having an average molecular weight of 740 DMAc: N, N-dimethylacetamide DSDA: 3 , 3 ', 4,4'-Diphenylsulfonetetracarboxylic dianhydride
HAB: 4,4′-Diamino-3,3′-hydroxy-biphenyl Next, Synthesis Examples 1 to 3 of the resin used in the examples of the present invention will be described using the abbreviations of the raw materials described above.

コア樹脂層の合成
(合成例1)
308gのDMAcに、DADMB 20.32g(0.096モル)および1,3−BAB 3.11g(0.011モル)を溶解させた。次に、6.20g(0.021モル)のBPDAおよび18.37g(0.084モル)のPMDAを加えた。その後、室温にて約4時間撹拌を続けて重合反応を行い、250poise(25℃)のコア樹脂層となるポリイミド前駆体樹脂液aを得た。
Synthesis of core resin layer (Synthesis Example 1)
In 308 g of DMAc, 20.32 g (0.096 mol) of DADMB and 3.11 g (0.011 mol) of 1,3-BAB were dissolved. Next, 6.20 g (0.021 mol) of BPDA and 18.37 g (0.084 mol) of PMDA were added. Thereafter, stirring was continued at room temperature for about 4 hours to carry out a polymerization reaction, thereby obtaining a polyimide precursor resin liquid a to be a 250 poise (25 ° C.) core resin layer.

また、得られたポリイミド前駆体溶液aを、簡易アプリケータを用いて銅箔に200μmの厚みで均一に塗布し、室温から330℃まで約4時間の熱処理を施して銅箔上に厚み20μmのポリイミド層を形成し、銅箔−ポリイミド層の積層体を得た。   Further, the obtained polyimide precursor solution a was uniformly applied to a copper foil with a thickness of 200 μm using a simple applicator, and subjected to a heat treatment for about 4 hours from room temperature to 330 ° C. to a thickness of 20 μm on the copper foil. A polyimide layer was formed to obtain a copper foil-polyimide layer laminate.

次いで、塩化第二鉄水溶液を用いて、得られた積層体の銅箔をエッチング除去して、ポリイミドフィルムを得た。得られたポリイミドの圧縮弾性率は20GPa、線熱膨張係数は22×10−6[1/K]であった。 Subsequently, using the ferric chloride aqueous solution, the copper foil of the obtained laminate was removed by etching to obtain a polyimide film. The compression modulus of the obtained polyimide was 20 GPa, and the linear thermal expansion coefficient was 22 × 10 −6 [1 / K].

接着層の合成(2例)
(合成例2)
294gのDMAcに、BAPP 29.13g(0.071モル)を溶解させた。次に、3.225g(0.011モル)のBPDAおよび13.55g(0.062モル)のPMDAを加えた。その後、室温にて約3時間撹拌を続けて重合反応を行い、35poise(25℃)の接着用のポリイミド前駆体樹脂液bを得た。イミド化後に線膨張係数を測定したところ、60×10−6[1/K]であった。
Adhesive layer synthesis (2 examples)
(Synthesis Example 2)
In 294 g of DMAc, 29.13 g (0.071 mol) of BAPP was dissolved. Next, 3.225 g (0.011 mol) of BPDA and 13.55 g (0.062 mol) of PMDA were added. Thereafter, stirring was continued at room temperature for about 3 hours to carry out a polymerization reaction, thereby obtaining a 35 poise (25 ° C.) adhesive polyimide precursor resin liquid b. When the linear expansion coefficient was measured after imidation, it was 60 × 10 −6 [1 / K].

(合成例3)
N−メチル−2−ピロリドン200gにDSDA39.41g(0.110モル)、およびキシレン10gを入れて窒素ガスを流し、系中を室温で十分に混合した。次に、PSX−X(東レダウコーニング社製 BY16−853X)10.74g(0.015モル)を滴下し、この反応溶液を攪拌下で氷冷し、BAPP36.95g(0.090モル)およびHAB0.87g(0.004モル)を添加し、室温にて2時間攪拌し、ポリアミック酸を得た。
(Synthesis Example 3)
To 200 g of N-methyl-2-pyrrolidone, 39.41 g (0.110 mol) of DSDA and 10 g of xylene were added and nitrogen gas was allowed to flow, and the system was thoroughly mixed at room temperature. Next, 10.74 g (0.015 mol) of PSX-X (BY16-853X manufactured by Toray Dow Corning Co., Ltd.) was added dropwise, the reaction solution was ice-cooled with stirring, and 36.95 g (0.090 mol) of BAPP and HAB0.87g (0.004mol) was added, and it stirred at room temperature for 2 hours, and obtained the polyamic acid.

このポリアミック酸を190℃に昇温し、14時間加熱しながら攪拌を続け、加熱時に発生する水を系外に除いた。14時間加熱したところで、系を冷却することにより対数粘度0.60dl/gのポリイミド溶液を得た。   The polyamic acid was heated to 190 ° C. and stirred while heating for 14 hours to remove water generated during heating out of the system. When heated for 14 hours, the system was cooled to obtain a polyimide solution having a logarithmic viscosity of 0.60 dl / g.

次に、得られたポリイミド溶液の固形分100重量%に対し、ノボラック型エポキシ樹脂(B−CNB)25重量%およびシランカップリング剤として3−メルカプトプロピルトリメトキシシラン0.5重量%を混合し、3時間攪拌して接着用のポリイミド樹脂溶液cを調製した。   Next, 25% by weight of novolak type epoxy resin (B-CNB) and 0.5% by weight of 3-mercaptopropyltrimethoxysilane as a silane coupling agent were mixed with 100% by weight of the solid content of the obtained polyimide solution. The polyimide resin solution c for adhesion was prepared by stirring for 3 hours.

線膨張係数を測定したところ、60×10−6[1/K]であった。 When the linear expansion coefficient was measured, it was 60 × 10 −6 [1 / K].

銅箔の準備
厚さ12μmの銅箔に、平均粒径1μmの銀粉およびポリスルホン樹脂からなる導体ペーストを、180メッシュのステンレススクリーンを用いて印刷し、高さ80または100μmの導電性突起部を有する銅箔を準備した。各突起部は断面が山形状の形状となっており、突起部のない部分は厚み12μmの平坦な形状となっていた。
Preparation of copper foil A conductive paste made of silver powder having an average particle diameter of 1 μm and a polysulfone resin is printed on a copper foil having a thickness of 12 μm using a 180-mesh stainless screen, and has a conductive protrusion having a height of 80 or 100 μm. Copper foil was prepared. Each protrusion has a mountain shape in cross section, and the portion without the protrusion has a flat shape with a thickness of 12 μm.

基材および基板の製造方法
次いで、上記ポリイミド前駆体溶液を用いた多層回路基板の製造工程における、導電性突起が絶縁樹脂層を貫通した基材の製造方法、および上記基材を多層コア回路基板に積層した多層回路基板の製造方法を説明する。
Substrate and Substrate Manufacturing Method Next, in a manufacturing process of a multilayer circuit board using the polyimide precursor solution, a manufacturing method of a base material with conductive protrusions penetrating an insulating resin layer, and the substrate as a multilayer core circuit board A method for manufacturing a multilayer circuit board laminated on the substrate will be described.

図1(1)ないし(6)および図2(1)ないし(4)は、本発明の一実施例による導電性突起を用いた接続による、ビルドアップ層をケーブル部とする多層回路基板の製造法を示す、工程図である。   FIGS. 1 (1) to (6) and FIGS. 2 (1) to (4) show the manufacture of a multilayer circuit board having a build-up layer as a cable portion by connection using conductive protrusions according to an embodiment of the present invention. It is process drawing which shows a method.

図1(1)に示すように、多層回路基板の製造の際に、導電性突起1を銅箔2上に印刷、エッチング、メッキ等の手法で形成する。次に、図1(2)に示す絶縁樹脂層の形成を経て、図1(3)に示すような銅箔2上の導電性突起4が絶縁樹脂層5を貫通した構造の基材6を製造する。   As shown in FIG. 1 (1), the conductive protrusion 1 is formed on the copper foil 2 by a technique such as printing, etching, or plating when the multilayer circuit board is manufactured. Next, through the formation of the insulating resin layer shown in FIG. 1 (2), the base 6 having a structure in which the conductive protrusions 4 on the copper foil 2 as shown in FIG. 1 (3) penetrate the insulating resin layer 5 is formed. To manufacture.

絶縁樹脂層の形成
図1(2)に示す絶縁樹脂層3の形成は、次の通りである。絶縁樹脂層3は、コア樹脂層3aおよび接着層3bにより構成される。金属箔としての銅箔2上にポリイミド前駆体溶液3を塗付し、その後イミド化して絶縁樹脂層3とするキャスト法と、フィルム化したポリイミド前駆体をラミネートし、その後イミド化して絶縁樹脂層3とするラミネート法とがある。ここで、絶縁樹脂層3の接着層の厚みは、導電性突起1が当接される他の回路部材の回路厚みの50〜200%、ベタの金属箔の場合では1〜5μmとするとよい。
Formation of Insulating Resin Layer Formation of the insulating resin layer 3 shown in FIG. 1 (2) is as follows. The insulating resin layer 3 includes a core resin layer 3a and an adhesive layer 3b. A polyimide precursor solution 3 is applied onto a copper foil 2 as a metal foil, and then an imidization is performed to form an insulating resin layer 3, and a film-formed polyimide precursor is laminated, and then an imidization is performed to obtain an insulating resin layer. And a laminating method of 3. Here, the thickness of the adhesive layer of the insulating resin layer 3 is preferably 50 to 200% of the circuit thickness of another circuit member with which the conductive protrusions 1 are in contact, or 1 to 5 μm in the case of a solid metal foil.

まず、キャスト法の一実施例を説明する。   First, an example of the casting method will be described.

(キャスト法の実施例1)
銅箔2の導電性突起1(高さ100μm)面上に、上記合成例1で調製したコア樹脂層3aとなるポリイミド前駆体樹脂液aを200μmの厚みで均一に塗布し、130℃で加熱乾燥して溶剤を除去し、コア樹脂層3aを形成する。この後、コア樹脂層3aを室温から330℃まで約4時間の熱処理を施してイミド化させ、厚み約20μmのポリイミド樹脂層が導電性突起1を有する銅箔2上に形成されてなる積層体を得る。
(Example 1 of casting method)
On the surface of the conductive protrusion 1 (height 100 μm) of the copper foil 2, the polyimide precursor resin liquid a to be the core resin layer 3 a prepared in Synthesis Example 1 is uniformly applied with a thickness of 200 μm and heated at 130 ° C. The solvent is removed by drying to form the core resin layer 3a. Thereafter, the core resin layer 3a is imidized by performing a heat treatment from room temperature to 330 ° C. for about 4 hours, and a laminate in which a polyimide resin layer having a thickness of about 20 μm is formed on the copper foil 2 having the conductive protrusions 1 is obtained. Get.

次いで、コア樹脂層3aのポリイミド面上に上記合成例3で調製した接着用のポリイミド樹脂液cを100μmの厚みで均一に塗布し、120℃で加熱乾燥して溶剤を除去して接着層3bを形成する。これにより、コア樹脂層3aおよび接着層3bにより構成される2層構造のポリイミド樹脂層からなる合計厚み約50μmの絶縁樹脂層3が、導電性突起1を有する銅箔2上に形成されてなる回路基材を得た(図1(2)参照)。   Next, the adhesive polyimide resin solution c prepared in Synthesis Example 3 above is uniformly applied to a thickness of 100 μm on the polyimide surface of the core resin layer 3a, and the solvent is removed by heating and drying at 120 ° C. to remove the solvent. Form. Thus, the insulating resin layer 3 having a total thickness of about 50 μm composed of the polyimide resin layer having a two-layer structure constituted by the core resin layer 3 a and the adhesive layer 3 b is formed on the copper foil 2 having the conductive protrusions 1. A circuit substrate was obtained (see FIG. 1 (2)).

次に、ラミネート法の一実施例を示す。   Next, an example of a laminating method is shown.

(ラミネート法の実施例1)
樹脂溶液が塗布される基材(支持基材)は、特に限定されるものではないが、その表面が剥離し易くするために離型処理されているPETフィルムがよい。好ましい基材の厚さは、100μm以下である。
(Example 1 of laminating method)
Although the base material (support base material) to which the resin solution is applied is not particularly limited, a PET film that has been subjected to a release treatment in order to make the surface easy to peel off is preferable. The thickness of a preferable base material is 100 μm or less.

まずナイフコーターを用いて、離型PETフィルム(50μm)上に上記合成例2で調製した接着用のポリイミド前駆体樹脂液bを15μmの厚みで均一に塗布した後、130℃で加熱乾燥して溶剤を除去し、接着層3bを形成する。   First, using a knife coater, the adhesive polyimide precursor resin solution b prepared in Synthesis Example 2 above was uniformly applied to a release PET film (50 μm) with a thickness of 15 μm, and then heated and dried at 130 ° C. The solvent is removed to form the adhesive layer 3b.

そして、その上に積層するように、上記合成例1で調製したコア樹脂層3aとなるポリイミド前駆体樹脂液aを180μmの厚みで均一に塗布し、次いで130℃で加熱乾燥して溶剤を除去し、接着層3bおよびコア樹脂層3aにより構成されるポリイミド前駆体の2層フィルムを形成する。   Then, the polyimide precursor resin liquid a to be the core resin layer 3a prepared in Synthesis Example 1 is uniformly applied with a thickness of 180 μm so as to be laminated thereon, and then heated and dried at 130 ° C. to remove the solvent. Then, a two-layer film of a polyimide precursor constituted by the adhesive layer 3b and the core resin layer 3a is formed.

この後、上記ポリイミド前駆体の2層フィルムを基材から剥離し、銅箔2の導電性突起1(高さ100μm)を有する面に、接着層3bとなるポリアミック酸樹脂層の面を対接配置した後、真空ラミネーターを用いて真空度4hPa、温度150℃、圧力0.9MPaでラミネートを行い、導電性突起1を有する銅箔2上に絶縁樹脂層3が形成されてなる積層体を得る(図1(2)参照)。   Thereafter, the two-layer film of the polyimide precursor is peeled off from the base material, and the surface of the copper foil 2 having the conductive protrusion 1 (height 100 μm) is brought into contact with the surface of the polyamic acid resin layer serving as the adhesive layer 3b. After the placement, lamination is performed using a vacuum laminator at a vacuum degree of 4 hPa, a temperature of 150 ° C., and a pressure of 0.9 MPa to obtain a laminate in which the insulating resin layer 3 is formed on the copper foil 2 having the conductive protrusions 1. (See FIG. 1 (2)).

次いで、室温から330℃まで約4時間の熱処理を施してイミド化させ、2層のポリイミド樹脂層からなる合計厚み約20μmの絶縁樹脂層3が、導電性突起1を有する銅箔2上に形成されてなる積層体を得る(図1(2)参照)。   Next, heat treatment is performed from room temperature to 330 ° C. for about 4 hours to imidize, and an insulating resin layer 3 having a total thickness of about 20 μm composed of two polyimide resin layers is formed on the copper foil 2 having the conductive protrusions 1. A laminated body is obtained (see FIG. 1 (2)).

次に、ナイフコーターを用いて、離型PETフィルム(50μm)上に、上記合成例3で調製した接着用のポリイミド前駆体樹脂液cを100μmの厚みで均一に塗布した後、120℃で加熱乾燥して溶剤を除去し、厚み30μmの接着用のポリイミドフィルムを得る。このポリイミドフィルムは、コア樹脂層3aの接着層3bとは反対側に配される、接着用の第3層を形成するものである。   Next, using a knife coater, on the release PET film (50 μm), the adhesive polyimide precursor resin solution c prepared in Synthesis Example 3 was uniformly applied with a thickness of 100 μm, and then heated at 120 ° C. The solvent is removed by drying, and a polyimide film for adhesion having a thickness of 30 μm is obtained. This polyimide film forms a third layer for bonding, which is disposed on the opposite side of the core resin layer 3a from the bonding layer 3b.

続いて、この第3層を形成するためのポリイミドフィルムを基材から剥離し、図1(2)に示した積層体のポリイミド樹脂面上に対接して配置し、真空ラミネーターを用いて真空度4hPa、温度150℃、圧力0.9MPaでラミネートを行う(ラミネート時間5分)。これにより、3層のポリイミド樹脂層からなる合計厚み約50μmの絶縁樹脂層3が、導電性突起1を有する銅箔2上に形成されてなる回路基材を得る。   Subsequently, the polyimide film for forming the third layer is peeled off from the base material, placed in contact with the polyimide resin surface of the laminate shown in FIG. 1 (2), and the degree of vacuum using a vacuum laminator. Lamination is performed at 4 hPa, a temperature of 150 ° C., and a pressure of 0.9 MPa (lamination time 5 minutes). As a result, a circuit base material is obtained in which the insulating resin layer 3 composed of three polyimide resin layers and having a total thickness of about 50 μm is formed on the copper foil 2 having the conductive protrusions 1.

上述したように、キャスト法による2層構造の絶縁樹脂層あるいはラミネート法による3層構造の絶縁樹脂層を銅箔2上に接着された状態で形成する。   As described above, the two-layered insulating resin layer by the casting method or the three-layered insulating resin layer by the laminate method is formed in a state of being bonded onto the copper foil 2.

研磨工程
図1(3)に示すように、研磨等の工程で、絶縁樹脂層3から導電性突起1の頂部を露出させる。露出した導電性突起4は、後述するように他の回路部材(図示せず)との接続に利用される。
Polishing Step As shown in FIG. 1 (3), the top of the conductive protrusion 1 is exposed from the insulating resin layer 3 in a step such as polishing. The exposed conductive protrusions 4 are used for connection to other circuit members (not shown) as will be described later.

ここにおいて、図1(2)に示すように、銅箔2の上面および導電性突起1の頂部のみに絶縁樹脂層3が形成されるので、キャスト法、ラミネート法の何れでも、研磨工程は比較的簡便に行える。   Here, as shown in FIG. 1 (2), since the insulating resin layer 3 is formed only on the upper surface of the copper foil 2 and the top of the conductive protrusion 1, the polishing process is compared in both the casting method and the laminating method. Can be done easily.

多層回路基板の製造工程
図1(4)〜図2(2)に、多層コア回路基板の製造方法を示す。まず図1(4)に示すように、両面銅張り積層板7を用意する。次に、図1(5)に示すように、NCドリル、金型等の手法で導通用孔8を形成する。この後、図1(6)に示すように、導電化処理、無電解メッキ等の処理を施した後、電解メッキでスルーホール9による両面の導通をとる。
Manufacturing Process of Multilayer Circuit Board FIGS. 1 (4) to 2 (2) show a manufacturing method of the multilayer core circuit board. First, as shown in FIG. 1 (4), a double-sided copper-clad laminate 7 is prepared. Next, as shown in FIG. 1 (5), a conduction hole 8 is formed by a technique such as an NC drill or a mold. Thereafter, as shown in FIG. 1 (6), after conducting a treatment such as a conductive treatment or electroless plating, both surfaces are electrically connected by the through holes 9 by electrolytic plating.

続いて、図2(1)に示すように、定法により、両面の回路11を形成する。この後、図2(2)に示すように、金型等で基板の不要な部分を抜き加工する。ここまでの工程で、多層コア回路基板13が製造される。層数が増えた場合でも、基本的に同様の工程で製造可能である。   Subsequently, as shown in FIG. 2A, a double-sided circuit 11 is formed by a conventional method. Thereafter, as shown in FIG. 2 (2), unnecessary portions of the substrate are punched with a mold or the like. The multilayer core circuit board 13 is manufactured through the steps so far. Even when the number of layers increases, it can be basically manufactured in the same process.

次に図2(3)に示すように、多層コア回路基板13に上述した回路基材14,15を積層する。必要に応じて、予め回路基材14,15を金型等で枠抜きしてから積層する。
この後、図2(4)に示すように、定法により積層した基材14,15の銅箔に回路パターンを形成する。さらに、定法により、カバーフィルムおよびソルダーレジスト層の形成や無電解ニッケル、金メッキ等を行い、多層回路基板16を得る。
Next, as shown in FIG. 2 (3), the above-described circuit base materials 14 and 15 are laminated on the multilayer core circuit board 13. If necessary, the circuit base materials 14 and 15 are laminated in advance by removing a frame with a mold or the like.
Thereafter, as shown in FIG. 2 (4), a circuit pattern is formed on the copper foils of the base materials 14 and 15 laminated by a conventional method. Further, the multilayer circuit board 16 is obtained by forming a cover film and a solder resist layer, electroless nickel, gold plating and the like by a conventional method.

また、多層回路基板16の回路基材14,15の銅箔をエッチング除去して、ポリイミドフィルム単体を得た。得られたポリイミドの線熱膨張係数は、30×10−6[1/K]であった。 Moreover, the copper foil of the circuit base materials 14 and 15 of the multilayer circuit board 16 was removed by etching to obtain a polyimide film alone. The linear thermal expansion coefficient of the obtained polyimide was 30 × 10 −6 [1 / K].

なお、図示しないが、銅箔2の導電性突起1に絶縁樹脂層3を形成し、導電性突起1の頂部を露出させて導電性突起4とした後、銅箔2と積層プレスし、両面に定法により回路パターンを形成することで可撓性両面回路基板を製造することもできる。   Although not shown, the insulating resin layer 3 is formed on the conductive protrusions 1 of the copper foil 2, the tops of the conductive protrusions 1 are exposed to form the conductive protrusions 4, and then laminated and pressed with the copper foil 2. In addition, a flexible double-sided circuit board can be manufactured by forming a circuit pattern by a conventional method.

キャスト法、ラミネート法による他の実施例
(キャスト法の実施例2)
銅箔2の導電性突起1(高さ100μm)の上面に、上記合成例1で調製したコア樹脂層となるポリイミド前駆体樹脂液aを180μmの厚みで均一に塗布し、130℃で加熱乾燥して溶剤を除去した。そして、樹脂液aによるコアとしてのポリイミド前駆体層上に、上記合成例2で調製した接着用のポリイミド前駆体樹脂液bを15μmの厚みで均一に塗布し、130℃で加熱乾燥して溶剤を除去した。
Other examples of casting method and laminating method (Example 2 of casting method)
On the upper surface of the conductive protrusion 1 (height 100 μm) of the copper foil 2, the polyimide precursor resin liquid a to be the core resin layer prepared in Synthesis Example 1 is uniformly applied with a thickness of 180 μm, and dried by heating at 130 ° C. The solvent was removed. Then, the polyimide precursor resin liquid b for adhesion prepared in Synthesis Example 2 above is uniformly applied to a thickness of 15 μm on the polyimide precursor layer as a core made of the resin liquid a, and is dried by heating at 130 ° C. Was removed.

この後、室温から330℃まで約4時間の熱処理を施すことによりイミド化させ、2層のポリイミド樹脂層からなる合計厚み約20μmの絶縁樹脂層が、導電性突起1を有する銅箔2上に形成されてなる積層体を得た。また、塩化第二鉄水溶液を用いて銅箔をエッチング除去して得たポリイミドフィルムの線熱膨張係数は、22×10−6[1/K]であった。 Then, it is imidized by applying a heat treatment from room temperature to 330 ° C. for about 4 hours, and an insulating resin layer having a total thickness of about 20 μm composed of two polyimide resin layers is formed on the copper foil 2 having the conductive protrusions 1. A formed laminate was obtained. Moreover, the linear thermal expansion coefficient of the polyimide film obtained by etching away copper foil using ferric chloride aqueous solution was 22 * 10 < -6 > [1 / K].

(ラミネート法の実施例2)
ナイフコーターを用いて、離型PETフィルム(50μm)上に上記合成例2で調製した接着用のポリイミド前駆体樹脂液bを15μmの厚みで均一に塗布した後、130℃で加熱乾燥して溶剤を除去する。続いて、その上に積層するように、上記合成例1で調製したコア樹脂層となるポリイミド前駆体樹脂液aを170μmの厚みで均一に塗布し、130℃で加熱乾燥して溶剤を除去する。
(Example 2 of laminating method)
Using a knife coater, the adhesive polyimide precursor resin solution b prepared in Synthesis Example 2 above was uniformly applied to a release PET film (50 μm) with a thickness of 15 μm, and then dried by heating at 130 ° C. Remove. Subsequently, the polyimide precursor resin liquid a to be the core resin layer prepared in Synthesis Example 1 is uniformly applied with a thickness of 170 μm so as to be laminated thereon, and dried by heating at 130 ° C. to remove the solvent. .

そして、ポリイミド前駆体樹脂液aによるコアとしてのポリイミド前駆体層上に、上記合成例2で調製した接着用のポリイミド前駆体樹脂液bを15μmの厚みで均一に塗布し、130℃で加熱乾燥して溶剤を除去することにより、3層のポリイミド前駆体フィルムを作成した。   And on the polyimide precursor layer as a core by the polyimide precursor resin liquid a, the polyimide precursor resin liquid b for adhesion prepared in the synthesis example 2 is uniformly applied with a thickness of 15 μm, and is dried by heating at 130 ° C. Then, a three-layer polyimide precursor film was prepared by removing the solvent.

この後、3層ポリイミド前駆体フィルムを基材から剥離し、銅箔2の導電性突起1(高さ100μm)を有する面に対接配置した後、真空ラミネーターを用いて真空度4hPa、温度150℃、圧力0.9MPaでラミネートを行い(ラミネート時間5分)、絶縁樹脂層が導電性突起1を有する銅箔2上に形成されてなる積層体を得た(図1(2)参照)。   Thereafter, the three-layer polyimide precursor film is peeled off from the base material and placed in contact with the surface of the copper foil 2 having the conductive protrusions 1 (height 100 μm), and then the degree of vacuum is 4 hPa and the temperature is 150 using a vacuum laminator. Lamination was performed at 0 ° C. and a pressure of 0.9 MPa (lamination time 5 minutes) to obtain a laminate in which the insulating resin layer was formed on the copper foil 2 having the conductive protrusions 1 (see FIG. 1 (2)).

次いで、室温から330℃まで約4時間の熱処理を施してイミド化させ、3層のポリイミド樹脂層からなる合計厚み約20μmの絶縁樹脂層が、導電性突起1を有する銅箔2上に形成されてなる回路基材6を得た。また、塩化第二鉄水溶液を用いて銅箔2をエッチング除去し、ポリイミドフィルムを得た。得られたポリイミドの圧縮弾性率は20GPa、線熱膨張係数は22×10−6[1/K]であった。 Next, heat treatment is performed from room temperature to 330 ° C. for about 4 hours to imidize, and an insulating resin layer having a total thickness of about 20 μm composed of three polyimide resin layers is formed on the copper foil 2 having the conductive protrusions 1. Thus obtained circuit base material 6 was obtained. Moreover, the copper foil 2 was removed by etching using a ferric chloride aqueous solution to obtain a polyimide film. The compression modulus of the obtained polyimide was 20 GPa, and the linear thermal expansion coefficient was 22 × 10 −6 [1 / K].

(キャスト法の実施例3)
銅箔2の導電性突起1(高さ80μm)の上面に、合成例2で調製したポリイミド前駆体樹脂液bを15μmの厚みで均一に塗布したのち、130℃で加熱乾燥し溶剤を除去した。次に、その上に積層するように合成例1で調製したポリイミド前駆体樹脂液aを170μmの厚みで均一に塗布し、130℃で加熱乾燥し溶剤を除去した。さらに、ポリイミド前駆体a層上に合成例2で調製したポリイミド前駆体樹脂液bを15μmの厚みで均一に塗布し、130℃で加熱乾燥し溶剤を除去した。
(Example 3 of casting method)
The polyimide precursor resin liquid b prepared in Synthesis Example 2 was uniformly applied to the top surface of the conductive protrusion 1 (height 80 μm) of the copper foil 2 with a thickness of 15 μm, and then dried by heating at 130 ° C. to remove the solvent. . Next, the polyimide precursor resin liquid a prepared in Synthesis Example 1 was applied uniformly at a thickness of 170 μm so as to be laminated thereon, and dried by heating at 130 ° C. to remove the solvent. Furthermore, the polyimide precursor resin liquid b prepared in Synthesis Example 2 was uniformly applied on the polyimide precursor a layer with a thickness of 15 μm, and dried by heating at 130 ° C. to remove the solvent.

この後、室温から330℃まで約4時間の熱処理を施してイミド化させ、3層のポリイミド系樹脂層からなる合計厚み約20μmの絶縁樹脂層が導電性突起部を有する銅箔上に形成された積層体1を得た。   Thereafter, heat treatment is performed from room temperature to 330 ° C. for about 4 hours to imidize, and an insulating resin layer having a total thickness of about 20 μm composed of three polyimide resin layers is formed on the copper foil having conductive protrusions. A laminated body 1 was obtained.

また、ピール強度測定のために、導電性突起部を有さない所定の電解銅箔上に上記積層体1と同様の層構成の絶縁樹脂層を形成した。得られた積層体の樹脂層側に、電解銅箔(三井金属鉱業製3EC−III箔、Rz=6.0μm)粗化面を向かい合わせ、温度320℃、圧力3MPa、時間1時間で熱圧着した。これを、上記記載のピール強度測定方法にしたがって測定したところ、ピール強度は1.2kN/mであった。   Moreover, the insulating resin layer of the same layer structure as the said laminated body 1 was formed on the predetermined electrolytic copper foil which does not have an electroconductive protrusion part for a peel strength measurement. The obtained copper laminate is faced with an electrolytic copper foil (Mitsui Metal Mining 3EC-III foil, Rz = 6.0 μm) roughened surface facing the resin layer, and thermocompression bonded at a temperature of 320 ° C. and a pressure of 3 MPa for 1 hour. did. When this was measured according to the above-described peel strength measurement method, the peel strength was 1.2 kN / m.

(キャスト法の実施例4)
銅箔2の導電性突起1(高さ80μm)の上面に、合成例2で調製したポリイミド前駆体樹脂液bを15μmの厚みで均一に塗布したのち、130℃で加熱乾燥して溶剤を除去した。次に、その上に積層するように合成例1で調製したポリイミド前駆体樹脂液aを180μmの厚みで均一に塗布し、130℃で加熱乾燥し溶剤を除去した。
(Example 4 of casting method)
After uniformly applying the polyimide precursor resin liquid b prepared in Synthesis Example 2 to a thickness of 15 μm on the upper surface of the conductive protrusion 1 (height 80 μm) of the copper foil 2, the solvent is removed by heating and drying at 130 ° C. did. Next, the polyimide precursor resin liquid a prepared in Synthesis Example 1 was uniformly applied to a thickness of 180 μm so as to be laminated thereon, and dried by heating at 130 ° C. to remove the solvent.

この後、室温から330℃まで約4時間の熱処理を施してイミド化させ、2層のポリイミド系樹脂層からなる合計厚み約20μmの絶縁樹脂層が導電性突起部を有する銅箔上に形成された積層体を得た。また、塩化第二鉄水溶液を用いてこの銅箔をエッチング除去して、ポリイミドフィルムを得た。得られたポリイミドの線熱膨張係数は、22×10−6[1/K]であった。 Thereafter, heat treatment is performed from room temperature to 330 ° C. for about 4 hours to imidize, and an insulating resin layer having a total thickness of about 20 μm composed of two polyimide resin layers is formed on the copper foil having conductive protrusions. A laminate was obtained. Moreover, this copper foil was etched away using the ferric chloride aqueous solution, and the polyimide film was obtained. The linear thermal expansion coefficient of the obtained polyimide was 22 × 10 −6 [1 / K].

次いで、上記積層体のポリイミド面上に合成例3で調製したポリイミド樹脂液cを100μmの厚みで均一に塗布し、120℃で加熱乾燥して溶剤を除去し、4層のポリイミド樹脂層からなる合計厚み約50μmの絶縁樹脂層が導電性突起部を有する銅箔上に形成された積層体2を得た。また、この積層体2を180℃で1時間熱処理した後、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムを得た。得られたポリイミドの線熱膨張係数は、30×10−6[1/K]であった。 Next, the polyimide resin liquid c prepared in Synthesis Example 3 is uniformly applied to a thickness of 100 μm on the polyimide surface of the laminate, and the solvent is removed by heating and drying at 120 ° C. to form four polyimide resin layers. A laminate 2 was obtained in which an insulating resin layer having a total thickness of about 50 μm was formed on a copper foil having conductive protrusions. Moreover, after heat-processing this laminated body 2 at 180 degreeC for 1 hour, the copper foil was etched away using the ferric chloride aqueous solution, and the polyimide film was obtained. The linear thermal expansion coefficient of the obtained polyimide was 30 × 10 −6 [1 / K].

また、ピール強度測定のために、導電性突起部を有さない所定の電解銅箔上に積層体1と同様の層構成の絶縁樹脂層を形成した。得られた積層体の樹脂層側に、電解銅箔(三井金属鉱業製3EC−III箔、Rz=6.0μm)粗化面を向かい合わせ、温度180℃、圧力3MPa、時間1時間で熱圧着した。これを、上記ピール強度測定方法にしたがって測定したところ、ピール強度は1.5kN/mであった。   Moreover, the insulating resin layer of the same layer structure as the laminated body 1 was formed on the predetermined electrolytic copper foil which does not have an electroconductive protrusion part for peel strength measurement. The roughened surface of the electrolytic copper foil (Mitsui Metal Mining 3EC-III foil, Rz = 6.0 μm) is faced to the resin layer side of the obtained laminate, and thermocompression bonding is performed at a temperature of 180 ° C., a pressure of 3 MPa, and an hour. did. When this was measured according to the above-described peel strength measurement method, the peel strength was 1.5 kN / m.

(キャスト法の実施例5)
銅箔2の導電性突起1(高さ80μm)の上面に、合成例2で調製したポリイミド前駆体樹脂液bを15μmの厚みで均一に塗布したのち、130℃で加熱乾燥し溶剤を除去した。次に、その上に積層するように合成例1で調製したポリイミド前駆体樹脂液aを170μmの厚みで均一に塗布し、130℃で加熱乾燥し溶剤を除去した。さらに、ポリイミド前駆体a層上に合成例2で調製したポリイミド前駆体樹脂液bを15μmの厚みで均一に塗布し、130℃で加熱乾燥し溶剤を除去した。
(Example 5 of casting method)
The polyimide precursor resin liquid b prepared in Synthesis Example 2 was uniformly applied to the top surface of the conductive protrusion 1 (height 80 μm) of the copper foil 2 with a thickness of 15 μm, and then dried by heating at 130 ° C. to remove the solvent. . Next, the polyimide precursor resin liquid a prepared in Synthesis Example 1 was applied uniformly at a thickness of 170 μm so as to be laminated thereon, and dried by heating at 130 ° C. to remove the solvent. Furthermore, the polyimide precursor resin liquid b prepared in Synthesis Example 2 was uniformly applied on the polyimide precursor a layer with a thickness of 15 μm, and dried by heating at 130 ° C. to remove the solvent.

この後、室温から330℃まで約4時間の熱処理を施してイミド化させ、3層のポリイミド系樹脂層からなる合計厚み約20μmの絶縁樹脂層が導電性突起部を有する銅箔上に形成された積層体を得た。また、塩化第二鉄水溶液を用いてこの銅箔をエッチング除去して、ポリイミドフィルムを得た。得られたポリイミドの線熱膨張係数は、22×10−6[1/K]であった。 Thereafter, heat treatment is performed from room temperature to 330 ° C. for about 4 hours to imidize, and an insulating resin layer having a total thickness of about 20 μm composed of three polyimide resin layers is formed on the copper foil having conductive protrusions. A laminate was obtained. Moreover, this copper foil was etched away using the ferric chloride aqueous solution, and the polyimide film was obtained. The linear thermal expansion coefficient of the obtained polyimide was 22 × 10 −6 [1 / K].

次いで、上記積層体のポリイミド面上に合成例3で調製したポリイミド樹脂液cを100μmの厚みで均一に塗布し、120℃で加熱乾燥して溶剤を除去し、4層のポリイミド樹脂層からなる合計厚み約50μm(厚み精度±10%、以下の例における積層体の樹脂層の厚み精度も同様)の絶縁樹脂層が導電性突起部を有する銅箔上に形成された積層体3を得た。また、この積層体3を180℃1時間熱処理した後、塩化第二鉄水溶液を用い銅箔をエッチング除去して、ポリイミドフィルムを得た。得られたポリイミドの線熱膨張係数は、33×10−6[1/K]であった。 Next, the polyimide resin liquid c prepared in Synthesis Example 3 is uniformly applied to a thickness of 100 μm on the polyimide surface of the laminate, and the solvent is removed by heating and drying at 120 ° C. to form four polyimide resin layers. A laminate 3 was obtained in which an insulating resin layer having a total thickness of about 50 μm (thickness accuracy ± 10%, the same as in the following examples) was formed on a copper foil having conductive protrusions. . Moreover, after heat-processing this laminated body 3 at 180 degreeC for 1 hour, the copper foil was etched away using the ferric chloride aqueous solution, and the polyimide film was obtained. The linear thermal expansion coefficient of the obtained polyimide was 33 × 10 −6 [1 / K].

また、ピール強度測定のために、導電性突起部を有さない所定の電解銅箔上に上記積層体1と同様の層構成の絶縁樹脂層を形成した。得られた積層体の樹脂層側に、電解銅箔(三井金属鉱業製3EC−III箔、Rz=6.0μm)粗化面を向かい合わせ、温度180℃、圧力3MPa、時間1時間で熱圧着した。これを、上記ピール強度測定方法にしたがって測定したところ、ピール強度は1.5kN/mであった。   Moreover, the insulating resin layer of the same layer structure as the said laminated body 1 was formed on the predetermined electrolytic copper foil which does not have an electroconductive protrusion part for a peel strength measurement. The roughened surface of the electrolytic copper foil (Mitsui Metal Mining 3EC-III foil, Rz = 6.0 μm) is faced to the resin layer side of the obtained laminate, and thermocompression bonding is performed at a temperature of 180 ° C., a pressure of 3 MPa, and an hour. did. When this was measured according to the above-described peel strength measurement method, the peel strength was 1.5 kN / m.

(比較例1)
銅箔2の導電性突起1(高さ80μm)の上面に、合成例3で調製したポリイミド樹脂液cを200μmの厚みで均一に塗布し、120℃で加熱乾燥して溶剤を除去し積層体4を得た。銅箔上に塗布した樹脂の厚みは、約60μmであった。
(Comparative Example 1)
On the upper surface of the conductive protrusion 1 (height 80 μm) of the copper foil 2, the polyimide resin liquid c prepared in Synthesis Example 3 is uniformly applied with a thickness of 200 μm, dried by heating at 120 ° C. to remove the solvent, and the laminate. 4 was obtained. The thickness of the resin applied on the copper foil was about 60 μm.

上記積層体を180℃1時間熱処理した後、塩化第二鉄水溶液を用いて銅箔をエッチング除去し、ポリイミドフィルムを得た。得られたポリイミドの線熱膨張係数は、60×10−6[1/K]であった。 After heat-treating the above laminate for 1 hour at 180 ° C., the copper foil was etched away using an aqueous ferric chloride solution to obtain a polyimide film. The linear thermal expansion coefficient of the obtained polyimide was 60 × 10 −6 [1 / K].

また、ピール強度測定のために、導電性突起部を有さない所定の電解銅箔上に積層体1と同様の層構成の絶縁樹脂層を形成した。得られた積層体の樹脂層側に、電解銅箔(三井金属鉱業製3EC−III箔、Rz=6.0μm)粗化面を向かい合わせ、温度180℃、圧力3MPa、時間1時間で熱圧着した。これを、上記ピール強度測定方法にしたがって測定したところ、ピール強度は1.5kN/mであった。   Moreover, the insulating resin layer of the same layer structure as the laminated body 1 was formed on the predetermined electrolytic copper foil which does not have an electroconductive protrusion part for peel strength measurement. The roughened surface of the electrolytic copper foil (Mitsui Metal Mining 3EC-III foil, Rz = 6.0 μm) is faced to the resin layer side of the obtained laminate, and thermocompression bonding is performed at a temperature of 180 ° C., a pressure of 3 MPa, and an hour. did. When this was measured according to the above-described peel strength measurement method, the peel strength was 1.5 kN / m.

(比較例2)
銅箔2の導電性突起1(高さ80μm)の上面に、合成例2で調製したポリイミド前駆体樹脂液bを200μmの厚みで均一に塗布したのち、130℃で加熱乾燥し溶剤を除去した。この後、室温から330℃まで約4時間かけて熱処理しイミド化させ、厚み約20μmの絶縁樹脂層が導電性突起部を有する銅箔上に形成された積層体を得た。また、塩化第二鉄水溶液を用いてこの銅箔をエッチング除去し、ポリイミドフィルムを得た。得られたポリイミドの線熱膨張係数は、60×10−6[1/K]であった。
(Comparative Example 2)
The polyimide precursor resin liquid b prepared in Synthesis Example 2 was uniformly applied with a thickness of 200 μm on the upper surface of the conductive protrusion 1 (height 80 μm) of the copper foil 2 and then dried by heating at 130 ° C. to remove the solvent. . Then, it heat-processed over about 4 hours from room temperature to 330 degreeC, and imidized, and obtained the laminated body in which the insulating resin layer about 20 micrometers thick was formed on the copper foil which has an electroconductive protrusion part. Moreover, this copper foil was removed by etching using a ferric chloride aqueous solution to obtain a polyimide film. The linear thermal expansion coefficient of the obtained polyimide was 60 × 10 −6 [1 / K].

その上に、合成例3で調製したポリイミド樹脂液cを100μmの厚みで均一に塗布し、120℃で加熱乾燥し溶剤を除去し積層体5を得た。銅箔上に塗布した樹脂の厚みは、銅箔側から約50μmであった。   On top of that, the polyimide resin liquid c prepared in Synthesis Example 3 was uniformly applied with a thickness of 100 μm, and dried by heating at 120 ° C. to remove the solvent, thereby obtaining a laminate 5. The thickness of the resin applied on the copper foil was about 50 μm from the copper foil side.

上記積層体を180℃1時間熱処理した後、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムを得た。得られたポリイミドの線熱膨張係数は、60×10−6[1/K]であった。 The laminate was heat treated at 180 ° C. for 1 hour, and then the copper foil was etched away using a ferric chloride aqueous solution to obtain a polyimide film. The linear thermal expansion coefficient of the obtained polyimide was 60 × 10 −6 [1 / K].

また、ピール強度測定のために、導電性突起部を有さない所定の電解銅箔上に上記積層体1と同様の層構成の絶縁樹脂層を形成した。得られた積層体の樹脂層側に、電解銅箔(三井金属鉱業製3EC−III箔、Rz=6.0μm)粗化面を向かい合わせ、温度180℃、圧力3MPa、時間1時間で熱圧着した。これを上記ピール強度測定方法にしたがって測定したところ、ピール強度は1.5kN/mであった。   Moreover, the insulating resin layer of the same layer structure as the said laminated body 1 was formed on the predetermined electrolytic copper foil which does not have an electroconductive protrusion part for a peel strength measurement. The roughened surface of the electrolytic copper foil (Mitsui Metal Mining 3EC-III foil, Rz = 6.0 μm) is faced to the resin layer side of the obtained laminate, and thermocompression bonding is performed at a temperature of 180 ° C., a pressure of 3 MPa, and an hour. did. When this was measured according to the above-described peel strength measurement method, the peel strength was 1.5 kN / m.

得られた積層体とその評価結果を表1に示す。実施例3〜5は、接着性と低線膨張性(寸法安定性)の両性質を充足していることが分る。

Figure 2010283390
Table 1 shows the obtained laminate and the evaluation results. It turns out that Examples 3-5 satisfy both the properties of adhesiveness and low linear expansion (dimensional stability).
Figure 2010283390

本発明の一実施例におけるビルドアップ層をケーブル部とする多層回路基板の製造方法の工程図。The process drawing of the manufacturing method of the multilayer circuit board which uses the buildup layer in one Example of this invention as a cable part. 図2の工程に続く本発明における工程図。The process drawing in the present invention following the process of FIG. 従来工法によるビルドアップ層をケーブル部とする多層回路基板の製造方法の工程図。Process drawing of the manufacturing method of the multilayer circuit board which uses the buildup layer by a conventional construction method as a cable part. 図3の工程に続く工程図。FIG. 4 is a process diagram following the process of FIG. 3. 本発明の一実施例における回路基材の概念的断面構成図。The conceptual cross-sectional block diagram of the circuit base material in one Example of this invention.

1 導電性突起
2 銅箔
3 絶縁樹脂層
3a コア樹脂層
3b 接着層
4 研磨された導電性突起
5 研磨された絶縁樹脂層
6 導電性突起が絶縁樹脂層を貫通した基材
7 両面銅張り積層板
8 導通用孔
9 スルーホール
10 電解メッキされた両面銅張り積層板
11 電解メッキ後に回路形成された両面銅張り積層板
12 枠抜きされて回路形成された両面銅張り積層板
13 多層コア回路基板
14 積層されて導電性突起が絶縁樹脂層を貫通した基材
15 枠抜き後、積層されて導電性突起が絶縁樹脂層を貫通した基材
16 多層回路基板
19 両面に熱可塑ポリイミドを有するポリイミドフィルム
20 導電性突起がポリイミドフィルムを貫通した基材
21 積層されて導電性突起がポリイミドフィルムを貫通した基材
22 枠抜き後、積層されて導電性突起がポリイミドフィルムを貫通した基材
23 回路形成されて導電性突起がポリイミドフィルムを貫通した基材
24 回路形成されて枠抜き後の導電性突起がポリイミドフィルムを貫通した基材
DESCRIPTION OF SYMBOLS 1 Conductive protrusion 2 Copper foil 3 Insulating resin layer 3a Core resin layer 3b Adhesion layer 4 Polished conductive protrusion 5 Polished insulating resin layer 6 Base material with conductive protrusion penetrating the insulating resin layer 7 Double-sided copper-clad laminate Plate 8 Conduction hole 9 Through hole 10 Electrolytically plated double-sided copper-clad laminate 11 Double-sided copper-clad laminate 12 formed with a circuit after electrolytic plating Double-sided copper-clad laminate 13 with a frame removed to form a circuit Multilayer core circuit board 14 Substrate 15 with Conductive Protrusion Passing Through Insulating Resin Layer Laminated, and Substrate 16 Layered with Conductive Protrusion Passing Through Insulating Resin Layer After Multi-layer Circuit Board 19 Polyimide Film Having Thermoplastic Polyimide on Both Sides 20 Substrate 21 with conductive protrusion penetrating through polyimide film 21 Substrate 22 with conductive protrusion penetrating through polyimide film After removing the frame, the conductive protrusion is laminated Substrate 23 penetrated through imide film Substrate 24 formed with circuit and conductive protrusion penetrated polyimide film Substrate formed with circuit and conductive protrusion after punching through polyimide film

Claims (4)

少なくとも一面に高さ10μm以上の複数の導電性突起が立設された金属箔と、この金属箔の前記一面に積層されて前記導電性突起が貫通した状態で固定される複層構造の絶縁樹脂層とからなる回路基材であって、
前記絶縁樹脂層は、少なくとも1層の線膨張係数が30×10−6[1/K]以下の低熱膨張性ポリイミド樹脂層(a)と前記金属箔から最外層に位置し、導電性突起を有さない銅箔と熱圧着した場合のピール強度が0.7kN/m以上を与える接着層(b)とを有し、絶縁樹脂層全体の線膨張係数が35×10−6[1/K]以下であることを特徴とする回路基材。
A metal foil having a plurality of conductive protrusions having a height of 10 μm or more standing on at least one surface, and an insulating resin having a multilayer structure that is laminated on the one surface of the metal foil and fixed in a state where the conductive protrusions penetrate A circuit substrate comprising a layer,
The insulating resin layer is located on the outermost layer from the low thermal expansion polyimide resin layer (a) having a linear expansion coefficient of 30 × 10 −6 [1 / K] or less and the metal foil, and has conductive protrusions. An adhesive layer (b) that gives a peel strength of 0.7 kN / m or more when thermally bonded with a copper foil that does not have a linear expansion coefficient of 35 × 10 −6 [1 / K A circuit substrate characterized by the following.
請求項1記載の回路基材において、
前記絶縁樹脂層の全厚さに対する、低熱膨張性ポリイミド樹脂層(a)の厚さが40〜80%であり、接着層(b)の厚さと低熱膨張性ポリイミド樹脂層(a)の厚さとの厚み比(b/a)が、0.05〜1.7の範囲にある回路基材。
The circuit substrate according to claim 1, wherein
The thickness of the low thermal expansion polyimide resin layer (a) is 40 to 80% of the total thickness of the insulating resin layer, and the thickness of the adhesive layer (b) and the thickness of the low thermal expansion polyimide resin layer (a) A circuit base material having a thickness ratio (b / a) in the range of 0.05 to 1.7.
請求項1または2記載の回路基材において、
前記絶縁樹脂層のすべてが、ポリイミド樹脂である回路基材。
The circuit substrate according to claim 1 or 2,
A circuit substrate in which all of the insulating resin layer is a polyimide resin.
請求項1乃至3のいずれかに記載の回路基材において、
前記接着層(b)が、シリコーンユニットを有するシロキサン変性ポリイミドにエポキシ樹脂を1〜40重量%配合して得られるポリイミド樹脂層である回路基材。
In the circuit base material in any one of Claims 1 thru | or 3,
A circuit substrate in which the adhesive layer (b) is a polyimide resin layer obtained by blending 1 to 40% by weight of an epoxy resin with a siloxane-modified polyimide having a silicone unit.
JP2010207035A 2010-09-15 2010-09-15 Circuit base material of multilayer circuit substrate Pending JP2010283390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207035A JP2010283390A (en) 2010-09-15 2010-09-15 Circuit base material of multilayer circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207035A JP2010283390A (en) 2010-09-15 2010-09-15 Circuit base material of multilayer circuit substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008047881A Division JP4987756B2 (en) 2008-02-28 2008-02-28 Multilayer circuit board manufacturing method

Publications (1)

Publication Number Publication Date
JP2010283390A true JP2010283390A (en) 2010-12-16

Family

ID=43539790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207035A Pending JP2010283390A (en) 2010-09-15 2010-09-15 Circuit base material of multilayer circuit substrate

Country Status (1)

Country Link
JP (1) JP2010283390A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001212904A (en) * 2000-02-01 2001-08-07 Nippon Steel Chem Co Ltd Adhesive applied conductor-polyimide laminated sheet
JP2002240193A (en) * 2001-02-16 2002-08-28 Nippon Steel Chem Co Ltd Laminate and method for manufacturing the same
JP2003309370A (en) * 2002-02-18 2003-10-31 North:Kk Component for connection between wiring films, its manufacture method, and manufacture method of multilayer wiring substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001212904A (en) * 2000-02-01 2001-08-07 Nippon Steel Chem Co Ltd Adhesive applied conductor-polyimide laminated sheet
JP2002240193A (en) * 2001-02-16 2002-08-28 Nippon Steel Chem Co Ltd Laminate and method for manufacturing the same
JP2003309370A (en) * 2002-02-18 2003-10-31 North:Kk Component for connection between wiring films, its manufacture method, and manufacture method of multilayer wiring substrate

Similar Documents

Publication Publication Date Title
CN101400514B (en) Metallic laminate and method for preparing the same
KR100683086B1 (en) Resin Composition
JP5186266B2 (en) Multilayer wiring circuit board and manufacturing method thereof
KR101219065B1 (en) Double-layered, double sided flexible metal laminate and method for manufacturing the same
TWI409167B (en) Fiber-rein composite, laminate article, and board for printed wiring, and method for producing board for printed wiring
JP2005243911A (en) Multilayer laminated wiring board
KR100793177B1 (en) Double side conductor laminates and its manufacture
JP5064035B2 (en) Manufacturing method of laminate for COF substrate
JP4642479B2 (en) COF laminate and COF film carrier tape
JP5000310B2 (en) COF laminate, COF film carrier tape, and electronic device
KR101378052B1 (en) Laminate for cof, cof film carrier tape and electronic device
JP4564336B2 (en) Copper-clad laminate for COF and carrier tape for COF
JP2005197532A (en) Multilayered circuit board, manufacturing method thereof, and circuit base material
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP2004237596A (en) Flexible copper-clad laminated plate and its production method
JP5053429B2 (en) Multilayer circuit board manufacturing method
JP4987756B2 (en) Multilayer circuit board manufacturing method
JP2005088309A (en) Substrate film with metal foil layer and substrate film with metal foil on both sides
JP3356298B2 (en) Printed wiring board and method of manufacturing the same
JP2008201117A (en) Metal thin film with plastic, printed-circuit board, its manufacturing method, multilayer wiring board, and its manufacturing method
JP2010283390A (en) Circuit base material of multilayer circuit substrate
KR20080041855A (en) Double side conductor laminates
JP4694142B2 (en) Manufacturing method of substrate for flexible printed wiring board
JP2012162084A (en) Base material with resin, and resinated copper foil with resin
JP5355858B2 (en) Multilayer wiring circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814