JP2010282156A - Liquid crystal display device and method for manufacturing liquid crystal display device - Google Patents

Liquid crystal display device and method for manufacturing liquid crystal display device Download PDF

Info

Publication number
JP2010282156A
JP2010282156A JP2009137728A JP2009137728A JP2010282156A JP 2010282156 A JP2010282156 A JP 2010282156A JP 2009137728 A JP2009137728 A JP 2009137728A JP 2009137728 A JP2009137728 A JP 2009137728A JP 2010282156 A JP2010282156 A JP 2010282156A
Authority
JP
Japan
Prior art keywords
substrate
liquid crystal
alignment film
display device
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009137728A
Other languages
Japanese (ja)
Inventor
Yasuo Toko
康夫 都甲
Yasuki Takahashi
泰樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2009137728A priority Critical patent/JP2010282156A/en
Priority to KR1020100052242A priority patent/KR20100131927A/en
Priority to CN201010198619XA priority patent/CN101907804A/en
Publication of JP2010282156A publication Critical patent/JP2010282156A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel technique with which a pretilt angle of liquid crystal molecules can be set in a wide range. <P>SOLUTION: In a method for manufacturing a liquid crystal display device including a first step for forming a first alignment layer on one surface of a first substrate, a second step for disposing the first substrate and a second substrate such that mutual one surfaces thereof are opposed to each other, and a third step for forming a liquid crystal layer between the first and the second substrates, a material liquid is made to be a mist shape by releasing the material liquid in such a state that a potential difference is relatively generated between the material liquid and the first substrate, the mist-shaped material liquid 52 is sprayed on one surface side of the first substrate 40 and the sprayed material liquid is solidified in the first step. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、液晶表示装置における液晶分子の配向制御技術に関する。   The present invention relates to a technique for controlling alignment of liquid crystal molecules in a liquid crystal display device.

液晶表示装置の製造における要素技術の1つとして配向制御技術がある。従前、比較的高いプレティルト角を実現する技術として、例えば特開平6−95115号公報(特許文献1)に開示されたものが知られている。しかし、特許文献1に開示される技術を用いる場合には、0°〜90°の所望のプレティルト角が得られるものの、異方性ドライエッチングを用いること等により製造プロセスが複雑であるため加工費がかかるとともに、多くの材料(粒子、樹脂など)が必要であるため材料費がかかるという点で未だ改良の余地が残されていた。   One of elemental technologies in manufacturing a liquid crystal display device is an alignment control technology. Conventionally, as a technique for realizing a relatively high pretilt angle, for example, one disclosed in Japanese Patent Laid-Open No. 6-95115 (Patent Document 1) is known. However, when the technique disclosed in Patent Document 1 is used, a desired pretilt angle of 0 ° to 90 ° can be obtained. However, since the manufacturing process is complicated by using anisotropic dry etching or the like, the processing cost is low. In addition, since many materials (particles, resins, etc.) are required, there is still room for improvement in terms of material costs.

特開平6−95115号公報JP-A-6-95115

本発明に係る具体的態様は、液晶分子のプレティルト角を広範囲に設定し得る新規な技術を提供することを目的の1つとする。   A specific aspect of the present invention is to provide a novel technique capable of setting a pretilt angle of liquid crystal molecules in a wide range.

本発明に係る一態様の液晶表示装置は、互いの一面を向かい合わせて配置された第1基板及び第2基板と、上記第1基板の上記一面側に設けられた第1配向膜と、上記第2基板の上記一面側に設けられた第2配向膜と、上記第1基板と上記第2基板との相互間に設けられた液晶層と、を含む。上記第1配向膜は多数の微細膜を有し、上記多数の微細膜は各々の相互間に下地が露出するように分散して配置される。そして、上記第1配向膜と上記液晶層との界面付近における液晶分子のプレティルト角が、上記多数の微細膜の分布密度に応じて制御される。   A liquid crystal display device according to an aspect of the present invention includes a first substrate and a second substrate that are arranged with one surface facing each other, a first alignment film provided on the one surface side of the first substrate, A second alignment film provided on the one surface side of the second substrate; and a liquid crystal layer provided between the first substrate and the second substrate. The first alignment film has a large number of fine films, and the large number of fine films are arranged in a dispersed manner so that a base is exposed between each other. The pretilt angle of the liquid crystal molecules in the vicinity of the interface between the first alignment film and the liquid crystal layer is controlled according to the distribution density of the numerous fine films.

上記の液晶表示装置では、多数の微細膜からなる配向膜を用いることにより、当該配向膜と液晶層との界面付近における液晶分子のプレティルト角を多数の微細膜の分布密度に応じて変化させることができる。例えば、いわゆる垂直配向膜用の材料液を用いて第1配向膜が形成されている場合であれば、微細膜の密度の増加に伴ってプレティルト角を高くすることができる。ここで、上記した特許文献1に記載の従来例では、尖鋭形状に形成された突起体または針状体を用い、これらによる形状的な作用を利用して配向制御が行われていた(特許文献1の段落0025等参照)。このため、上述したような製造上の不都合があるとともに、プレティルト角を広範囲に制御するのが困難であると考えられる。これに対して本発明は、多数の微細膜の密度によって配向制御が可能となることを見出し、これを新規な技術として具現化したものである。本発明における多数の微細膜は、配向膜の分散に由来する物性を利用するものであるため、後述のような比較的簡素な装置・プロセスによって製造可能である。   In the above liquid crystal display device, by using an alignment film composed of a large number of fine films, the pretilt angle of liquid crystal molecules in the vicinity of the interface between the alignment film and the liquid crystal layer can be changed according to the distribution density of the large number of fine films. Can do. For example, if the first alignment film is formed using a so-called material liquid for a vertical alignment film, the pretilt angle can be increased as the density of the fine film increases. Here, in the conventional example described in Patent Document 1 described above, a protrusion or needle-like body formed in a sharp shape is used, and orientation control is performed using the shape action of these (Patent Document). 1 paragraph 0025 etc.). For this reason, there are inconveniences in manufacturing as described above, and it is considered difficult to control the pretilt angle over a wide range. On the other hand, the present invention has found that the orientation can be controlled by the density of a large number of fine films, and has realized this as a new technique. Many fine films in the present invention utilize physical properties derived from the dispersion of the alignment film, and can be manufactured by relatively simple apparatuses and processes as described below.

上記した液晶表示装置において、上記第1配向膜とは配向制御特性が異なる第3配向膜を上記第1配向膜と上記第1基板の上記一面との間に設けることも好ましい。例えば、第1配向膜が垂直配向膜であるとすれば、第3配向膜としては水平配向膜が用いられる。   In the liquid crystal display device described above, it is also preferable to provide a third alignment film having an alignment control characteristic different from that of the first alignment film between the first alignment film and the one surface of the first substrate. For example, if the first alignment film is a vertical alignment film, a horizontal alignment film is used as the third alignment film.

これにより、第1配向膜を形作る多数の微細膜の相互間に露出する下地が第3配向膜となるので、液晶層全体の配向の安定性を高めることが期待される。また、第1配向膜と第3配向膜との組み合わせにより、第1配向膜または第3配向膜を単独で用いる場合とは異なるプレティルト角が得られる。   As a result, the base exposed between the multiple fine films forming the first alignment film becomes the third alignment film, so that it is expected to improve the alignment stability of the entire liquid crystal layer. In addition, the combination of the first alignment film and the third alignment film provides a pretilt angle different from that when the first alignment film or the third alignment film is used alone.

また、第1配向膜を構成する多数の微細膜は、平面視における形状が略円形状又は環状形状のものを含んでもよい。   In addition, the multiple fine films constituting the first alignment film may include those having a substantially circular or annular shape in plan view.

上記のように本発明では微細膜の配向膜の分散に由来する物性を利用するものであるため、多数の微細膜としては種々の形状が許容される。それにより、製造が容易になる。   As described above, in the present invention, the physical properties derived from the dispersion of the alignment film of the fine film are used, so that various shapes are allowed as a large number of fine films. Thereby, manufacture becomes easy.

本発明に係る一態様の液晶表示装置の製造方法は、(a)第1基板の一面に第1配向膜を形成する第1工程と、(b)上記第1基板と第2基板とを、互いの一面を向かい合わせて配置する第2工程と、(c)上記第1基板と上記第2基板との間に液晶層を形成する第3工程と、を含む。そして、上記第1工程は、(d)材料液と上記第1基板との間に相対的に電位差を生じさせた状態で上記材料液を放出することにより、上記材料液を霧状にして上記第1基板の一面側に散布する工程と、(e)当該散布された上記材料液を固化する工程と、を含む。   The method for manufacturing a liquid crystal display device according to one aspect of the present invention includes: (a) a first step of forming a first alignment film on one surface of the first substrate; and (b) the first substrate and the second substrate. A second step of disposing the surfaces facing each other; and (c) a third step of forming a liquid crystal layer between the first substrate and the second substrate. In the first step, (d) the material liquid is atomized by discharging the material liquid in a state where a potential difference is relatively generated between the material liquid and the first substrate. A step of spraying on one side of the first substrate; and (e) a step of solidifying the sprayed material liquid.

上記の製造方法によれば、例えば材料液にプラス電位を与え、基板側にマイナス電位を与えることにより、材料液を非常に細かい粒子からなる霧状体にし、基板上へ散布することができる。したがって、多数の微細膜からなる第1配向膜を簡易な構成の装置によって形成することができる。したがって、プレティルト角を広範囲に設定して液晶表示装置を製造することが可能となる。   According to the above manufacturing method, for example, by applying a positive potential to the material liquid and applying a negative potential to the substrate side, the material liquid can be sprayed onto the substrate in the form of a mist made of very fine particles. Therefore, the first alignment film composed of a large number of fine films can be formed by an apparatus having a simple configuration. Therefore, it is possible to manufacture a liquid crystal display device by setting the pretilt angle in a wide range.

一実施形態の液晶表示装置を模式的に示す断面図である。It is sectional drawing which shows typically the liquid crystal display device of one Embodiment. 多数の微細膜からなる配向膜の形成に適した手法の一例について説明する原理図である。It is a principle figure explaining an example of the method suitable for formation of the alignment film which consists of many fine films. 多数の微細膜からなる配向膜の形成に適した手法の他の一例について説明する原理図である。It is a principle figure explaining another example of the method suitable for formation of the alignment film which consists of many fine films. 配向膜液の射出点と基板との位置関係について説明する図である。It is a figure explaining the positional relationship of the injection | emission point of alignment film liquid, and a board | substrate. 一実施形態の液晶表示装置の製造工程を説明する模式断面図である。It is a schematic cross section explaining the manufacturing process of the liquid crystal display device of one embodiment. 比較例の液晶表示装置の電気光学特性および顕微鏡写真を示す図である。It is a figure which shows the electro-optical characteristic and micrograph of the liquid crystal display device of a comparative example. 実施例1の液晶表示装置の電気光学特性および顕微鏡写真を示す図である。FIG. 3 is a diagram showing electro-optical characteristics and a micrograph of the liquid crystal display device of Example 1. 実施例2の液晶表示装置の電気光学特性および顕微鏡写真を示す図である。It is a figure which shows the electro-optical characteristic and micrograph of the liquid crystal display device of Example 2. 実施例3の液晶表示装置の電気光学特性および顕微鏡写真を示す図である。6 is a diagram showing electro-optical characteristics and a micrograph of a liquid crystal display device of Example 3. FIG. 実施例4の液晶表示装置の顕微鏡観察写真を示す図である。6 is a view showing a microscopic observation photograph of the liquid crystal display device of Example 4. FIG.

以下に、本発明の実施の形態について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、一実施形態の液晶表示装置を模式的に示す断面図である。図1に示す本実施形態の液晶表示装置1は、第1基板11と第2基板15の間に液晶層19を介在させた基本構成を有する。第1基板11の外側には第1偏光板21が配置され、第2基板15の外側には第2偏光板22が配置されている。以下、さらに詳細に液晶表示装置1の構造を説明する。なお、液晶層19の周囲を封止するシール材等の部材については図示および説明を省略する。   FIG. 1 is a cross-sectional view schematically showing a liquid crystal display device according to an embodiment. The liquid crystal display device 1 of this embodiment shown in FIG. 1 has a basic configuration in which a liquid crystal layer 19 is interposed between a first substrate 11 and a second substrate 15. A first polarizing plate 21 is disposed outside the first substrate 11, and a second polarizing plate 22 is disposed outside the second substrate 15. Hereinafter, the structure of the liquid crystal display device 1 will be described in more detail. Note that illustration and description of members such as a sealing material for sealing the periphery of the liquid crystal layer 19 are omitted.

第1基板11および第2基板15は、それぞれ、例えばガラス基板、プラスチック基板等の透明基板である。図示のように、第1基板11と第2基板15とは、互いの一面が対向するようにして、所定の間隙(例えば数μm)を設けて貼り合わされている。なお、特段の図示を省略するが、いずれかの基板上に薄膜トランジスタ等のスイッチング素子が形成されていてもよい。   The first substrate 11 and the second substrate 15 are transparent substrates such as a glass substrate and a plastic substrate, respectively. As shown in the figure, the first substrate 11 and the second substrate 15 are bonded to each other with a predetermined gap (for example, several μm) so that their one surfaces face each other. Although not particularly shown, a switching element such as a thin film transistor may be formed on any substrate.

液晶層19は、第1基板11と第2基板15の相互間に設けられている。本実施形態においては、誘電率異方性Δεが正(Δε>0)の液晶材料を用いて液晶層19が構成されている。液晶層19に図示された太線は、液晶層19に電圧が印加されていない初期状態における液晶分子の配向方位を模式的に示したものである。液晶層19は、例えば図示のように比較的高いプレティルト角が付与された一様な初期配向状態とされる。   The liquid crystal layer 19 is provided between the first substrate 11 and the second substrate 15. In the present embodiment, the liquid crystal layer 19 is configured using a liquid crystal material having a positive dielectric anisotropy Δε (Δε> 0). The bold line shown in the liquid crystal layer 19 schematically shows the orientation direction of the liquid crystal molecules in the initial state where no voltage is applied to the liquid crystal layer 19. The liquid crystal layer 19 is in a uniform initial alignment state with a relatively high pretilt angle as shown in the figure, for example.

第1電極12は、第1基板11の一面側に設けられている。また、第2電極16は、第2基板15の一面側に設けられている。第1電極12および第2電極16は、それぞれ、例えばインジウム錫酸化物(ITO)などの透明導電膜を適宜パターニングすることによって構成されている。   The first electrode 12 is provided on one surface side of the first substrate 11. The second electrode 16 is provided on one surface side of the second substrate 15. Each of the first electrode 12 and the second electrode 16 is configured by appropriately patterning a transparent conductive film such as indium tin oxide (ITO), for example.

配向膜13は、第1基板11の一面側に、第1電極12を覆うようにして設けられている。また、配向膜17は、第2基板15の一面側に、第2電極16を覆うようにして設けられている。これらの配向膜13、17としては、液晶層19の電圧無印加時における配向状態(初期配向状態)を水平配向状態に規制する性質を有するもの(いわゆる水平配向膜)が用いられる。   The alignment film 13 is provided on one surface side of the first substrate 11 so as to cover the first electrode 12. The alignment film 17 is provided on one surface side of the second substrate 15 so as to cover the second electrode 16. As these alignment films 13 and 17, those having the property of restricting the alignment state (initial alignment state) of the liquid crystal layer 19 when no voltage is applied to the horizontal alignment state (so-called horizontal alignment films) are used.

配向膜14は、第1基板11の一面側(配向膜13の一面上)に設けられている。また、配向膜18は、第2基板15の一面側(配向膜17の一面上)に設けられている。これらの配向膜14、18としては、液晶層19の初期配向状態を垂直配向状態に規制する性質を有するもの(いわゆる垂直配向膜)が用いられる。ここで、本実施形態における配向膜14、18のそれぞれは、不定形状、略円形状(円形に近い形状)あるいは環状の多数の微細膜が分散配置されてなる集合体である。図示のように、配向膜14はその下側の配向膜13を部分的に覆うに留まっている。すなわち、配向膜14を構成する多数の微細膜の相互間では下地の配向膜13が部分的に露出している。配向膜17と配向膜18の関係も同様である。このような配向膜14および18の形成に適した方法について次に詳述する。   The alignment film 14 is provided on one surface side of the first substrate 11 (on one surface of the alignment film 13). The alignment film 18 is provided on one surface side of the second substrate 15 (on one surface of the alignment film 17). As these alignment films 14 and 18, those having a property of regulating the initial alignment state of the liquid crystal layer 19 to the vertical alignment state (so-called vertical alignment films) are used. Here, each of the alignment films 14 and 18 in the present embodiment is an aggregate in which a large number of fine films having an indefinite shape, a substantially circular shape (a shape close to a circle), or a ring are dispersedly arranged. As shown in the drawing, the alignment film 14 only partially covers the lower alignment film 13. That is, the underlying alignment film 13 is partially exposed between the many fine films constituting the alignment film 14. The relationship between the alignment film 17 and the alignment film 18 is the same. A method suitable for forming the alignment films 14 and 18 will be described in detail below.

図2は、多数の微細膜(微細膜片)からなる配向膜の形成に適した手法の一例について説明する原理図である。本実施形態では、配向膜の材料液(以下「配向膜液」という。)を内部に保持するための円筒状等のマイクロシリンジ(筒)50と、このマイクロシリンジ50の一端に設けられた中空の微小な針51とを備えた噴射装置を用いることにより、多数の微細膜からなる配向膜を基板上に形成する。このとき、基板40の一面には予め導電膜41が設けられる。この導電膜41は、例えばインジウム錫酸化物膜などの透明導電膜である。図示のように、噴射装置の針51と基板40との距離L1を適宜(例えば、数十mm程度)に確保する。そして、針51と基板40の間に電圧印加手段を用いて高電圧(例えば数kVの直流電圧)を印加しながら、針51の先端にマイクロシリンジ50内の配向膜液を供給する。このとき、例えば、針51を基板40より相対的に高い電位に設定しておく(なお、電位の関係は逆でもよい)。それにより、針51から吐出される配向膜液はプラスの電位を帯びた状態の液体粒子となる。この電位を帯びた液体粒子は、電気的に反発しながら細かく分裂して拡がり、霧状の微小液滴(霧状体)52となる。この微小液滴52がマイナスに帯電した基板40に引き寄せられ、導電膜41上に定着する。その後、基板40に到達した微小液滴52に対して適宜熱処理等を与えることによって膜化(固化)させることにより、多数の微細膜からなる配向膜が得られる。上述した配向膜14および配向膜18は、このような手法によって形成することができる。   FIG. 2 is a principle diagram for explaining an example of a technique suitable for forming an alignment film composed of a large number of fine films (fine film pieces). In the present embodiment, a cylindrical microsyringe (cylinder) 50 for holding the alignment film material liquid (hereinafter referred to as “alignment film liquid”) inside, and a hollow provided at one end of the microsyringe 50. By using an injection device provided with the minute needles 51, an alignment film composed of a large number of fine films is formed on the substrate. At this time, a conductive film 41 is provided on one surface of the substrate 40 in advance. The conductive film 41 is a transparent conductive film such as an indium tin oxide film. As illustrated, a distance L1 between the needle 51 of the injection device and the substrate 40 is ensured as appropriate (for example, about several tens of mm). Then, the alignment film liquid in the microsyringe 50 is supplied to the tip of the needle 51 while applying a high voltage (for example, a DC voltage of several kV) between the needle 51 and the substrate 40 using a voltage applying means. At this time, for example, the needle 51 is set at a relatively higher potential than the substrate 40 (note that the potential relationship may be reversed). Thereby, the alignment film liquid discharged from the needle 51 becomes liquid particles having a positive potential. The liquid particles having this electric potential are finely divided and spread while being electrically repelled to form mist-like microdroplets (mist-like bodies) 52. The minute droplets 52 are attracted to the negatively charged substrate 40 and fixed on the conductive film 41. Thereafter, the microdroplets 52 that have reached the substrate 40 are formed into a film (solidified) by appropriately performing a heat treatment or the like, whereby an alignment film composed of a large number of microfilms is obtained. The alignment film 14 and the alignment film 18 described above can be formed by such a method.

なお、図2に示す原理図においては、基板40の一面に導電膜41を設けておき、この導電膜41と針51との間に電圧を印加していたが、図3に示す原理図のように、基板40の裏面側に導電板(導電体)53を配置し、この導電板53と針51との間に電圧を印加することもできる。この例では、基板40の一面に電気的な接続を施す必要がない点で汎用性が高いという利点がある。なお、この導電板53に、基板を保持し得る機構(真空吸着手段等)を設けておくことにより、導電板53を基板固定手段(基板フォルダ)として兼用することができる。   In the principle diagram shown in FIG. 2, a conductive film 41 is provided on one surface of the substrate 40, and a voltage is applied between the conductive film 41 and the needle 51. However, in the principle diagram shown in FIG. As described above, a conductive plate (conductor) 53 is disposed on the back side of the substrate 40, and a voltage can be applied between the conductive plate 53 and the needle 51. In this example, there is an advantage that versatility is high in that it is not necessary to electrically connect one surface of the substrate 40. In addition, by providing the conductive plate 53 with a mechanism (vacuum suction unit or the like) that can hold the substrate, the conductive plate 53 can also be used as a substrate fixing unit (substrate folder).

図4は、配向膜液の射出点と基板との位置関係について説明する図である。配向膜液の射出点とは、図2および図3に示した噴射装置においては針51の先端部である。上述した図2または図3に示した例では、基板40を縦置きし、水平方向に対向する位置に針51の先端部を配置していたが、他の配置にすることも可能である。例えば、図4(A)に示すように、基板40よりも相対的に高い位置に針51の先端部を配置することができる。この場合には、基板40が相対的に低い位置となることで基板40の保持機構がより簡素となり、従って配向膜を形成するための装置構成をより簡素にできることが期待できる。また、図4(B)に示すように、基板40よりも相対的に低い位置に針51の先端部を配置してもよい。この場合には、重力の関係から、針51の先端から放出された微小液滴52の中でより粒子の細かいもの(粒径の小さなもの)が優先的に基板40の一面へ到達するようにできる。すなわち、配向膜を構成する多数の微細膜のそれぞれをより小さくし、基板40上に分散させることができる。   FIG. 4 is a view for explaining the positional relationship between the injection point of the alignment film liquid and the substrate. The injection point of the alignment film liquid is the tip of the needle 51 in the injection device shown in FIGS. In the example shown in FIG. 2 or FIG. 3 described above, the substrate 40 is placed vertically and the tip portion of the needle 51 is disposed at a position facing the horizontal direction, but other arrangements are possible. For example, as shown in FIG. 4A, the tip of the needle 51 can be arranged at a position relatively higher than the substrate 40. In this case, it can be expected that the holding mechanism of the substrate 40 becomes simpler because the substrate 40 is at a relatively low position, and therefore the apparatus configuration for forming the alignment film can be made simpler. In addition, as shown in FIG. 4B, the tip of the needle 51 may be disposed at a position relatively lower than the substrate 40. In this case, due to gravity, finer particles (smaller particle size) among the fine droplets 52 discharged from the tip of the needle 51 preferentially reach one surface of the substrate 40. it can. That is, each of a large number of fine films constituting the alignment film can be made smaller and dispersed on the substrate 40.

次に、本実施形態に係る液晶表示装置1の製造工程について図面を参照しながら詳細に説明する。図5は、一実施形態の液晶表示装置の製造工程を説明する模式断面図である。   Next, the manufacturing process of the liquid crystal display device 1 according to the present embodiment will be described in detail with reference to the drawings. FIG. 5 is a schematic cross-sectional view illustrating a manufacturing process of the liquid crystal display device of one embodiment.

まず、第1基板11の一面に、ITO等からなる第1電極12が形成される(図5(A)参照)。例えば、第1基板11の一面に、スパッタ法等の成膜方法を用いて透明導電膜を形成する。予めこのような透明導電膜が形成された基板を用いてもよい。この透明導電膜を洗浄し、一般的なパターニング手法(例えばフォトリソ法)を用いて所望の形状の第1電極12を形成する。第1基板11としては、例えば板厚0.7mmの無アルカリガラスからなるガラス基板を用いることができる。また、第1電極12の膜厚は、例えば1500Å(オングストローム)程度とすることができる。   First, the first electrode 12 made of ITO or the like is formed on one surface of the first substrate 11 (see FIG. 5A). For example, a transparent conductive film is formed on one surface of the first substrate 11 using a film forming method such as sputtering. A substrate on which such a transparent conductive film is formed in advance may be used. The transparent conductive film is washed, and the first electrode 12 having a desired shape is formed using a general patterning method (for example, photolithography). As the first substrate 11, for example, a glass substrate made of non-alkali glass having a plate thickness of 0.7 mm can be used. The film thickness of the first electrode 12 can be set to, for example, about 1500 mm (angstrom).

次いで、第1基板11上に、第1電極12を覆うようにして配向膜13が形成される(図5(A))。具体的には、フレキソ印刷、インクジェット印刷等の手法により、配向膜13の前駆体としての配向膜液が第1基板11の一面上に塗布される。ここでは、以下の化学式で示されるような一般的な水平配向膜用の配向膜液(配向膜材料)を用いることができる。その後、この第1基板11に対して熱処理(例えば、250℃・1時間)、ラビング処理(または光配向処理等)が施されることにより、水平配向膜である配向膜13が得られる。なお、ラビング処理等の表面処理は後述の配向膜14が形成された後に行ってもよい。

Figure 2010282156
Next, an alignment film 13 is formed on the first substrate 11 so as to cover the first electrode 12 (FIG. 5A). Specifically, an alignment film liquid as a precursor of the alignment film 13 is applied onto one surface of the first substrate 11 by a technique such as flexographic printing or inkjet printing. Here, a general alignment film liquid (alignment film material) for a horizontal alignment film as represented by the following chemical formula can be used. Thereafter, the first substrate 11 is subjected to a heat treatment (for example, 250 ° C. for 1 hour) and a rubbing process (or a photo-alignment process), whereby the alignment film 13 that is a horizontal alignment film is obtained. Note that surface treatment such as rubbing treatment may be performed after an alignment film 14 described later is formed.
Figure 2010282156

次いで、第1基板11の一面上(配向膜13の一面上)に配向膜14が形成される。具体的には、上記の図2〜図4を用いて説明した手法により、配向膜14の前駆体としての配向膜液が配向膜13の一面上に散布される。ここでは、以下の化学式で示されるような一般的な垂直配向膜用の配向膜液を用いることができる。微小液滴52をより良い状態で発生させるには配向膜液の粘度が低いことが望ましいため、本実施形態では、シンナーで4wt%まで希釈された配向膜液をさらにアセトンで2倍に薄める(希釈配向膜液:アセトン=1:1)。この希釈された配向膜液を上記の噴射装置のマイクロシリンジ50に充填する。また、針51と第1基板11との距離L1(図2参照)を60mmとする。また、針51と第1基板11との間に印加する直流電圧を7kVとする。針51からの配向膜液の吐出量は36ピコリットル/秒とする。その後、第1基板11に対して熱処理(例えば190℃・1時間)が施されることにより、配向膜液が固化(膜化)され、配向膜14が得られる。

Figure 2010282156
Next, the alignment film 14 is formed on one surface of the first substrate 11 (on one surface of the alignment film 13). Specifically, the alignment film liquid as the precursor of the alignment film 14 is dispersed on one surface of the alignment film 13 by the method described with reference to FIGS. Here, a general alignment film solution for a vertical alignment film as represented by the following chemical formula can be used. In order to generate the fine droplets 52 in a better state, it is desirable that the viscosity of the alignment film liquid is low. Therefore, in this embodiment, the alignment film liquid diluted to 4 wt% with thinner is further diluted twice with acetone ( Diluted alignment film solution: acetone = 1: 1). The diluted alignment film solution is filled into the microsyringe 50 of the above-described spraying device. Further, the distance L1 (see FIG. 2) between the needle 51 and the first substrate 11 is set to 60 mm. In addition, the DC voltage applied between the needle 51 and the first substrate 11 is 7 kV. The discharge amount of the alignment film liquid from the needle 51 is set to 36 picoliters / second. Thereafter, the first substrate 11 is subjected to a heat treatment (for example, 190 ° C. for 1 hour), so that the alignment film liquid is solidified (film formation), and the alignment film 14 is obtained.
Figure 2010282156

なお、希釈用の溶媒としてはアセトンに限らず、エタノール、IPA(イソプロピルアルコール)など別の有機溶媒を用いてもよい。基本的には、沸点が低く、揮発性の高いものが望ましい。針51から第1基板11へ向けて配向膜液が飛翔する間に、配向膜液は細かな液滴の集合体である微小液滴52となるが、第1基板11に到達するころにはアセトン等の希釈用溶媒はほとんど蒸発するものと考えられる。したがって、ここで用いる希釈用溶媒は、何を選んでも液晶層19の配向性に大きな影響を与えることはないと考えられる。   The solvent for dilution is not limited to acetone, and another organic solvent such as ethanol or IPA (isopropyl alcohol) may be used. Basically, those having a low boiling point and high volatility are desirable. While the alignment film liquid flies from the needle 51 toward the first substrate 11, the alignment film liquid becomes a fine droplet 52 that is an aggregate of fine droplets. It is considered that the solvent for dilution such as acetone evaporates almost. Therefore, it can be considered that the dilution solvent used here does not greatly affect the orientation of the liquid crystal layer 19, regardless of what is selected.

また、第2基板15の一面上に配向膜17が形成され、さらにこの配向膜17の一面上に配向膜18が形成される(図5(C)参照)。それぞれの詳細については上記の配向膜13、14と同様であるため、ここでは説明を省略する。   Further, an alignment film 17 is formed on one surface of the second substrate 15, and an alignment film 18 is further formed on one surface of the alignment film 17 (see FIG. 5C). Since the details of each are the same as those of the alignment films 13 and 14, the description thereof is omitted here.

次いで、第1基板11と第2基板15とを、互いの一面を対向させて配置する(図5(D)参照)。例えば本実施形態では、第1基板11と第2基板15との間隔(セルギャップ)を一定に保つために、一方の基板面上(例えば第1基板11の一面上)にギャップコントロール剤を乾式散布する。ギャップコントロール剤としては、粒径が数μmのプラスチックボール等を用いることができる。また、シール剤を他方の基板面上(例えば第2基板15の一面上)に形成する。シール剤の形成は、例えばスクリーン印刷法により行われる。ディスペンサを用いてもよい。シール剤としては、熱硬化性、光硬化性、光・熱併用型など何れも用いることができる。シール剤には粒径が数μmのグラスファイバーが数%含まれていてもよい。その後、第1基板11と第2基板15とを重ね合わせてセル化し、プレスした状態で熱処理等によりシール剤を硬化させる。ここでは、ホットプレス法にて熱硬化を行う(150℃焼成)。本実施形態では、図中に示すように、各配向膜13、16に対するラビング方向がアンチパラレル状態となるように第1基板11と第2基板15とが貼り合わされる。   Next, the first substrate 11 and the second substrate 15 are arranged so that their one surfaces face each other (see FIG. 5D). For example, in the present embodiment, in order to keep the distance (cell gap) between the first substrate 11 and the second substrate 15 constant, a gap control agent is dried on one substrate surface (for example, one surface of the first substrate 11). Scatter. As the gap control agent, a plastic ball having a particle size of several μm can be used. Further, the sealing agent is formed on the other substrate surface (for example, on one surface of the second substrate 15). The sealant is formed by, for example, a screen printing method. A dispenser may be used. As the sealant, any of thermosetting, photocuring, light / heat combination type and the like can be used. The sealing agent may contain several percent of glass fibers having a particle size of several μm. Thereafter, the first substrate 11 and the second substrate 15 are superposed to form a cell, and the sealing agent is cured by heat treatment or the like in a pressed state. Here, thermosetting is performed by a hot press method (baking at 150 ° C.). In the present embodiment, as shown in the drawing, the first substrate 11 and the second substrate 15 are bonded so that the rubbing direction with respect to the alignment films 13 and 16 is in an anti-parallel state.

次いで、第1基板11と第2基板15の間に、例えば真空注入法によって液晶材料を注入することにより液晶層19が形成される(図5(D)参照)。液晶材料の注入口はエンドシール剤によって封止される。更に、液晶層19の配向を整えるために、液晶材料の相転移温度以上にセルを熱する処理(例えば、60℃・30分間)を行うことも好ましい。   Next, a liquid crystal layer 19 is formed by injecting a liquid crystal material between the first substrate 11 and the second substrate 15 by, for example, a vacuum injection method (see FIG. 5D). The liquid crystal material inlet is sealed with an end sealant. Furthermore, in order to adjust the alignment of the liquid crystal layer 19, it is also preferable to perform a treatment (for example, 60 ° C. for 30 minutes) in which the cell is heated to the phase transition temperature or higher of the liquid crystal material.

その後、セルを洗浄する処理を適宜行い、第1基板11の外側に第1偏光板21を貼り付け、第2基板15の外側に第2偏光板22を貼り付けることにより、上記の図1に示した液晶表示装置1が完成する。   Thereafter, a process of cleaning the cell is appropriately performed, and the first polarizing plate 21 is attached to the outside of the first substrate 11 and the second polarizing plate 22 is attached to the outside of the second substrate 15, so that FIG. The liquid crystal display device 1 shown is completed.

以下に、本実施形態に係る液晶表示装置のいくつかの実施例について説明する。なお、比較例として一般的な水平配向状態の液晶表示装置についても併せて説明する。   Hereinafter, some examples of the liquid crystal display device according to the present embodiment will be described. As a comparative example, a general horizontal alignment liquid crystal display device will also be described.

(比較例)
図6は、比較例の液晶表示装置の電気光学特性および顕微鏡写真を示す図である。この比較例は、上述した実施形態における配向膜14および配向膜18を省略して作製されたものである。液晶層19を形成するための液晶材料としては5CBが用いられた。セル厚(第1基板11と第2基板15の間隙の距離)は5.7μmであった。それ以外の製造条件については、上記した実施形態において例示した条件に即している。図6(B)および図6(C)に顕微鏡写真を示すように、比較例の液晶セルは一般的な水平配向に見られる均一な配向状態であることがわかる。また、図6(A)に示す電気光学特性から、この液晶セルの飽和電圧は8.5V程度であることがわかる。またこの液晶セルのプレティルト角をクリスタルローテーション法にて測定したところ、プレティルト角は約3°であった。このプレティルト角は、20mm×25mmの範囲で9点ずつ測定された(以下の各実施例も同様)。
(Comparative example)
FIG. 6 is a diagram showing electro-optical characteristics and a micrograph of a liquid crystal display device of a comparative example. This comparative example is produced by omitting the alignment film 14 and the alignment film 18 in the above-described embodiment. As the liquid crystal material for forming the liquid crystal layer 19, 5CB was used. The cell thickness (distance between the first substrate 11 and the second substrate 15) was 5.7 μm. About other manufacturing conditions, it is based on the conditions illustrated in the above-mentioned embodiment. As shown in the micrographs in FIGS. 6B and 6C, it can be seen that the liquid crystal cell of the comparative example has a uniform alignment state found in general horizontal alignment. Further, it can be seen from the electro-optical characteristics shown in FIG. 6A that the saturation voltage of this liquid crystal cell is about 8.5V. Further, when the pretilt angle of the liquid crystal cell was measured by the crystal rotation method, the pretilt angle was about 3 °. The pretilt angle was measured at 9 points in a range of 20 mm × 25 mm (the same applies to the following examples).

(実施例1)
図7は、実施例1の液晶表示装置の電気光学特性および顕微鏡写真を示す図である。この実施例1についても、液晶層19を形成するための液晶材料としては5CBが用いられた。セル厚は6.0μmであった。また、配向膜14、配向膜18のそれぞれを形成する際には、各配向膜14、18の前駆体としての配向膜液が3μリットルずつ散布された。それ以外の製造条件については、上記した実施形態において例示した条件に即している。図7(B)〜図7(D)に顕微鏡写真を示すように、部分的に液晶分子の配向状態が異なっていることがわかる。この配向状態の異なっている部分は、配向膜14または配向膜18に対応して形成されていると考えられる。当該部分の大きさは数μm程度かそれ以下であり1μm以下の細かな部分も見られる。また、当該部分の形状は無定形(円形にやや近い形状)であることがわかる。また、図7(A)に示す電気光学特性から、この液晶セルの飽和電圧は8.0V程度であることがわかる。またこの液晶セルのプレティルト角をクリスタルローテーション法(外挿法)によって測定したところ、プレティルト角は約13.5°〜14.1°の範囲であった。すなわち、比較的に高いプレティルト角が付与されていることがわかった。
Example 1
FIG. 7 is a diagram showing electro-optical characteristics and a micrograph of the liquid crystal display device of Example 1. Also in Example 1, 5CB was used as the liquid crystal material for forming the liquid crystal layer 19. The cell thickness was 6.0 μm. Moreover, when forming each of the alignment film 14 and the alignment film 18, 3 microliters of alignment film liquid as a precursor of each alignment film 14 and 18 was sprayed. About other manufacturing conditions, it is based on the conditions illustrated in the above-mentioned embodiment. As shown in micrographs in FIGS. 7B to 7D, it can be seen that the alignment states of the liquid crystal molecules are partially different. It is considered that the portions having different alignment states are formed corresponding to the alignment film 14 or the alignment film 18. The size of the part is about several μm or less, and a fine part of 1 μm or less can be seen. Moreover, it turns out that the shape of the said part is an indeterminate form (shape somewhat close to a circle). Further, it can be seen from the electro-optical characteristics shown in FIG. 7A that the saturation voltage of this liquid crystal cell is about 8.0V. Further, when the pretilt angle of the liquid crystal cell was measured by a crystal rotation method (extrapolation method), the pretilt angle was in the range of about 13.5 ° to 14.1 °. That is, it was found that a relatively high pretilt angle was given.

(実施例2)
図8は、実施例2の液晶表示装置の電気光学特性および顕微鏡写真を示す図である。この実施例2についても、液晶層19を形成するための液晶材料としては5CBが用いられた。セル厚は6.0μmであった。また、配向膜14、配向膜18のそれぞれを形成する際には、各配向膜14、18の前駆体としての配向膜液が15μリットルずつ散布された。それ以外の製造条件については、上記した実施形態において例示した条件に即している。図8(B)および図8(C)に顕微鏡写真を示すように、実施例2の液晶セルにおいても、部分的に液晶分子の配向状態が異なっており、これは配向膜14、18に起因すると考えられる。また、配向膜液の散布量の増加に伴い、当該部分の密度が高くなっていることがわかる。また、当該部分の形状は無定形で、円形よりも複雑な形状となっている。また、当該部分の大きさも、実施例1に比較してより大きいことがわかる。また、図8(A)に示す電気光学特性から、この液晶セルの飽和電圧は6.0V程度であることがわかる。またこの液晶セルのプレティルト角をクリスタルローテーション法(外挿法)によって測定したところ、プレティルト角は約19.5°〜22.4°の範囲であった。すなわち、配向膜液の散布量を増加させることによって微細膜の密度を増加させ、それによりプレティルト角をより高く制御できることが明らかとなった。
(Example 2)
FIG. 8 is a diagram showing electro-optical characteristics and a micrograph of the liquid crystal display device of Example 2. Also in Example 2, 5CB was used as the liquid crystal material for forming the liquid crystal layer 19. The cell thickness was 6.0 μm. Further, when each of the alignment film 14 and the alignment film 18 was formed, 15 μL of alignment film liquid as a precursor of the alignment films 14 and 18 was sprayed. About other manufacturing conditions, it is based on the conditions illustrated in the above-mentioned embodiment. As shown in the micrographs in FIGS. 8B and 8C, in the liquid crystal cell of Example 2, the alignment state of the liquid crystal molecules is partially different, which is caused by the alignment films 14 and 18. I think that. Moreover, it turns out that the density of the said part becomes high with the increase in the dispersion | distribution amount of alignment film liquid. Moreover, the shape of the said part is amorphous and is a more complicated shape than a circle. Further, it can be seen that the size of the portion is larger than that of the first embodiment. Further, it can be seen from the electro-optical characteristics shown in FIG. 8A that the saturation voltage of this liquid crystal cell is about 6.0V. Further, when the pretilt angle of the liquid crystal cell was measured by the crystal rotation method (extrapolation method), the pretilt angle was in the range of about 19.5 ° to 22.4 °. That is, it has been clarified that the density of the fine film can be increased by increasing the spraying amount of the alignment film liquid, and thereby the pretilt angle can be controlled higher.

(実施例3)
図9は、実施例3の液晶表示装置の電気光学特性および顕微鏡写真を示す図である。この実施例3についても、液晶層19を形成するための液晶材料としては5CBが用いられた。セル厚は6.0μmであった。また、配向膜14、配向膜18のそれぞれを形成する際には、各配向膜14、18の前駆体としての配向膜液が45μリットルずつ散布された。それ以外の製造条件については、上記した実施形態において例示した条件に即している。図9(B)および図9(C)に顕微鏡写真を示すように、実施例3の液晶セルにおいても、部分的に液晶分子の配向状態が異なっており、これは配向膜14、18に起因すると考えられる。また、配向膜液の散布量の増加に伴い、当該部分の密度が高くなっていることがわかる。また、当該部分の形状は無定形で、円形よりも複雑な形状となっている。また、当該部分の大きさも実施例1に比較してより大きいことがわかる。さらに、部分的に黒く見えている部分があり、これは垂直配向もしくは垂直に近い配向状態になっていると考えられる。この部分に対応する第1基板11、第2基板15のそれぞれの表面には配向膜14、18を構成する微細膜が形成されていると考えられる。また、図9(A)に示す電気光学特性から、この液晶セルの飽和電圧は5.0V程度であることがわかる。またこの液晶セルのプレティルト角をクリスタルローテーション法(外挿法)によって測定したところ、プレティルト角は約37.2°〜42.9°の範囲であった。すなわち、配向膜液の散布量を増加させることによって微細膜の密度をさらに増加させ、それによりプレティルト角をさらに高く制御できることが明らかとなった。
(Example 3)
FIG. 9 is a diagram showing electro-optical characteristics and a micrograph of the liquid crystal display device of Example 3. Also in Example 3, 5CB was used as the liquid crystal material for forming the liquid crystal layer 19. The cell thickness was 6.0 μm. In forming each of the alignment film 14 and the alignment film 18, 45 μl of alignment film liquid as a precursor of the alignment films 14 and 18 was sprayed. About other manufacturing conditions, it is based on the conditions illustrated in the above-mentioned embodiment. As shown in micrographs in FIGS. 9B and 9C, in the liquid crystal cell of Example 3, the alignment state of the liquid crystal molecules is partially different, which is caused by the alignment films 14 and 18. I think that. Moreover, it turns out that the density of the said part becomes high with the increase in the dispersion | distribution amount of alignment film liquid. Moreover, the shape of the said part is amorphous and is a more complicated shape than a circle. Further, it can be seen that the size of the portion is larger than that of the first embodiment. Furthermore, there is a portion that appears to be partially black, which is considered to be in a vertical alignment or an alignment state close to vertical. It is considered that fine films constituting the alignment films 14 and 18 are formed on the surfaces of the first substrate 11 and the second substrate 15 corresponding to this portion. Further, it can be seen from the electro-optical characteristics shown in FIG. 9A that the saturation voltage of this liquid crystal cell is about 5.0V. Further, when the pretilt angle of the liquid crystal cell was measured by a crystal rotation method (extrapolation method), the pretilt angle was in the range of about 37.2 ° to 42.9 °. That is, it has been clarified that the density of the fine film can be further increased by increasing the spraying amount of the alignment film liquid, and thereby the pretilt angle can be further controlled.

(実施例4)
実施例4として、一方の基板側にのみ垂直配向膜を散布した実施例を説明する。具体的には、上述した実施形態において、第1基板11側には配向膜13および配向膜14を形成し、第2基板15側には配向膜17のみを形成し、配向膜18を省略した液晶表示装置を作製した。図10は、実施例4の液晶表示装置の顕微鏡観察写真を示す図である。図10(A)は20倍に拡大した偏光顕微鏡写真、図10(B)は50倍に拡大した偏光顕微鏡写真である。各写真において白く見えている部分は、配向膜14を構成する微細膜に対応する。当該部分の形状は、円形もしくは円形を組み合わせた形状となっていることがわかる。また、ドーナツ状(環状)の形状も見られる。当該部分の大きさは様々であり、サブミクロンオーダ(0.1μm以下もある)から、大きいものは10μm程度、最大では30μm程度である。液晶セルの作製に当たっては比較的簡易な装置を用いたため、微小液滴52(図2,3参照)の粒径のばらつきが大きいが、より高精度な装置を用いれば粒径のばらつきを抑えることが可能と考えられる。また、粒径の大きさについても、噴射装置の針と基板との距離や、両者間に印加する電圧の値、針の形状やサイズ、配向膜液の吐出量、吐出速度などの製造パラメータを適宜設定することにより、数nm〜数十nm程度のオーダまで制御可能である。ただし、人間の目の分解能(一般に100μm程度)を考慮すると、配向膜14(又は配向膜18)を構成する各微細膜をそれほど小さくしなくとも、視認されるおそれは低いものと考えられる。また、液晶分子はお互いが揃いあって並ぶ性質を有し、細かな配向分布があっても全体としてはなるべく急激な配向変化にならないように徐々に変化していく性質を有している。前記配向分布があまりにも細かすぎると表面の配向分布による影響が全体の液晶配向にあまり影響を与えない可能性もあり、配向膜14等を構成する各微細膜はあまり細かすぎないほうがよい可能性もある。すなわち、配向膜液の噴射装置としてそれほど高精度なものを用いる必要がないとも考えられる。
Example 4
As Example 4, an example in which a vertical alignment film is dispersed only on one substrate side will be described. Specifically, in the above-described embodiment, the alignment film 13 and the alignment film 14 are formed on the first substrate 11 side, only the alignment film 17 is formed on the second substrate 15 side, and the alignment film 18 is omitted. A liquid crystal display device was produced. FIG. 10 is a view showing a microscope observation photograph of the liquid crystal display device of Example 4. FIG. 10A is a polarizing microscope photograph magnified 20 times, and FIG. 10B is a polarizing microscope photograph magnified 50 times. The portion that appears white in each photograph corresponds to the fine film that forms the alignment film 14. It can be seen that the shape of the portion is a circle or a combination of circles. A donut-shaped (annular) shape is also seen. The size of the portion varies, and from the submicron order (there is also 0.1 μm or less), the larger one is about 10 μm, and the maximum is about 30 μm. Since a relatively simple device was used in the production of the liquid crystal cell, the variation in the particle size of the microdroplets 52 (see FIGS. 2 and 3) is large. Is considered possible. In addition, regarding the size of the particle size, manufacturing parameters such as the distance between the needle of the injection device and the substrate, the value of the voltage applied between the two, the shape and size of the needle, the discharge amount of the alignment film liquid, the discharge speed, etc. By appropriately setting, it is possible to control the order of several nm to several tens of nm. However, in consideration of the resolution of the human eye (generally about 100 μm), it is considered that the possibility of being visually recognized is low even if each of the fine films constituting the alignment film 14 (or alignment film 18) is not so small. Further, the liquid crystal molecules have a property of being aligned and aligned, and even if there is a fine alignment distribution, the liquid crystal molecules have a property of gradually changing so as not to cause a rapid change in alignment as a whole. If the alignment distribution is too fine, the influence of the alignment distribution on the surface may not affect the entire liquid crystal alignment, and each fine film constituting the alignment film 14 and the like may not be too fine. There is also. That is, it is considered that it is not necessary to use a highly accurate apparatus for injecting the alignment film liquid.

以上の本実施形態によれば、多数の微細膜からなる配向膜を用いることにより、当該配向膜と液晶層との界面付近における液晶分子のプレティルト角を広範囲に設定することができる。また、多数の微細膜の分布密度に応じてプレティルト角を変化させることができる。また、多数の微細膜からなる配向膜を比較的簡易な構成の装置によって形成することができる。したがって、プレティルト角を広範囲に設定して液晶表示装置を製造することが可能となる。それにより、例えばOCB(オプティカル・コンペイセーティット・ベンド)モード、あるいは全く新規なモードなど、比較的高いプレティルト角を必要とする表示モードを用いた液晶表示装置も容易に実現可能となる。   According to this embodiment described above, by using an alignment film composed of a large number of fine films, the pretilt angle of liquid crystal molecules in the vicinity of the interface between the alignment film and the liquid crystal layer can be set in a wide range. Further, the pretilt angle can be changed according to the distribution density of a large number of fine films. In addition, an alignment film composed of a large number of fine films can be formed by an apparatus having a relatively simple configuration. Therefore, it is possible to manufacture a liquid crystal display device by setting the pretilt angle in a wide range. Thereby, for example, a liquid crystal display device using a display mode that requires a relatively high pretilt angle, such as an OCB (Optical Compensated Bend) mode or a completely new mode, can be easily realized.

なお、本発明は上述した実施形態の内容に限定されるものではなく、本発明の要旨の範囲内において種々に変形して実施をすることが可能である。例えば、上述した実施形態において適宜示した製造条件等の数値は一例であり、それらに限定されない。例えば、上述した実施形態においては、第1基板、第2基板のそれぞれに対して、異なる2種類の配向膜(水平配向膜および多数の微細膜からなる垂直配向膜)を設けていたが、いずれか一方の基板にのみ2種類の配向膜を設けるようにしてもよい。また、上述した実施形態においては、水平配向膜の上側に、多数の微細膜からなる垂直配向膜を重ねていたが、これを逆にしてもよい。すなわち、垂直配向膜の上側に、多数の微細膜からなる水平配向膜を重ねるようにしてもよい。さらに、多数の微細膜からなる配向膜(垂直配向膜または水平配向膜)を他の性質の配向膜上に重ねるのではなく、単独で用いてもよい。反対に、多数の微細膜からなる配向膜を複数層に重ねてもよい。   In addition, this invention is not limited to the content of embodiment mentioned above, In the range of the summary of this invention, it can change and implement variously. For example, the numerical values such as the manufacturing conditions appropriately shown in the above-described embodiments are examples, and are not limited thereto. For example, in the above-described embodiment, two different types of alignment films (a horizontal alignment film and a vertical alignment film composed of a number of fine films) are provided for each of the first substrate and the second substrate. Two kinds of alignment films may be provided only on one of the substrates. Further, in the above-described embodiment, the vertical alignment film made up of a number of fine films is stacked on the upper side of the horizontal alignment film, but this may be reversed. That is, a horizontal alignment film made up of a number of fine films may be overlaid on the vertical alignment film. Furthermore, an alignment film (vertical alignment film or horizontal alignment film) composed of a large number of fine films may be used alone instead of being stacked on an alignment film having other properties. Conversely, an alignment film made up of a large number of fine films may be stacked in a plurality of layers.

1…液晶表示装置(液晶表示素子)、11…第1基板、12…第1電極、13、14、17、18…配向膜、15…第2基板、16…第2電極、19…液晶層、21…第1偏光板、22…第2偏光板、40…基板、41…導電膜、50…マイクロシリンジ、51…針、52…微小液滴、53…導電板   DESCRIPTION OF SYMBOLS 1 ... Liquid crystal display device (liquid crystal display element) 11 ... 1st board | substrate, 12 ... 1st electrode, 13, 14, 17, 18 ... Orientation film | membrane, 15 ... 2nd board | substrate, 16 ... 2nd electrode, 19 ... Liquid crystal layer , 21 ... 1st polarizing plate, 22 ... 2nd polarizing plate, 40 ... board | substrate, 41 ... electrically conductive film, 50 ... micro syringe, 51 ... needle | hook, 52 ... micro droplet, 53 ... conductive plate

Claims (4)

互いの一面を向かい合わせて配置された第1基板及び第2基板と、
前記第1基板の前記一面側に設けられた第1配向膜と、
前記第2基板の前記一面側に設けられた第2配向膜と、
前記第1基板と前記第2基板との相互間に設けられた液晶層と、
を含み、
前記第1配向膜は多数の微細膜を有し、前記多数の微細膜は各々の相互間に下地が露出するように分散して配置され、
前記多数の微細膜の分布密度に応じて、前記第1配向膜と前記液晶層との界面付近における液晶分子のプレティルト角が制御された、
液晶表示装置。
A first substrate and a second substrate arranged so that one surface of each other faces,
A first alignment film provided on the one surface side of the first substrate;
A second alignment film provided on the one surface side of the second substrate;
A liquid crystal layer provided between the first substrate and the second substrate;
Including
The first alignment film includes a plurality of fine films, and the plurality of fine films are dispersed and disposed so that a base is exposed between each of the fine films.
The pretilt angle of liquid crystal molecules in the vicinity of the interface between the first alignment film and the liquid crystal layer is controlled according to the distribution density of the multiple fine films.
Liquid crystal display device.
前記第1配向膜と前記第1基板の前記一面との間に設けられており、前記第1配向膜とは配向制御特性が異なる第3配向膜、を更に含む、
請求項1に記載の液晶表示装置。
A third alignment film that is provided between the first alignment film and the one surface of the first substrate, and has a different alignment control characteristic from the first alignment film;
The liquid crystal display device according to claim 1.
前記多数の微細膜は、平面視における形状が略円形状又は環状形状のものを含む、
請求項1又は2に記載の液晶表示装置。
The numerous fine films include those having a substantially circular or annular shape in plan view.
The liquid crystal display device according to claim 1.
第1基板の一面に第1配向膜を形成する第1工程と、
前記第1基板と第2基板とを、互いの一面を向かい合わせて配置する第2工程と、
前記第1基板と前記第2基板との間に液晶層を形成する第3工程と、
を含み、
前記第1工程は、
材料液と前記第1基板との間に相対的に電位差を生じさせた状態で前記材料液を放出することにより、前記材料液を霧状にして前記第1基板の一面側に散布する工程と、
当該散布された前記材料液を固化する工程と、
を含む、
液晶表示装置の製造方法。
A first step of forming a first alignment film on one surface of the first substrate;
A second step of disposing the first substrate and the second substrate with their one side facing each other;
A third step of forming a liquid crystal layer between the first substrate and the second substrate;
Including
The first step includes
Discharging the material liquid in a state where a potential difference is relatively generated between the material liquid and the first substrate, thereby spraying the material liquid on the one surface side of the first substrate; ,
Solidifying the dispersed material liquid;
including,
A method for manufacturing a liquid crystal display device.
JP2009137728A 2009-06-08 2009-06-08 Liquid crystal display device and method for manufacturing liquid crystal display device Pending JP2010282156A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009137728A JP2010282156A (en) 2009-06-08 2009-06-08 Liquid crystal display device and method for manufacturing liquid crystal display device
KR1020100052242A KR20100131927A (en) 2009-06-08 2010-06-03 Liquid crystal display and method for manufacturing thereof
CN201010198619XA CN101907804A (en) 2009-06-08 2010-06-07 The manufacture method of liquid crystal indicator and liquid crystal indicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137728A JP2010282156A (en) 2009-06-08 2009-06-08 Liquid crystal display device and method for manufacturing liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2010282156A true JP2010282156A (en) 2010-12-16

Family

ID=43263303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137728A Pending JP2010282156A (en) 2009-06-08 2009-06-08 Liquid crystal display device and method for manufacturing liquid crystal display device

Country Status (3)

Country Link
JP (1) JP2010282156A (en)
KR (1) KR20100131927A (en)
CN (1) CN101907804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115314A (en) * 2012-12-06 2014-06-26 Stanley Electric Co Ltd Method for manufacturing alignment layer for liquid crystal, method for manufacturing liquid crystal element, and liquid crystal element

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288813A (en) * 1986-06-06 1987-12-15 Toyota Motor Corp Formation of oriented layer for liquid crystal cell
JPS6314123A (en) * 1986-07-07 1988-01-21 Canon Inc Liquid crystal element
JPS6314122A (en) * 1986-07-04 1988-01-21 Canon Inc Liquid crystal element
JPS63288813A (en) * 1987-05-21 1988-11-25 Osawa Press Seisakusho:Kk Article feeder
JPH07281189A (en) * 1994-04-08 1995-10-27 Matsushita Electric Ind Co Ltd Liquid crystal display device
JPH07294926A (en) * 1994-03-03 1995-11-10 Rohm Co Ltd Liquid crystal display device and its production
JPH08171091A (en) * 1994-12-16 1996-07-02 Casio Comput Co Ltd Liquid crystal display element and its production
JPH09994A (en) * 1995-06-22 1997-01-07 Seiko Epson Corp Method for coating substrate and apparatus therefor as well as surface illumination device for liquid crystal display device
JPH0996817A (en) * 1995-10-02 1997-04-08 Matsushita Electric Ind Co Ltd Liquid crystal display panel and its production
JP2001083552A (en) * 1999-03-15 2001-03-30 Matsushita Electric Ind Co Ltd Liquid crystal display device, its production and driving method of liquid crystal display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100719925B1 (en) * 2005-05-11 2007-05-18 비오이 하이디스 테크놀로지 주식회사 Method for forming alignmnet layer of LCD

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288813A (en) * 1986-06-06 1987-12-15 Toyota Motor Corp Formation of oriented layer for liquid crystal cell
JPS6314122A (en) * 1986-07-04 1988-01-21 Canon Inc Liquid crystal element
JPS6314123A (en) * 1986-07-07 1988-01-21 Canon Inc Liquid crystal element
JPS63288813A (en) * 1987-05-21 1988-11-25 Osawa Press Seisakusho:Kk Article feeder
JPH07294926A (en) * 1994-03-03 1995-11-10 Rohm Co Ltd Liquid crystal display device and its production
JPH07281189A (en) * 1994-04-08 1995-10-27 Matsushita Electric Ind Co Ltd Liquid crystal display device
JPH08171091A (en) * 1994-12-16 1996-07-02 Casio Comput Co Ltd Liquid crystal display element and its production
JPH09994A (en) * 1995-06-22 1997-01-07 Seiko Epson Corp Method for coating substrate and apparatus therefor as well as surface illumination device for liquid crystal display device
JPH0996817A (en) * 1995-10-02 1997-04-08 Matsushita Electric Ind Co Ltd Liquid crystal display panel and its production
JP2001083552A (en) * 1999-03-15 2001-03-30 Matsushita Electric Ind Co Ltd Liquid crystal display device, its production and driving method of liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115314A (en) * 2012-12-06 2014-06-26 Stanley Electric Co Ltd Method for manufacturing alignment layer for liquid crystal, method for manufacturing liquid crystal element, and liquid crystal element

Also Published As

Publication number Publication date
KR20100131927A (en) 2010-12-16
CN101907804A (en) 2010-12-08

Similar Documents

Publication Publication Date Title
Zhu et al. Morphology modulation of direct inkjet printing by incorporating polymers and surfactants into a sol–gel ink system
TW201416762A (en) Liquid crystal retard panel and horizontal electric-field type liquid crystal display device having the nano-sized LC layer
JP2016507090A (en) Liquid crystal alignment layer and manufacturing method
Varea et al. Electrospray as a suitable technique for manufacturing carbon-based devices
JP2011175147A (en) Image display system
Reznikov et al. Ink‐Jet Printed Nanoparticle Alignment Layers: Easy Design and Fabrication of Patterned Alignment Layers for Nematic Liquid Crystals
JP2010282156A (en) Liquid crystal display device and method for manufacturing liquid crystal display device
JP5511340B2 (en) Liquid crystal display
JP2004145227A (en) Method for manufacturing electro-optic panel and electro-optic panel, and electro-optic apparatus and electronic device provided with the electro-optic panel
JP6192926B2 (en) Alignment film manufacturing method for liquid crystal, liquid crystal element manufacturing method, liquid crystal element
JP5698501B2 (en) Alignment film manufacturing method for liquid crystal, method for manufacturing liquid crystal element, alignment film manufacturing apparatus for liquid crystal, liquid crystal element
TWI331683B (en) Color filter substrate, liquid crystal display, and electronic device, and method for manufacturing color filter substrate and method for manufacturing liquid crystal display
JP5437107B2 (en) Plate member having coating film, liquid crystal display device, and manufacturing method thereof
JP2007178532A (en) Method for manufacturing color filter substrate and method for manufacturing liquid crystal display device
JP2012113050A (en) Manufacturing method for liquid crystal alignment film, manufacturing method for liquid crystal element, manufacturing apparatus for liquid crystal alignment film, and liquid crystal element
WO2016038821A1 (en) Electrode, method for producing same, and touch panel and organic el substrate, each of which is provided with said electrode
KR20080020057A (en) Preparation method of orientation layer using patterning process
CN107924096A (en) The method for manufacturing Optical devices
CN109312090B (en) Method for applying particles
CN102478734B (en) The alignment films manufacture method of liquid crystal, the manufacture method of liquid crystal cell, the orientation film manufacturing device of liquid crystal, liquid crystal cell
TWI503600B (en) A liquid crystal display device, and a liquid crystal display device
Li et al. Fast and versatile electrostatic disc microprinting for piezoelectric elements
US9116393B2 (en) Method of manufacturing an alignment substrate and liquid crystal display panel having the same
JP3596949B2 (en) Liquid crystal optical element and manufacturing method thereof
JP5992254B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130905