JP2010274776A - Non-pneumatic tire - Google Patents

Non-pneumatic tire Download PDF

Info

Publication number
JP2010274776A
JP2010274776A JP2009129294A JP2009129294A JP2010274776A JP 2010274776 A JP2010274776 A JP 2010274776A JP 2009129294 A JP2009129294 A JP 2009129294A JP 2009129294 A JP2009129294 A JP 2009129294A JP 2010274776 A JP2010274776 A JP 2010274776A
Authority
JP
Japan
Prior art keywords
annular portion
pneumatic tire
tire
pitch
pitches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009129294A
Other languages
Japanese (ja)
Other versions
JP5395515B2 (en
Inventor
Masahiro Segawa
政弘 瀬川
Masanori Iwase
雅則 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2009129294A priority Critical patent/JP5395515B2/en
Publication of JP2010274776A publication Critical patent/JP2010274776A/en
Application granted granted Critical
Publication of JP5395515B2 publication Critical patent/JP5395515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-pneumatic tire having the same performance characteristics as a pneumatic tire and producing a reduced impact noise at spoke position. <P>SOLUTION: The non-pneumatic tire includes a supporting structure SS which supports the load of vehicle. The supporting structure SS includes: an inside annular portion; an outside annular portion coaxially provided outside the inside annular portion; and a plurality of connecting portions connecting the inside annular portion and the outside annular portion. The outside of the outside annular portion is provided with a tread layer 7. A sipe 8 is provided at a projected portion on the outer surface of the tread layer 7 where a joint portion 5a between the connection portion and the outside annular portion is projected in the tire radial direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、タイヤ構造部材として、車両からの荷重を支持する支持構造体を備える非空気圧タイヤ(non−pneumatic tire)に関するものであり、好ましくは空気入りタイヤの代わりとして使用することができる非空気圧タイヤに関するものである。   The present invention relates to a non-pneumatic tire provided with a support structure that supports a load from a vehicle as a tire structural member, and preferably a non-pneumatic tire that can be used as a substitute for a pneumatic tire. It relates to tires.

空気入りタイヤは、荷重の支持機能、接地面からの衝撃吸収能、および動力等の伝達能(加速、停止、方向転換)を有し、このため、多くの車両、特に自転車、オートバイ、自動車、トラックに採用されている。   The pneumatic tire has a load supporting function, a shock absorbing ability from the ground contact surface, and a transmission ability (acceleration, stop, change of direction) such as power. For this reason, many vehicles, particularly bicycles, motorcycles, automobiles, It is used in trucks.

特に、これらの能力は自動車、その他のモーター車両の発展に大きく貢献した。更に、空気入りタイヤの衝撃吸収能力は、医療機器や電子機器の運搬用カート、その他の用途でも有用である。   In particular, these capabilities greatly contributed to the development of automobiles and other motor vehicles. Further, the impact absorbing ability of pneumatic tires is useful for medical equipment and electronic equipment transport carts and other applications.

従来の非空気圧タイヤとしては、例えばソリッドタイヤ、スプリングタイヤ、クッションタイヤ等が存在するが、空気入りタイヤの優れた性能を有していない。例えば、ソリッドタイヤおよびクッションタイヤは、接地部分の圧縮によって荷重を支持するが、この種のタイヤは重くて、堅く、空気入りタイヤのような衝撃吸収能力はない。また、非空気圧タイヤでは、弾性を高めてクッション性を改善することも可能であるが、空気入りタイヤが有するような荷重支持能または耐久性が悪くなるという問題がある。   Conventional non-pneumatic tires include, for example, solid tires, spring tires, cushion tires, and the like, but do not have the superior performance of pneumatic tires. For example, solid tires and cushion tires support the load by compressing the contact portion, but this type of tire is heavy and stiff, and does not have the ability to absorb shock like a pneumatic tire. Further, in the non-pneumatic tire, it is possible to improve the cushioning property by increasing the elasticity, but there is a problem that the load supporting ability or the durability as the pneumatic tire has is deteriorated.

そこで、下記の特許文献1には、空気入りタイヤと同様な動作特性を有する非空気圧タイヤを開発する目的で、タイヤに加わる荷重を支持する補強された環状バンドと、この補強された環状バンドとホイールまたはハブとの間で張力によって荷重力を伝達する複数のウェブスポークとを有する非空気圧タイヤが提案されている。   Therefore, in Patent Document 1 below, for the purpose of developing a non-pneumatic tire having the same operating characteristics as a pneumatic tire, a reinforced annular band that supports a load applied to the tire, and the reinforced annular band, Non-pneumatic tires have been proposed that have a plurality of web spokes that transmit load forces by tension with a wheel or hub.

特表2005−500932号公報Special Table 2005-500932 Publication

しかしながら、特許文献1の非空気圧タイヤは、ウェブスポークの下端の位置が接地する際に打撃音が生じ、ウェブスポークのピッチに応じた周波数のノイズが問題となる。また、ウェブスポークの打撃音とともに、トレッドの打撃音もノイズの原因となり得るが、特許文献1には、ウェブスポークと、環状バンドの外側に設けられたトレッドとの関係については特に開示されていない。   However, in the non-pneumatic tire of Patent Document 1, a hitting sound is generated when the position of the lower end of the web spoke contacts the ground, and noise with a frequency corresponding to the pitch of the web spoke becomes a problem. In addition to the hitting sound of the web spoke, the hitting sound of the tread can also cause noise. However, Patent Document 1 does not particularly disclose the relationship between the web spoke and the tread provided outside the annular band. .

したがって、本発明の目的は、空気入りタイヤと同様な動作特性を有し、スポーク位置での打撃音を低減させた非空気圧タイヤを提供することにある。   Accordingly, an object of the present invention is to provide a non-pneumatic tire that has the same operating characteristics as a pneumatic tire and has reduced impact noise at the spoke position.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤは、車両からの荷重を支持する支持構造体を備える非空気圧タイヤであって、前記支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結する複数の連結部とを備え、前記外側環状部の外側にはトレッド層が設けられ、前記トレッド層の外表面であって、前記連結部と前記外側環状部との結合部をタイヤ径方向に投影した投影部に細溝が設けられていることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire of the present invention is a non-pneumatic tire including a support structure that supports a load from a vehicle, and the support structure is concentrically formed on an inner annular portion and an outer side of the inner annular portion. An outer annular portion provided, and a plurality of connecting portions that connect the inner annular portion and the outer annular portion, and a tread layer is provided outside the outer annular portion, and an outer surface of the tread layer is provided on the outer surface of the tread layer. And the thin groove is provided in the projection part which projected the connection part of the said connection part and the said outer side annular part to the tire radial direction, It is characterized by the above-mentioned.

本発明の非空気圧タイヤは、外側環状部の外側にはトレッド層が設けられ、トレッド層の外表面であって、連結部と外側環状部との結合部をタイヤ径方向に投影した投影部に細溝が設けられている。この構成によれば、連結部の下端の位置が接地する際にも、接地するトレッド層の外表面に細溝が設けられているので、剛性が低くなっており、その結果、連結部の位置での打撃音を低減させることができる。   In the non-pneumatic tire of the present invention, a tread layer is provided on the outer side of the outer annular portion, and the outer surface of the tread layer is a projection portion that projects a joint portion between the connecting portion and the outer annular portion in the tire radial direction. A narrow groove is provided. According to this configuration, even when the position of the lower end of the connecting portion is grounded, the rigidity is low because the narrow groove is provided on the outer surface of the tread layer to be grounded. As a result, the position of the connecting portion is reduced. The hitting sound can be reduced.

上記において、前記支持構造体は、前記内側環状部と、その内側環状部の外側に同心円状に設けられた中間環状部と、その中間環状部の外側に同心円状に設けられた前記外側環状部と、前記内側環状部と前記中間環状部とを連結する複数の内側連結部と、前記外側環状部と前記中間環状部とを連結する複数の外側連結部とを備えることが好ましい。   In the above, the support structure includes the inner annular portion, an intermediate annular portion provided concentrically outside the inner annular portion, and the outer annular portion provided concentrically outside the intermediate annular portion. And a plurality of inner connecting portions that connect the inner annular portion and the intermediate annular portion, and a plurality of outer connecting portions that connect the outer annular portion and the intermediate annular portion.

このような支持構造体によると、内側環状部と外側環状部とを連結する複数の連結部に中間環状部を介在させているため、スポーク位置と接地面中央位置との位置関係による剛性変動を生じにくくすることができる(図1(a)〜(d)参照)。つまり、従来の中間環状部が介在しない非空気圧タイヤでは、縦荷重が負荷された場合に、図6(a)に示すように、ウェブスポークS1の下端の位置が接地面中央TCに位置する場合には、ウェブスポークS1に曲げ力が生成しにくく、ウェブスポークS1の座屈が生じにくいのに対して、図6(b)に示すように、ウェブスポークS3の中央位置が接地面中央TCに位置する場合には、踏面の変形や荷重方向のズレなどにより、ウェブスポークS3に曲げ力が生成して、座屈(外側矢印方向の曲げ変形)が生じ易くなる。その結果、同一たわみ量となるように縦荷重を負荷する場合に、図6(a)に示す位置関係では、図6(b)に示す位置関係と比較して、タイヤからの反力が大きく(硬く)なり、両者の接地状態で剛性変動が生じる。   According to such a support structure, since the intermediate annular portion is interposed in the plurality of connecting portions that connect the inner annular portion and the outer annular portion, the rigidity variation due to the positional relationship between the spoke position and the center position of the ground plane is reduced. It can be made difficult to occur (see FIGS. 1A to 1D). That is, in a conventional non-pneumatic tire without an intermediate annular portion, when a longitudinal load is applied, as shown in FIG. 6A, the position of the lower end of the web spoke S1 is located at the center TC of the contact surface. The web spoke S1 hardly generates a bending force, and the web spoke S1 hardly buckles. On the other hand, as shown in FIG. 6B, the center position of the web spoke S3 is set to the ground contact surface center TC. When positioned, bending force is generated in the web spoke S3 due to deformation of the tread surface or displacement in the load direction, and buckling (bending deformation in the direction of the outer arrow) is likely to occur. As a result, when a longitudinal load is applied so as to have the same deflection amount, the reaction force from the tire is larger in the positional relationship shown in FIG. 6A than in the positional relationship shown in FIG. (Hard), and stiffness variation occurs in the ground contact state of both.

これに対し、中間環状部2が介在する非空気圧タイヤでは、縦荷重が負荷された場合に、図1(c)に示すように、外側連結部5の下端の位置が接地面中央TCに位置する場合には、図1(a)と同様に、外側連結部5及び内側連結部4の座屈が生じにくく、図1(d)に示すように、外側連結部5の中央位置が接地面中央TCに位置する場合にも、外側連結部5及び内側連結部4に生じる曲げ力に対して、中間環状部2が張力による補強(内側の内向き矢印の張力)と圧縮による補強(外側の内向き矢印の圧縮力)を行うことで、外側連結部5及び内側連結部4の座屈が生じにくくなる。その結果、本発明の非空気圧タイヤでは、従来技術と比較して、両者の接地状態で座屈が生じにくくなり、座屈が生じるまでのたわみ量や縦荷重が大きくなり(即ち、座屈が生じ始めるブレークポイントが高くなり)、図1(c)に示す位置関係と、図1(d)に示す位置関係とで、剛性変動が僅かとなる領域を広く設定することができる。   On the other hand, in the non-pneumatic tire in which the intermediate annular portion 2 is interposed, when a longitudinal load is applied, the position of the lower end of the outer connecting portion 5 is positioned at the ground contact surface center TC as shown in FIG. 1 (a), the outer connecting portion 5 and the inner connecting portion 4 are unlikely to buckle, and as shown in FIG. 1 (d), the center position of the outer connecting portion 5 is the ground plane. Even in the case of being located at the center TC, the intermediate annular portion 2 is reinforced by tension (tension of an inward arrow on the inside) and reinforcement by compression (outer side of the outer coupling portion 5 and the inner coupling portion 4). (Compression force of an inward arrow) makes it difficult for the outer connecting portion 5 and the inner connecting portion 4 to buckle. As a result, the non-pneumatic tire of the present invention is less likely to buckle in the ground contact state compared to the prior art, and the amount of deflection and longitudinal load until buckling occurs (that is, buckling is reduced). A break point that starts to occur becomes high), and a region in which the rigidity variation is small can be set widely between the positional relationship shown in FIG. 1C and the positional relationship shown in FIG.

上記を具体的なデータで示したものが、図2(a)〜(b)である。これによると、中間環状部2が介在しない非空気圧タイヤでは、図2(a)に示すように、小さいたわみ量でウェブスポークSの座屈(図1(b)の状態)が生じて、ブレークポイントを高く設定できない(荷重負荷の初期から剛性差が生じる)のに対し、本発明のように、中間環状部2が介在する非空気圧タイヤでは、図1(d)に示す位置関係で座屈を生じにくくすることができるので、ブレークポイントを高く設定できる。このようにして、図1(c)に示す位置関係と、図1(d)に示す位置関係とで、剛性変動が僅かとなる領域を広く設定することができるため、スポーク位置と接地面中央位置との位置関係によって剛性変動が生じにくい非空気圧タイヤを提供することができる。   FIG. 2A to FIG. 2B show the above as specific data. According to this, in the non-pneumatic tire in which the intermediate annular portion 2 is not interposed, as shown in FIG. 2 (a), the web spoke S is buckled (the state shown in FIG. 1 (b)) with a small deflection amount, and the break Whereas the point cannot be set high (a difference in rigidity occurs from the initial stage of load application), in the non-pneumatic tire in which the intermediate annular portion 2 is interposed as in the present invention, buckling occurs in the positional relationship shown in FIG. Can be made difficult to occur, so the breakpoint can be set high. In this manner, since the region where the rigidity variation is small can be set widely between the positional relationship shown in FIG. 1C and the positional relationship shown in FIG. It is possible to provide a non-pneumatic tire that hardly changes in rigidity depending on the positional relationship with the position.

上記において、前記細溝の深さは、前記トレッド層の厚さの1/3以上であり、前記細溝の幅は、前記投影部の幅を超えないことが好ましい。細溝の深さがトレッド層の厚さの1/3より小さいと、剛性を低減させる効果が小さくなる傾向がある。また、細溝の幅が、投影部の幅、すなわち外側連結部と外側環状部との結合部の幅を超えると、この結合部の位置で接地する際、細溝の中の空気が圧縮、放出されて生じるポンピング音が発生し、ノイズの原因となってしまう。また、細溝の幅を広くし過ぎると、タイヤの耐久性も低下してしまう。   In the above, it is preferable that the depth of the narrow groove is 1/3 or more of the thickness of the tread layer, and the width of the narrow groove does not exceed the width of the projection unit. If the depth of the narrow groove is smaller than 1/3 of the thickness of the tread layer, the effect of reducing the rigidity tends to be small. In addition, when the width of the narrow groove exceeds the width of the projection portion, that is, the width of the coupling portion between the outer connecting portion and the outer annular portion, the air in the narrow groove is compressed when grounding at the position of the coupling portion, A pumping sound is generated as a result of being emitted, which causes noise. Moreover, if the width of the narrow groove is too large, the durability of the tire will also be reduced.

上記において、前記トレッド層の外表面には、トレッドパターンの基本ピッチ長に対するピッチ長比率が±10%以内である複数のピッチが、タイヤ周方向にバリアブルピッチ配列されており、かつ、タイヤ1周分の前記連結部の総数nと前記ピッチの総数Nとが、下記の式(1)〜(3)を満たすことが好ましい。
1.25n ≦ N ≦ 1.325n (1)
0.625n ≦ N ≦ 0.6625n (2)
0.3125n ≦ N ≦ 0.33125n (3)
In the above, on the outer surface of the tread layer, a plurality of pitches having a pitch length ratio with respect to the basic pitch length of the tread pattern is within ± 10% are arranged in a variable pitch in the tire circumferential direction, and one round of the tire The total number n of the connecting portions and the total number N of the pitches preferably satisfy the following formulas (1) to (3).
1.25n ≦ N ≦ 1.325n (1)
0.625n ≦ N ≦ 0.6625n (2)
0.3125n ≦ N ≦ 0.33125n (3)

本発明の非空気圧タイヤは、トレッド層の外表面に、複数のピッチがタイヤ周方向にバリアブルピッチ配列されている。本発明では、トレッドパターンのタイヤ周方向に配列された陸部1個と横溝1本とをまとめて、1ピッチと称することとする。ここで、基本ピッチ長とは、タイヤの外周長をピッチの総数Nで割ったものであり、本発明の全てのピッチは、この基本ピッチ長に対するピッチ長比率が±10%以内となっている。このようなピッチ長を有する複数のピッチを、タイヤ周方向にバリアブルピッチ配列することにより、タイヤ走行時のパターンノイズの周波数を分散させ、パターンノイズのピッチピークレベルを低減することができる。さらに、このようなピッチがトレッド層の外表面に配列されたトレッドパターンのもとで、連結部の総数nとピッチの総数Nが、式(1)〜(3)を満たす場合、連結部(スポーク)の打撃音によるノイズピークの1次、2次、0.5次での周波数と、ピッチの打撃音によるノイズピークの周波数とが合致せず、両者の打撃音によるノイズが増大しない。   In the non-pneumatic tire of the present invention, a plurality of pitches are arranged in a variable pitch array in the tire circumferential direction on the outer surface of the tread layer. In the present invention, one land portion and one lateral groove arranged in the tire circumferential direction of the tread pattern are collectively referred to as one pitch. Here, the basic pitch length is obtained by dividing the outer peripheral length of the tire by the total number N of pitches, and all pitches of the present invention have a pitch length ratio with respect to the basic pitch length within ± 10%. . By arranging a plurality of pitches having such a pitch length as a variable pitch in the tire circumferential direction, it is possible to disperse the frequency of pattern noise during tire running and reduce the pitch peak level of pattern noise. Furthermore, under the tread pattern in which such pitches are arranged on the outer surface of the tread layer, when the total number n of the connecting portions and the total number N of the pitches satisfy the formulas (1) to (3), the connecting portions ( The frequency at the first, second, and 0.5th order of the noise peak due to the impact sound of the spokes does not match the frequency of the noise peak due to the impact sound of the pitch, and the noise due to the impact sound of both does not increase.

本発明の非空気圧タイヤの作用効果を説明するための説明図Explanatory drawing for demonstrating the effect of the non-pneumatic tire of this invention 本発明の非空気圧タイヤの作用効果を説明するためのグラフThe graph for demonstrating the effect of the non-pneumatic tire of this invention 本発明の非空気圧タイヤの一例を示す正面図および側面図The front view and side view which show an example of the non-pneumatic tire of this invention トレッド層を外周側から見た正面図Front view of the tread layer viewed from the outer periphery 実施例2のバリアブルピッチ配列を示す図The figure which shows the variable pitch arrangement | sequence of Example 2. 従来の非空気圧タイヤの課題を説明するための説明図Explanatory drawing for demonstrating the subject of the conventional non-pneumatic tire

以下、本発明の実施の形態について、図面を参照しながら説明する。図3は本発明の非空気圧タイヤの一例を示す正面図であり、(a)は全体を示す正面図、(b)は要部を示す正面図である。ここで、Oは軸芯を、H1はタイヤ断面高さを、それぞれ示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a front view showing an example of the non-pneumatic tire of the present invention, where (a) is a front view showing the whole, and (b) is a front view showing the main part. Here, O indicates the axial center, and H1 indicates the tire cross-sectional height.

本発明の非空気圧タイヤTは、車両からの荷重を支持する支持構造体SSを備えるものである。本発明の非空気圧タイヤTは、このような支持構造体SSを備えるものであればよく、その支持構造体SSの外側(外周側)や内側(内周側)に、トレッドに相当する部材、補強層、車軸やリムとの適合用部材などを備えていてもよい。   The non-pneumatic tire T of the present invention includes a support structure SS that supports a load from a vehicle. The non-pneumatic tire T of the present invention only needs to be provided with such a support structure SS, and a member corresponding to a tread on the outer side (outer peripheral side) or inner side (inner peripheral side) of the support structure SS, A reinforcing layer, a member for fitting with an axle or a rim, and the like may be provided.

本発明の非空気圧タイヤTは、図3に示すように、支持構造体SSが、内側環状部1と、その内側環状部1の外側に同心円状に設けられた外側環状部3と、内側環状部1と外側環状部3とを連結する複数の連結部とを備えている。図示した例では、連結部が内側連結部4と外側連結部5とを備えている。本実施形態では、このように、支持構造体SSが、内側環状部1と、その外側に同心円状に設けられた中間環状部2と、その外側に同心円状に設けられた外側環状部3と、内側環状部1と中間環状部2とを連結する複数の内側連結部4と、外側環状部3と中間環状部2とを連結する複数の外側連結部5とを備えている例を示す。   As shown in FIG. 3, the non-pneumatic tire T of the present invention includes an inner annular portion 1, an outer annular portion 3 provided concentrically outside the inner annular portion 1, and an inner annular portion. A plurality of connecting portions for connecting the portion 1 and the outer annular portion 3 are provided. In the illustrated example, the connecting portion includes an inner connecting portion 4 and an outer connecting portion 5. In this embodiment, in this way, the support structure SS includes the inner annular portion 1, the intermediate annular portion 2 provided concentrically on the outer side thereof, and the outer annular portion 3 provided concentrically on the outer side thereof. An example in which a plurality of inner connecting portions 4 that connect the inner annular portion 1 and the intermediate annular portion 2 and a plurality of outer connecting portions 5 that connect the outer annular portion 3 and the intermediate annular portion 2 is shown.

内側環状部1は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。また、内側環状部1の内周面には、車軸やリムとの装着のために、嵌合性を保持するための凹凸等を設けるのが好ましい。   The inner annular portion 1 is preferably a cylindrical shape having a constant thickness from the viewpoint of improving uniformity. Moreover, it is preferable to provide the inner peripheral surface of the inner annular portion 1 with irregularities or the like for maintaining fitting properties for mounting with an axle or a rim.

内側環状部1の厚みは、内側連結部4に力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さH1の2〜7%が好ましく、3〜6%がより好ましい。   The thickness of the inner annular portion 1 is preferably 2 to 7%, and 3 to 6% of the tire cross-section height H1 from the viewpoint of reducing weight and improving durability while sufficiently transmitting force to the inner connecting portion 4. More preferred.

内側環状部1の内径は、非空気圧タイヤTを装着するリムや車軸の寸法などに併せて適宜決定されるが、本発明では中間環状部2を備えるために、内側環状部1の内径を従来より大幅に小さくすることが可能である。但し、一般の空気入りタイヤの代替を想定した場合、250〜500mmが好ましく、330〜440mmがより好ましい。   The inner annular portion 1 has an inner diameter that is appropriately determined in accordance with the dimensions of the rim on which the non-pneumatic tire T is mounted, the axle, and the like. It can be made much smaller. However, when an alternative to a general pneumatic tire is assumed, 250 to 500 mm is preferable, and 330 to 440 mm is more preferable.

内側環状部1の軸方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The axial width of the inner annular portion 1 is appropriately determined according to the application, the length of the axle, and the like, but when an alternative to a general pneumatic tire is assumed, it is preferably 100 to 300 mm, more preferably 130 to 250 mm. preferable.

内側環状部1の引張モジュラスは、内側連結部4に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。なお、本発明における引張モジュラスは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した値である。   The tensile modulus of the inner annular portion 1 is preferably 5 to 180000 MPa, more preferably 7 to 50000 MPa, from the viewpoint of reducing weight, improving durability, and wearing properties while sufficiently transmitting force to the inner connecting portion 4. The tensile modulus in the present invention is a value calculated from a tensile stress at 10% elongation by conducting a tensile test according to JIS K7312.

内側環状部1の材質としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂、又はこれらを繊維等の補強材で補強した繊維補強材料、金属等が使用できる。但し、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1の材質としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂、又はこれらを繊維等で補強した繊維補強材料が好ましい。   As the material of the inner annular portion 1, thermoplastic elastomer, crosslinked rubber, other resins, fiber reinforcing materials obtained by reinforcing these with reinforcing materials such as fibers, metals, and the like can be used. However, from the viewpoint of enabling integral molding when manufacturing the support structure SS, the material of the inner annular portion 1 may be thermoplastic elastomer, crosslinked rubber, other resin, or fiber reinforced with fibers or the like. Reinforcing materials are preferred.

熱可塑性エラストマーとしては、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー、ポリ塩化ビニルエラストマー、ポリウレタンエラストマー等が例示される。架橋ゴム材料を構成するゴム材料としては、天然ゴムの他、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IIR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(水添NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴム等の合成ゴムが例示される。これらのゴム材料は必要に応じて2種以上を併用してもよい。   Examples of the thermoplastic elastomer include polyester elastomer, polyolefin elastomer, polyamide elastomer, polystyrene elastomer, polyvinyl chloride elastomer, polyurethane elastomer and the like. Rubber materials constituting the crosslinked rubber material include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IIR), nitrile rubber (NBR), hydrogenated nitrile rubber (hydrogenated NBR). And synthetic rubbers such as chloroprene rubber (CR), ethylene propylene rubber (EPDM), fluorine rubber, silicon rubber, acrylic rubber, and urethane rubber. These rubber materials may be used in combination of two or more as required.

その他の樹脂としては、熱可塑性樹脂、又は熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂などが挙げられ、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリイミド樹脂、メラミン樹脂などが挙げられる。なお、発泡材料を使用してもよく、上記の熱可塑性エラストマー、架橋ゴム、その他の樹脂を発泡させたもの使用可能である。   Examples of other resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include polyethylene resin, polystyrene resin, and polyvinyl chloride resin, and examples of the thermosetting resin include epoxy resin, phenol resin, polyurethane resin, silicon resin, polyimide resin, and melamine resin. A foamed material may be used, and the above-mentioned thermoplastic elastomer, crosslinked rubber, or other resin foamed can be used.

補強材としては、長繊維、短繊維、織布、不織布などの補強繊維、粒状フィラー等が挙げられるが、長繊維、短繊維、織布、不織布などの補強繊維を用いるのが好ましく、長繊維、又は長繊維を用いた織布(スダレ状織物、メッシュ状織物を含む)がより好ましい。補強繊維としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が挙げられる。粒状フィラーとしては、カーボンブラック、シリカ、アルミナ等のセラミックス、その他の無機フィラーなどが挙げられる。   Examples of the reinforcing material include reinforcing fibers such as long fibers, short fibers, woven fabrics, and non-woven fabrics, and granular fillers. It is preferable to use reinforcing fibers such as long fibers, short fibers, woven fabrics, and non-woven fabrics. Or, a woven fabric (including a suede-like woven fabric and a mesh-like woven fabric) using long fibers is more preferable. Examples of the reinforcing fibers include rayon cords, polyamide cords such as nylon-6,6, polyester cords such as polyethylene terephthalate, aramid cords, glass fiber cords, carbon fibers, steel cords, and the like. Examples of the particulate filler include ceramics such as carbon black, silica, and alumina, and other inorganic fillers.

中間環状部2の形状は、円筒形状に限られず、多角形筒状、などでもよい。   The shape of the intermediate annular portion 2 is not limited to a cylindrical shape, and may be a polygonal cylindrical shape.

中間環状部2の厚みは、内側連結部4と外側連結部5とを十分補強しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さH1の3〜10%が好ましく、4〜9%がより好ましい。   The thickness of the intermediate annular portion 2 is preferably 3 to 10% of the tire cross-section height H1 from the viewpoint of reducing the weight and improving the durability while sufficiently reinforcing the inner connecting portion 4 and the outer connecting portion 5. -9% is more preferable.

中間環状部2の内径は、内側環状部1の内径を超えて、外側環状部3の内径未満となる。但し、中間環状部2の内径としては、前述したような内側連結部4と外側連結部5との補強効果を向上させる観点から、外側環状部3の内径から内側環状部1の内径を差し引いた値の20〜80%の値を、内側環状部1の内径に加えた内径とすることが好ましく、30〜60%の値を、内側環状部1の内径に加えた内径とすることがより好ましい。   The inner annular portion 2 has an inner diameter that exceeds the inner diameter of the inner annular portion 1 and less than the inner diameter of the outer annular portion 3. However, as the inner diameter of the intermediate annular portion 2, the inner diameter of the inner annular portion 1 is subtracted from the inner diameter of the outer annular portion 3 from the viewpoint of improving the reinforcing effect of the inner connecting portion 4 and the outer connecting portion 5 as described above. A value of 20 to 80% of the value is preferably the inner diameter added to the inner diameter of the inner annular portion 1, and a value of 30 to 60% is more preferably the inner diameter added to the inner diameter of the inner annular portion 1. .

中間環状部2の軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The axial width of the intermediate annular portion 2 is appropriately determined according to the application and the like, but is preferably 100 to 300 mm, more preferably 130 to 250 mm, assuming an alternative to a general pneumatic tire.

中間環状部2の引張モジュラスは、内側連結部4と外側連結部5とを十分補強して、耐久性の向上、負荷能力の向上を図る観点から、8000〜180000MPaが好ましく、10000〜50000MPaがより好ましい。   The tensile modulus of the intermediate annular portion 2 is preferably 8000 to 18000 MPa, more preferably 10,000 to 50000 MPa from the viewpoint of sufficiently reinforcing the inner connecting portion 4 and the outer connecting portion 5 to improve durability and load capacity. preferable.

中間環状部2の材質としては、内側環状部1と同様のものが使用でき、熱可塑性エラストマー、架橋ゴム、その他の樹脂、又はこれらを繊維等の補強材で補強した繊維補強材料、金属等が使用できる。但し、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1の材質と同じ材料又は母材を使用することが好ましい。   As the material of the intermediate annular portion 2, the same material as that of the inner annular portion 1 can be used, such as a thermoplastic elastomer, a crosslinked rubber, other resins, or a fiber reinforcing material obtained by reinforcing these with a reinforcing material such as a fiber, a metal, or the like. Can be used. However, when manufacturing the support structure SS, it is preferable to use the same material or base material as the material of the inner annular portion 1 from the viewpoint of enabling integral molding.

中間環状部2の引張モジュラスを高める上で、熱可塑性エラストマー、架橋ゴム、その他の樹脂を繊維等で補強した繊維補強材料が好ましい。つまり、図3(b)に示すように、中間環状部2は補強繊維2aにより補強されていることが好ましい。補強繊維2aは、単数又は複数の層として設けることが可能である。   In order to increase the tensile modulus of the intermediate annular portion 2, a fiber reinforced material in which a thermoplastic elastomer, a crosslinked rubber, or other resin is reinforced with fibers or the like is preferable. That is, as shown in FIG. 3B, the intermediate annular portion 2 is preferably reinforced by the reinforcing fibers 2a. The reinforcing fiber 2a can be provided as a single layer or a plurality of layers.

補強繊維としては、長繊維、短繊維、織布、不織布など形態が挙げられるが、長繊維、又は長繊維を用いた織布(スダレ状織物を含む)がより好ましい。その際の補強繊維としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が好ましい。   Examples of the reinforcing fibers include long fibers, short fibers, woven fabrics, non-woven fabrics, and the like, but long fibers or woven fabrics using long fibers (including suede-like woven fabrics) are more preferable. As the reinforcing fiber at that time, for example, rayon cord, polyamide cord such as nylon-6, 6, polyester cord such as polyethylene terephthalate, aramid cord, glass fiber cord, carbon fiber, steel cord and the like are preferable.

外側環状部3の形状は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。外側環状部3の厚みは、外側連結部5からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さH1の2〜7%が好ましく、2〜5%がより好ましい。   The shape of the outer annular portion 3 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity. The thickness of the outer annular portion 3 is preferably 2 to 7% of the tire cross-section height H1, and preferably 2 to 5% from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the outer connecting portion 5. Is more preferable.

外側環状部3の内径は、その用途等応じて適宜決定されるが、本発明では中間環状部2を備えるために、外側環状部3の内径を従来より大きくすることが可能である。但し、一般の空気入りタイヤの代替を想定した場合、420〜750mmが好ましく、480〜680mmがより好ましい。   The inner diameter of the outer annular portion 3 is appropriately determined according to its use and the like, but since the intermediate annular portion 2 is provided in the present invention, the inner diameter of the outer annular portion 3 can be made larger than before. However, when an alternative to a general pneumatic tire is assumed, 420 to 750 mm is preferable, and 480 to 680 mm is more preferable.

外側環状部3の軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The axial width of the outer annular portion 3 is appropriately determined according to the application and the like, but is preferably 100 to 300 mm, and more preferably 130 to 250 mm when an alternative to a general pneumatic tire is assumed.

外側環状部3の引張モジュラスは、図3に示すように外側環状部3の外周に補強層6が設けられている場合には、内側環状部1と同程度に設定できる。このような補強層6を設けない場合には、外側連結部5からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。   The tensile modulus of the outer annular portion 3 can be set to the same level as that of the inner annular portion 1 when the reinforcing layer 6 is provided on the outer periphery of the outer annular portion 3 as shown in FIG. In the case where such a reinforcing layer 6 is not provided, 5 to 180000 MPa is preferable, and 7 to 50000 MPa is more preferable from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the outer connecting portion 5. .

外側環状部3の材質としては、内側環状部1と同様のものが使用でき、熱可塑性エラストマー、架橋ゴム、その他の樹脂、又はこれらを繊維等の補強材で補強した繊維補強材料、金属等が使用できる。但し、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1の材質と同じ材料又は母材を使用することが好ましい。   As the material of the outer annular portion 3, the same material as the inner annular portion 1 can be used, such as a thermoplastic elastomer, a crosslinked rubber, other resins, or a fiber reinforcing material obtained by reinforcing these with a reinforcing material such as a fiber, a metal, or the like. Can be used. However, when manufacturing the support structure SS, it is preferable to use the same material or base material as the material of the inner annular portion 1 from the viewpoint of enabling integral molding.

補強層6を設けずに、外側環状部3の引張モジュラスを高める場合、熱可塑性エラストマー、架橋ゴム、その他の樹脂を繊維等で補強した繊維補強材料が好ましい。つまり、補強層6を設けない場合、外側環状部3は補強繊維により補強されていることが好ましい。   When the tensile modulus of the outer annular portion 3 is increased without providing the reinforcing layer 6, a fiber reinforced material in which a thermoplastic elastomer, a crosslinked rubber, or other resin is reinforced with fibers or the like is preferable. That is, when the reinforcing layer 6 is not provided, the outer annular portion 3 is preferably reinforced with reinforcing fibers.

内側連結部4は、内側環状部1と中間環状部2とを連結するものであり、両者の間に適当な間隔を開けるなどして、周方向に各々が独立するように複数設けられる。内側連結部4は、ユニフォミティを向上させる観点から、一定の間隔を置いて設けることが好ましい。   The inner connecting portion 4 connects the inner annular portion 1 and the intermediate annular portion 2, and a plurality of inner connecting portions 4 are provided so that each is independent in the circumferential direction, for example, by providing an appropriate interval therebetween. The inner connecting parts 4 are preferably provided with a certain interval from the viewpoint of improving uniformity.

内側連結部4を全周に渡って設ける際の数(軸方向に複数設ける場合は1個として数える)としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、10〜80個が好ましく、40〜60個がより好ましい。図3には、内側連結部4を40個設けた例を示す。   As for the number of inner connection parts 4 provided over the entire circumference (when a plurality of inner connection parts 4 are provided in the axial direction, it is counted as one), while supporting the load from the vehicle sufficiently, weight reduction, improvement of power transmission, durability From the viewpoint of improving the quality, 10 to 80 are preferable, and 40 to 60 are more preferable. FIG. 3 shows an example in which 40 inner connecting portions 4 are provided.

個々の内側連結部4の形状としては、板状体、柱状体などが挙げられるが、本実施形態では板状体の例を示す。これらの内側連結部4は、正面視断面において、タイヤ径方向又はタイヤ径方向から傾斜した方向に延びている。本発明では、ブレークポイントを高くして剛性変動を生じにくくすると共に、耐久性を向上させる観点から、正面視断面において、内側連結部4の延設方向が、タイヤ径方向±25°以内が好ましく、タイヤ径方向±15°以内がより好ましい。   Examples of the shape of each inner connecting portion 4 include a plate-like body and a columnar body. In this embodiment, an example of a plate-like body is shown. These inner connection parts 4 are extended in the tire radial direction or the direction inclined from the tire radial direction in the front sectional view. In the present invention, from the viewpoint of improving the durability by increasing the break point and making it difficult to change the rigidity, the extending direction of the inner connecting portion 4 is preferably within ± 25 ° in the tire radial direction in the front sectional view. The tire radial direction is more preferably within ± 15 °.

内側連結部4の厚みは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さH1の4〜12%が好ましく、6〜10%がより好ましい。   The thickness of the inner connecting portion 4 is preferably 4 to 12% of the tire cross-sectional height H1 from the viewpoint of reducing the weight, improving the durability, and improving the lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 6 to 10% is more preferable.

内側連結部4を軸方向に単数設ける場合、内側連結部4の軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   In the case where a single inner connecting portion 4 is provided in the axial direction, the axial width of the inner connecting portion 4 is appropriately determined according to the application and the like, but when an alternative to a general pneumatic tire is assumed, 100 to 300 mm is Preferably, 130 to 250 mm is more preferable.

内側連結部4の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、5〜50MPaが好ましく、7〜20MPaがより好ましい。   The tensile modulus of the inner connecting portion 4 is preferably 5 to 50 MPa, more preferably 7 to 20 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. preferable.

内側連結部4の材質としては、内側環状部1と同様のものが使用でき、熱可塑性エラストマー、架橋ゴム、その他の樹脂、又はこれらを繊維等の補強材で補強した繊維補強材料、金属等が使用できる。但し、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1の材質と同じ材料又は母材を使用することが好ましい。   As the material of the inner connecting portion 4, the same material as that of the inner annular portion 1 can be used, such as a thermoplastic elastomer, a crosslinked rubber, other resins, or a fiber reinforcing material obtained by reinforcing these with a reinforcing material such as a fiber, a metal, or the like. Can be used. However, when manufacturing the support structure SS, it is preferable to use the same material or base material as the material of the inner annular portion 1 from the viewpoint of enabling integral molding.

内側連結部4の引張モジュラスを高める場合、熱可塑性エラストマー、架橋ゴム、その他の樹脂を繊維等で補強した繊維補強材料が好ましい。   When the tensile modulus of the inner connecting portion 4 is increased, a fiber reinforced material in which a thermoplastic elastomer, a crosslinked rubber, or other resin is reinforced with fibers or the like is preferable.

外側連結部5は、外側環状部3と中間環状部2とを連結するものであり、両者の間に適当な間隔を開けるなどして、周方向に各々が独立するように複数設けられる。外側連結部5は、ユニフォミティを向上させる観点から、一定の間隔を置いて設けることが好ましい。   The outer connecting portion 5 connects the outer annular portion 3 and the intermediate annular portion 2, and a plurality of outer connecting portions 5 are provided so that each of them is independent in the circumferential direction, for example, by providing an appropriate interval therebetween. The outer connecting portions 5 are preferably provided at regular intervals from the viewpoint of improving uniformity.

外側連結部5と内側連結部4とは全周の同じ位置に設けてもよく、異なる位置に設けてもよいが、中間環状部2による補強効果を向上させる観点から、外側連結部5と内側連結部4とは全周の同じ位置に設けるのが好ましい。   The outer connecting portion 5 and the inner connecting portion 4 may be provided at the same position on the entire circumference or at different positions. However, from the viewpoint of improving the reinforcing effect of the intermediate annular portion 2, the outer connecting portion 5 and the inner connecting portion 4 are provided. The connecting portion 4 is preferably provided at the same position on the entire circumference.

外側連結部5を全周に渡って設ける際の数(軸方向に複数設ける場合は1個として数える)としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、10〜80個が好ましく、40〜60個がより好ましい。図3には、外側連結部5を内側連結部4と同じく40個設けた例を示す。   As for the number of outer connecting parts 5 provided over the entire circumference (when a plurality of outer connecting parts 5 are provided in the axial direction, they are counted as one), while supporting the load from the vehicle sufficiently, weight reduction, improvement of power transmission, durability From the viewpoint of improving the quality, 10 to 80 are preferable, and 40 to 60 are more preferable. FIG. 3 shows an example in which 40 outer connecting portions 5 are provided in the same manner as the inner connecting portions 4.

個々の外側連結部5の形状としては、板状体、柱状体などが挙げられるが、本実施形態では板状体の例を示す。これらの外側連結部5は、正面視断面において、タイヤ径方向又はタイヤ径方向から傾斜した方向に延びている。本発明では、ブレークポイントを高くして剛性変動を生じにくくすると共に、耐久性を向上させる観点から、正面視断面において、外側連結部5の延設方向が、タイヤ径方向±25°以内が好ましく、タイヤ径方向±15°以内がより好ましい。   Examples of the shape of each outer connecting portion 5 include a plate-like body and a columnar body. In this embodiment, an example of a plate-like body is shown. These outer connecting portions 5 extend in a tire radial direction or a direction inclined from the tire radial direction in a front sectional view. In the present invention, from the viewpoint of improving the durability by increasing the break point and making it difficult to change the rigidity, the extending direction of the outer connecting portion 5 is preferably within ± 25 ° in the tire radial direction in the front sectional view. The tire radial direction is more preferably within ± 15 °.

外側連結部5の厚みは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さH1の4〜12%が好ましく、6〜10%がより好ましい。   The thickness of the outer connecting portion 5 is preferably 4 to 12% of the tire cross-sectional height H1 from the viewpoint of reducing the weight, improving the durability, and improving the lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 6 to 10% is more preferable.

外側連結部5を軸方向に単数設ける場合、外側連結部5の軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   In the case where a single outer connecting portion 5 is provided in the axial direction, the axial width of the outer connecting portion 5 is appropriately determined according to the application and the like, but assuming an alternative to a general pneumatic tire, 100 to 300 mm is Preferably, 130 to 250 mm is more preferable.

外側連結部5の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、5〜50MPaが好ましく、7〜20MPaがより好ましい。   The tensile modulus of the outer connecting portion 5 is preferably 5 to 50 MPa, more preferably 7 to 20 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. preferable.

外側連結部5の材質としては、内側環状部1と同様のものが使用でき、熱可塑性エラストマー、架橋ゴム、その他の樹脂、又はこれらを繊維等の補強材で補強した繊維補強材料、金属等が使用できる。但し、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1の材質と同じ材料又は母材を使用することが好ましい。   As the material of the outer connecting portion 5, the same material as that of the inner annular portion 1 can be used, such as a thermoplastic elastomer, a crosslinked rubber, other resins, or a fiber reinforcing material obtained by reinforcing these with a reinforcing material such as a fiber, a metal, or the like. Can be used. However, when manufacturing the support structure SS, it is preferable to use the same material or base material as the material of the inner annular portion 1 from the viewpoint of enabling integral molding.

外側連結部5の引張モジュラスを高める場合、熱可塑性エラストマー、架橋ゴム、その他の樹脂を繊維等で補強した繊維補強材料が好ましい。   When the tensile modulus of the outer connecting portion 5 is increased, a fiber reinforced material in which a thermoplastic elastomer, a crosslinked rubber, or other resin is reinforced with fibers or the like is preferable.

本実施形態では、図3に示すように、支持構造体SSの外側環状部3の外側に、その外側環状部3の曲げ変形を補強する補強層6が設けられている例を示す。補強層6としては、従来の空気入りタイヤのベルト層と同様のものを設けることが可能である。   In the present embodiment, as shown in FIG. 3, an example is shown in which a reinforcing layer 6 that reinforces bending deformation of the outer annular portion 3 is provided outside the outer annular portion 3 of the support structure SS. The reinforcing layer 6 can be the same as the belt layer of a conventional pneumatic tire.

補強層6は、単数又は複数の層から構成され、例えば、タイヤ周方向に対して約20°の傾斜角度で平行配列したスチールコード、アラミドコード、レーヨンコード等をゴム引きした層を、スチールコード等が逆方向に交差するように積層して、形成することができる。本実施形態では、補強層6は3層6a,6b,6cから構成されている例を示す。また、両層の上層に、タイヤ周方向に平行配列した各種コードからなる層を設けてもよい。   The reinforcing layer 6 is composed of one or a plurality of layers. For example, a steel cord, an aramid cord, a rayon cord, etc. rubberized layers arranged in parallel at an inclination angle of about 20 ° with respect to the tire circumferential direction are used as a steel cord. Etc. can be formed so as to cross in the opposite direction. In this embodiment, the reinforcement layer 6 shows the example comprised from 3 layers 6a, 6b, 6c. Further, a layer made of various cords arranged in parallel in the tire circumferential direction may be provided on the upper layer of both layers.

本実施形態では、図3に示すように、補強層6の更に外側にトレッド層7が設けられている。トレッド層7としては、従来の空気入りタイヤのトレッド層と同様のものを設けることが可能である。   In the present embodiment, as shown in FIG. 3, a tread layer 7 is provided on the outer side of the reinforcing layer 6. As the tread layer 7, it is possible to provide the same tread layer as that of a conventional pneumatic tire.

例えば、トレッド層7を形成するトレッドゴムの原料としては、天然ゴム、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)等が挙げられる。これらのゴムはカーボンブラックやシリカ等の充填材で補強されると共に、加硫剤、加硫促進剤、可塑剤、老化防止剤等が適宜配合される。   For example, the raw material of the tread rubber forming the tread layer 7 includes natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), butyl rubber (IIR) and the like. These rubbers are reinforced with fillers such as carbon black and silica, and a vulcanizing agent, a vulcanization accelerator, a plasticizer, an antiaging agent, and the like are appropriately blended.

トレッド層7を外周側から見た正面図を図4に示す。矢印A方向はタイヤ周方向、矢印B方向はタイヤ幅方向を示し、紙面に垂直方向はタイヤ径方向を示す。図にタイヤ幅方向Bに破線で示す部分は、外側環状部3の内周側の、外側環状部3と外側連結部5との結合部5aを示している。トレッド層7の外表面であって、結合部5aをタイヤ径方向に投影した投影部、すなわち、トレッド層7を挟んで結合部5aの反対側の位置には、図のようなサイプ(細溝に相当)8が形成されている。サイプ8は、タイヤ幅方向Bの全域に直線状に形成されてもよいし、図4のように破線状に形成されていてもよい。また、サイプ8の深さは、トレッド層7の厚さの1/3以上であり、サイプ8の幅は、投影部(結合部5a)の幅を超えないことが好ましい。具体的には、サイプ8の幅は、0.5〜2.0mmが好ましく、1.0〜1.5mmがより好ましい。   A front view of the tread layer 7 viewed from the outer peripheral side is shown in FIG. The arrow A direction indicates the tire circumferential direction, the arrow B direction indicates the tire width direction, and the direction perpendicular to the paper surface indicates the tire radial direction. In the drawing, a portion indicated by a broken line in the tire width direction B indicates a coupling portion 5 a between the outer annular portion 3 and the outer coupling portion 5 on the inner peripheral side of the outer annular portion 3. On the outer surface of the tread layer 7, a projected portion obtained by projecting the coupling portion 5 a in the tire radial direction, that is, on the opposite side of the coupling portion 5 a across the tread layer 7, a sipe (thin groove) as shown in the figure. 8) is formed. The sipe 8 may be formed linearly in the entire region in the tire width direction B, or may be formed in a broken line shape as shown in FIG. Moreover, the depth of the sipe 8 is 1/3 or more of the thickness of the tread layer 7, and it is preferable that the width of the sipe 8 does not exceed the width of the projection part (joining part 5a). Specifically, the width of the sipe 8 is preferably 0.5 to 2.0 mm, and more preferably 1.0 to 1.5 mm.

トレッドパターンは、タイヤ周方向Aに複数形成された溝部(横溝)10と、この溝部10によって区分された陸部11とで構成される。ピッチ9は、一組の陸部11と溝部10とで構成される。本実施形態では、トレッド層7の外表面に、ピッチ長の異なる複数のピッチ9がタイヤ周方向Aに配列された、いわゆるバリアブルピッチ配列されたトレッドパターンが形成されている。図4には、3種類のピッチ9a,9b,9cがタイヤ周方向Aに配列された例を示しており、ピッチ長はそれぞれPa,Pb,Pcとする。なお、ピッチ9のピッチ長は、便宜上、図に示すようにタイヤ周方向Aに隣り合う溝部10の中央位置どうしの距離とした。   The tread pattern is composed of a plurality of grooves (lateral grooves) 10 formed in the tire circumferential direction A and land portions 11 divided by the grooves 10. The pitch 9 includes a pair of land portions 11 and groove portions 10. In the present embodiment, on the outer surface of the tread layer 7, a so-called variable pitch arranged tread pattern in which a plurality of pitches 9 having different pitch lengths are arranged in the tire circumferential direction A is formed. FIG. 4 shows an example in which three types of pitches 9a, 9b, and 9c are arranged in the tire circumferential direction A, and the pitch lengths are Pa, Pb, and Pc, respectively. In addition, the pitch length of the pitch 9 was made into the distance of the center positions of the groove part 10 adjacent to the tire circumferential direction A as shown in the figure for convenience.

図4に示す例では、図の左側に3種類のピッチ9a,9b,9cが配列され、右側に4種類のピッチ9a´,9b´,9c´,9d´が配列されている。タイヤ幅方向Bに隣接するピッチ9の列どうしは、このように異なってもよく、同じにしてもよい。また、タイヤ周方向Aに配列されるピッチ9は、図のように3種類であっても、4種類であってもよく、5種類以上であってもよい。   In the example shown in FIG. 4, three types of pitches 9a, 9b, and 9c are arranged on the left side of the figure, and four types of pitches 9a ′, 9b ′, 9c ′, and 9d ′ are arranged on the right side. The rows of pitches 9 adjacent to each other in the tire width direction B may be different as described above or the same. Further, the pitches 9 arranged in the tire circumferential direction A may be three types, four types, or five or more types as shown in the figure.

また、タイヤ幅方向Bに隣接するピッチ9の列どうしが同じ場合に、タイヤ周方向Aの同じ位置に配列してもよく、タイヤ周方向Aに互いにずらして配列してもよい。さらに、ピッチ9の列は、タイヤ幅方向Bに3列以上設けてもよい。   Further, when the rows of pitches 9 adjacent to each other in the tire width direction B are the same, they may be arranged at the same position in the tire circumferential direction A or may be arranged shifted from each other in the tire circumferential direction A. Furthermore, three or more rows of pitch 9 may be provided in the tire width direction B.

トレッドパターンのバリアブルピッチ配列としては、ピッチ長の異なる複数のピッチ9をタイヤ周方向Aにランダムに配列する方法などが用いられる。一般に、バリアブルピッチ配列することにより、タイヤ走行時のパターンノイズの周波数を分散させ、パターンノイズのピッチピークレベルを低減することができる。   As a variable pitch arrangement of the tread pattern, a method of randomly arranging a plurality of pitches 9 having different pitch lengths in the tire circumferential direction A is used. Generally, by arranging the variable pitch, it is possible to disperse the frequency of the pattern noise during tire running and reduce the pitch peak level of the pattern noise.

ところで、本発明においては、複数のピッチ9を配列する際、外側連結部5(スポーク)による路面への打撃音を考慮する必要がある。すなわち、パターンノイズには、タイヤのピッチ数と回転数とで決まる周波数成分が顕著に表れるため、このピッチによるノイズピークと、スポークの打撃音によるノイズピークとが合致しないようにする必要がある。   By the way, in this invention, when arranging the several pitch 9, it is necessary to consider the impact sound to the road surface by the outer side connection part 5 (spoke). That is, since the frequency noise determined by the number of tire pitches and the number of revolutions appears remarkably in the pattern noise, it is necessary that the noise peak due to this pitch does not match the noise peak due to the impact sound of the spokes.

以下に、複数のピッチ9をバリアブルピッチ配列する際の一例を示す。本実施形態では、ピッチ長の異なる複数のピッチ9として、ピッチ9a、ピッチ9b、ピッチ9cの3種類を用いる例を示す。ここで、ピッチ9a、ピッチ9b、ピッチ9cのピッチ長をそれぞれPa,Pb,Pcとすると、PaはPbの90〜100%であり、PcはPbの100〜110%であるとする。すなわち、本実施形態では、ピッチ9bのピッチ長Pbが基本ピッチ長である。   Below, an example at the time of arranging the several pitch 9 in variable pitch is shown. In the present embodiment, an example in which three types of pitches 9a, 9b, and 9c are used as the plurality of pitches 9 having different pitch lengths. Here, assuming that the pitch lengths of the pitch 9a, the pitch 9b, and the pitch 9c are Pa, Pb, and Pc, respectively, Pa is 90 to 100% of Pb, and Pc is 100 to 110% of Pb. That is, in this embodiment, the pitch length Pb of the pitch 9b is the basic pitch length.

トレッドパターンは、3種類のピッチ9a,9b,9cがタイヤ周方向Aに複数配列されて構成されるが、トレッドパターンに配列されるピッチ9a,9b,9cの総数は、以下のようにして決定される。   The tread pattern is configured by arranging a plurality of pitches 9a, 9b, 9c in the tire circumferential direction A. The total number of pitches 9a, 9b, 9c arranged in the tread pattern is determined as follows. Is done.

初めに、外側連結部5(スポーク)による路面への打撃音の周波数をFsとすると、
Fs=V/L×n
と表すことができる。ここで、Vは速度(m/s)、Lはタイヤ周長(m)、nは外側連結部5のタイヤ1周分の総数とする。
First, assuming that the frequency of the impact sound on the road surface by the outer connecting portion 5 (spoke) is Fs,
Fs = V / L × n
It can be expressed as. Here, V is the speed (m / s), L is the tire circumference (m), and n is the total number of tires of the outer connecting portion 5 for one circumference.

また、ピッチ9a,9b,9cによる路面への打撃音の周波数をFpとすると、
Fp=V/L×N
と表すことができる。ここで、Vは速度(m/s)、Lはタイヤ周長(m)、Nはピッチ9a,9b,9cのタイヤ1周分の総数とする。
Moreover, when the frequency of the hitting sound on the road surface with the pitches 9a, 9b, and 9c is Fp,
Fp = V / L × N
It can be expressed as. Here, V is the speed (m / s), L is the tire circumference (m), and N is the total number of tires of one pitch 9a, 9b, 9c.

次いで、スポーク5の打撃音によるノイズピークと、ピッチ9a,9b,9cの打撃音によるノイズピークとが合致しないように、すなわち、スポーク5の1次、2次、3次、0.5次などでの周波数Fsとピッチ9a,9b,9cの周波数Fpとが合致しないように設定する。   Next, the noise peak due to the impact sound of the spoke 5 and the noise peak due to the impact sound of the pitch 9a, 9b, 9c are not matched, that is, the primary, secondary, tertiary, 0.5th order, etc. of the spoke 5 And the frequency Fp of the pitches 9a, 9b, and 9c are set so as not to coincide with each other.

ここで、nとNとの関係が、例えば、
1.25n ≦ N ≦ 1.325n (1)
0.625n ≦ N ≦ 0.6625n (2)
0.3125n ≦ N ≦ 0.33125n (3)
を満たすようにピッチ9a,9b,9cの総数を設定すれば、ピッチ9a,9b,9cのいずれの周波数もスポーク5の周波数Fsと合致することはない。本実施形態では、以上のようにして複数のピッチ9a,9b,9cの総数Nを決定する。この総数Nのもとで、ピッチ長がPaのピッチ9a、ピッチ長がPbのピッチ9b、ピッチ長がPcのピッチ9cをそれぞれ複数配列して、合計のピッチ長がタイヤ周長Lに一致するようにする。なお、合計のピッチ長がタイヤ周長Lに一致するようにすれば、ピッチ9a,9b,9cの配列順は限定されない。
Here, the relationship between n and N is, for example,
1.25n ≦ N ≦ 1.325n (1)
0.625n ≦ N ≦ 0.6625n (2)
0.3125n ≦ N ≦ 0.33125n (3)
If the total number of pitches 9a, 9b, and 9c is set so as to satisfy the condition, none of the frequencies of the pitches 9a, 9b, and 9c matches the frequency Fs of the spoke 5. In the present embodiment, the total number N of the plurality of pitches 9a, 9b, 9c is determined as described above. Based on this total number N, a plurality of pitches 9a having a pitch length of Pa, pitches 9b having a pitch length of Pb, and pitches 9c having a pitch length of Pc are arranged, and the total pitch length matches the tire circumferential length L. Like that. As long as the total pitch length matches the tire circumferential length L, the arrangement order of the pitches 9a, 9b, and 9c is not limited.

本発明の非空気圧タイヤTは、モールド成形、射出成形などにより支持構造体SSを製造した後、必要に応じて、補強層6、トレッド層7などを形成して製造することができる。支持構造体SSの補強構造として、補強繊維を使用する場合、予めモールド内に補強繊維を配置することにより、繊維補強構造を形成することができる。   The non-pneumatic tire T of the present invention can be manufactured by forming the support structure SS by molding, injection molding, or the like, and then forming the reinforcing layer 6, the tread layer 7 or the like as necessary. When reinforcing fibers are used as the reinforcing structure of the support structure SS, the fiber reinforcing structure can be formed by arranging the reinforcing fibers in the mold in advance.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。   Examples and the like specifically showing the configuration and effects of the present invention will be described below.

実施例1(サイプ有り)
表1に示す寸法および物性等にて、内側環状部(内側リング)1、中間環状部(中間リング)2、外側環状部(外側リング)3、内側連結部(内側スポーク)4、外側連結部(外側スポーク)5を備える支持構造体SS、その外周に設けられた3層の補強層6、並びにトレッド層7を備える非空気圧タイヤTを作製し、騒音評価を行なった。実施例1、及び以下の実施例、比較例の非空気圧タイヤTの外径は、いずれも540mmとした。
Example 1 (with sipes)
Inner ring part (inner ring) 1, intermediate ring part (intermediate ring) 2, outer ring part (outer ring) 3, inner connection part (inner spoke) 4, outer connection part in the dimensions and physical properties shown in Table 1 A non-pneumatic tire T including a support structure SS including (outside spokes) 5, three reinforcing layers 6 provided on the outer periphery thereof, and a tread layer 7 was produced, and noise evaluation was performed. The outer diameters of the non-pneumatic tires T of Example 1 and the following examples and comparative examples were all 540 mm.

実施例1の非空気圧タイヤTには、トレッド層7の外表面であって、外側連結部5と外側環状部3との結合部5aをタイヤ径方向に投影した投影部に、表2に示す寸法にてサイプ8が設けられている。また、ピッチ長は全て等しくなっている。騒音評価の結果を表2に合わせて示す。   The non-pneumatic tire T of Example 1 is shown in Table 2 on a projection portion which is an outer surface of the tread layer 7 and is a projection portion in which a joint portion 5a between the outer connecting portion 5 and the outer annular portion 3 is projected in the tire radial direction. A sipe 8 is provided in size. Also, the pitch lengths are all equal. The results of noise evaluation are shown in Table 2.

なお、騒音評価は、台上タイヤ単体騒音で評価を行なった。台上タイヤ単体騒音は、JASO−C606に準拠して試験を行なった。速度は40km/hとし、縦荷重2500Nを負荷し、このときのピッチピークレベル(dB)を評価した。   In addition, noise evaluation was evaluated by stand-alone tire noise. The stand-alone tire noise was tested according to JASO-C606. The speed was 40 km / h, a longitudinal load of 2500 N was applied, and the pitch peak level (dB) at this time was evaluated.

比較例1(サイプ無し)
表1の実施例1と同様の寸法および物性等にて、支持構造体SS、その外周に設けられた3層の補強層6、並びにトレッド層7を備える非空気圧タイヤTを作製し、騒音評価を行なった。ただし、この比較例1の非空気圧タイヤTには、実施例1とは違い、サイプ8が設けられていない。騒音評価の結果を表2に示す。
Comparative Example 1 (no sipes)
A non-pneumatic tire T including the support structure SS, the three reinforcing layers 6 provided on the outer periphery of the support structure SS, and the tread layer 7 with the same dimensions and physical properties as in Example 1 of Table 1 is manufactured, and noise evaluation is performed. Was done. However, unlike the first embodiment, the non-pneumatic tire T of the first comparative example is not provided with the sipe 8. The results of noise evaluation are shown in Table 2.

比較例2(サイプの位置ずらし)
表1の実施例1と同様の寸法および物性等にて、支持構造体SS、その外周に設けられた3層の補強層6、並びにトレッド層7を備える非空気圧タイヤTを作製し、騒音評価を行なった。ただし、この比較例2の非空気圧タイヤTでは、サイプ8の位置を実施例1とは変えており、サイプ8を投影部から外して設けている。騒音評価の結果を表2に示す。
Comparative Example 2 (Sipe position shift)
A non-pneumatic tire T including the support structure SS, the three reinforcing layers 6 provided on the outer periphery of the support structure SS, and the tread layer 7 with the same dimensions and physical properties as in Example 1 of Table 1 is manufactured, and noise evaluation is performed. Was done. However, in the non-pneumatic tire T of the comparative example 2, the position of the sipe 8 is changed from that of the first embodiment, and the sipe 8 is provided off the projection unit. The results of noise evaluation are shown in Table 2.

比較例3(サイプ幅広)
表1の実施例1と同様の寸法および物性等にて、支持構造体SS、その外周に設けられた3層の補強層6、並びにトレッド層7を備える非空気圧タイヤTを作製し、騒音評価を行なった。ただし、この比較例3の非空気圧タイヤTでは、サイプ8の幅を実施例1とは変えており、2.5mmとしている。騒音評価の結果を表2に示す。
Comparative example 3 (wide sipe)
A non-pneumatic tire T including the support structure SS, the three reinforcing layers 6 provided on the outer periphery of the support structure SS, and the tread layer 7 with the same dimensions and physical properties as in Example 1 of Table 1 is manufactured, and noise evaluation is performed. Was done. However, in the non-pneumatic tire T of Comparative Example 3, the width of the sipe 8 is changed from that of Example 1 and is 2.5 mm. The results of noise evaluation are shown in Table 2.

実施例2(サイプ有り&バリアブルピッチ)
表1の実施例1と同様の寸法および物性等にて、支持構造体SS、その外周に設けられた3層の補強層6、並びにトレッド層7を備える非空気圧タイヤTを作製し、騒音評価を行なった。実施例2の非空気圧タイヤTでは、実施例1の非空気圧タイヤTに対して、トレッドパターンがバリアブルピッチ配列となるように形成している。バリアブルピッチ配列としては、上述の3種類のピッチ9a,9b,9cのピッチ長Pa,Pb,Pcをそれぞれ29.475mm、32.750mm、36.025mmとし、ピッチ9a,9b,9cのタイヤ周方向の配列は図5に示すようにした。騒音評価の結果を表2に示す。
Example 2 (with sipe and variable pitch)
A non-pneumatic tire T including the support structure SS, the three reinforcing layers 6 provided on the outer periphery thereof, and the tread layer 7 with the same dimensions and physical properties as those of Example 1 in Table 1 is manufactured, and noise evaluation is performed. Was done. In the non-pneumatic tire T of the second embodiment, the tread pattern is formed in a variable pitch arrangement with respect to the non-pneumatic tire T of the first embodiment. As the variable pitch arrangement, the pitch lengths Pa, Pb and Pc of the above-mentioned three types of pitches 9a, 9b and 9c are 29.475 mm, 32.750 mm and 36.025 mm, respectively, and the tire circumferential direction of the pitch 9a, 9b and 9c The arrangement of was as shown in FIG. The results of noise evaluation are shown in Table 2.

比較例4(スポーク総数nとピッチ総数Nとの関係が式(1)〜(3)以外)
実施例2と同様にして、支持構造体SS、その外周に設けられた3層の補強層6、並びにトレッド層7を備える非空気圧タイヤTを作製し、騒音評価を行なった。ただし、この比較例4では、外側連結部5の総数nとピッチ9の総数Nとが、実施例2とは違い、上記の式(1)〜(3)のいずれも満たさないようにしている。騒音評価の結果を表2に示す。
Comparative Example 4 (the relationship between the total number n of spokes and the total number N of pitches is other than the formulas (1) to (3))
In the same manner as in Example 2, a non-pneumatic tire T including the support structure SS, the three reinforcing layers 6 provided on the outer periphery thereof, and the tread layer 7 was produced, and noise evaluation was performed. However, in the comparative example 4, the total number n of the outer coupling portions 5 and the total number N of the pitches 9 are different from those of the second embodiment so that none of the above formulas (1) to (3) is satisfied. . The results of noise evaluation are shown in Table 2.

Figure 2010274776
Figure 2010274776

Figure 2010274776
Figure 2010274776

表1および表2の結果から以下のことが分かる。なお、表2のピッチピークレベルは、実施例1の値を基準としている。表2のように、実施例1の非空気圧タイヤは、比較例1の非空気圧タイヤと比較して、ピッチピークレベルの低減が見られる。これは、接地するトレッド層7の外表面にサイプ8が設けられているので、剛性が低くなり、その結果、外側連結部5の位置での打撃音を低減させているものと考えられる。   The following can be understood from the results of Tables 1 and 2. The pitch peak level in Table 2 is based on the value of Example 1. As shown in Table 2, the non-pneumatic tire of Example 1 has a reduced pitch peak level as compared with the non-pneumatic tire of Comparative Example 1. This is presumably because the sipe 8 is provided on the outer surface of the tread layer 7 to be grounded, so that the rigidity is lowered, and as a result, the impact sound at the position of the outer connecting portion 5 is reduced.

比較例2の非空気圧タイヤは、比較例1と比較すると、サイプ8が設けられることにより騒音の低下が見られるが、実施例1の非空気圧タイヤと比較すると、サイプ8が投影部から外れているので、サイプによる騒音低下の効果が少ないことが分かる。   Compared with Comparative Example 1, the non-pneumatic tire of Comparative Example 2 shows a reduction in noise due to the provision of the sipe 8, but when compared with the non-pneumatic tire of Example 1, the sipe 8 deviates from the projection unit. Therefore, it can be seen that the effect of noise reduction by sipes is small.

比較例3の非空気圧タイヤは、実施例1の非空気圧タイヤと比較して、騒音の悪化が見られる。これは、サイプの幅が広すぎると、外側連結部5(スポーク)のポンピング音が発生し、ノイズの原因となっていること示している。   Compared with the non-pneumatic tire of Example 1, the non-pneumatic tire of Comparative Example 3 shows a worsening of noise. This indicates that if the width of the sipe is too wide, a pumping sound of the outer connecting portion 5 (spoke) is generated, causing noise.

実施例2の非空気圧タイヤは、実施例1の非空気圧タイヤと比較して、ピッチピークレベルの低減が見られる。バリアブルピッチ配列することにより、タイヤ走行時のパターンノイズの周波数を分散させ、パターンノイズのピッチピークレベルを低減させたものと考えられる。   The non-pneumatic tire of Example 2 has a reduced pitch peak level as compared with the non-pneumatic tire of Example 1. By arranging the variable pitch, it is considered that the frequency of the pattern noise at the time of running the tire is dispersed and the pitch peak level of the pattern noise is reduced.

比較例4の非空気圧タイヤは、実施例2の非空気圧タイヤと比較して、ピッチピークレベルが大きくなっている。これは、外側連結部5の総数nとピッチ9の総数Nとが、上記の式(1)〜(3)のいずれも満たさないため、外側連結部5の周波数とピッチ9の周波数とが合致して、ピッチピークレベルが増大しているものと考えられる。   The non-pneumatic tire of Comparative Example 4 has a higher pitch peak level than the non-pneumatic tire of Example 2. This is because the total number n of the outer coupling parts 5 and the total number N of the pitches 9 do not satisfy any of the above formulas (1) to (3), so the frequency of the outer coupling parts 5 and the frequency of the pitch 9 match. Then, it is considered that the pitch peak level is increasing.

1 内側環状部
2 中間環状部
3 外側環状部
4 内側連結部
5 外側連結部
6 補強層
7 トレッド層
8 サイプ
9 ピッチ
10 溝部
11 陸部
DESCRIPTION OF SYMBOLS 1 Inner ring part 2 Middle ring part 3 Outer ring part 4 Inner connection part 5 Outer connection part 6 Reinforcement layer 7 Tread layer 8 Sipe 9 Pitch 10 Groove part 11 Land part

Claims (4)

車両からの荷重を支持する支持構造体を備える非空気圧タイヤであって、
前記支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結する複数の連結部とを備え、
前記外側環状部の外側にはトレッド層が設けられ、前記トレッド層の外表面であって、前記連結部と前記外側環状部との結合部をタイヤ径方向に投影した投影部に細溝が設けられている非空気圧タイヤ。
A non-pneumatic tire comprising a support structure for supporting a load from a vehicle,
The support structure includes an inner annular portion, an outer annular portion provided concentrically on the outer side of the inner annular portion, and a plurality of connecting portions that connect the inner annular portion and the outer annular portion,
A tread layer is provided on the outer side of the outer annular portion, and a narrow groove is provided on a projection portion that is an outer surface of the tread layer and projects a joint portion between the connecting portion and the outer annular portion in a tire radial direction. Non-pneumatic tire that has been.
前記支持構造体は、前記内側環状部と、その内側環状部の外側に同心円状に設けられた中間環状部と、その中間環状部の外側に同心円状に設けられた前記外側環状部と、前記内側環状部と前記中間環状部とを連結する複数の内側連結部と、前記外側環状部と前記中間環状部とを連結する複数の外側連結部とを備える請求項1記載の非空気圧タイヤ。   The support structure includes the inner annular portion, an intermediate annular portion provided concentrically outside the inner annular portion, the outer annular portion provided concentrically outside the intermediate annular portion, 2. The non-pneumatic tire according to claim 1, further comprising: a plurality of inner connecting portions that connect the inner annular portion and the intermediate annular portion; and a plurality of outer connecting portions that connect the outer annular portion and the intermediate annular portion. 前記細溝の深さは、前記トレッド層の厚さの1/3以上であり、前記細溝の幅は、前記投影部の幅を超えないことを特徴とする請求項1又は2に記載の非空気圧タイヤ。   The depth of the narrow groove is 1/3 or more of the thickness of the tread layer, and the width of the narrow groove does not exceed the width of the projection unit. Non-pneumatic tire. 前記トレッド層の外表面には、トレッドパターンの基本ピッチ長に対するピッチ長比率が±10%以内である複数のピッチが、タイヤ周方向にバリアブルピッチ配列されており、かつ、タイヤ1周分の前記連結部の総数nと前記ピッチの総数Nとが、下記の式(1)〜(3)を満たす請求項1〜3いずれかに記載の非空気圧タイヤ。
1.25n ≦ N ≦ 1.325n (1)
0.625n ≦ N ≦ 0.6625n (2)
0.3125n ≦ N ≦ 0.33125n (3)
On the outer surface of the tread layer, a plurality of pitches having a pitch length ratio with respect to the basic pitch length of the tread pattern within ± 10% are arranged in a variable pitch in the tire circumferential direction, and the tire for one round of the tire is arranged. The non-pneumatic tire according to any one of claims 1 to 3, wherein a total number n of connecting portions and a total number N of the pitches satisfy the following formulas (1) to (3).
1.25n ≦ N ≦ 1.325n (1)
0.625n ≦ N ≦ 0.6625n (2)
0.3125n ≦ N ≦ 0.33125n (3)
JP2009129294A 2009-05-28 2009-05-28 Non-pneumatic tire Active JP5395515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009129294A JP5395515B2 (en) 2009-05-28 2009-05-28 Non-pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129294A JP5395515B2 (en) 2009-05-28 2009-05-28 Non-pneumatic tire

Publications (2)

Publication Number Publication Date
JP2010274776A true JP2010274776A (en) 2010-12-09
JP5395515B2 JP5395515B2 (en) 2014-01-22

Family

ID=43422152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129294A Active JP5395515B2 (en) 2009-05-28 2009-05-28 Non-pneumatic tire

Country Status (1)

Country Link
JP (1) JP5395515B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126379A (en) * 2010-12-13 2012-07-05 Hankook Tire Co Ltd Method for designing spoke of non-pneumatic tire
CN103129308A (en) * 2011-11-22 2013-06-05 韩国轮胎株式会社 Airless tire
JP2014065235A (en) * 2012-09-26 2014-04-17 Toyo Tire & Rubber Co Ltd Method for manufacturing non-pneumatic tire and non-pneumatic tire
JP2015113017A (en) * 2013-12-12 2015-06-22 東洋ゴム工業株式会社 Non-pneumatic tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3035821A1 (en) * 2015-05-07 2016-11-11 Michelin & Cie ROLLING STRIP COMPRISING A BLOCK PRESENTING A PLURALITY OF CUTTINGS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155859A (en) * 2006-12-26 2008-07-10 Yokohama Rubber Co Ltd:The Non-pneumatic tire
JP2009035050A (en) * 2007-07-31 2009-02-19 Toyo Tire & Rubber Co Ltd Non-pneumatic pressure tire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155859A (en) * 2006-12-26 2008-07-10 Yokohama Rubber Co Ltd:The Non-pneumatic tire
JP2009035050A (en) * 2007-07-31 2009-02-19 Toyo Tire & Rubber Co Ltd Non-pneumatic pressure tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126379A (en) * 2010-12-13 2012-07-05 Hankook Tire Co Ltd Method for designing spoke of non-pneumatic tire
CN102555673A (en) * 2010-12-13 2012-07-11 韩国轮胎株式会社 Method of designing spokes of non-pneumatic tire
KR101191923B1 (en) * 2010-12-13 2012-10-17 한국타이어월드와이드 주식회사 Spoke design method of non pneumatic tire
CN103129308A (en) * 2011-11-22 2013-06-05 韩国轮胎株式会社 Airless tire
JP2014065235A (en) * 2012-09-26 2014-04-17 Toyo Tire & Rubber Co Ltd Method for manufacturing non-pneumatic tire and non-pneumatic tire
JP2015113017A (en) * 2013-12-12 2015-06-22 東洋ゴム工業株式会社 Non-pneumatic tire

Also Published As

Publication number Publication date
JP5395515B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP4530231B2 (en) Non-pneumatic tire
JP4674253B2 (en) Non-pneumatic tire
JP5208570B2 (en) Non-pneumatic tires, rim wheels, and wheels
JP5221306B2 (en) Non-pneumatic tire
JP5225743B2 (en) Non-pneumatic tire
JP4818220B2 (en) Non-pneumatic tire and manufacturing method thereof
JP6092046B2 (en) Non-pneumatic tire
JP5436365B2 (en) Non-pneumatic tire
JP6378625B2 (en) Non-pneumatic tire
US11021015B2 (en) Non-pneumatic tire
JP2011183894A (en) Non-pneumatic tire
JP5972149B2 (en) Non-pneumatic tire
JP5774905B2 (en) Non-pneumatic tire
US20190070903A1 (en) Non-pneumatic tire
JP5395515B2 (en) Non-pneumatic tire
JP6529834B2 (en) Non pneumatic tire
JP6226734B2 (en) Non-pneumatic tire
JP6377515B2 (en) Non-pneumatic tire
JP6076704B2 (en) Non-pneumatic tire
JP5543846B2 (en) Non-pneumatic tire
JP2013018462A (en) Non-pneumatic tire
JP6351109B2 (en) Non-pneumatic tire
JP6143660B2 (en) Non-pneumatic tire
JP6081776B2 (en) Non-pneumatic tire
JP6045401B2 (en) Non-pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5395515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250