JP2010271690A - Method for producing retardation film - Google Patents

Method for producing retardation film Download PDF

Info

Publication number
JP2010271690A
JP2010271690A JP2009266949A JP2009266949A JP2010271690A JP 2010271690 A JP2010271690 A JP 2010271690A JP 2009266949 A JP2009266949 A JP 2009266949A JP 2009266949 A JP2009266949 A JP 2009266949A JP 2010271690 A JP2010271690 A JP 2010271690A
Authority
JP
Japan
Prior art keywords
film
stretching
retardation
stretched
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009266949A
Other languages
Japanese (ja)
Inventor
Susumu Hirama
進 平間
Tadayoshi Ukamura
忠慶 宇賀村
Yoshihiro Fukuda
佳弘 福田
Masahito Takagi
雅人 高木
Satohiro Shiroshima
理浩 城島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2009266949A priority Critical patent/JP2010271690A/en
Publication of JP2010271690A publication Critical patent/JP2010271690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem when a film is produced from a ring structure-introduced acrylic polymer that the heat resistance of the film is improved but the film becomes brittle, the flexibility of the film intends to be deteriorated, the stretched film has flexibility but a uniaxial stretched film being a vertically-stretched film produced in an actual film formation line is torn easily and therefore the film is broken frequently during the time to transport the film and at a horizontal stretching step and the handleability of the film is poor in the film formation line. <P>SOLUTION: The method for producing a retardation film comprising the steps of: vertically stretching the film composed of the acrylic polymer to the flow direction of the film; and horizontally stretching the vertically-stretched film to the width direction thereof, in the concrete, includes the steps of: vertically stretching the film so that ¾Rth¾/¾R0¾ (wherein ¾Rth¾ is the absolute value of thickness retardation, and ¾R0¾ is the absolute value of in-plane retardation) becomes 0.6-2.0; and horizontally stretching the vertically-stretched film to the width direction thereof. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、アクリル系重合体からなる位相差フィルムの製造方法に関する。特に、一般的に可撓性が低いとされているアクリル系重合体を、光学特性に優れる位相差フィルムとしてフィルム破断させることなく安定的に生産する方法に関する。
具体的には、縦延伸工程において、面内位相差R0と厚み位相差Rthのそれぞれの絶対値の比(|Rth|/|R0|)が0.6以上2.0以下となるように縦延伸を行ってから横延伸を行うことを特徴とする、逐次二軸延伸位相差フィルムの製造方法に関する。
The present invention relates to a method for producing a retardation film comprising an acrylic polymer. In particular, the present invention relates to a method for stably producing an acrylic polymer, which is generally considered to have low flexibility, as a retardation film having excellent optical properties without causing film breakage.
Specifically, in the longitudinal stretching step, the longitudinal value ratio (| Rth | / | R0 |) of the in-plane retardation R0 and the thickness retardation Rth is such that the longitudinal ratio is 0.6 or more and 2.0 or less. The present invention relates to a method for producing a sequential biaxially stretched retardation film, characterized by performing transverse stretching after stretching.

PMMAに代表されるアクリル系重合体は光学的特性に優れていることが良く知られており、高い光透過率や低複屈折率、低位相差の光学材料として従来種々の用途に適用されている。しかしながら、アクリル系重合体は、位相差発現性能が低いため、延伸しても必要とされる位相差値を得ることが難しい。また、液晶表示装置の使用環境が厳しくなるなか、光学フィルムの耐熱性の要求が強まっているが、PMMAの延伸フィルムに十分な耐熱性を付与することは困難である。
このため、アクリル系重合体に種々の環構造を導入することにより耐熱性を向上させる検討が行われているが、耐熱性が向上すると樹脂が脆くなり、フィルムの可撓性が低下する傾向があった。
そこで、種々の環構造を導入した耐熱性のアクリル系重合体フィルムに縦横二軸延伸を施すことにより、耐熱性と可撓性を両立させた位相差フィルムが開示されている(特許文献1参照)。しかし、ラボ延伸機では可撓性の向上が確認できるものの、実機では延伸前のフィルム搬送中、或いは延伸中にフィルム破断が発生し、安定的に長尺ロールを得ることは困難であった。
なお、光学用フィルムの分野においては、特許文献2に記載のようなアニールゾーンを有するオーブン縦延伸が一般的である。この延伸方法は一般的にオーブンで加熱しながら長い延伸ゾーンで延伸する方法であり、ロール縦延伸とは異なって自由端一軸延伸となるため、光学的に均一なものが得やすいとされている。さらに、逐次二軸延伸フィルムにおいても、オーブン縦延伸+テンター横延伸による逐次二軸延伸が主流である(特許文献3参照)。しかし、加熱ロールに触れながら搬送されるロール延伸に比べ、オーブンでの加熱は熱伝導的に劣るため、近年の表示画像装置の価格下落に伴う生産性やコストの観点から不利である。また、一旦オーブン縦延伸で自由端一軸延伸となったフィルムはフィルムの流れ方向に裂けやすくなるため、アクリル系重合体のように可撓性の低いフィルムでは横延伸する際の縦裂けが顕著となり、安定生産が難しいという問題があった。
さらに、特許文献4には、縦延伸と横延伸を組み合わせた逐次二軸延伸フィルム、かつ、縦延伸よりも横延伸の方が高温で延伸を行うという方法が紹介されている。しかし、この方法では高温で行うテンターでの加熱のために、縦延伸で付与した配向が緩和される際にフィルムにはテンターの炉内に引き込まれる力が加わる。このため、アクリル系重合体のように可撓性の低いフィルムでは、フィルムの破断が頻発して安定生産が難しいという問題があった。
また縦延伸の方法として、オーブン縦延伸機に対してロール縦延伸機という方式がある。この方式は、周速度の異なる2個の延伸用ロールの間隔を短くし、延伸区間前に配置された数本の加熱用ロールを通過させてフィルムを加熱、昇温させ、延伸区間で所定の延伸温度として延伸する方法である。この方法によると大がかりな保温炉や加熱炉が不要となり、設備導入の面で有利なだけでなく、フィルムは加熱ロールに接触しながら加熱されるため、オーブンでの加熱に比べて熱伝導的にも有利となる。すなわち生産速度を上げることができ、近年の表示画像装置の価格下落に対し、生産性・コストにも有利となる。しかし、加熱用ロールの表面でフィルムが急に熱膨張してしわが発生したり、フィルムがロールから浮いて温度むらが発生し、そのために延伸後の位相差が均一にならないという欠点があった。
これに対し、特許文献5、6に記載のように、ロール縦延伸機の加熱ロールに熱風を吹き付ける装置を取り付けたり、通気孔をもつガイドロールからフィルムに熱風を吹きつける機構を追加するなど、装置を改造する方法が提案されている。しかし、この方法では、オーブン縦延伸機に比べてロール縦延伸機装置の方が、設備費が低いという優位な点を生かすことができない。
このように、近年の表示画像装置の価格下落に対応すべく、アクリル系重合体のように可撓性の低いフィルムを安価な方法で安定的に逐次二軸延伸して位相差フィルムとする方法が望まれているにもかかわらず、現状では果たせていなかった。
Acrylic polymers represented by PMMA are well known to have excellent optical properties, and have been applied to various applications as optical materials having high light transmittance, low birefringence, and low phase difference. . However, since an acrylic polymer has low retardation development performance, it is difficult to obtain a necessary retardation value even if it is stretched. Further, while the use environment of the liquid crystal display device becomes severe, the demand for heat resistance of the optical film has increased, but it is difficult to impart sufficient heat resistance to the stretched film of PMMA.
For this reason, studies have been made to improve the heat resistance by introducing various ring structures into the acrylic polymer. However, if the heat resistance is improved, the resin becomes brittle and the flexibility of the film tends to decrease. there were.
Thus, there is disclosed a retardation film that achieves both heat resistance and flexibility by subjecting a heat-resistant acrylic polymer film having various ring structures to longitudinal and transverse biaxial stretching (see Patent Document 1). ). However, although improvement in flexibility can be confirmed with a lab stretching machine, film breakage occurred during film transport before stretching or stretching in the actual machine, and it was difficult to stably obtain a long roll.
In the field of optical films, oven longitudinal stretching having an annealing zone as described in Patent Document 2 is common. This stretching method is generally a method of stretching in a long stretching zone while being heated in an oven. Unlike roll longitudinal stretching, it is free-end uniaxial stretching, so that it is easy to obtain an optically uniform one. . Furthermore, sequential biaxial stretching by oven longitudinal stretching + tenter transverse stretching is the mainstream in sequential biaxially stretched films (see Patent Document 3). However, heating in an oven is inferior in heat conduction compared to roll stretching conveyed while touching a heating roll, which is disadvantageous in terms of productivity and cost associated with the recent drop in the price of display image devices. In addition, a film that has been uniaxially stretched at the free end in the longitudinal direction of the oven is easy to tear in the flow direction of the film. Therefore, in the case of a low flexibility film such as an acrylic polymer, the longitudinal tearing during transverse stretching becomes remarkable. There was a problem that stable production was difficult.
Furthermore, Patent Document 4 introduces a sequential biaxially stretched film that combines longitudinal stretching and lateral stretching, and a method in which lateral stretching is performed at a higher temperature than longitudinal stretching. However, in this method, due to the heating in the tenter performed at a high temperature, a force that is drawn into the furnace of the tenter is applied to the film when the orientation imparted by the longitudinal stretching is relaxed. For this reason, a film having low flexibility such as an acrylic polymer has a problem that the film is frequently broken and stable production is difficult.
As a method of longitudinal stretching, there is a method called roll longitudinal stretching machine with respect to oven longitudinal stretching machine. This method shortens the interval between two stretching rolls having different peripheral speeds, passes several heating rolls arranged in front of the stretching section, heats the film, raises the temperature, It is the method of extending | stretching as extending | stretching temperature. According to this method, there is no need for a large heat-retaining furnace or heating furnace, which is advantageous not only in terms of equipment introduction, but also because the film is heated while in contact with the heating roll, so that it is more thermally conductive than heating in the oven. Is also advantageous. In other words, the production speed can be increased, and the productivity and cost are advantageous as the price of display image devices in recent years declines. However, the film suddenly thermally expands on the surface of the heating roll and wrinkles are generated, or the film floats from the roll and temperature unevenness occurs, which causes a disadvantage that the phase difference after stretching does not become uniform. .
On the other hand, as described in Patent Documents 5 and 6, attaching a device for blowing hot air to the heating roll of the roll longitudinal stretching machine, adding a mechanism for blowing hot air from the guide roll having a vent, etc. A method of modifying the device has been proposed. However, this method cannot take advantage of the advantage that the roll longitudinal stretching apparatus is lower in equipment cost than the oven longitudinal stretching apparatus.
As described above, in order to cope with the recent decline in the price of display image devices, a method of stably biaxially stretching a film having low flexibility such as an acrylic polymer into a retardation film in a stable and inexpensive manner. Although it was hoped for, it was not fulfilled at present.

特開2005−162835号公報JP 2005-162835 A 特開2003−131033号公報JP 2003-131033 A 特開平6−337313号公報JP-A-6-337313 特開2006−309029号公報JP 2006-309029 A 特開平9−76343号公報JP-A-9-76343 特開平9−230137号公報Japanese Patent Laid-Open No. 9-230137

本発明者らは、例えば、耐熱性を向上させるために種々の環構造を導入したアクリル系重合体においては、耐熱性が向上するものの脆くなり、フィルムの可撓性が低下する傾向があること、この可撓性を改善するために縦横二軸延伸を施す事が効果的であることを確認している。
しかし、延伸後のフィルムであれば可撓性を有するものの、実際の製膜ラインでは縦延伸後の一軸延伸フィルムの裂け易さによって、フィルム搬送中、及び横延伸工程においてフィルム破断が頻発し、製膜ライン中での取り扱い性に問題があった。
そこで本発明者らは上記の従来技術では成し得なかった、可撓性が低いアクリル系重合体を用いた二軸延伸位相差フィルムを、設備的に優位性のあるロール縦延伸+テンター横延伸の逐次二軸延伸にて作成する方法を見出し、本発明に到った。
The inventors of the present invention, for example, have a tendency that, in an acrylic polymer into which various ring structures are introduced in order to improve heat resistance, the heat resistance is improved but the film becomes brittle and the flexibility of the film is lowered. In order to improve the flexibility, it has been confirmed that it is effective to perform longitudinal and transverse biaxial stretching.
However, if it is a stretched film, it has flexibility, but in the actual film production line, due to the ease of tearing the uniaxially stretched film after longitudinal stretching, film breakage frequently occurs during film transport and in the transverse stretching process, There was a problem with handling in the film production line.
Accordingly, the present inventors have developed a biaxially stretched phase difference film using an acrylic polymer having low flexibility, which cannot be achieved by the above-described conventional technology, with roll longitudinal stretching and tenter transverse, which are superior in terms of equipment. The inventors have found a method of producing by sequential biaxial stretching of the stretching and have arrived at the present invention.

本発明者らは、上記事情に鑑み、フィルム製造の初期技術を検討した結果、以下の方法によって、可撓性が低いアクリル系重合体を用いた二軸延伸位相差フィルムを不具合がない状態で長時間連続製造する製造方法を見出した。
すなわち、
〔1〕アクリル系重合体からなるフィルムを、フィルムの流れ方向に縦延伸した後にフィルムの幅方向に横延伸してなる位相差フィルムの製造方法において、面内位相差R0と厚み位相差Rthのそれぞれの絶対値の比(|Rth|/|R0|)が0.6以上2.0以下となるように縦延伸した後に、フィルムの幅方向に横延伸することを特徴とする、逐次二軸延伸位相差フィルムの製造方法。
〔2〕前記縦延伸工程において、面内位相差R0が50〜500nmになるように延伸を行うことを特徴とする、〔1〕に記載の位相差フィルムの製造方法。
〔3〕前記縦延伸工程において、入口側のロール中心と出口側のロール中心の距離を延伸区間長A、縦延伸前のフィルム幅をBとしたとき、A/Bが0.05以上0.5以下であることを特徴とする、〔1〕、または〔2〕のいずれかに記載の位相差フィルムの製造方法。
〔4〕前記縦延伸工程において、少なくとも5本以上の熱ロールとの接触によってフィルムを加熱した後に縦延伸を行うことを特徴とする、〔1〕から〔3〕のいずれかに記載の位相差フィルムの製造方法。
〔5〕前記縦延伸工程において、IRヒーター、セラミックヒーター、熱風ヒーターの中から選ばれるいずれかの加熱方法を併用することを特徴とする、〔4〕に記載の位相差フィルムの製造方法。
In view of the above circumstances, the present inventors have studied the initial technology of film production, and as a result, the following method is used in a state where there is no problem with a biaxially stretched retardation film using an acrylic polymer having low flexibility. The manufacturing method which manufactures continuously for a long time was discovered.
That is,
[1] In a method for producing a retardation film, in which an acrylic polymer film is longitudinally stretched in the film flow direction and then laterally stretched in the film width direction, an in-plane retardation R0 and a thickness retardation Rth The successive biaxially characterized by stretching in the width direction of the film after longitudinal stretching so that the ratio of each absolute value (| Rth | / | R0 |) is 0.6 or more and 2.0 or less A method for producing a stretched retardation film.
[2] The method for producing a retardation film according to [1], wherein in the longitudinal stretching step, stretching is performed so that an in-plane retardation R0 is 50 to 500 nm.
[3] In the longitudinal stretching step, when the distance between the roll center on the inlet side and the roll center on the outlet side is defined as the stretching section length A and the film width before longitudinal stretching is B, A / B is 0.05 or more and 0.00. The method for producing a retardation film according to any one of [1] and [2], wherein the retardation film is 5 or less.
[4] The retardation according to any one of [1] to [3], wherein in the longitudinal stretching step, the film is stretched after being heated by contact with at least 5 hot rolls. A method for producing a film.
[5] The method for producing a retardation film as described in [4], wherein any one heating method selected from an IR heater, a ceramic heater, and a hot air heater is used in combination in the longitudinal stretching step.

本発明により、可撓性が低いアクリル系重合体を用いた二軸延伸位相差フィルムを、設備的に優位性のあるロール縦延伸+テンター横延伸の逐次二軸延伸にて作成することができる。   According to the present invention, a biaxially stretched retardation film using an acrylic polymer having low flexibility can be prepared by sequential biaxial stretching of roll longitudinal stretching and tenter transverse stretching, which are superior in terms of equipment. .

以下に本発明を詳述する。本明細書において「主成分」とは、50重量%以上含有していることが意図される。なお、範囲を示す「a〜b」は、a以上b以下であることを示す。
本発明のアクリル系重合体を用いた位相差フィルムの製法は、公知の方法でフィルム化できるアクリル系重合体全般に効果がある。本発明の製法は、膜厚が、5μm〜600μm、好ましくは、10μm〜400μmの位相差フィルムに適している。
次に本発明に用いるアクリル系重合体について説明する。
本発明に用いるアクリル系重合体は、主成分として、アクリル酸、メタクリル酸およびその誘導体を重合して得られる樹脂およびその誘導体である。例えば、一般式(1)
The present invention is described in detail below. In the present specification, the “main component” is intended to contain 50% by weight or more. In addition, “a to b” indicating the range indicates a range from a to b.
The method for producing a retardation film using the acrylic polymer of the present invention is effective for all acrylic polymers that can be formed into a film by a known method. The production method of the present invention is suitable for a retardation film having a film thickness of 5 μm to 600 μm, preferably 10 μm to 400 μm.
Next, the acrylic polymer used in the present invention will be described.
The acrylic polymer used in the present invention is a resin obtained by polymerizing acrylic acid, methacrylic acid and derivatives thereof as a main component and derivatives thereof. For example, the general formula (1)

Figure 2010271690
Figure 2010271690

(式中、R1およびR2は、それぞれ独立に、水素原子または炭素数1〜20の有機残基を示す。有機残基とは、具体的には、炭素数1〜20の直鎖状、枝分かれ鎖状、若しくは環状のアルキル基を示す。)で表される構造を有する化合物(単量体)、アクリル酸、メタクリル酸およびその誘導体の好ましい具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシエキシルおよび(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルなどが挙げられる。これらのうち1種のみが用いられてもよいし、2種以上が併用されてもよい。中でも、熱安定性に優れる点で(メタ)アクリル酸メチルが最も好ましい。
また、アクリル系重合体は、耐熱性の観点より、フェニルマレイミド、シクロヘキシルマレイミドおよびメチルマレイミドなどのN−置換マレイミドが共重合されていてもよいし、分子鎖中(重合体中の主骨格中または主鎖中ともいう)にラクトン環構造、グルタル酸無水物構造およびグルタルイミド構造などが導入されていてもよい。中でも、フィルムの着色(黄変)し難さの点で、窒素原子が含まれない構造が好ましい。また、正の複屈折率(正の位相差)を発現させやすい点で、主鎖にラクトン環構造を有するものが好ましい。主鎖中のラクトン環構造に関しては、4〜8員環でもよいが、構造の安定性から5〜6員環の方がより好ましく、特に6員環が好ましい。このように、主鎖中のラクトン環構造が6員環である場合としては、後述する一般式(2)や、特開2004−168882号公報において表される構造などが挙げられるが、主鎖にラクトン環構造を導入する前の重合体を合成するうえにおいて、重合収率が高い点や、ラクトン環構造の含有割合の高い重合体を高い重合収率で得易い点や、メタクリル酸メチルなどの(メタ)アクリル酸エステルとの共重合性が良い点で、一般式(2)で表される構造であることが好ましい。また、これらのアクリル系重合体は、耐熱性を損なわない範囲で共重合可能なその他の単量体成分を共重合した単位を有していても良い。
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms. Specifically, the organic residue is a linear or branched chain having 1 to 20 carbon atoms. Preferred examples of the compound (monomer) having a structure represented by a chain or cyclic alkyl group, acrylic acid, methacrylic acid and derivatives thereof include methyl (meth) acrylate, (meth ) Ethyl acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, 2-chloroethyl (meth) acrylate, (Meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 3-hydroxypropyl, (meth) acrylic acid 2,3,4,5,6-pentahydroxyexyl and (meth) acrylic acid Such as Le acid 2,3,4,5-hydroxypentyl and the like. Among these, only 1 type may be used and 2 or more types may be used together. Of these, methyl (meth) acrylate is most preferred because of its excellent thermal stability.
The acrylic polymer may be copolymerized with N-substituted maleimides such as phenylmaleimide, cyclohexylmaleimide and methylmaleimide from the viewpoint of heat resistance, or in the molecular chain (in the main skeleton or in the polymer). A lactone ring structure, a glutaric anhydride structure, a glutarimide structure, or the like may be introduced into the main chain). Especially, the structure which does not contain a nitrogen atom from the point of the difficulty of coloring (yellowing) of a film is preferable. Moreover, the thing which has a lactone ring structure in a principal chain from the point which is easy to express a positive birefringence (positive phase difference) is preferable. Regarding the lactone ring structure in the main chain, a 4- to 8-membered ring may be used, but a 5- to 6-membered ring is more preferable, and a 6-membered ring is particularly preferable in terms of the stability of the structure. As described above, examples of the case where the lactone ring structure in the main chain is a 6-membered ring include a general formula (2) described later and a structure represented in Japanese Patent Application Laid-Open No. 2004-168882. When synthesizing a polymer before introducing a lactone ring structure into the polymer, it is possible to obtain a polymer having a high polymerization yield, a polymer having a high content of lactone ring structure with a high polymerization yield, methyl methacrylate, etc. It is preferable that it is a structure represented by General formula (2) at a point with good copolymerizability with (meth) acrylic acid ester. Further, these acrylic polymers may have a unit obtained by copolymerizing other monomer components that can be copolymerized within a range not impairing heat resistance.

Figure 2010271690
Figure 2010271690

(式中、R3、R4、R5は、それぞれ独立に、水素原子または炭素数1〜20の有機残基を表す。なお、有機残基は酸素原子を含んでいても良い。)
共重合可能なその他の単量体成分としては、具体的にはスチレン、α−メチルスチレン等の芳香族ビニル系単量体、アクリロニトリル等のニトリル系単量体、酢酸ビニル等のビニルエステル類等があげられる。以上のアクリル系重合体の重量平均分子量は、好ましくは1,000以上2,000,000以下の範囲内、より好ましくは5,000以上1,000,000以下の範囲内、さらに好ましくは10,000以上500,000以下の範囲内、特に好ましくは50,000以上500,000以下の範囲内である。
上記アクリル系重合体を製造する方法としては、特開2005−146084号公報、特開2006−96960号公報、特開2006−171464号公報、特開2008−9378号公報、特開2008−231748号公報など公知の方法を用いて(メタ)アクリル酸エステルを含有する単量体組成物を重合すればよい。
また、本発明に用いるアクリル系重合体には、併用できる他の熱可塑性樹脂を併用してもよい。併用できる他の熱可塑性樹脂としては、アクリル系重合体と熱力学的に相溶する熱可塑性樹脂が好ましい。例えば、シアン化ビニル系単量体単位と芳香族ビニル系単量体単位とを含む共重合体、具体的にはアクリロニトリル−スチレン系共重合体やポリ塩化ビニル樹脂、メタクリル酸エステル類を50重量%以上含有する重合体が挙げられる。なお、アクリル系重合体とその他の熱可塑性樹脂とが熱力学的に相溶することは、これらを混合して得られた熱可塑性樹脂組成物のガラス転移点を測定することによって確認することができる。具体的には、示差走査熱量測定器により測定されるガラス転移点がラクトン環含有重合体とその他の熱可塑性樹脂との混合物について1点のみ観測されることによって、熱力学的に相溶していると言える。
さらに本発明に用いるアクリル系重合体には、本発明の目的を損なわない範囲で、紫外線吸収剤、酸化防止剤、滑剤および可塑剤、ゴム粒子などの可梼性向上剤、離型剤、着色防止剤、難燃剤、帯電防止剤、顔料などの着色剤などの添加剤を任意に含有させてもよい。ただし、適用する用途が要求する特性に照らし、目的に悪影響を及ぼさない範囲で添加する必要がある。
フィルムを成形する方法としては従来公知の方法が可能であり、例えば、溶液キャスト法(溶液流延法)及び溶融押出法等などが挙げられ、そのいずれをも採用することができる。ただし、溶剤の乾燥や回収を行う必要の無い溶融押出法の方が、設備的には有利であり本発明においては好ましい。
溶液キャスト法(溶液流延法)を用いてフィルムを得ようとする場合は、主成分である熱可塑性樹脂と、必要によりその他の重合体やその他の添加剤などを良溶媒中に撹拌混合して均一混合液とし、支持フィルムやドラムにキャストして自己支持性を有するまで予備乾燥した後、支持フィルムやドラムから剥がして乾燥すると得ることができる。 溶液キャスト法(溶液流延法)に用いられる溶媒としては、例えば、クロロホルム、ジクロロメタンなどの塩素系溶媒;トルエン、キシレン、ベンゼン、およびこれらの混合溶媒などの芳香族系溶媒;メタノール、エタノール、イソプロパノール、n−ブタノール、2−ブタノールなどのアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルフォキシド、ジオキサン、シクロヘキサノン、テトラヒドロフラン、アセトン、酢酸エチル、ジエチルエーテル;などが挙げられる。これら溶媒は1種のみ用いても良いし、2種以上を併用しても良い。
溶液キャスト法(溶液流延法)を行うための装置としては、例えば、ドラム式キャスティングマシン、ベルト式キャスティングマシンなどが挙げられる。
溶融押出法を用いてフィルムを得ようとする場合は、T型ダイス等を装着した押出機から熱可塑性樹脂、或いは、必要によりその他の重合体やその他の添加剤などを予め混練した熱可塑性樹脂を加熱溶融にて押し出し、得られるフィルムを冷却ドラムによって引き取ることにより任意の厚みを持つフィルムとすることができる。なお、本発明に係るアクリル系フィルムの製造方法においては、当該押出機が、スクリュー部分とダイスとの間にポリマーフィルターを備えており、更に、アクリル系重合体の溶融混練に伴って発生したガスを吸引する揮発分除去手段を備えていることが望ましい。
本発明のフィルムを製造するための溶融押出温度は、好ましくは150〜350℃、より好ましくは200〜300℃である。
また、本発明に係るアクリル系フィルムは単層フィルムであっても、積層フィルムであってもよく、積層フィルムの場合にはピノールやフィードブロックを用いて積層後にTダイ口金を用いて吐出する方法、マルチマニホールド型の口金を用いて積層し吐出する方法など、従来公知の方法が使用できる。
本発明のフィルムを製造するためのダイスは従来公知のものを用いることができる。例えば、マニホールドダイ、フィッシュテールダイ、コートハンガーダイ等を用いることができる。また、ダイスから吐出されたアクリル系重合体は、キャスティングドラム上で冷却固化させてフィルムとすることができる。この際、ワイヤーピニングやバキュームチャンバー等で冷却ロールに密着させる公知の方法を併用してもよく、或いはタッチロール成形法、具体的にはプレスロール法や弾性金属ニップロール、金属エンドレスベルトなどでドラムなどの冷却媒体に密着冷却固化させてガラス転移温度(Tg)以下まで急冷し、未延伸のフィルムを得る方法であってもよい。
(In the formula, R 3, R 4 and R 5 each independently represents a hydrogen atom or an organic residue having 1 to 20 carbon atoms. The organic residue may contain an oxygen atom.)
Specific examples of other monomer components that can be copolymerized include aromatic vinyl monomers such as styrene and α-methylstyrene, nitrile monomers such as acrylonitrile, vinyl esters such as vinyl acetate, and the like. Can be given. The weight average molecular weight of the above acrylic polymer is preferably in the range of 1,000 to 2,000,000, more preferably in the range of 5,000 to 1,000,000, and still more preferably 10, It is in the range of 000 to 500,000, particularly preferably in the range of 50,000 to 500,000.
As the method for producing the above acrylic polymer, JP-A-2005-146084, JP-A-2006-96960, JP-A-2006-171464, JP-A-2008-9378, JP-A-2008-231748. What is necessary is just to superpose | polymerize the monomer composition containing (meth) acrylic acid ester using well-known methods, such as a gazette.
Moreover, you may use together the other thermoplastic resin which can be used together with the acrylic polymer used for this invention. As another thermoplastic resin that can be used in combination, a thermoplastic resin that is thermodynamically compatible with the acrylic polymer is preferable. For example, a copolymer containing a vinyl cyanide monomer unit and an aromatic vinyl monomer unit, specifically 50 wt.% Of an acrylonitrile-styrene copolymer, a polyvinyl chloride resin, or a methacrylic ester. % Or more of the polymer. In addition, it can be confirmed by measuring the glass transition point of the thermoplastic resin composition obtained by mixing these that the acrylic polymer and the other thermoplastic resin are thermodynamically compatible. it can. Specifically, only one point of the glass transition point measured by the differential scanning calorimeter is observed for the mixture of the lactone ring-containing polymer and the other thermoplastic resin, so that the thermodynamic compatibility is achieved. I can say that.
In addition, the acrylic polymer used in the present invention includes UV absorbers, antioxidants, lubricants and plasticizers, malleability improvers such as rubber particles, mold release agents, and coloring, as long as the object of the present invention is not impaired. An additive such as a colorant such as an inhibitor, a flame retardant, an antistatic agent, and a pigment may be optionally added. However, in light of the characteristics required by the application to be applied, it is necessary to add in a range that does not adversely affect the purpose.
As a method for forming a film, a conventionally known method can be used, and examples thereof include a solution casting method (solution casting method) and a melt extrusion method, and any of them can be employed. However, the melt extrusion method that does not require drying or recovery of the solvent is advantageous in terms of equipment and is preferred in the present invention.
When trying to obtain a film using the solution casting method (solution casting method), stir and mix the thermoplastic resin, which is the main component, and other polymers and other additives, if necessary, in a good solvent. It is possible to obtain a uniform mixed solution, cast onto a support film or drum and pre-dried until it has self-supporting properties, and then peel off from the support film or drum and dry. Solvents used in the solution casting method (solution casting method) include, for example, chlorinated solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof; methanol, ethanol, and isopropanol And alcohol solvents such as n-butanol and 2-butanol; methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, ethyl acetate, and diethyl ether. These solvents may be used alone or in combination of two or more.
Examples of the apparatus for performing the solution casting method (solution casting method) include a drum-type casting machine and a belt-type casting machine.
When trying to obtain a film using the melt extrusion method, a thermoplastic resin from an extruder equipped with a T-type die or the like, or a thermoplastic resin kneaded in advance with other polymers and other additives as necessary Can be made into a film having an arbitrary thickness by extruding by heating and melting and pulling the obtained film with a cooling drum. In the method for producing an acrylic film according to the present invention, the extruder includes a polymer filter between the screw portion and the die, and further, a gas generated along with melt-kneading of the acrylic polymer. It is desirable to have a devolatilizing means for sucking the water.
The melt extrusion temperature for producing the film of the present invention is preferably 150 to 350 ° C, more preferably 200 to 300 ° C.
The acrylic film according to the present invention may be a single layer film or a laminated film, and in the case of a laminated film, a method of discharging using a T-die die after lamination using a pinol or a feed block. A conventionally known method such as a method of stacking and discharging using a multi-manifold type die can be used.
As the dice for producing the film of the present invention, conventionally known dice can be used. For example, a manifold die, a fish tail die, a coat hanger die, or the like can be used. The acrylic polymer discharged from the die can be cooled and solidified on a casting drum to form a film. At this time, a known method of closely contacting the cooling roll with wire pinning, a vacuum chamber or the like may be used together, or a touch roll forming method, specifically, a press roll method, an elastic metal nip roll, a metal endless belt, etc. It may be a method in which an unstretched film is obtained by tightly cooling and solidifying to a cooling medium and rapidly cooling to a glass transition temperature (Tg) or lower.

本発明のフィルムは延伸を行って延伸フィルムとする必要があるが、延伸フィルムを得るための延伸方法としては、装置の導入コストの観点から縦延伸機と横延伸機を連続的に並べて逐次二軸延伸を行う方式が好ましい。縦延伸には、従来公知の任意の延伸方法が採用されてよいが、装置の導入コストの観点、及び熱伝導の観点からロール縦延伸法が好ましい。なお、ロール縦延伸法とは、所定の温度に設定された加熱ロールでフィルムを加熱しながら搬送してフィルム温度を所定の温度まで上昇させ、延伸ロール間で入口側のロール回転数より出口側のロール回転数を大きくすることによって延伸する方法である。   The film of the present invention needs to be stretched to obtain a stretched film. However, as a stretching method for obtaining a stretched film, a longitudinal stretching machine and a lateral stretching machine are successively arranged in order from the viewpoint of the introduction cost of the apparatus. A method of performing axial stretching is preferred. For the longitudinal stretching, any conventionally known stretching method may be employed, but the roll longitudinal stretching method is preferred from the viewpoint of the introduction cost of the apparatus and the viewpoint of heat conduction. Note that the roll longitudinal stretching method means that the film is heated while being heated with a heating roll set at a predetermined temperature to raise the film temperature to a predetermined temperature, and the outlet side from the roll speed on the inlet side between the stretching rolls. It is the method of extending | stretching by enlarging the roll rotation speed of this.

なお、加熱ロールではなくオーブン内で加熱しながら延伸する方法は、上記ロール縦延伸法と区別してオーブン縦延伸法と記載する。
フィルムの延伸温度および延伸倍率は、得られたフィルムの機械的強度および表面性、厚み精度を指標として適宜調整することができるが、このときのフィルム温度は、加熱ロールでフィルムのガラス転移温度をTgとしたときに、Tg−10℃以上、Tg+20℃以下の範囲にまで加熱することが好ましく、さらに延伸区間内に設けた予備加熱装置によってTg以上、Tg+30℃以下の範囲まで加熱することがより好ましい。加熱ロールでのフィルム加熱は、Tg−10℃よりも低い場合にはフィルムの透明性が悪化しやすく、また、極端な場合には、フィルムが裂ける、割れるなどの工程上の問題を引き起こしやすい。Tg+20℃よりも高い場合には、フィルムがロールに粘着するトラブルが起こりやすい。また、予備加熱装置での加熱がTgよりも低い場合には、フィルムにシワが発生しやすく、フィルムの裂けや割れなどの工程上の問題を引き起こしやすく、Tg+30℃よりも高い場合には、得られたフィルムの伸び率や引っ張り強度、可とう性などの力学的性質が改善されず、2次加工性が悪くなる。なお、加熱ロールの本数は5本以上が好ましい。5本よりも少ない場合には加熱効果が少なくなるため、フィルムを十分に暖めることができない。加熱効果を高めるためにロール径を大きくする方法は、加熱によるフィルムの熱膨張を逃がすことができず、シワの発生およびシワ由来の破断が発生しやすくなるため好ましくない。延伸区間内に設けた予備加熱装置としては、従来公知の方法が使用でき、IRヒーター、セラミックヒーター、熱風ヒーターの中から選ばれるいずれかの加熱方法が装置の導入コストの観点から好ましい。
また、縦延伸は、面内位相差R0と厚み位相差Rthのそれぞれの絶対値の比(|Rth|/|R0|)が0.6以上2.0以下となるように縦延伸することが好ましい。0.6よりも小さい場合、一軸延伸性が高いために、この後に施す横延伸工程においてフィルムの縦裂けが発生しやすく、生産の安定性に劣る。また、2.0より大きい場合には、縦延伸におけるネックイン抑制効果が大きくなりすぎ、幅方向の位相差や厚みの均一性に不利となる。より好ましくは0.7以上、1.8以下、更に好ましくは、0.8以上、1.5以下である。
また、入口側のロール(低速ロール)中心と出口側のロール(高速ロール)中心の距離を延伸区間長A、縦延伸前のフィルム幅をBとした場合、A/Bが0.05以上0.5以下であることが好ましい。0.05より小さい場合は、フィルムの幅に対して延伸区間長が短くなりすぎ、延伸ロールの直径を小さくする必要がある。この場合はロールのたわみなど強度が不足するため、均一な延伸を行うことができなくなる。0.5より大きい場合は、縦延伸におけるネックインの影響がフィルムセンター部まで及ぼされるため、幅方向の位相差や厚みの均一性に不利となる。より好ましくは0.1以上0.45以下である。
また、
横延伸は、横延伸用のクリップ走行装置とオーブンとから構成されるテンター横延伸機が好ましく用いられる。クリップ走行装置はフィルムの横端部をクリップで掴んで搬送すると同時にクリップ走行装置のガイドレールを開いて左右2列のクリップ間の距離を広げることによって延伸する。なお、フィルムの流れ方向にもクリップの拡縮機能を持たせた同時二軸延伸機であっても良い。また、オーブンはフィルムを延伸可能な温度まで加熱すると共に、延伸後は必要に応じて熱処理を行い、その後冷却する。いずれの場合においても、フィルムの加熱は、熱可塑性樹脂フィルムのガラス転移温度をTgとしたとき、Tg−10℃以上Tg+50℃以下が好ましく、より好ましくはTg−5℃以上Tg+30℃以下である。
In addition, the method of extending | stretching while heating in oven instead of a heating roll is described with the oven vertical stretching method distinguished from the said roll vertical stretching method.
The stretching temperature and stretching ratio of the film can be adjusted as appropriate using the mechanical strength, surface properties, and thickness accuracy of the obtained film as indices, but the film temperature at this time is the glass transition temperature of the film with a heating roll. When Tg is set, it is preferably heated to a range of Tg-10 ° C. or higher and Tg + 20 ° C. or lower, and further heated to a range of Tg or higher and Tg + 30 ° C. or lower by a preheating device provided in the stretching section. preferable. When the film heating with a heating roll is lower than Tg−10 ° C., the transparency of the film tends to deteriorate, and in the extreme case, the film tends to cause process problems such as tearing or cracking. When it is higher than Tg + 20 ° C., a trouble that the film sticks to the roll is likely to occur. In addition, when the heating in the preheating device is lower than Tg, the film is likely to be wrinkled, causing problems in the process such as tearing and cracking of the film, and when it is higher than Tg + 30 ° C., The mechanical properties such as the elongation rate, tensile strength, and flexibility of the obtained film are not improved, and the secondary workability is deteriorated. The number of heating rolls is preferably 5 or more. When the number is less than 5, the heating effect is reduced, so that the film cannot be sufficiently warmed. A method of increasing the roll diameter in order to enhance the heating effect is not preferable because the thermal expansion of the film due to heating cannot be released and wrinkles and breakage due to wrinkles are likely to occur. As the preheating device provided in the drawing section, a conventionally known method can be used, and any heating method selected from an IR heater, a ceramic heater, and a hot air heater is preferable from the viewpoint of the introduction cost of the device.
In addition, the longitudinal stretching may be performed such that the ratio of the absolute values of the in-plane retardation R0 and the thickness retardation Rth (| Rth | / | R0 |) is 0.6 or more and 2.0 or less. preferable. When it is smaller than 0.6, the uniaxial stretchability is high, so that the film is easily split in the transverse stretching step to be performed later, and the production stability is poor. On the other hand, when the ratio is larger than 2.0, the neck-in suppressing effect in the longitudinal stretching becomes too large, which is disadvantageous for the width direction retardation and thickness uniformity. More preferably, they are 0.7 or more and 1.8 or less, More preferably, they are 0.8 or more and 1.5 or less.
In addition, when the distance between the center of the roll on the inlet side (low speed roll) and the center of the roll on the outlet side (high speed roll) is A, and the film width before longitudinal stretching is B, A / B is 0.05 or more and 0. .5 or less is preferable. If it is less than 0.05, the length of the drawing section becomes too short with respect to the width of the film, and the diameter of the drawing roll needs to be reduced. In this case, since strength such as deflection of the roll is insufficient, uniform stretching cannot be performed. When the ratio is larger than 0.5, the influence of neck-in in the longitudinal stretching is exerted to the film center portion, which is disadvantageous for the retardation in the width direction and the uniformity of the thickness. More preferably, it is 0.1 or more and 0.45 or less.
Also,
For the transverse stretching, a tenter transverse stretching machine constituted by a clip traveling device for transverse stretching and an oven is preferably used. The clip travel device grips and conveys the lateral end portion of the film with the clip, and at the same time opens the guide rail of the clip travel device to extend the distance between the left and right two rows of clips. In addition, the simultaneous biaxial stretching machine which gave the expansion / contraction function of the clip also to the flow direction of the film may be used. The oven heats the film to a temperature at which the film can be stretched, and after the stretching, heat-treats the film as necessary, and then cools it. In any case, the heating of the film is preferably Tg−10 ° C. or higher and Tg + 50 ° C. or lower, more preferably Tg−5 ° C. or higher and Tg + 30 ° C. or lower, when the glass transition temperature of the thermoplastic resin film is Tg.

<測定方法>
本発明における物性の測定は以下の方法で行う。実施例及び比較例においても、同様の方法で行った。
(脱アルコール反応率(ラクトン環化率))
脱アルコール反応率(ラクトン環化率)を、重合で得られた重合体組成からすべての水酸基がメタノールとして脱アルコールした際に起こる重量減少量を基準にし、ダイナミックTG測定において重量減少が始まる前の150℃から重合体の分解が始まる前の300℃までの脱アルコール反応による重量減少から求めた。
すなわち、ラクトン環構造を有した重合体のダイナミックTG測定において150℃から300℃までの間の重量減少率の測定を行い、得られた実測重量減少率を(X)とする。他方、当該重合体の組成から、その重合体組成に含まれる全ての水酸基がラクトン環の形成に関与するためアルコールになり脱アルコールすると仮定した時の理論重量減少率(すなわち、その組成上において100%脱アルコール反応が起きたと仮定して算出した重量減少率)を(Y)とする。なお、理論重量減少率(Y)は、より具体的には、重合体中の脱アルコール反応に関与する構造(水酸基)を有する原料単量体のモル比、すなわち当該重合体組成における前記原料単量体の含有率から算出することができる。これらの値(X、Y)を脱アルコール計算式:
1−(実測重量減少率(X)/理論重量減少率(Y))
に代入してその値を求め、%で表記すると、脱アルコール反応率が得られる。
そして、上記脱アルコール反応率の分だけラクトン環化反応が行われたと仮定して、下記式
ラクトン環の含有割合(重量%)=B×A×MR/Mm
(式中、Bは、ラクトン環化前の重合体における、ラクトン環化に関与する構造(水酸基)を有する原料単量体構造単位の重量含有割合であり、MRは生成するラクトン環構造単位の式量であり、Mmはラクトン環化に関与する構造(水酸基)を有する原料単量体の分子量であり、Aは脱アルコール反応率である)
により、ラクトン環含有割合を算出することができる。
(重量平均分子量)
重合体の重量平均分子量は、GPC(東ソー社製GPCシステム、クロロホルム溶媒)のポリスチレン換算により求めた。
(樹脂およびフィルムの熱分析)
樹脂およびフィルムの熱分析は、試料約10mg、昇温速度10℃/min、窒素フロー50cc/minの条件で、DSC((株)リガク社製、装置名:DSC−8230)を用いて行った。なお、ガラス転移温度(Tg)は、ASTM−D−3418に従い、中点法で求めた。尚、上記ガラス転移温度の測定は、30〜250℃の温度範囲で行った。また、非相溶性混合ポリマーなどのようにガラス転移温度(Tg)が2点以上測定される場合には、それぞれのポリマーにおけるガラス転移温度(Tg)の加重平均を求めて使用した。
(メルトフローレート)
メルトフローレートは、JIS K7210に基づき、試験温度240℃、荷重10kgで測定した。
(フィルムの厚さ)
デジマチックマイクロメーター((株)ミツトヨ製)を用いて測定した。
(フィルム温度)
佐藤計量器製作所製放射温度計、SK−8110を用いてフィルムセンター部分を1点測定した。
(屈折率)
JIS K7142に準拠して、測定波長589nmに対する、23℃での値を屈折計((株)アタゴ社製、装置名:デジタルアッベ屈折計DR−M2)を用いて測定した。
(位相差)
波長589nmにおける、フィルムの面内位相差値(R0)及び厚み方向位相差値(Rth)は、王子計測器社製KOBRA−WRを用いて測定した。なお、厚み方向位相差値(Rth)はアッベ屈折率計で測定したフィルムの平均屈折率、膜厚d、傾斜中心軸として遅相軸、入射角を40°と入力し、面内位相差値(R0)及び厚さ方向位相差値(Rth)、遅相軸を傾斜軸として40°傾斜させて測定した位相差値(R0(40°))、三次元屈折率nx、ny、nzの値を得た後、下記式から求めた。
厚み方向位相差Rth(nm)=d×{(nx+ny)/2−nz}
なお、フィルムの流れ方向の屈折率をnxとしたため、フィルム幅方向に遅相軸が発現した場合のフィルムの面内位相差値(R0)はマイナス表記とした。
また、1cm離れた2点間における面内位相差R0値の差を求める際、幅方向センターから端部へ5mm離れた点と、反対側の端部へ5mm離れた点を測定した。
(折り曲げ試験)
フィルムの折り曲げ試験は、25℃、65%RHの雰囲気下、フィルムを製膜した方向に折り曲げ半径1mmにおいて180°折り曲げた際のフィルムの割れを観察した。試験は2回実施し、2回とも割れなかった場合を「○」、1回割れた場合を「△」、全て割れた場合を「×」として評価した。
<Measurement method>
The physical properties in the present invention are measured by the following method. The same method was used in the examples and comparative examples.
(Dealcoholization reaction rate (lactone cyclization rate))
The dealcoholization reaction rate (lactone cyclization rate) is based on the weight loss that occurs when all hydroxyl groups are dealcoholated as methanol from the polymer composition obtained by polymerization, and before the weight reduction starts in dynamic TG measurement. It calculated | required from the weight reduction by the dealcoholization reaction from 150 degreeC to 300 degreeC before decomposition | disassembly of a polymer starts.
That is, in the dynamic TG measurement of the polymer having a lactone ring structure, the weight reduction rate between 150 ° C. and 300 ° C. is measured, and the obtained actual weight reduction rate is defined as (X). On the other hand, from the composition of the polymer, all the hydroxyl groups contained in the polymer composition are involved in the formation of the lactone ring, so that it becomes an alcohol and is dealcoholized. (Y) is the weight loss rate calculated on the assumption that the% dealcoholization reaction has occurred. The theoretical weight reduction rate (Y) is more specifically the molar ratio of raw material monomers having a structure (hydroxyl group) involved in the dealcoholization reaction in the polymer, that is, the raw material unit in the polymer composition. It can be calculated from the content of the monomer. These values (X, Y) are calculated from the dealcoholization formula:
1- (actual weight reduction rate (X) / theoretical weight reduction rate (Y))
Substituting into, the value is obtained and expressed in% to obtain the dealcoholization reaction rate.
Then, assuming that the lactone cyclization reaction was performed by the amount corresponding to the dealcoholization reaction rate, the content ratio (wt%) of the following formula lactone ring = B × A × MR / Mm
(In the formula, B is the weight content ratio of the raw material monomer structural unit having a structure (hydroxyl group) involved in lactone cyclization in the polymer before lactone cyclization, and MR is the lactone ring structural unit to be generated. Mm is the molecular weight of the raw material monomer having a structure (hydroxyl group) involved in lactone cyclization, and A is the dealcoholization reaction rate)
Thus, the lactone ring content ratio can be calculated.
(Weight average molecular weight)
The weight average molecular weight of the polymer was determined by polystyrene conversion of GPC (GPC system manufactured by Tosoh Corporation, chloroform solvent).
(Thermal analysis of resin and film)
The thermal analysis of the resin and film was performed using DSC (manufactured by Rigaku Corporation, apparatus name: DSC-8230) under the conditions of about 10 mg of sample, a heating rate of 10 ° C./min, and a nitrogen flow of 50 cc / min. . The glass transition temperature (Tg) was determined by the midpoint method according to ASTM-D-3418. In addition, the measurement of the said glass transition temperature was performed in the temperature range of 30-250 degreeC. Further, when two or more glass transition temperatures (Tg) were measured, such as incompatible mixed polymers, a weighted average of glass transition temperatures (Tg) in each polymer was obtained and used.
(Melt flow rate)
The melt flow rate was measured at a test temperature of 240 ° C. and a load of 10 kg based on JIS K7210.
(Film thickness)
Measurement was performed using a Digimatic Micrometer (manufactured by Mitutoyo Corporation).
(Film temperature)
One point of the film center portion was measured using a radiation thermometer, SK-8110, manufactured by Sato Keiki Seisakusho.
(Refractive index)
In accordance with JIS K7142, the value at 23 ° C. with respect to the measurement wavelength of 589 nm was measured using a refractometer (manufactured by Atago Co., Ltd., device name: Digital Abbe refractometer DR-M2).
(Phase difference)
The in-plane retardation value (R0) and thickness direction retardation value (Rth) of the film at a wavelength of 589 nm were measured using KOBRA-WR manufactured by Oji Scientific Instruments. The thickness direction retardation value (Rth) is the average refractive index of the film measured with an Abbe refractometer, the film thickness d, the slow axis as the tilt central axis, and the incident angle of 40 °, and the in-plane retardation value. (R0), thickness direction phase difference value (Rth), phase difference value (R0 (40 °)) measured by tilting the slow axis by 40 °, and values of three-dimensional refractive indexes nx, ny, nz Was obtained from the following formula.
Thickness direction retardation Rth (nm) = d × {(nx + ny) / 2−nz}
Since the refractive index in the flow direction of the film was nx, the in-plane retardation value (R0) of the film when the slow axis was developed in the film width direction was expressed as minus.
Further, when obtaining the difference of the in-plane retardation R0 value between two points separated by 1 cm, a point 5 mm away from the center in the width direction to the end and a point 5 mm away from the opposite end were measured.
(Bending test)
In the film bending test, the film was observed to be cracked when bent at 180 ° in a bending radius of 1 mm in the film forming direction in an atmosphere of 25 ° C. and 65% RH. The test was carried out twice, and the case where both were not cracked was evaluated as “◯”, the case where it was cracked once as “Δ”, and the case where all were cracked as “x”.

以下に、本発明を実施例によってさらに詳述するが、本発明はこれによって限定されるものではない。
[製造例1]
撹拌装置、温度センサー、冷却管、窒素導入管を付した1m2の反応釜に、204kgのメタクリル酸メチル(MMA)、51kgの2−(ヒドロキシメチル)アクリル酸メチル(MHMA)、249kgのトルエンを仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、重合開始剤として281gのターシャリーアミルパーオキシイソノナノエート(アトフィナ吉富製、商品名:ルペロックス570)を添加すると同時に、561gの重合開始剤と5.4kgのトルエンからなる溶液を2時間かけて滴下しながら、還流下(約105〜110℃)で溶液重合を行い、さらに4時間かけて熟成を行った。
得られた重合体溶液に、255gのリン酸ステアリル/リン酸ジステアリル混合物(堺化学製、商品名:Phoslex A−18)を加え、還流下(約90〜110℃)で5時間、環化縮合反応を行った。
次いで、上記環化縮合反応で得られた重合体溶液を、バレル温度250℃、回転数150rpm、減圧度13.3〜400hPa(10〜300mmHg)、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出し機(Φ=42mm、L/D=42)に、樹脂量換算で15kg/時間の処理速度で導入し、該押出し機内で環化縮合反応と脱揮を行い、押出すことにより、透明なペレット(1A)を得た。
得られた樹脂ペレット(1A)の質量平均分子量は132000、ラクトン環含有割合は28.5%であり、ガラス転移温度は129℃であった。
[製造例2]
撹拌装置、温度センサー、冷却管、窒素ガス導入管を備えた容量1m2の反応容器に、メタクリル酸メチル(MMA)150kg、2−(ヒドロキシメチル)アクリル酸メチル(MHMA)75kg、メタクリル酸n−ブチル(BMA)25kg、トルエン250kgを仕込んだ。この反応容器に窒素ガスを導入しながら、105℃まで昇温し、還流したところで、重合開始剤として、t−アミルパーオキシイソノナノエート(アルケマ吉富(株)製、ルペロックス570)0.15kgを添加すると同時に、t−アミルパーオキシイソノナノエート(アルケマ吉富(株)製、ルペロックス570)0.30kgとトルエン3.5kgからなる開始剤溶液を6時間かけて滴下しながら、還流下(約105℃〜111℃)で溶液重合を行い、開始剤溶液の滴下後さらに2時間かけて熟成を行った。
得られた重合体(2A)の重量平均分子量は195000であり、重合反応率は96.2%であった。また、重合体(2A)中のMHMAの構造単位の含有率は、30.2質量%で、MMA構造単位の含有率は、59.9質量%、BMA構造単位の含有率は9.9質量%であった。
得られた重合体溶液に、環化触媒としてリン酸オクチル/リン酸ジオクチル混合物(堺化学社製、Phoslex A−8)0.250kgを加え、還流下、約85〜105℃で2時間、環化縮合反応(重合体を分子内脱アルコール反応させ、重合体分子内にラクトン環構造を形成させる反応)を行った。
次いで、得られた重合体溶液を、熱交換器に通して220℃まで昇温し、バレル温度250℃、回転数170rpm、減圧度13.3hPa〜400hPa(10mmHg〜300mmHg)、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出機(φ=42mm、L/D=42)に、樹脂量換算で、15kg/時間の処理速度で導入し、押出機内で環化縮合反応と脱揮処理を行った。その際、第一フォアベントと第二フォアベントとの中間で、オクチル酸亜鉛(日本化学産業社製、ニッカオクチックス亜鉛18%)9.8質量部、チバ・スペシャリティケミカルズ社製Irganox1010、0.8質量部、旭電化工業社製アデカスタブAO−412S0.8質量部、トルエン88.6質量部からなる溶液を0.46kg/時間の速度で液注した。前記脱揮操作により、透明な樹脂ペレット(2B)を得た。得られた樹脂ペレット(2B)の重量平均分子量は128000であり、ガラス転移温度は133℃、メルトフローレートは12.4g/10分であった。
[製造例3]
撹拌装置、温度センサー、冷却管、窒素導入管を付した反応釜に、MMA40部、MHMA10部、トルエン50部、アデカスタブ2112(ADEKA製)0.025部を仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、開始剤としてターシャリーアミルパーオキシイソノナノエート(アトフィナ吉富製、商品名:ルペロックス570)0.05部を添加すると同時に、ターシャリーアミルパーオキシイソノナノエート0.1部を3時間かけて滴下しながら、約105〜110℃の還流下で溶液重合を行い、さらに4時間かけて熟成を行った。
EXAMPLES The present invention will be described in further detail below with reference to examples, but the present invention is not limited thereto.
[Production Example 1]
A 1 m2 reaction kettle equipped with a stirrer, temperature sensor, cooling pipe, and nitrogen introduction pipe is charged with 204 kg of methyl methacrylate (MMA), 51 kg of methyl 2- (hydroxymethyl) acrylate (MHMA), and 249 kg of toluene. Then, while the temperature was raised to 105 ° C. while refluxing nitrogen and refluxed, 281 g of tertiary amyl peroxyisononanoate (manufactured by Atofina Yoshitomi, trade name: Luperox 570) was added as a polymerization initiator. While a solution comprising a polymerization initiator and 5.4 kg of toluene was added dropwise over 2 hours, solution polymerization was performed under reflux (about 105 to 110 ° C.), followed by further aging for 4 hours.
To the obtained polymer solution, 255 g of stearyl phosphate / distearyl phosphate mixture (manufactured by Sakai Chemicals, trade name: Phoslex A-18) was added and cyclized under reflux (about 90 to 110 ° C.) for 5 hours. A condensation reaction was performed.
Subsequently, the polymer solution obtained by the cyclization condensation reaction was subjected to a vent having a barrel temperature of 250 ° C., a rotation speed of 150 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent of 1 and a forevent of 4 It is introduced into a type screw twin screw extruder (Φ = 42 mm, L / D = 42) at a processing rate of 15 kg / hour in terms of the amount of resin, subjected to cyclization condensation reaction and devolatilization in the extruder, and then extruded. As a result, a transparent pellet (1A) was obtained.
The obtained resin pellet (1A) had a mass average molecular weight of 132,000, a lactone ring content of 28.5%, and a glass transition temperature of 129 ° C.
[Production Example 2]
In a 1 m2 reaction vessel equipped with a stirrer, temperature sensor, cooling pipe, nitrogen gas introduction pipe, 150 kg of methyl methacrylate (MMA), 75 kg of 2- (hydroxymethyl) methyl acrylate (MHMA), n-butyl methacrylate (BMA) 25 kg and 250 kg of toluene were charged. While introducing nitrogen gas into the reaction vessel, the temperature was raised to 105 ° C. and refluxed. As a polymerization initiator, 0.15 kg of t-amyl peroxyisononanoate (manufactured by Arkema Yoshitomi Corp., Luperox 570) was added. At the same time as the addition, an initiator solution consisting of 0.30 kg of t-amyl peroxyisononanoate (manufactured by Arkema Yoshitomi Corp., Luperox 570) and 3.5 kg of toluene was added dropwise over 6 hours while refluxing (about 105 Solution polymerization was carried out at a temperature of from C. to 111.degree.
The weight average molecular weight of the obtained polymer (2A) was 195000, and the polymerization reaction rate was 96.2%. Further, the content of the structural unit of MHMA in the polymer (2A) is 30.2% by mass, the content of the MMA structural unit is 59.9% by mass, and the content of the BMA structural unit is 9.9% by mass. %Met.
To the obtained polymer solution, 0.250 kg of an octyl phosphate / dioctyl phosphate mixture (manufactured by Sakai Chemical Co., Phoslex A-8) is added as a cyclization catalyst, and the mixture is refluxed at about 85 to 105 ° C. for 2 hours. The polycondensation reaction (reaction in which the polymer is subjected to intramolecular dealcoholization reaction to form a lactone ring structure in the polymer molecule) was performed.
Next, the obtained polymer solution was heated to 220 ° C. through a heat exchanger, barrel temperature 250 ° C., rotation speed 170 rpm, degree of vacuum 13.3 hPa to 400 hPa (10 mmHg to 300 mmHg), one rear vent, Introduced into a vent type screw twin screw extruder (φ = 42 mm, L / D = 42) with a fore vent number of 4 at a processing rate of 15 kg / hour in terms of resin amount, and the cyclocondensation reaction and desorption were carried out in the extruder. Volatile treatment was performed. At that time, 9.8 parts by mass of zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., Nikka Octix Zinc 18%), Irganox 1010, C.I. A solution consisting of 8 parts by mass, 0.8 parts by mass of Adeka Stub AO-412S manufactured by Asahi Denka Kogyo Co., Ltd., and 88.6 parts by mass of toluene was poured at a rate of 0.46 kg / hour. By the devolatilization operation, a transparent resin pellet (2B) was obtained. The obtained resin pellet (2B) had a weight average molecular weight of 128,000, a glass transition temperature of 133 ° C., and a melt flow rate of 12.4 g / 10 min.
[Production Example 3]
MMA 40 parts, MHMA 10 parts, toluene 50 parts, ADK STAB 2112 (manufactured by ADEKA) 0.025 part was charged into a reaction kettle equipped with a stirrer, temperature sensor, cooling pipe, and nitrogen introduction pipe, and nitrogen was passed through this at 105 ° C. When the mixture was heated to reflux and refluxed, 0.05 part of tertiary amyl peroxyisonononanoate (manufactured by Atofina Yoshitomi, trade name: Luperox 570) was added as an initiator, and at the same time, tertiary amyl peroxyisonononate 0. While dropping 1 part over 3 hours, solution polymerization was performed under reflux at about 105 to 110 ° C., and further aging was performed for 4 hours.

得られた重合体溶液に、リン酸2−エチルヘキシル(堺化学製、商品名:Phoslex A−8)0.05部を加え、90〜105℃の還流下で2時間、環化縮合反応を行った。次いで、得られた重合体溶液を熱交換器に通して240℃まで昇温し、バレル温度240℃、減圧度13.3〜400hPa(10〜300mmHg)、リアベント数1個およびフォアベント数4個(上流側から第1、第2、第3、第4ベントと称する)、第3ベントと第4ベントとの間にサイドフィーダーが設けられており、先端部にリーフディスク型のポリマーフィルター(濾過精度5μm)が配置されたベントタイプスクリュー二軸押出機(L/D=52)に、樹脂量換算で70部/時の処理速度で導入し、脱揮を行った。その際、別途準備しておいた酸化防止剤/環化触媒失活剤の混合溶液を1.05部/時の投入速度で第1ベントの後ろから、イオン交換水を1.05部/時の投入速度で第2および第3ベントの後ろから、それぞれ投入した。酸化防止剤/環化触媒失活剤の混合溶液は、酸化防止剤/環化触媒失活剤の混合溶液には、5部の酸化防止剤(チバスペシャリティケミカルズ社製、イルガノックス1010)と、失活剤として55部のオクチル酸亜鉛(日本化学産業製、ニッカオクチクス亜鉛3.6%)とを、トルエン45部に溶解させた溶液を用いた。また、上記サイドフィーダーから、スチレン−アクリロニトリル共重合体(スチレン/アクリロニトリルの比率は73質量%/27質量%、重量平均分子量22万)のペレットを投入速度30部/時で投入した。   To the obtained polymer solution, 0.05 part of 2-ethylhexyl phosphate (manufactured by Sakai Chemicals, trade name: Phoslex A-8) was added, and a cyclization condensation reaction was performed at 90 to 105 ° C. under reflux for 2 hours. It was. Next, the obtained polymer solution was heated to 240 ° C. through a heat exchanger, the barrel temperature was 240 ° C., the degree of vacuum was 13.3 to 400 hPa (10 to 300 mmHg), the rear vent number was 1 and the fore vent number was 4 A side feeder is provided between the third vent and the fourth vent (referred to as the first, second, third, and fourth vents from the upstream side), and a leaf disk type polymer filter (filtered at the tip) It was introduced into a vent type screw twin screw extruder (L / D = 52) with a precision of 5 μm) at a processing rate of 70 parts / hour in terms of resin amount, and devolatilization was performed. At that time, a separately prepared mixed solution of antioxidant / cyclization catalyst deactivator was added at a rate of 1.05 parts / hour from the back of the first vent, and 1.05 parts / hour of ion-exchanged water. Were fed from behind the second and third vents, respectively. Antioxidant / cyclization catalyst deactivator mixed solution, antioxidant / cyclization catalyst deactivator mixed solution, 5 parts of antioxidant (manufactured by Ciba Specialty Chemicals, Irganox 1010), A solution in which 55 parts of zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., 3.6% of Nikka octix zinc) was dissolved in 45 parts of toluene was used as a quencher. Moreover, pellets of a styrene-acrylonitrile copolymer (the ratio of styrene / acrylonitrile is 73% by mass / 27% by mass, weight average molecular weight 220,000) were charged from the side feeder at a charging rate of 30 parts / hour.

上記脱揮操作により、負の固有複屈折を有する熱可塑性樹脂組成物(3A)のペレットを得た。得られた樹脂組成物の重量平均分子量は146000、ガラス転移温度は122℃、メルトフローレートは13.6g/10分であった。
(実施例1)
製造例1で得られた樹脂ペレット(1A)を温度275℃で溶融押出して厚み165μmの未延伸フィルムを成膜し、そのまま連続的に7本の加熱ロールによってフィルム温度が130℃になるまで予備加熱した後に、IRヒーターで加熱することによってフィルム温度140℃として以下の条件で縦方向に2.0倍に延伸を行った。
By the devolatilization operation, a pellet of the thermoplastic resin composition (3A) having negative intrinsic birefringence was obtained. The obtained resin composition had a weight average molecular weight of 146000, a glass transition temperature of 122 ° C., and a melt flow rate of 13.6 g / 10 minutes.
Example 1
The resin pellet (1A) obtained in Production Example 1 was melt-extruded at a temperature of 275 ° C. to form an unstretched film having a thickness of 165 μm, which was continuously maintained until the film temperature reached 130 ° C. by seven heating rolls. After heating, the film was heated by an IR heater to be stretched 2.0 times in the machine direction at a film temperature of 140 ° C. under the following conditions.

縦延伸方法 ・・・ ロール縦延伸法
延伸間距離A ・・・ 195mm
延伸前フィルム幅B・・・ 530mm
さらに連続的に、得られた縦延伸フィルムの両端部から20mmの位置を2インチのクリップで掴みテンターへ供給し、145℃で2.0倍に延伸を行った。この後更に連続的にシアーカッターで幅700mmにトリミングした後、ポリエチレン製の保護フィルムを貼り付け、巻取機で巻取った。途中でフィルムが破断することもなく、連続して500mの二軸延伸フィルムを得た。得られたフィルム(1AF−2)の特性は次の通りであった。
厚み(μm) :40
面内位相差R0(nm) :3.0
厚み位相差Rth(nm) :27.0
折り曲げ試験 :○
なお、縦延伸後のフィルム(1AF−1)を取り出して測定した特性は以下の通りであった。
厚み(μm) :82
面内位相差R0(nm) :59.1
厚み位相差Rth(nm) :53.8
(実施例2)
製造例2で得られた樹脂ペレット(2B)を温度275℃で溶融押出して厚み300μmの未延伸フィルムを成膜し、そのまま連続的に7本の加熱ロールによってフィルム温度が127℃になるまで予備加熱した後に、IRヒーターで加熱することによってフィルム温度140℃として以下の条件で縦方向に2.0倍に延伸を行った。
Longitudinal stretching method ... Roll longitudinal stretching method Distance between stretches A ... 195mm
Film width B before stretching 530mm
Furthermore, the position of 20 mm from both ends of the obtained longitudinally stretched film was continuously gripped with a 2 inch clip and supplied to the tenter, and stretched 2.0 times at 145 ° C. Thereafter, after continuously trimming to 700 mm in width with a shear cutter, a protective film made of polyethylene was pasted and wound up with a winder. A biaxially stretched film of 500 m was obtained continuously without breaking the film in the middle. The characteristics of the obtained film (1AF-2) were as follows.
Thickness (μm): 40
In-plane retardation R0 (nm): 3.0
Thickness retardation Rth (nm): 27.0
Bending test: ○
In addition, the characteristic which took out and measured the film (1AF-1) after longitudinal stretch was as follows.
Thickness (μm): 82
In-plane retardation R0 (nm): 59.1
Thickness retardation Rth (nm): 53.8
(Example 2)
The resin pellet (2B) obtained in Production Example 2 was melt-extruded at a temperature of 275 ° C. to form an unstretched film having a thickness of 300 μm, and the film was preliminarily maintained as it was by using seven heating rolls until the film temperature reached 127 ° C. After heating, the film was heated by an IR heater to be stretched 2.0 times in the machine direction at a film temperature of 140 ° C. under the following conditions.

縦延伸方法 ・・・ ロール縦延伸法
延伸間距離A ・・・ 195mm
延伸前フィルム幅B・・・ 530mm
さらに連続的に、得られた縦延伸フィルムの両端部から20mmの位置を2インチのクリップで掴みテンターへ供給し、145℃で2.5倍に延伸を行った。この後更に連続的にシアーカッターで幅700mmにトリミングした後、ポリエチレン製の保護フィルムを貼り付け、巻取機で巻取った。途中でフィルムが破断することもなく、連続して500mの二軸延伸フィルムを得た。得られたフィルム(2BF−2)の特性は次の通りであった。
厚み(μm) :45
面内位相差R0(nm) :50
厚み位相差Rth(nm) :125
折り曲げ試験 :○
なお、縦延伸後のフィルム(2BF−1)を取り出して測定した特性は以下の通りであった。
厚み(μm) :110
面内位相差R0(nm) :250
厚み位相差Rth(nm) :200
(実施例3)
製造例3で得られた樹脂ペレット(3A)を温度275℃で溶融押出して厚み226μmの未延伸フィルムを成膜し、そのまま連続的に7本の加熱ロールによってフィルム温度が125℃になるまで予備加熱した後に、IRヒーターで加熱することによってフィルム温度135℃として以下の条件で縦方向に2.0倍に延伸を行った。
Longitudinal stretching method: Roll longitudinal stretching method Stretching distance A: 195 mm
Film width B before stretching 530mm
Further, the position of 20 mm from both ends of the obtained longitudinally stretched film was continuously gripped with a 2 inch clip and supplied to the tenter, and stretched 2.5 times at 145 ° C. Thereafter, after continuously trimming to 700 mm in width with a shear cutter, a protective film made of polyethylene was pasted and wound up with a winder. A biaxially stretched film of 500 m was obtained continuously without breaking the film in the middle. The characteristics of the obtained film (2BF-2) were as follows.
Thickness (μm): 45
In-plane retardation R0 (nm): 50
Thickness retardation Rth (nm): 125
Bending test: ○
In addition, the characteristic which took out and measured the film (2BF-1) after longitudinal stretch was as follows.
Thickness (μm): 110
In-plane retardation R0 (nm): 250
Thickness retardation Rth (nm): 200
(Example 3)
The resin pellet (3A) obtained in Production Example 3 was melt-extruded at a temperature of 275 ° C. to form a non-stretched film having a thickness of 226 μm, and the film was preliminarily kept as it was by using seven heating rolls until the film temperature reached 125 ° C. After heating, the film was heated with an IR heater to a film temperature of 135 ° C. and stretched 2.0 times in the machine direction under the following conditions.

縦延伸方法 ・・・ ロール縦延伸法
延伸間距離A ・・・ 195mm
延伸前フィルム幅B・・・ 530mm
さらに連続的に、得られた縦延伸フィルムの両端部から20mmの位置を2インチのクリップで掴みテンターへ供給し、128℃で2.3倍に延伸を行った。この後更に連続的にシアーカッターで幅700mmにトリミングした後、ポリエチレン製の保護フィルムを貼り付け、巻取機で巻取った。途中でフィルムが破断することもなく、連続して500mの二軸延伸フィルムを得た。得られたフィルム(3AF−2)の特性は次の通りであった。
厚み(μm) :70
面内位相差R0(nm) :69
厚み位相差Rth(nm) :−131
折り曲げ試験 :○
なお、縦延伸後のフィルム(3AF−1)を取り出して測定した特性は以下の通りであった。
厚み(μm) :160
面内位相差R0(nm) :−155
厚み位相差Rth(nm) :−124
(比較例1)
製造例2で得られた樹脂ペレット(2B)を温度275℃で溶融押出して厚み240μmの未延伸フィルムを成膜し、そのまま連続的に140℃のオーブン内で1.8倍に延伸した。
Longitudinal stretching method: Roll longitudinal stretching method Stretching distance A: 195 mm
Film width B before stretching 530mm
Furthermore, the position of 20 mm from both ends of the obtained longitudinally stretched film was continuously gripped with a 2 inch clip, supplied to a tenter, and stretched 2.3 times at 128 ° C. Thereafter, after continuously trimming to 700 mm in width with a shear cutter, a protective film made of polyethylene was pasted and wound up with a winder. A biaxially stretched film of 500 m was obtained continuously without breaking the film in the middle. The characteristics of the obtained film (3AF-2) were as follows.
Thickness (μm): 70
In-plane retardation R0 (nm): 69
Thickness retardation Rth (nm): −131
Bending test: ○
In addition, the characteristic which took out and measured the film (3AF-1) after longitudinal stretch was as follows.
Thickness (μm): 160
In-plane retardation R0 (nm): -155
Thickness retardation Rth (nm): -124
(Comparative Example 1)
The resin pellet (2B) obtained in Production Example 2 was melt extruded at a temperature of 275 ° C. to form a 240 μm-thick unstretched film, which was continuously stretched 1.8 times in an oven at 140 ° C. as it was.

縦延伸方法 ・・・ オーブン縦延伸法
延伸間距離A ・・・ 8000mm
延伸前フィルム幅B・・・ 530mm
得られたフィルム(2BF−3)の特性は以下の通りであった。
厚み(μm) :180
面内位相差R0(nm) :210
厚み位相差Rth(nm) :105
次に、得られたフィルム(2BF−3)を横延伸すべくテンターへの挿入を試みたが、フィルムの縦裂けによって横延伸することができなかった。
(比較例2)
ロール縦延伸における延伸間距離Aを270mmとした以外は実施例2と同じ方法で製膜・延伸を行ったが、ネックインによる幅収縮によってフィルム端部からシワが発生し、このシワ由来のフィルム破断が多発し安定な延伸が行えなかった。なお、得られたフィルム(2BF−4)の特性は以下の通りであった。
厚み(μm) :120
面内位相差R0(nm) :230
厚み位相差Rth(nm) :135
Longitudinal stretching method ... Oven longitudinal stretching method Distance between stretching A ... 8000mm
Film width B before stretching 530mm
The characteristics of the obtained film (2BF-3) were as follows.
Thickness (μm): 180
In-plane retardation R0 (nm): 210
Thickness retardation Rth (nm): 105
Next, an attempt was made to insert the obtained film (2BF-3) into a tenter in order to transversely stretch, but the film could not be laterally stretched due to the longitudinal tearing of the film.
(Comparative Example 2)
The film was formed and stretched in the same manner as in Example 2 except that the distance A between the rolls in the longitudinal stretching was 270 mm. However, wrinkles were generated from the end of the film due to the width shrinkage due to neck-in, and this wrinkle-derived film Breaking occurred frequently and stable stretching could not be performed. In addition, the characteristic of the obtained film (2BF-4) was as follows.
Thickness (μm): 120
In-plane retardation R0 (nm): 230
Thickness retardation Rth (nm): 135

本発明のフィルムの製法によると、一般的に可撓性が低いとされているアクリル系重合体を、光学特性に優れる位相差フィルムとしてフィルム破断させることなく長時間安定的に製膜することができるようになる。本発明の製造方法により得られる延伸フィルムは、各種画像表示装置の光学フィルム、特に位相差フィルムとして好適に用いることができる。 According to the film production method of the present invention, it is possible to stably form an acrylic polymer, which is generally considered to have low flexibility, as a retardation film having excellent optical properties without breaking the film for a long time. become able to. The stretched film obtained by the production method of the present invention can be suitably used as an optical film for various image display devices, particularly as a retardation film.

Claims (5)

アクリル系重合体からなるフィルムを、フィルムの流れ方向に縦延伸した後にフィルムの幅方向に横延伸してなる位相差フィルムの製造方法において、面内位相差R0と厚み位相差Rthのそれぞれの絶対値の比(|Rth|/|R0|)が0.6以上2.0以下となるように縦延伸した後に、フィルムの幅方向に横延伸することを特徴とする、逐次二軸延伸位相差フィルムの製造方法。
In the method for producing a retardation film obtained by longitudinally stretching a film made of an acrylic polymer in the film flow direction and then transversely stretching in the film width direction, each of the in-plane retardation R0 and the thickness retardation Rth is absolute. A sequential biaxially stretched phase difference characterized in that the film is stretched longitudinally so that the ratio of values (| Rth | / | R0 |) is 0.6 or more and 2.0 or less and then transversely stretched in the width direction of the film. A method for producing a film.
前記縦延伸工程において、面内位相差R0が50〜500nmになるように延伸を行うことを特徴とする、請求項1に記載の位相差フィルムの製造方法。
The method for producing a retardation film according to claim 1, wherein in the longitudinal stretching step, stretching is performed so that an in-plane retardation R 0 is 50 to 500 nm.
前記縦延伸工程において、入口側のロール中心と出口側のロール中心の距離を延伸区間長A、縦延伸前のフィルム幅をBとしたとき、A/Bが0.05以上0.5以下であることを特徴とする、請求項1、または2のいずれかに記載の位相差フィルムの製造方法。
In the longitudinal stretching step, when the distance between the roll center on the inlet side and the roll center on the outlet side is the stretch section length A and the film width before the longitudinal stretch is B, A / B is 0.05 or more and 0.5 or less. The method for producing a retardation film according to claim 1, wherein the retardation film is provided.
前記縦延伸工程において、少なくとも5本以上の熱ロールとの接触によってフィルムを加熱した後に縦延伸を行うことを特徴とする、請求項1から3のいずれかに記載の位相差フィルムの製造方法。
4. The method for producing a retardation film according to claim 1, wherein in the longitudinal stretching step, the film is stretched after being heated by contact with at least 5 hot rolls. 5.
前記縦延伸工程において、IRヒーター、セラミックヒーター、熱風ヒーターの中から選ばれるいずれかの加熱方法を併用することを特徴とする、請求項4に記載の位相差フィルムの製造方法。 5. The method for producing a retardation film according to claim 4, wherein in the longitudinal stretching step, any one heating method selected from an IR heater, a ceramic heater, and a hot air heater is used in combination.
JP2009266949A 2009-04-23 2009-11-25 Method for producing retardation film Pending JP2010271690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009266949A JP2010271690A (en) 2009-04-23 2009-11-25 Method for producing retardation film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009104581 2009-04-23
JP2009266949A JP2010271690A (en) 2009-04-23 2009-11-25 Method for producing retardation film

Publications (1)

Publication Number Publication Date
JP2010271690A true JP2010271690A (en) 2010-12-02

Family

ID=43419728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009266949A Pending JP2010271690A (en) 2009-04-23 2009-11-25 Method for producing retardation film

Country Status (1)

Country Link
JP (1) JP2010271690A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148848A (en) * 2012-01-23 2013-08-01 Konica Minolta Inc Optical film and manufacturing method of the same, and polarizing plate using the same
KR20160113660A (en) 2014-02-27 2016-09-30 코니카 미놀타 가부시키가이샤 Polarizer-protecting film, manufacturing method therefor, polarizer, and liquid-crystal display
WO2016158968A1 (en) * 2015-03-30 2016-10-06 株式会社カネカ Method for producing optical film, and optical film

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230137A (en) * 1996-02-23 1997-09-05 Sekisui Chem Co Ltd Production of phase difference film
JP2002090945A (en) * 2000-09-18 2002-03-27 Fuji Photo Film Co Ltd Biaxially stretched polyester film
JP2004077684A (en) * 2002-08-14 2004-03-11 Teijin Chem Ltd Method and device for manufacturing phase difference film
JP2005330411A (en) * 2004-05-21 2005-12-02 Fuji Photo Film Co Ltd Cellulose acylate film and its manufacturing method
JP2006130884A (en) * 2004-11-09 2006-05-25 Kaneka Corp Manufacturing method of optical film
JP2007009182A (en) * 2005-05-11 2007-01-18 Kaneka Corp Resin composition, formed body, film and method for producing the same
WO2007061041A1 (en) * 2005-11-28 2007-05-31 Asahi Kasei Chemicals Corporation Optical film
JP2008185726A (en) * 2007-01-29 2008-08-14 Fujifilm Corp Method for manufacturing retardation film and retardation film manufactured by method
JP2008216586A (en) * 2007-03-02 2008-09-18 Asahi Kasei Chemicals Corp Optical film excellent in mechanical property and thermal property
JP2008262180A (en) * 2007-03-20 2008-10-30 Asahi Kasei Chemicals Corp Resin composition for optical material
JP2008299096A (en) * 2007-05-31 2008-12-11 Nippon Shokubai Co Ltd Polarizer protective film, polarizing plate, and liquid crystal display device
JP2009051950A (en) * 2007-08-27 2009-03-12 Nippon Shokubai Co Ltd Film
JP2009079097A (en) * 2007-09-25 2009-04-16 Nippon Zeon Co Ltd Hydrogenated product of alicyclic structure-containing ring-opened polymer and its use

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230137A (en) * 1996-02-23 1997-09-05 Sekisui Chem Co Ltd Production of phase difference film
JP2002090945A (en) * 2000-09-18 2002-03-27 Fuji Photo Film Co Ltd Biaxially stretched polyester film
JP2004077684A (en) * 2002-08-14 2004-03-11 Teijin Chem Ltd Method and device for manufacturing phase difference film
JP2005330411A (en) * 2004-05-21 2005-12-02 Fuji Photo Film Co Ltd Cellulose acylate film and its manufacturing method
JP2006130884A (en) * 2004-11-09 2006-05-25 Kaneka Corp Manufacturing method of optical film
JP2007009182A (en) * 2005-05-11 2007-01-18 Kaneka Corp Resin composition, formed body, film and method for producing the same
WO2007061041A1 (en) * 2005-11-28 2007-05-31 Asahi Kasei Chemicals Corporation Optical film
JP2008158534A (en) * 2005-11-28 2008-07-10 Asahi Kasei Chemicals Corp Optical film
JP2008185726A (en) * 2007-01-29 2008-08-14 Fujifilm Corp Method for manufacturing retardation film and retardation film manufactured by method
JP2008216586A (en) * 2007-03-02 2008-09-18 Asahi Kasei Chemicals Corp Optical film excellent in mechanical property and thermal property
JP2008262180A (en) * 2007-03-20 2008-10-30 Asahi Kasei Chemicals Corp Resin composition for optical material
JP2008299096A (en) * 2007-05-31 2008-12-11 Nippon Shokubai Co Ltd Polarizer protective film, polarizing plate, and liquid crystal display device
JP2009051950A (en) * 2007-08-27 2009-03-12 Nippon Shokubai Co Ltd Film
JP2009079097A (en) * 2007-09-25 2009-04-16 Nippon Zeon Co Ltd Hydrogenated product of alicyclic structure-containing ring-opened polymer and its use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148848A (en) * 2012-01-23 2013-08-01 Konica Minolta Inc Optical film and manufacturing method of the same, and polarizing plate using the same
KR20160113660A (en) 2014-02-27 2016-09-30 코니카 미놀타 가부시키가이샤 Polarizer-protecting film, manufacturing method therefor, polarizer, and liquid-crystal display
WO2016158968A1 (en) * 2015-03-30 2016-10-06 株式会社カネカ Method for producing optical film, and optical film

Similar Documents

Publication Publication Date Title
JP5377242B2 (en) Method for producing retardation film
JP5019736B2 (en) Acrylic transparency film or sheet
JP6151423B1 (en) Methacrylic resin composition, optical film, and optical component
JP2006171464A (en) Optical film
US20190367721A1 (en) Acid-functionalized copolymers of methyl methacrylate and acrylic resin compositions based thereon
JP4432513B2 (en) Optical film resin composition and optical film
JP2020509115A (en) Transparent film based on resin component with high glass transition temperature
JP5580643B2 (en) Thermoplastic resin composition having negative intrinsic birefringence, retardation film and image display device
JP2010054750A (en) Method for manufacturing retardation film
JP2010271690A (en) Method for producing retardation film
JP2011137910A (en) Method for producing retardation film
JP5433328B2 (en) Retardation film
JP2013195939A (en) Method of manufacturing retardation film
JP2012163931A (en) Method for manufacturing retardation film
JP2012096461A (en) Method of manufacturing optical film
JP6110184B2 (en) Biaxially stretched film, polarizing plate, image display device, and method for producing biaxially stretched film
JP6151422B1 (en) Methacrylic resin composition and optical component
JP2009199044A (en) Retardation film
JP5308891B2 (en) Acrylic polymer, method for producing the same, acrylic resin composition, retardation film, and image display device
JP2014083703A (en) Method for producing optical film
JP2008286859A (en) Optical film and method for manufacturing the same, retardation plate, elliptically polarizing plate and image display device
TW202231746A (en) Optical films based on styrenic fluoropolymer and acrylic copolymer
JP2014191175A (en) Phase difference film and image display device
JP5637823B2 (en) Method for producing retardation film
JP2014046464A (en) Production method of stretched resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527