JP2010270246A - Polyimide film - Google Patents

Polyimide film Download PDF

Info

Publication number
JP2010270246A
JP2010270246A JP2009124088A JP2009124088A JP2010270246A JP 2010270246 A JP2010270246 A JP 2010270246A JP 2009124088 A JP2009124088 A JP 2009124088A JP 2009124088 A JP2009124088 A JP 2009124088A JP 2010270246 A JP2010270246 A JP 2010270246A
Authority
JP
Japan
Prior art keywords
film
particle size
polyimide film
average
silica particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009124088A
Other languages
Japanese (ja)
Inventor
Takashi Urabe
高志 占部
Nagayasu Kaneshiro
永泰 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2009124088A priority Critical patent/JP2010270246A/en
Publication of JP2010270246A publication Critical patent/JP2010270246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyimide film which has good slidability and surface characteristic and is suitable for use in high density wiring boards. <P>SOLUTION: The polyimide film includes 0.01-0.08 wt.% of spherical silica particles having an average particle size of 0.2-0.7 μm per the weight of the resin and a particle size distribution of within ±15% of the average particle size and has a number of protrusions originated from silica particles on the surface of 0.1-1.5×10<SP>6</SP>per 1 cm<SP>2</SP>. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高精細化が要求されるFPC、COF、TAB等の高密度配線板用途に好適に使用できるポリイミドフィルムに関する。   The present invention relates to a polyimide film that can be suitably used for high-density wiring board applications such as FPC, COF, and TAB requiring high definition.

ポリイミドフィルムは、耐熱性、電気絶縁性、機械的強度に優れていることから、Flexible Printed Circuits(FPC)やChip On Film(COF)、Tape Automated Bonding(TAB)等の金属積層板用ベースフィルムとして利用されている。   Since polyimide film is excellent in heat resistance, electrical insulation, and mechanical strength, it is used as a base film for metal laminates such as Flexible Printed Circuits (FPC), Chip On Film (COF), and Tape Automated Bonding (TAB). It's being used.

近年、電子機器の小型薄型化、軽量化に伴い、フレキシブル配線板の高密度化が進んでおり、フィルム表面性に対する要求が厳しくなっている。その為、フィルム表面に数um〜数十umの突起が存在すると、パターン形成後に配線の剥離や断線といった不具合が発生し、外観検査時にNGとなり収率を低下させる。   In recent years, as electronic devices have become smaller and thinner and lighter, flexible wiring boards have been increased in density, and the demand for film surface properties has become stricter. Therefore, if projections of several um to several tens of um are present on the film surface, problems such as peeling or disconnection of wiring occur after pattern formation, resulting in NG during appearance inspection and lowering the yield.

一方、フィルムに滑剤として無機粒子を添加しているが、FPCの高密度化に適した表面性と十分な滑り性を両立させる必要がある。滑り性が十分でないと、ロール・ツー・ロールでのフィルム搬送時にシワや傷の発生や、フィルムロールでの巻ズレ加工不良が発生する。   On the other hand, although inorganic particles are added as a lubricant to the film, it is necessary to achieve both a surface property suitable for increasing the density of FPC and a sufficient slip property. If the slipperiness is not sufficient, wrinkles and scratches will occur during roll-to-roll film transport, and winding misalignment processing will fail on the film roll.

フィラーの平均粒子径を小さくすることで、高密度配線板用ベースフィルムとして好適なフィルムの表面性を得るという試みがなされている(特許文献1、2参照)。   Attempts have been made to obtain a surface property of a film suitable as a base film for a high-density wiring board by reducing the average particle diameter of the filler (see Patent Documents 1 and 2).

特開2004−217907号公報JP 2004-217907 A 特開2007−90770号公報JP 2007-90770 A

本発明は、シリカ粒子径及び分布密度をコントロールすることにより、表面性、滑り性の良好なポリイミドフィルムを得ることを目的とする。   An object of the present invention is to obtain a polyimide film having good surface properties and slipperiness by controlling the silica particle diameter and distribution density.

本発明者らは、鋭意検討した結果、特定の粒子径及び粒度分布を有する球状シリカ粒子を特定量含有し、かつ、フィルム表面のシリカ粒子由来の突起数が特定の範囲であるポリイミドフィルムは、表面性、滑り性、フィルム外観、フィルムロールの巻姿が良好であることを見出し、本発明をするに至った。   As a result of intensive studies, the present inventors have found that a polyimide film containing a specific amount of spherical silica particles having a specific particle size and particle size distribution, and the number of protrusions derived from silica particles on the film surface is in a specific range, The present inventors have found that the surface property, the slipperiness, the film appearance, and the roll shape of the film roll are good, and have reached the present invention.

すなわち、本発明は、平均粒子径が0.2〜0.7μmであり粒度分布が平均粒子径の±15%以内である球状シリカ粒子を樹脂重量当たり0.01〜0.08wt%含み、フィルム表面のフィラー由来突起数が1cm2当り0.1〜1.5×106個であることを特徴とするポリイミドフィルムに関する。また、フィルムの平均面粗さ(Ra)が1〜5nm、自乗平均面粗さ(RMS)が1〜10nm、10点平均粗さ(Rz)が50〜300nmであることが好ましく、フィルム同士の静摩擦係数が0.5〜2.0、動摩擦係数が0.4〜1.0であることが好ましい。またフィルム厚みが5〜75μmであることが好ましい。 That is, the present invention includes 0.01 to 0.08 wt% of spherical silica particles having an average particle diameter of 0.2 to 0.7 μm and a particle size distribution within ± 15% of the average particle diameter, The present invention relates to a polyimide film characterized in that the number of protrusions derived from filler on the surface is 0.1 to 1.5 × 10 6 per cm 2 . Moreover, it is preferable that the average surface roughness (Ra) of a film is 1 to 5 nm, the root mean square surface roughness (RMS) is 1 to 10 nm, and the 10-point average roughness (Rz) is 50 to 300 nm. The static friction coefficient is preferably 0.5 to 2.0 and the dynamic friction coefficient is preferably 0.4 to 1.0. Moreover, it is preferable that film thickness is 5-75 micrometers.

本発明により、滑り性、表面性が良好で、高密度配線板用途に適したポリイミドフィルムを得ることができる。   According to the present invention, it is possible to obtain a polyimide film having good sliding properties and surface properties and suitable for high-density wiring board applications.

本発明のポリイミドフィルムは、平均粒子径が0.2〜0.7μmであり粒度分布が平均粒子径の±15%以内である球状シリカ粒子を樹脂重量当たり0.01〜0.08wt%含み、フィルム表面のシリカ粒子由来突起数が1cm2当り0.1〜1.5×106個であることを特徴とするポリイミドフィルムである。 The polyimide film of the present invention contains 0.01 to 0.08 wt% of spherical silica particles having an average particle diameter of 0.2 to 0.7 μm and a particle size distribution within ± 15% of the average particle diameter, The number of protrusions derived from silica particles on the film surface is 0.1 to 1.5 × 10 6 per 1 cm 2 .

本発明は、ポリイミドフィルムに添加するシリカ粒子が球形であり、平均粒子径が0.2〜0.7μm、粒度分布が平均粒子径の±15%以内である粒子を用い、樹脂重量当たりの添加量を0.01〜0.08wt%と規定することにより、得られるフィルムの静摩擦係数が0.5〜2.0、動摩擦係数が0.4〜1.0、平均面粗さ(Ra)が1〜5nmであるポリイミドフィルムが得られる。その結果、加工性が好適な高密度配線板用ポリイミドフィルムを得ることができる。   In the present invention, the silica particles added to the polyimide film are spherical, the average particle diameter is 0.2 to 0.7 μm, and the particle size distribution is within ± 15% of the average particle diameter. By defining the amount as 0.01 to 0.08 wt%, the resulting film has a static friction coefficient of 0.5 to 2.0, a dynamic friction coefficient of 0.4 to 1.0, and an average surface roughness (Ra). A polyimide film having a thickness of 1 to 5 nm is obtained. As a result, it is possible to obtain a polyimide film for a high-density wiring board with favorable workability.

本発明に用いるシリカ粒子の平均粒子径は、0.2〜0.7μm、好ましくは0.3〜0.5μmである。粒子径をこの範囲にすることにより、フィルム表面の突起径を1μm以下に抑えることができる。また、シリカを溶剤と混合した後の分散液での安定性、分散性・再分散性がよい。即ち、スラリー中でシリカ粒子が沈降しにくく、沈降したとしても容易に再分散が可能である。その結果、高密度配線板用途に好適なフィルム表面性を得ることができ、同時にシリカ粒子の取り扱いも容易にすることができる。その結果、生産工程においての搬送性、フィルムロールでの巻ズレが発生しない滑り性を得ることができる。前述の巻ズレとは、フィルムロールを巻き終えた後、ロールハンドリング時に最外層数周分のフィルムがずれることである。   The average particle diameter of the silica particles used in the present invention is 0.2 to 0.7 μm, preferably 0.3 to 0.5 μm. By setting the particle diameter within this range, the projection diameter on the film surface can be suppressed to 1 μm or less. Further, the stability, dispersibility, and redispersibility in a dispersion after mixing silica with a solvent are good. That is, the silica particles are unlikely to settle in the slurry, and even if they are settled, they can be easily redispersed. As a result, film surface properties suitable for high density wiring board applications can be obtained, and at the same time, handling of silica particles can be facilitated. As a result, it is possible to obtain transportability in the production process and slipperiness that does not cause winding deviation in the film roll. The above-mentioned winding deviation means that the film of the outermost layer several times is displaced at the time of roll handling after the film roll has been wound.

本発明に用いるシリカ粒子の粒度分布は、±15%以内、好ましくは±10%以内である。シリカ粒子の粒度分布をこの範囲にすることにより、単位重量当たりの粒子数のバラツキを最小限に抑えることができる。その結果、シリカ粒子由来突起数、突起高さ・分布密度等の表面特性を均一に再現することが可能である。また、巻ズレが発生せず、フィルムの搬送性が良好な滑り性が得られる。   The particle size distribution of the silica particles used in the present invention is within ± 15%, preferably within ± 10%. By making the particle size distribution of the silica particles in this range, the variation in the number of particles per unit weight can be minimized. As a result, it is possible to uniformly reproduce the surface characteristics such as the number of protrusions derived from silica particles, protrusion height and distribution density. Further, no slippage occurs, and slipperiness with good film transportability is obtained.

本発明におけるシリカ粒子の平均粒子径、粒度分布の算出方法は、シリカ粒子を電子顕微鏡で撮影し、撮影画像から粒子径を300個計測する。計測したシリカ粒子300個のうち、上下限10個は除外し、残りの280個の粒子径から、平均粒子径及び粒度分布を算出する。平均粒子径(Save)は個数平均とし、粒度分布は平均粒子径からの最大粒子径(Smax)、最小粒子径(Smin)との差を算出したものである。粒度分布の上限(Sdmax)および下限(Sdmin)は、次式により得られる。 In the method of calculating the average particle size and particle size distribution of silica particles in the present invention, silica particles are photographed with an electron microscope, and 300 particle sizes are measured from the photographed image. Of the 300 measured silica particles, 10 upper and lower limits are excluded, and the average particle size and particle size distribution are calculated from the remaining 280 particle sizes. The average particle size (S ave ) is the number average, and the particle size distribution is the difference between the maximum particle size (S max ) and the minimum particle size (S min ) from the average particle size. The upper limit (Sd max ) and lower limit (Sd min ) of the particle size distribution are obtained by the following equations.

Figure 2010270246
Figure 2010270246

Figure 2010270246
Figure 2010270246

本発明に用いるシリカ粒子は、球状シリカであることを特徴とする。球状の粒子を使用することで、粒子のどこが突起としてフィルム表面に出ても、均一な突起を形成することができる。球状でない粉砕した粒子を用いると、フィルム表面に均一に突起を形成することが難しく、粒子添加量、滑り性のばらつきが大きくなる傾向にある。また、フィルム表面の突起高さ・突起径及び滑り性が不均一である為、フィルム表面に傷がつきやすい。   The silica particles used in the present invention are characterized by being spherical silica. By using spherical particles, uniform protrusions can be formed no matter where the particles appear as protrusions on the film surface. When pulverized particles that are not spherical are used, it is difficult to form protrusions uniformly on the film surface, and the amount of added particles and slipperiness tend to vary greatly. Further, since the projection height / projection diameter and slipperiness of the film surface are not uniform, the film surface is likely to be damaged.

本発明に用いるシリカ粒子の添加量はポリイミド樹脂もしくはポリアミド酸に対して、0.01〜0.80重量%、好ましくは、0.02〜0.60重量%である。シリカ粒子の添加量を前述の範囲内にするだけでは、目的の表面性、滑り性を得ることはできない。シリカの粒子径、粒度分布、粒子形状の全てを満足することで初めて、粒子同士の凝集なく、フィルムの表面に均一に突起を形成し、ロール・ツー・ロールでのフィルム搬送好適滑り性を持ったポリイミドフィルムを得ることができる。   The addition amount of the silica particles used in the present invention is 0.01 to 0.80% by weight, preferably 0.02 to 0.60% by weight, based on the polyimide resin or polyamic acid. The desired surface properties and slipperiness cannot be obtained only by making the addition amount of the silica particles within the aforementioned range. For the first time by satisfying all of the particle size, particle size distribution, and particle shape of silica, protrusions are uniformly formed on the surface of the film without agglomeration of the particles, and it has suitable slipperiness for film transport by roll-to-roll. A polyimide film can be obtained.

本発明のフィルム表面突起数は、1cm2当り0.1〜1.5×106個、好ましくは0.5〜1.2×106個である。突起数が前記範囲であることにより、シリカ粒子同士の凝集無く、平滑なフィルム表面性を得ることができ、高密度配線板用ベースフィルムとして好適に用いることができる。 The number of projections on the film surface of the present invention is 0.1 to 1.5 × 10 6 , preferably 0.5 to 1.2 × 10 6 per 1 cm 2 . When the number of protrusions is within the above range, a smooth film surface property can be obtained without aggregation of silica particles, and it can be suitably used as a base film for a high-density wiring board.

本発明に用いるシリカ粒子分散液の調製方法としては、重合に用いた溶媒中にシリカ粒子を分散し、シリカ粒子含有量が1〜25重量%、好ましくは5〜15重量%のシリカ粒子分散液を得る。分散には通常の攪拌機、超音波、ビーズミル等公知のいかなる方法を用いても良い。   As a method for preparing a silica particle dispersion used in the present invention, silica particles are dispersed in a solvent used for polymerization, and a silica particle dispersion having a silica particle content of 1 to 25% by weight, preferably 5 to 15% by weight. Get. For dispersion, any known method such as an ordinary stirrer, ultrasonic wave, or bead mill may be used.

本発明のポリイミドフィルムはポリアミド酸を前駆体として用いて製造される。ポリアミド酸の重合方法としては、あらゆる公知の方法およびそれらを組み合わせた方法を用いることができ、最終的なポリイミドの諸物性を達成できるようにモノマーを選ぶことにより設計される。   The polyimide film of the present invention is produced using polyamic acid as a precursor. As the polymerization method of the polyamic acid, any known method and a combination thereof can be used, and the polyamic acid is designed by selecting a monomer so that various physical properties of the final polyimide can be achieved.

本発明においてポリアミド酸の重合にはいかなるモノマーの添加方法を用いても良く、モノマーとしては、好ましくは以下のモノマーを挙げることができる。   In the present invention, any monomer addition method may be used for the polymerization of the polyamic acid, and examples of the monomer include the following monomers.

酸二無水物成分として、ピロメリット酸二無水物、3,3',4,4'−ベンゾフェノンテトラカルボン酸二無水物、3,3',4,4'−ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3',4,4'−ビフェニルエーテルテトラカルボン酸二無水物、3,3',4,4'−ジメチルジフェニルシランテトラカルボン酸二無水物、3,3',4,4'−テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4−フランテトラカルボン酸二無水物、4,4'−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4'−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4'−ビス(3,4−ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3',4,4'−ヘキサフルオロイソプロピリデンジフタル酸二無水物、3,3',4,4'−ビフェニルテトラカルボン酸二無水物または2,3',3,4'−ビフェニルテトラカルボン酸二無水物を用いるのが好ましい。上記を1種のみ使用するだけではなく、複数種を混合して使用してもよい。   As the acid dianhydride component, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenylsulfone tetracarboxylic dianhydride 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride 3,3 ′, 4,4′-dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3 ′, 4,4′-tetraphenylsilanetetracarboxylic dianhydride, 1,2,3,4- Furantetracarboxylic dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylsulfone dianhydride, 4,4 ' -Bis (3,4-dicarboxyphenoxy) diphenylpropane dianhydride, 3,3 ', 4,4'-hexafluoroisopropylidenediphthalic dianhydride, 3,3', 4,4'-biphenyltetra Carboxylic dianhydride or 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride is preferably used. Not only one type of the above may be used, but a plurality of types may be mixed and used.

ジアミン成分として、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−オキシジアニリン、3,3’−オキシジアニリン、3,4’−オキシジアニリン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニルN−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、ビス{4−(4−アミノフェノキシ)フェニル}スルホン、ビス{4−(3−アミノフェノキシ)フェニル}スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、3,3’−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン、2,2−ビス(4−アミノフェノキシフェニル)プロパンまたはパラフェニレンジアミンを用いるのが好ましい。上記を1種のみ使用するだけではなく、複数種を混合して使用してもよい。   As the diamine component, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfide, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 4, 4'-oxydianiline, 3,3'-oxydianiline, 3,4'-oxydianiline, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diamino Diphenylethylphosphine oxide, 4,4′-diaminodiphenyl N-methylamine, 4,4′-diaminodiphenyl N-phenylamine, 1,4-diaminobenzene (p-phenylenediamine), bis {4- (4-amino Phenoxy) phenyl} sulfone, bis {4- (3-aminophenoxy) fe Sulfone, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 3,3′-diaminobenzophenone, 4,4′-diaminobenzophenone, Preferably, 2,2-bis (4-aminophenoxyphenyl) propane or paraphenylenediamine is used. Not only one type of the above may be used, but a plurality of types may be mixed and used.

本発明において、ポリアミド酸溶液粘度は100ポイズ以下、好ましくは50ポイズ以下、特に好ましくは30ポイズ以下である。また、ポリアミド酸溶液中のポリアミド酸の固形分濃度は、5〜40wt%、好ましくは10〜30wt%であることが好ましく、さらには12〜25wt%であることが好ましい。   In the present invention, the viscosity of the polyamic acid solution is 100 poises or less, preferably 50 poises or less, particularly preferably 30 poises or less. Moreover, the solid content concentration of the polyamic acid in the polyamic acid solution is preferably 5 to 40 wt%, preferably 10 to 30 wt%, and more preferably 12 to 25 wt%.

前記プレポリマー溶液にシリカ粒子の分散液を加えた後、重合を完結させて1000〜6000ポイズ、好ましくは1500〜3500ポイズのポリアミド酸溶液とする。最終的な溶液粘度がこの範囲内にあるときに良好な製膜性と生産性を実現しやすくなる。   After adding a dispersion of silica particles to the prepolymer solution, the polymerization is completed to obtain a polyamic acid solution of 1000 to 6000 poise, preferably 1500 to 3500 poise. When the final solution viscosity is within this range, it becomes easy to realize good film forming properties and productivity.

本発明のポリイミドフィルム製膜方法としては、ポリアミック酸溶液をフィルム状にキャストし、熱的に閉環化脱溶媒させてポリイミドフィルムを得る方法、およびポリアミック酸溶液に環化触媒及び脱水剤を混合し化学的に閉環化させてゲルフィルムを作成し、これを加熱脱溶媒することによりポリイミドフィルムを得る方法が挙げられ、いずれの方法を用いてもよく、併用しても良い。   As a method for forming a polyimide film of the present invention, a polyamic acid solution is cast into a film and thermally cyclized and desolvated to obtain a polyimide film, and a cyclization catalyst and a dehydrating agent are mixed in the polyamic acid solution. A method of obtaining a polyimide film by chemically cyclizing to prepare a gel film and desolvating it by heating may be used, and any method may be used or may be used in combination.

化学的に閉環させる方法に用いられる脱水剤としては、例えば、無水酢酸、無水プロピオン酸、無水酪酸、ギ酸無水物、無水コハク酸、無水マレイン酸、無水フタル酸、安息香酸無水物、無水ピコリン酸などが挙げられる。触媒としては、有機第三級アミンが多く用いられ、例えば、トリメチルアミン、トリエチルアミン、ジメチルアニリン、ピリジン、β−ピコリン、イソキノリン、キノリンなどが挙げられる。   Examples of the dehydrating agent used in the chemical ring closure method include acetic anhydride, propionic anhydride, butyric anhydride, formic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, picolinic anhydride Etc. As the catalyst, organic tertiary amines are often used, and examples thereof include trimethylamine, triethylamine, dimethylaniline, pyridine, β-picoline, isoquinoline, quinoline and the like.

本発明において、好ましくはフィルムの平均面粗さ(Ra)は1〜5nm、自乗平均面粗さ(RMS)は1〜10nm、10点平均粗さ(Rz)は50〜300nmであり、さらに好ましくは平均面粗さ(Ra)は1.5〜4.5nm、自乗平均面粗さ(RMS)は3〜8.5nm、10点平均粗さ(Rz)は150〜250nmである。平均面粗さ、自乗平均面粗さ、10点平均粗さを前記範囲にする為には、平均粒子径を0.2〜0.7μm、粒度分布を平均粒子径の±15%以内である球状シリカを樹脂重量当たり0.01〜0.08wt%添加することで、発現する。この範囲に調整することで、フィラー由来の突起を最小に抑えると共に、滑り性をフィルム加工時・搬送時にも適した状態にすることができる。   In the present invention, the film preferably has an average surface roughness (Ra) of 1 to 5 nm, a root mean square surface roughness (RMS) of 1 to 10 nm, and a 10-point average roughness (Rz) of 50 to 300 nm, more preferably. The average surface roughness (Ra) is 1.5 to 4.5 nm, the root mean square surface roughness (RMS) is 3 to 8.5 nm, and the 10-point average roughness (Rz) is 150 to 250 nm. In order to set the average surface roughness, the square average surface roughness, and the 10-point average roughness within the above ranges, the average particle diameter is 0.2 to 0.7 μm, and the particle size distribution is within ± 15% of the average particle diameter. It develops by adding 0.01 to 0.08 wt% of spherical silica per resin weight. By adjusting to this range, the protrusions derived from the filler can be minimized, and the slipperiness can be made suitable for film processing and conveyance.

本発明において、好ましくはフィルム同士の静摩擦係数は0.5〜2.0、動摩擦係数は0.4〜1.0、さらに好ましくは、静摩擦係数0.6〜1.5、動摩擦係数0.5〜0.6である。静摩擦係数、動摩擦係数を前記範囲にする為には、平均粒子径を0.2〜0.7μm、粒度分布を平均粒子径の±15%以内である球状シリカを樹脂重量当たり0.01〜0.08wt%添加することで達成できる。滑り性をこの範囲内に達成することで、ロール・ツー・ロールでの好適な搬送性を得ることができ、フィルムロールでの巻ズレ発生を抑制することができる。   In the present invention, the static friction coefficient between films is preferably 0.5 to 2.0, the dynamic friction coefficient is 0.4 to 1.0, more preferably the static friction coefficient 0.6 to 1.5, and the dynamic friction coefficient 0.5. ~ 0.6. In order to make the static friction coefficient and the dynamic friction coefficient within the above ranges, spherical silica having an average particle size of 0.2 to 0.7 μm and a particle size distribution within ± 15% of the average particle size is 0.01 to 0 per resin weight. This can be achieved by adding 0.08 wt%. By achieving slipperiness within this range, it is possible to obtain suitable transportability in roll-to-roll, and to suppress the occurrence of winding deviation in the film roll.

本発明におけるフィルム厚みは、好ましくは5〜75μm、さらに好ましくは30〜40μm、さらに好ましくは33〜37μmである。厚みを前記範囲内にすることで、ロール・ツー・ロールでフィルムを安定して搬送することができ、高密度配線板用ベースフィルム加工時に好適なフィルムの硬さ・こしを得ることができる。   The film thickness in this invention becomes like this. Preferably it is 5-75 micrometers, More preferably, it is 30-40 micrometers, More preferably, it is 33-37 micrometers. By setting the thickness within the above range, the film can be stably conveyed by roll-to-roll, and the hardness and strain of the film suitable for processing the base film for a high-density wiring board can be obtained.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例にのみ限定されるものではない。ポリイミドフィルムの各特性は以下の手法により実施した。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples. Each characteristic of the polyimide film was implemented by the following methods.

(平均粒子径・粒度分布)
シリカ粒子を電子顕微鏡で撮影し、撮影画像から粒子径を300個計測した。計測したシリカ粒子300個のうち、上下限10個は除外し、残りの280個の粒子径から、平均粒子径及び粒度分布を算出した。平均粒子径は個数平均とし、粒度分布は平均粒子径からの最大・最小粒子径との差を算出した。
(Average particle size / size distribution)
Silica particles were photographed with an electron microscope, and 300 particle sizes were measured from the photographed images. From 300 measured silica particles, 10 upper and lower limits were excluded, and the average particle size and particle size distribution were calculated from the remaining 280 particle sizes. The average particle diameter was the number average, and the particle size distribution was calculated as the difference between the maximum and minimum particle diameters from the average particle diameter.

(摩擦係数の測定)
ASTMD1894に準じて測定した。
(Measurement of friction coefficient)
Measured according to ASTM D1894.

(表面粗さの測定)
JIS規格(JISB0601−1982)に準拠し、走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー株式会社製SPA−400)及びデータ解析装置(エスアイアイ・ナノテクノロジー株式会社製NanoNaviステーション)を用いて表面粗さを測定した。測定モードはダイナミック・フォース・モード(DFM)とし、スキャナーはSPA400−PZTFS150N、カンチレバーはSI−DF40を用いた。測定サンプルは5×5mmに切り出し、両面テープで試料台に貼り付け固定する。測定面積は50×50μmとした。測定後、データ解析装置を用いて、平均面粗さ(Ra)、自乗平均面粗さ(RMS)、10点平均粗さ(Rz)を求め、N=3の平均値を測定値とした。
(Measurement of surface roughness)
In accordance with JIS standard (JISB0601-1982), surface roughness using a scanning probe microscope (SP-400 manufactured by SII NanoTechnology Co., Ltd.) and a data analysis device (NanoNavi station manufactured by SII NanoTechnology Co., Ltd.) Was measured. The measurement mode was a dynamic force mode (DFM), the scanner used SPA400-PZTFS150N, and the cantilever used SI-DF40. A measurement sample is cut out to 5 × 5 mm, and is fixed to a sample table with double-sided tape. The measurement area was 50 × 50 μm. After the measurement, using a data analysis device, average surface roughness (Ra), root mean square surface roughness (RMS), and 10-point average roughness (Rz) were determined, and an average value of N = 3 was taken as a measured value.

平均面粗さ(Ra)、自乗平均面粗さ(RMS)、10点平均粗さ(Rz)は、下記のとおりに定義されるものである。
(X,Y)の範囲を(XL,YB)〜(XR,YT)とすると、測定面の表面積(S0)は次式で与えられ、
Average surface roughness (Ra), root mean square surface roughness (RMS), and 10-point average roughness (Rz) are defined as follows.
When the range of (X, Y) is (X L , Y B ) to (X R , Y T ), the surface area (S 0 ) of the measurement surface is given by

Figure 2010270246
Figure 2010270246

測定面内の高さデータ(Z)の平均値をZ0とすると、 If the average value of the height data (Z) in the measurement surface is Z 0 ,

Figure 2010270246
Figure 2010270246

で表される、XY平面と平行な面になる。Z0は次式で求められる。 It becomes a plane parallel to the XY plane represented by Z 0 is obtained by the following equation.

Figure 2010270246
Figure 2010270246

平均面粗さ(Ra)は、基準面から指定面までの偏差の絶対値を平均した値であり、次式で与えられる。 The average surface roughness (Ra) is a value obtained by averaging the absolute values of deviations from the reference surface to the designated surface, and is given by the following equation.

Figure 2010270246
Figure 2010270246

自乗平均面粗さ(RMS)は、基準面から指定面までの偏差の自乗を平均した値の平方根であり、次式で与えられる。 The root mean square roughness (RMS) is a square root of a value obtained by averaging the squares of deviations from the reference plane to the designated plane, and is given by the following equation.

Figure 2010270246
Figure 2010270246

10点平均粗さ(Rz)は、測定面における最大から5番目までの山頂の高さデータの平均値と最小から5番目までの谷底の深さデータの平均値の差を表した値である。 The 10-point average roughness (Rz) is a value representing the difference between the average value of the height data of the peak from the maximum to the fifth on the measurement surface and the average value of the depth data of the valley from the minimum to the fifth. .

(シリカ粒子由来突起数)
前記データ解析装置を用いて、解析後のデータを三次元化し、50μm角のシリカ粒子由来の突起数を数え、N=3の平均値を1cm角に換算し、突起数とした。
(Number of protrusions derived from silica particles)
Using the data analysis device, the data after analysis was made three-dimensional, the number of protrusions derived from 50 μm square silica particles was counted, and the average value of N = 3 was converted to 1 cm square to obtain the number of protrusions.

(合成例1)
10℃に冷却したN,N−ジメチルホルムアミド(DMF)に4,4‘−オキシジアニリン(ODA)を20mol当量、2,2−ビス(4−アミノフェノキシフェニル)プロパン(BAPP)を30mol当量溶解した。ここに3,3‘,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)を20mol当量、ピロメリット酸二無水物(PMDA)25mol当量を添加し30分撹拌した。さらにパラフェニレンジアミン(PDA)を50mol当量溶解させた後、PMDAを51mol当量添加溶解してプレポリマーを得た。プレポリマー粘度は15ポイズであった。
このプレポリマー溶液に、別途調製したPMDAのDMF溶液(7重量%)を徐々に滴下し、粘度がおよそ2000ポイズになったところで添加をやめ、1時間均一攪拌を行った。最終的に得られた溶液は、23℃での粘度が2300ポイズ、固形分濃度が15重量%であった。
(Synthesis Example 1)
20 mol equivalent of 4,4′-oxydianiline (ODA) dissolved in N, N-dimethylformamide (DMF) cooled to 10 ° C., and 30 mol equivalent of 2,2-bis (4-aminophenoxyphenyl) propane (BAPP) did. 20 mol equivalent of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 25 mol equivalent of pyromellitic dianhydride (PMDA) were added thereto and stirred for 30 minutes. Further, 50 mol equivalent of paraphenylenediamine (PDA) was dissolved, and then 51 mol equivalent of PMDA was added and dissolved to obtain a prepolymer. The prepolymer viscosity was 15 poise.
A separately prepared PMDA DMF solution (7% by weight) was gradually added dropwise to this prepolymer solution, and the addition was stopped when the viscosity reached about 2000 poises, followed by uniform stirring for 1 hour. The finally obtained solution had a viscosity at 23 ° C. of 2300 poise and a solid content concentration of 15% by weight.

(実施例1)
DMFに対して10重量%となるように球状シリカ粒子(平均粒径0.55μm、粒度分布−9.1〜+9.1%)を添加して超音波分散機を用いて90分間分散した。ここに合成例1で得たプレポリマー溶液に対して、フィルム中でのシリカ粒子含有量が0.02重量%となるように添加し、30分攪拌した。引き続き合成例1と同様にしてPMDA溶液を添加し、最終的に23℃での粘度が2300ポイズのポリアミド酸溶液を得た。
この溶液に、無水酢酸/イソキノリン/DMF(重量比20:10:80)からなる硬化剤をポリアミド酸溶液に対して重量比50%で連続的にミキサーにより攪拌し、Tダイから押出してダイの下25mmを10mm/分の速度で走行しているステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒、300℃×20秒、450℃×20秒、500℃×20秒で乾燥・イミド化させ35μmのポリイミドフィルムを得た。このポリイミドフィルムの特性を表1に示す。
Example 1
Spherical silica particles (average particle size: 0.55 μm, particle size distribution: −9.1 to + 9.1%) were added so as to be 10% by weight with respect to DMF, and dispersed for 90 minutes using an ultrasonic disperser. It added so that the silica particle content in a film might be 0.02 weight% with respect to the prepolymer solution obtained by the synthesis example 1 here, and it stirred for 30 minutes. Subsequently, a PMDA solution was added in the same manner as in Synthesis Example 1 to finally obtain a polyamic acid solution having a viscosity at 23 ° C. of 2300 poise.
To this solution, a curing agent composed of acetic anhydride / isoquinoline / DMF (weight ratio 20:10:80) was continuously stirred by a mixer at a weight ratio of 50% with respect to the polyamic acid solution, extruded from a T die, and extruded from the die. The bottom 25 mm was cast on a stainless endless belt running at a speed of 10 mm / min. This resin film was dried and imidized at 130 ° C. × 100 seconds, 300 ° C. × 20 seconds, 450 ° C. × 20 seconds, 500 ° C. × 20 seconds to obtain a 35 μm polyimide film. The properties of this polyimide film are shown in Table 1.

(実施例2)
球状シリカ粒子(平均粒径0.55μm、粒度分布−9.1〜+9.1%)をフィルム中でのシリカ粒子含有量が0.06重量%となるように添加した以外は、実施例1と同様にしてポリイミドフィルムを得た。このフィルムの特性を表1に示す。
(Example 2)
Example 1 except that spherical silica particles (average particle size 0.55 μm, particle size distribution −9.1 to + 9.1%) were added so that the silica particle content in the film was 0.06 wt%. In the same manner, a polyimide film was obtained. The properties of this film are shown in Table 1.

(実施例3)
球状シリカ粒子(平均粒径0.33μm、粒度分布−12.1〜+9.1%)をフィルム中でのシリカ粒子含有量が0.03重量%となるように添加した以外は、実施例1と同様にしてポリイミドフィルムを得た。このフィルムの特性を表1に示す。
(Example 3)
Example 1 except that spherical silica particles (average particle size: 0.33 μm, particle size distribution: 12.1 to + 9.1%) were added so that the silica particle content in the film was 0.03% by weight. In the same manner, a polyimide film was obtained. The properties of this film are shown in Table 1.

(比較例1)
球状シリカ粒子(平均粒径0.25μm、粒度分布−60〜+300%)をフィルム中でのシリカ粒子含有量が0.10重量%となるように添加した以外は、実施例1と同様にしてポリイミドフィルムを得た。このフィルムの特性を表1に示す。
(Comparative Example 1)
Except that spherical silica particles (average particle size 0.25 μm, particle size distribution −60 to + 300%) were added so that the silica particle content in the film was 0.10% by weight, the same procedure as in Example 1 was performed. A polyimide film was obtained. The properties of this film are shown in Table 1.

(比較例2)
球状シリカ粒子(平均粒径0.55μm、粒度分布−9.1〜+9.1%)をフィルム中でのシリカ粒子含有量が0.10重量%となるように添加した以外は、実施例1と同様にしてポリイミドフィルムを得た。このフィルムの特性を表1に示す。
(Comparative Example 2)
Example 1 except that spherical silica particles (average particle size 0.55 μm, particle size distribution −9.1 to + 9.1%) were added so that the silica particle content in the film was 0.10 wt%. In the same manner, a polyimide film was obtained. The properties of this film are shown in Table 1.

Figure 2010270246
Figure 2010270246

Claims (4)

平均粒子径が0.2〜0.7μmであり粒度分布が平均粒子径の±15%以内である球状シリカ粒子を樹脂重量当たり0.01〜0.08wt%含み、フィルム表面のシリカ粒子由来突起数が1cm2当り0.1〜1.5×106個であることを特徴とする、ポリイミドフィルム。 Contains 0.01 to 0.08 wt% of spherical silica particles having an average particle size of 0.2 to 0.7 μm and a particle size distribution within ± 15% of the average particle size per resin weight, and the silica particle-derived protrusions on the film surface A polyimide film having a number of 0.1 to 1.5 × 10 6 per cm 2 . フィルムの平均面粗さ(Ra)が1〜5nm、自乗平均面粗さ(RMS)が1〜10nm、10点平均粗さ(Rz)が50〜300nmであることを特徴とする、請求項1に記載のポリイミドフィルム。   The average surface roughness (Ra) of the film is 1 to 5 nm, the root mean square surface roughness (RMS) is 1 to 10 nm, and the 10-point average roughness (Rz) is 50 to 300 nm. The polyimide film described in 1. フィルム同士の静摩擦係数が0.5〜2.0、動摩擦係数が0.4〜1.0であることを特徴とする、請求項1または2に記載のポリイミドフィルム。   The polyimide film according to claim 1 or 2, wherein a static friction coefficient between films is 0.5 to 2.0, and a dynamic friction coefficient is 0.4 to 1.0. フィルム厚みが5〜75μmであることを特徴とする、請求項1〜3のいずれか1項に記載のポリイミドフィルム。 The polyimide film according to claim 1, wherein the film thickness is 5 to 75 μm.
JP2009124088A 2009-05-22 2009-05-22 Polyimide film Pending JP2010270246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124088A JP2010270246A (en) 2009-05-22 2009-05-22 Polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124088A JP2010270246A (en) 2009-05-22 2009-05-22 Polyimide film

Publications (1)

Publication Number Publication Date
JP2010270246A true JP2010270246A (en) 2010-12-02

Family

ID=43418531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124088A Pending JP2010270246A (en) 2009-05-22 2009-05-22 Polyimide film

Country Status (1)

Country Link
JP (1) JP2010270246A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063775A (en) * 2009-09-18 2011-03-31 Du Pont Toray Co Ltd Aromatic polyimide film and method for producing the same
JP2014058620A (en) * 2012-09-18 2014-04-03 Du Pont-Toray Co Ltd Board for cof for tablet terminal
JP2019002001A (en) * 2017-06-09 2019-01-10 三星電子株式会社Samsung Electronics Co., Ltd. Film containing polyimide or poly(amide-imide) copolymer, display device including that film, and method for preparing that film
CN109749362A (en) * 2017-11-07 2019-05-14 味之素株式会社 Resin combination

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031866A (en) * 1999-07-21 2001-02-06 Mitsubishi Chemicals Corp Polyimide composition and substrate for solar cell produced by using the composition
JP2005306940A (en) * 2004-04-19 2005-11-04 Kaneka Corp Polyimide film
JP2005344062A (en) * 2004-06-04 2005-12-15 Toyobo Co Ltd Polyimide film and copper-clad laminate film using the same
JP2007090770A (en) * 2005-09-29 2007-04-12 Kaneka Corp Aromatic polyimide film and manufacturing method of the polyimide film
JP2008088372A (en) * 2006-10-04 2008-04-17 Kaneka Corp Polyimide film and its manufacturing method
JP2008106141A (en) * 2006-10-25 2008-05-08 Du Pont Toray Co Ltd Polyimide film and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031866A (en) * 1999-07-21 2001-02-06 Mitsubishi Chemicals Corp Polyimide composition and substrate for solar cell produced by using the composition
JP2005306940A (en) * 2004-04-19 2005-11-04 Kaneka Corp Polyimide film
JP2005344062A (en) * 2004-06-04 2005-12-15 Toyobo Co Ltd Polyimide film and copper-clad laminate film using the same
JP2007090770A (en) * 2005-09-29 2007-04-12 Kaneka Corp Aromatic polyimide film and manufacturing method of the polyimide film
JP2008088372A (en) * 2006-10-04 2008-04-17 Kaneka Corp Polyimide film and its manufacturing method
JP2008106141A (en) * 2006-10-25 2008-05-08 Du Pont Toray Co Ltd Polyimide film and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063775A (en) * 2009-09-18 2011-03-31 Du Pont Toray Co Ltd Aromatic polyimide film and method for producing the same
JP2014058620A (en) * 2012-09-18 2014-04-03 Du Pont-Toray Co Ltd Board for cof for tablet terminal
JP2019002001A (en) * 2017-06-09 2019-01-10 三星電子株式会社Samsung Electronics Co., Ltd. Film containing polyimide or poly(amide-imide) copolymer, display device including that film, and method for preparing that film
JP7220025B2 (en) 2017-06-09 2023-02-09 三星電子株式会社 Films comprising polyimides or poly(amide-imide) copolymers, displays comprising such films, and methods of making such films
CN109749362A (en) * 2017-11-07 2019-05-14 味之素株式会社 Resin combination
CN109749362B (en) * 2017-11-07 2023-10-20 味之素株式会社 Resin composition

Similar Documents

Publication Publication Date Title
JP5781999B2 (en) Polyimide film and method for producing the same
JP6403503B2 (en) Copper-clad laminate, printed wiring board and method of using the same
JPWO2006107043A1 (en) Copper-clad laminate
JP2010163625A (en) Polyimide film with enhanced sliding property and substrate employing it
KR101290933B1 (en) Polyimide Film
JP7093608B2 (en) Fluorine-based resin-containing polyimide precursor solution composition, polyimide using the same, polyimide film, and a method for producing them.
US9284424B2 (en) Polyimide film and fabrication method thereof
JP2015127117A (en) Metal-clad laminate and circuit board
JP6491947B2 (en) Fluorine-based resin-containing polyimide precursor solution composition, polyimide using the same, polyimide film, and production method thereof
JP2010270246A (en) Polyimide film
US8114500B2 (en) Polyimide film and method of manufacture thereof
JPS63297038A (en) Manufacture of aromatic polyimide film
JP7428646B2 (en) Metal-clad laminates and circuit boards
JP4736389B2 (en) Polyimide film with improved slipperiness and substrate using the same
JP2008106139A (en) Polyimide film and method for producing the same
JP2008106141A (en) Polyimide film and method for producing the same
JP6470643B2 (en) Fluorine-based resin-containing polyimide precursor solution composition, polyimide using the same, polyimide film, and production method thereof
JP2021070727A (en) Resin composition, resin film and metal-clad laminate
US20090011223A1 (en) Polyimide Film and Method for Production Thereof
JP2004217907A (en) Polyimide film and method for producing the same
JP2008088372A (en) Polyimide film and its manufacturing method
JP2008106140A (en) Polyimide film and method for producing the same
CN114316792A (en) Resin composition, resin film, laminate, coverlay film, resin-containing copper foil, metal-clad laminate, and circuit board
JP5810833B2 (en) Method for producing conductive polyimide film
JP2010016244A (en) Method of manufacturing wiring circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107