JP2010266283A - Device and method for leakage test - Google Patents

Device and method for leakage test Download PDF

Info

Publication number
JP2010266283A
JP2010266283A JP2009116671A JP2009116671A JP2010266283A JP 2010266283 A JP2010266283 A JP 2010266283A JP 2009116671 A JP2009116671 A JP 2009116671A JP 2009116671 A JP2009116671 A JP 2009116671A JP 2010266283 A JP2010266283 A JP 2010266283A
Authority
JP
Japan
Prior art keywords
differential pressure
temperature
passage
test
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009116671A
Other languages
Japanese (ja)
Other versions
JP5340802B2 (en
Inventor
Tooru Sasaki
透 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Co Ltd
Original Assignee
Fukuda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Co Ltd filed Critical Fukuda Co Ltd
Priority to JP2009116671A priority Critical patent/JP5340802B2/en
Publication of JP2010266283A publication Critical patent/JP2010266283A/en
Application granted granted Critical
Publication of JP5340802B2 publication Critical patent/JP5340802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify a differential pressure detecting passage in a device for a leakage test which includes a temperature-sensitive member for temperature compensation. <P>SOLUTION: A chamber 13 to be inspected is formed between the inside of the internal space 11 of an inspection object 10 and the outside of the temperature-sensitive member 60 composed of a material of favorable heat conduction. After pressurized gas is introduced into each of the chamber 13 to be inspected and a temperature-sensitive chamber 61 in the temperature-sensitive member 60, first and second passages 31 and 32 are intercepted, and then a second downstream-side opening/closing means V<SB>36</SB>is closed, differential pressure D<SB>1</SB>between the chamber 13 to be inspected and a portion 36 of the second passage where pressure is checked up are detected by a differential pressure sensor 33. Besides, a first downstream-side opening/closing means V<SB>35</SB>is closed and differential pressure D<SB>2</SB>between the temperature-sensitive chamber 61 and a portion 35 of the first passage where the pressure is checked up are detected by the differential pressure sensor 33. The differential pressure data D<SB>1</SB>are compensated on the basis of the differential pressure data D<SB>2</SB>, and leakage determination is performed on the basis of the differential pressure data D<SB>1</SB>after the compensation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、検査対象の内部空間に加圧気体を導入してリークテストを行なう装置及び方法に関する。   The present invention relates to an apparatus and method for performing a leak test by introducing pressurized gas into an internal space to be inspected.

一般に差圧式のリークテストでは、検査対象の内部空間と基準となる空間とに圧縮エア等の加圧気体を導入した後、この内部空間と基準空間とを互いに遮断して各々閉鎖系とする。検査対象から漏れがあったときは、これが差圧として検出される。これによって、検査対象の良否を判定することができる(特許文献1参照)。   In general, in a differential pressure type leak test, after a pressurized gas such as compressed air is introduced into an internal space to be inspected and a reference space, the internal space and the reference space are cut off from each other to form a closed system. When there is a leak from the inspection object, this is detected as a differential pressure. Thereby, the quality of the inspection object can be determined (see Patent Document 1).

検査対象の内部空間に加圧気体を導入すると、断熱圧縮により昇温し、その後、経時的に放熱し、温度が下がる。また、検査対象が加温又は冷却され周辺の設備や雰囲気との間に温度差があったり、加圧気体が検査対象とは異なる温度であったりすると、検査対象の内部温度が経時的に変動する。このような温度変化も圧変化の原因となる。   When pressurized gas is introduced into the internal space to be inspected, the temperature rises by adiabatic compression, and then heat is dissipated over time, and the temperature drops. Also, if the inspection object is heated or cooled and there is a temperature difference between the surrounding equipment and atmosphere, or if the pressurized gas is at a different temperature from the inspection object, the internal temperature of the inspection object will change over time. To do. Such a temperature change also causes a pressure change.

そこで、特許文献2に記載のリークテスト方法では、検査対象の内部空間の圧変化だけでなく温度変化をも測定し、圧変化のうち温度変化による分を除く補正(温度補償)を行なっている。これにより、漏れ判定ひいては検査対象の良否判定の精度を高めることができる。   Therefore, in the leak test method described in Patent Document 2, not only the pressure change in the internal space to be inspected but also the temperature change is measured, and correction (temperature compensation) is performed to remove the pressure change due to the temperature change. . Thereby, it is possible to improve the accuracy of the leak determination and consequently the quality determination of the inspection target.

具体的には、例えば、良熱伝導性の感温部材を用意する。感温部材の内部には感温室が形成されている。この感温部材を検査対象の内部空間に配置する等して、検査対象の内部空間の内面と感温部材の外面との間に被検室を形成する。被検室に差圧センサを含む第1の差圧検出路を接続する。感温室に別の差圧センサを含む第2の差圧検出路を接続する。これら差圧検出路を介して被検室と感温室に加圧気体をそれぞれ導入する。そして、第1差圧検出路の差圧センサによって基準圧に対する被検室の差圧を測定するとともに、第2差圧検出路の差圧センサによって第2の基準圧に対する感温室の差圧を測定する。感温室の圧変化は、主に被検室の温度変化に起因する。したがって、感温室の測定差圧の経時データに基づいて、被検室の測定差圧の経時データを補正することで、被検室の圧変化のうち温度変化に起因する分を除くことができる。補正後のデータに基づいて漏れ判定する。感温部材の感温室の内圧は微小な温度変化にも大きく感応する。よって、温度測定の感度を高めることができる。また、被検室の温度を平均的に測定できるため、被検室内に温度分布があっても信頼性を確保できる。   Specifically, for example, a heat-sensitive member having good heat conductivity is prepared. A temperature sensitive greenhouse is formed inside the temperature sensitive member. A test chamber is formed between the inner surface of the internal space to be inspected and the outer surface of the temperature sensitive member by arranging the temperature sensitive member in the internal space of the inspection target. A first differential pressure detection path including a differential pressure sensor is connected to the test chamber. A second differential pressure detection path including another differential pressure sensor is connected to the temperature sensitive greenhouse. Through these differential pressure detection paths, pressurized gas is introduced into the test room and the sensitive room. Then, the differential pressure in the test chamber with respect to the reference pressure is measured by the differential pressure sensor in the first differential pressure detection path, and the differential pressure in the temperature sensitive room with respect to the second reference pressure is measured by the differential pressure sensor in the second differential pressure detection path. taking measurement. The pressure change in the sensation greenhouse is mainly due to the temperature change in the test room. Therefore, by correcting the time-dependent data of the measured differential pressure in the test room based on the time-dependent data of the measured differential pressure in the sensitive room, it is possible to eliminate the part due to the temperature change from the pressure change in the test room. . Leakage is determined based on the corrected data. The internal pressure of the temperature-sensing greenhouse, which is a temperature-sensitive member, is highly sensitive to minute temperature changes. Therefore, the sensitivity of temperature measurement can be increased. In addition, since the temperature of the test chamber can be measured on average, reliability can be ensured even if there is a temperature distribution in the test chamber.

特開2004−061201号公報JP 2004-062011 A 特開2007−064737号公報JP 2007-064737 A

上掲特許文献2のシステムでは、検査対象用と感温部材用の2系統の差圧検出路を要し、2つの差圧センサを要する。   In the system of the above-mentioned patent document 2, two differential pressure detection paths for a test object and a temperature sensitive member are required, and two differential pressure sensors are required.

上記課題を解決するために、本発明装置は、内部空間を有する検査対象からの漏れを判定するリークテスト装置において、
(イ) 内部に感温室を有し、外面が前記内部空間の内面との間に被検室を形成するよう配置された良熱伝導材料からなる感温部材と、
(ロ) 前記被検室に連なり、加圧気体を前記被検室に導入する第1通路と、前記感温室に連なり、加圧気体を前記感温室に導入する第2通路とを有する差圧検出路と、
(ハ) 前記第1通路と第2通路の間に設けられ、これら通路の差圧を検出する差圧センサと、
(ニ) 前記差圧センサより上流側において前記第1、第2通路を連通して前記加圧気体の導入を許容した後、第1、第2通路を遮断する上流側開閉手段と、
(ホ) 前記差圧センサより下流側の第1通路に設けられ、前記遮断前は開き、前記遮断後は開から閉へ、又は閉から開へ動作する第1下流側開閉手段と、
(ヘ) 前記差圧センサより下流側の第2通路に設けられ、前記遮断前は開き、前記遮断後は第1下流側開閉手段が開のとき閉じ、前記第1下流側開閉手段が閉のとき開く第2下流側開閉手段と、
を備え、前記遮断後において、前記第1下流側開閉手段が開(第2下流側開閉手段が閉)のときの前記差圧センサによる差圧データを、前記第2下流側開閉手段が開(第1下流側開閉手段が閉)のときの前記差圧センサによる差圧データに基づいて補正し、補正後の差圧データに基づいて前記漏れ判定を行うことを特徴とする。
In order to solve the above problems, the device of the present invention is a leak test device for determining a leak from an inspection object having an internal space.
(A) a temperature-sensitive member made of a good heat-conductive material that has a temperature-sensitive greenhouse inside and is arranged so that an outer surface forms a test chamber between the inner space and the inner space;
(B) A differential pressure having a first passage that leads to the test chamber and introduces pressurized gas into the test chamber, and a second passage that leads to the temperature sensitive greenhouse and introduces pressurized gas into the temperature sensitive greenhouse. A detection path;
(C) a differential pressure sensor provided between the first passage and the second passage for detecting a differential pressure in the passages;
(D) upstream opening / closing means for blocking the first and second passages after allowing the introduction of the pressurized gas through the first and second passages upstream from the differential pressure sensor;
(E) a first downstream opening / closing means that is provided in a first passage downstream of the differential pressure sensor and that opens before the blocking and operates from opening to closing or from closing to opening after the blocking;
(F) Provided in the second passage on the downstream side of the differential pressure sensor, opened before the interruption, and closed after the interruption when the first downstream opening / closing means is open, and the first downstream opening / closing means is closed. A second downstream opening / closing means that opens when
And after the shut-off, the second downstream opening / closing means opens the differential pressure data obtained by the differential pressure sensor when the first downstream opening / closing means is open (the second downstream opening / closing means is closed). Correction is performed based on differential pressure data obtained by the differential pressure sensor when the first downstream side opening / closing means is closed), and the leakage determination is performed based on the corrected differential pressure data.

上流側開閉手段の許容によって加圧気体を被検室及び感温室に導入する。次いで、第1通路と第2通路を上流側開閉手段にて互いに遮断する。ひいては被検室及び第1通路を1つの閉鎖空間にする。感温室及び第2通路を他の1つの閉鎖空間にする。被検室は、周辺環境との温度差、断熱圧縮後の放熱等によって温度が変わる。被検室の温度変化は、感温部材の躯体内を経て感温室に伝達され、感温室の圧力変化になって現われる。上流側開閉手段による遮断の後、ある期間、第1下流側開閉手段を開にし、第2下流側開閉手段を閉にする。これにより、第2下流側開閉手段より上流側の第2通路が、感温室から遮断され、感温室の圧力変化の影響を受けなくなる。この第2下流側開閉手段より上流側の第2通路の内圧と被検室の内圧との差圧を差圧センサにて検出する。この差圧データは、被検室の圧力変化の情報すなわち被検室からの漏れ及び被検室の温度変化の情報を含み、感温室の圧力変化の情報を含まない。また、ある期間、第2下流側開閉手段を開にし、第1下流側開閉手段を閉にする。これにより、第1下流側開閉手段より上流側の第1通路が、被検室から遮断され、被検室の圧力変化の影響を受けなくなる。この第1下流側開閉手段より上流側の第1通路の内圧と感温室の内圧との差圧を差圧センサにて検出する。この差圧データは、感温室の温度変化ひいては被検室の温度変化の情報を含み、被検室からの漏れの情報を含まない。したがって、第1下流側開閉手段が開(第2下流側開閉手段が閉)のときの差圧データを、第2下流側開閉手段が開(第1下流側開閉手段が閉)のときの差圧データに基づいて補正することで、被検室の漏れのみに起因する差圧データを得ることができる。この補正後の差圧データに基づいて、被検室の漏れ判定を行なうことができる。このように、リークテスト装置は、被検室の内圧情報と感温室の内圧情報を時間的にずらして取得するものである。したがって、差圧センサが1つで済み、差圧検出路を簡素化でき、コストを低減できる。   A pressurized gas is introduced into the test chamber and the temperature sensitive room by allowing the upstream opening / closing means. Next, the first passage and the second passage are blocked from each other by the upstream opening / closing means. As a result, the examination room and the first passage are made into one closed space. The sensitive room and the second passage are made into another closed space. The temperature of the test room changes due to a temperature difference from the surrounding environment, heat dissipation after adiabatic compression, and the like. The temperature change in the test room is transmitted to the temperature sensitive greenhouse through the temperature sensitive member and appears as a pressure change in the temperature sensitive room. After the interruption by the upstream opening / closing means, the first downstream opening / closing means is opened and the second downstream opening / closing means is closed for a certain period. Thereby, the 2nd channel | path upstream from a 2nd downstream opening-and-closing means is interrupted | blocked from a sensitive room, and it does not receive to the influence of the pressure change of a sensitive room. A differential pressure sensor detects a differential pressure between the internal pressure of the second passage upstream of the second downstream opening / closing means and the internal pressure of the test chamber. This differential pressure data includes information on pressure changes in the test chamber, that is, information on leakage from the test chamber and temperature changes in the test chamber, and does not include information on pressure changes in the temperature-sensitive room. Further, for a certain period, the second downstream side opening / closing means is opened, and the first downstream side opening / closing means is closed. As a result, the first passage upstream of the first downstream opening / closing means is blocked from the test chamber and is not affected by the pressure change in the test chamber. A differential pressure sensor detects a differential pressure between the internal pressure of the first passage upstream of the first downstream opening / closing means and the internal pressure of the temperature-sensitive room. This differential pressure data includes information on the temperature change of the temperature-sensitive greenhouse, and hence the temperature change of the test room, and does not include information on leakage from the test room. Therefore, the differential pressure data when the first downstream opening / closing means is open (the second downstream opening / closing means is closed) and the difference data when the second downstream opening / closing means are open (the first downstream opening / closing means are closed) are used. By correcting based on the pressure data, it is possible to obtain differential pressure data resulting only from leakage in the test chamber. Based on the corrected differential pressure data, it is possible to determine the leakage of the test chamber. As described above, the leak test apparatus acquires the internal pressure information of the test room and the internal pressure information of the sensitive room by shifting the time. Therefore, only one differential pressure sensor is required, the differential pressure detection path can be simplified, and the cost can be reduced.

本発明方法は、内部空間を有する検査対象からの漏れを判定するリークテスト方法において、
内部に感温室を有する良熱伝導性の感温部材を、前記内部空間の内面との間に被検室を形成するように配置し、
前記被検室に連なる第1通路と前記感温室に連なる第2通路を互いに連通させた状態で、加圧気体を前記第1、第2通路を介して前記被検室及び感温室にそれぞれ導入した後、前記第1通路と第2通路を互いに遮断し、
次に、前記第2通路の被検圧部分より感温室側の部分を閉じ、差圧センサによって前記被検室と前記第2通路の前記被検圧部分との差圧を検出する第1差圧検出工程と、前記第1通路の被検圧部分より被検室側の部分を閉じ、前記差圧センサによって前記感温室と前記第1通路の前記被検圧部分との差圧を検出する第2差圧検出工程とを実行し、
前記第1差圧検出工程の差圧データを前記第2差圧検出工程の差圧データに基づいて補正し、補正後の差圧データに基づいて前記漏れ判定を行なうことを特徴とする。
The method of the present invention is a leak test method for determining a leak from an inspection object having an internal space.
A highly heat-conductive temperature-sensitive member having a temperature-sensitive greenhouse inside is arranged so as to form a test chamber between the inner space and the inner space,
In a state where the first passage connected to the test chamber and the second passage connected to the temperature-sensitive room are in communication with each other, pressurized gas is introduced into the test room and the temperature-sensitive room through the first and second paths, respectively. And then shutting off the first passage and the second passage,
Next, the first pressure difference is detected by closing a portion of the second passage closer to the temperature sensitive room than the test pressure portion and detecting a differential pressure between the test chamber and the test pressure portion of the second passage by a differential pressure sensor. A pressure detecting step and a portion closer to the test chamber than the test pressure portion of the first passage is closed, and a differential pressure between the temperature sensing chamber and the test pressure portion of the first passage is detected by the differential pressure sensor. Performing a second differential pressure detecting step,
The differential pressure data in the first differential pressure detection step is corrected based on the differential pressure data in the second differential pressure detection step, and the leakage determination is performed based on the corrected differential pressure data.

第1差圧検出工程の差圧データは被検室の内圧情報である。第2差圧検出工程の差圧データは感温室の内圧情報である。本発明方法は、被検室の内圧情報と感温室の内圧情報を時間的にずらして取得するものである。したがって、差圧センサが1つで済み、差圧検出路を簡素化でき、コストを低減できる。
先に第1差圧検出工程を行ない、次に第2差圧検出工程を行なってもよく、先に第2差圧検出工程を行ない、次に第1差圧検出工程を行なってもよい。
The differential pressure data in the first differential pressure detection process is internal pressure information of the test chamber. The differential pressure data in the second differential pressure detection process is the internal pressure information of the temperature sensitive room. In the method of the present invention, the internal pressure information of the test room and the internal pressure information of the sensitive room are acquired by shifting in time. Therefore, only one differential pressure sensor is required, the differential pressure detection path can be simplified, and the cost can be reduced.
The first differential pressure detection step may be performed first, and then the second differential pressure detection step may be performed, or the second differential pressure detection step may be performed first, and then the first differential pressure detection step may be performed.

本発明によれば、差圧センサが1つで済み、差圧検出路を簡素化でき、コストを低減できる。   According to the present invention, only one differential pressure sensor is required, the differential pressure detection path can be simplified, and the cost can be reduced.

本発明の第1実施形態に係るリークテスト装置の概略構成を示す回路図である。1 is a circuit diagram showing a schematic configuration of a leak test apparatus according to a first embodiment of the present invention. 上記リークテスト装置によるリークテスト手順の一例を示すタイムチャートである。It is a time chart which shows an example of the leak test procedure by the said leak test apparatus.

以下、本発明の一実施形態を図面にしたがって説明する。
図1に、リークテスト装置1の回路構成の概略を示す。リークテスト装置1の検査対象10は、例えば自動車エンジンのシリンダブロック等である。検査対象10は、内部空間11を有している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an outline of a circuit configuration of the leak test apparatus 1. The inspection target 10 of the leak test apparatus 1 is, for example, a cylinder block of an automobile engine. The inspection object 10 has an internal space 11.

図1に示すように、リークテスト装置1は、加圧気体供給源としての圧縮エア源2と、差圧検出路3と、設置台4を備えている。圧縮エア源2は、数百kPaオーダーのエア圧を供給できるようになっている。検査対象10が、内部空間11の開口を下に向けて設置台4上に設置されている。内部空間11の開口が設置台4によって塞がれている。図示は省略するが、設置台4には、検査対象10の上記開口の周縁部と当該設置台4との間を気密にシールするOリング等のシール部材が設けられている。   As shown in FIG. 1, the leak test apparatus 1 includes a compressed air source 2 as a pressurized gas supply source, a differential pressure detection path 3, and an installation table 4. The compressed air source 2 can supply an air pressure of the order of several hundred kPa. The inspection object 10 is installed on the installation table 4 with the opening of the internal space 11 facing downward. The opening of the internal space 11 is blocked by the installation table 4. Although not shown, the installation table 4 is provided with a sealing member such as an O-ring that hermetically seals between the periphery of the opening of the inspection object 10 and the installation table 4.

リークテスト装置1の差圧検出路3は、次のように構成されている。
圧縮エア源2から差圧検出路3の共通路30が延びている。共通路30には、レギュレータR30と共通開閉弁V30が上流側から順次設けられている。レギュレータR30によって共通路30の二次圧が調節される。共通開閉弁V30より下流の共通路30から排気路34が延びている。排気路34に排気用開閉弁V34が設けられている。排気路34の下流端は大気に開放されている。
The differential pressure detection path 3 of the leak test apparatus 1 is configured as follows.
A common path 30 of the differential pressure detection path 3 extends from the compressed air source 2. The common path 30, a common on-off valve V 30 and the regulator R 30 are sequentially provided from the upstream side. The secondary pressure of the common path 30 is adjusted by the regulator R 30 . An exhaust passage 34 extends from the common passage 30 downstream from the common on-off valve V 30 . An exhaust opening / closing valve V 34 is provided in the exhaust passage 34. The downstream end of the exhaust path 34 is open to the atmosphere.

共通路30の下流端から第1通路31と第2通路32が分岐されている。第1通路31には、第1上流側開閉弁V31と第1下流側開閉弁V35が上流側から順次設けられている。第1上流側開閉弁V31は、特許請求の範囲の上流側開閉手段を構成する。第1下流側開閉弁V35は、特許請求の範囲の第1下流側開閉手段を構成する。第1通路31における開閉弁V31と開閉弁V35の間の部分は、第1被検圧部分35を構成する。 A first passage 31 and a second passage 32 are branched from the downstream end of the common passage 30. The first passage 31, a first upstream side switching valve V 31 first downstream-side valve V 35 are sequentially provided from the upstream side. The first upstream side switching valve V 31 constitutes the upstream side switching means in the claims. The first downstream-side valve V 35 constitutes the first downstream opening and closing means of the appended claims. A portion of the first passage 31 between the on-off valve V 31 and the on-off valve V 35 constitutes a first detected pressure portion 35.

第2通路32には、第2上流側開閉弁V32と第2下流側開閉弁V36が上流側から順次設けられている。第2上流側開閉弁V32は、特許請求の範囲の上流側開閉手段を構成する。第2下流側開閉弁V36は、特許請求の範囲の第2下流側開閉手段を構成する。第2通路32における開閉弁V32と開閉弁V36の間の部分は、第2被検圧部分36を構成する。 The second passage 32, a second upstream side switching valve V 32 second downstream-side valve V 36 are sequentially provided from the upstream side. The second upstream side opening / closing valve V 32 constitutes upstream side opening / closing means in the claims. The second downstream-side valve V 36 constitute the second downstream opening and closing means of the appended claims. A portion of the second passage 32 between the on-off valve V 32 and the on-off valve V 36 constitutes a second detected pressure portion 36.

第1通路31と第2通路32の間に差圧センサ33が設けられている。差圧センサ33は、第1室33aと第2室33bを含む。第1室33aが、第1センサ接続路31aを介して第1通路31の被検圧部分35に接続されている。第2室33bが、第2センサ接続路32aを介して第2通路32の被検圧部分36に接続されている。   A differential pressure sensor 33 is provided between the first passage 31 and the second passage 32. The differential pressure sensor 33 includes a first chamber 33a and a second chamber 33b. The first chamber 33a is connected to the test pressure portion 35 of the first passage 31 via the first sensor connection path 31a. The second chamber 33b is connected to the test pressure portion 36 of the second passage 32 via the second sensor connection passage 32a.

さらに、第1通路31の第1被検圧部分35に、第1マスタータンク37が接続されている。第1マスタータンク37の接続位置は、本実施形態では差圧センサ33より下流側の第1被検圧部分35であるが、差圧センサ33より上流側の第1被検圧部分35であってもよい。第1マスタータンク37を省略してもよい。   Furthermore, a first master tank 37 is connected to the first pressure-sensitive portion 35 of the first passage 31. In this embodiment, the connection position of the first master tank 37 is the first detected pressure portion 35 on the downstream side of the differential pressure sensor 33, but the first detected pressure portion 35 on the upstream side of the differential pressure sensor 33. May be. The first master tank 37 may be omitted.

同様に、第2通路32の第2被検圧部分36に、第2マスタータンク38が接続されている。第2マスタータンク38の接続位置は、本実施形態では差圧センサ33より下流側の第2被検圧部分36であるが、差圧センサ33より上流側の第2被検圧部分36であってもよい。第2マスタータンク38を省略してもよい。   Similarly, a second master tank 38 is connected to the second detected pressure portion 36 of the second passage 32. In the present embodiment, the connection position of the second master tank 38 is the second detected pressure portion 36 on the downstream side of the differential pressure sensor 33, but is the second detected pressure portion 36 on the upstream side of the differential pressure sensor 33. May be. The second master tank 38 may be omitted.

リークテスト装置1には、更に感温部材60が備えられている。感温部材60は、アルミニウム等の良熱伝導性の材料にて構成されている。感温部材60の外面には複数のフィン62が設けられている。感温部材60の内部には感温室61が形成されている。感温室61の内面には複数のフィン63が設けられている。   The leak test apparatus 1 further includes a temperature sensitive member 60. The temperature sensitive member 60 is made of a material having good heat conductivity such as aluminum. A plurality of fins 62 are provided on the outer surface of the temperature sensing member 60. A temperature sensitive greenhouse 61 is formed inside the temperature sensitive member 60. A plurality of fins 63 are provided on the inner surface of the sensitive room 61.

感温部材60は、検査対象10の内部空間11より小さく、内部空間11に収容可能になっている。感温部材60を検査対象10の内部空間11に収容すると、検査対象10の内部空間11の内面と感温部材60の外面との間に被検室13が形成される。被検室13の下方への開口が設置台4により塞がれ、被検室13が密閉されている。   The temperature sensitive member 60 is smaller than the internal space 11 of the inspection object 10 and can be accommodated in the internal space 11. When the temperature sensitive member 60 is accommodated in the internal space 11 of the inspection object 10, the test chamber 13 is formed between the inner surface of the internal space 11 of the inspection object 10 and the outer surface of the temperature sensitive member 60. The downward opening of the test chamber 13 is closed by the installation table 4, and the test chamber 13 is sealed.

被検室13に第1通路31の下流端が接続されている。
感温部材60の感温室61に第2通路32の下流端が接続されている。
A downstream end of the first passage 31 is connected to the test chamber 13.
The downstream end of the second passage 32 is connected to the temperature sensing chamber 61 of the temperature sensing member 60.

図示は省略するが、リークテスト装置1は、後記のリークテスト方法を実施するための制御手段を更に備えている。制御手段は、開閉弁V30,V31,V32,V34の駆動回路、信号変換回路を含む入出力部、制御プログラムを格納したROM、差圧センサ33の測定データ等を格納するRAM、検査対象10の漏れ判定(良否判定)を含む制御動作を行なうCPU等を有している。 Although illustration is omitted, the leak test apparatus 1 further includes a control means for performing a leak test method described later. The control means includes a drive circuit for the on-off valves V 30 , V 31 , V 32 , V 34 , an input / output unit including a signal conversion circuit, a ROM storing a control program, a RAM storing measurement data of the differential pressure sensor 33, It has CPU etc. which perform control operation including the leak determination (good / bad determination) of inspection object 10.

上記構成のリークテスト装置1を用いたリークテスト方法を図2のタイムチャートを参照して説明する。
(1)準備作業
漏れ検査すべき対象10に対する本検査に先立つ準備作業では、被検室13の圧変化と温度変化の相関関係を求める。
(1−1)設置工程
後の本検査において検査すべき対象10と同一構成の検査対象を用意する。漏れが無いことが判明している検査対象10を用いてもよく、漏れの有無が不明な検査対象10を用いてもよい。検査対象10と実質的に同構成の擬似ワークを作り、これを用いることにしてもよい。
以下、準備作業で用いる検査対象10には、適宜、符号に「X」を添え、本検査での検査対象10と区別することにする。
A leak test method using the leak test apparatus 1 having the above configuration will be described with reference to the time chart of FIG.
(1) Preparatory work In the preparatory work prior to the main inspection for the target 10 to be inspected for leakage, the correlation between the pressure change and the temperature change in the test chamber 13 is obtained.
(1-1) Installation Step An inspection object having the same configuration as the object 10 to be inspected in the subsequent main inspection is prepared. The inspection object 10 that has been found to have no leakage may be used, or the inspection object 10 whose leakage is unknown may be used. A pseudo work having substantially the same configuration as that of the inspection object 10 may be created and used.
Hereinafter, the inspection object 10 used in the preparatory work will be appropriately distinguished from the inspection object 10 in the main inspection by adding “X” to the reference numeral.

図1に示すように、検査対象10Xを設置台4に設置する。検査対象10Xの内部11に感温部材60を収容し、密閉された被検室13を形成する。被検室13に第1通路31を接続し、感温室61に第2通路32を接続する。   As shown in FIG. 1, the inspection object 10 </ b> X is installed on the installation table 4. The temperature sensing member 60 is accommodated in the interior 11 of the inspection object 10X, and the sealed chamber 13 is formed. The first passage 31 is connected to the test chamber 13, and the second passage 32 is connected to the temperature sensitive greenhouse 61.

(1−2)圧力導入工程
排気用開閉弁V34を閉じ、開閉弁V30,V31,V32,V35,V36を開ける。そして、圧縮エア源2から差圧検出路3に数百kPaの圧縮エア(加圧気体)を導入する。圧縮エアは、第1通路31を経て、被検室13に導入されるとともに、第2通路32を経て、感温室61に導入される。これにより、図2に示すように、被検室13及び感温室61の内圧が高圧になる。更に、マスタータンク37,38にも圧縮エアが導入される。
(1-2) closing the pressure introduction process exhaust on-off valve V 34, opening the on-off valve V 30, V 31, V 32 , V 35, V 36. Then, several hundred kPa of compressed air (pressurized gas) is introduced from the compressed air source 2 into the differential pressure detection path 3. The compressed air is introduced into the test chamber 13 through the first passage 31 and is introduced into the temperature sensitive room 61 through the second passage 32. Thereby, as shown in FIG. 2, the internal pressure of the test chamber 13 and the temperature-sensitive room 61 becomes high. Furthermore, compressed air is also introduced into the master tanks 37 and 38.

(1−3)遮断工程
次に、共通開閉弁V30を閉じる。続いて、第1、第2上流側開閉弁V31、V32を閉じる。これにより、第1通路31と第2通路32が互いに遮断され、各々独立した閉鎖空間になる。被検室13の内圧は、エア漏れ、周辺環境との温度差、断熱圧縮後の放熱等により経時的に変化する。第1通路31ひいては第1被検圧部分35の圧力は、被検室13と等圧であり、被検室13の内圧と同じ挙動を示す。被検室13の温度変化は、良熱伝導性の感温部材60の壁を伝って感温室61に及ぶ。これによって、感温室61の内圧が経時的に変化する。第2通路32ひいては第2被検圧部分36の圧力は、感温室61と等圧であり、感温室61の内圧と同じ挙動を示す。
(1-3) blocking step then closes the common opening and closing valve V 30. Subsequently, the first and second upstream side on-off valves V 31 and V 32 are closed. Thereby, the 1st channel | path 31 and the 2nd channel | path 32 are interrupted | blocked mutually, and become each independent closed space. The internal pressure of the test chamber 13 changes over time due to air leakage, a temperature difference from the surrounding environment, heat dissipation after adiabatic compression, and the like. The pressure of the first passage 31 and the first test pressure portion 35 is equal to that of the test chamber 13 and exhibits the same behavior as the internal pressure of the test chamber 13. The temperature change in the test chamber 13 reaches the temperature-sensitive greenhouse 61 through the wall of the temperature-sensitive member 60 having good heat conductivity. As a result, the internal pressure of the sensitive greenhouse 61 changes with time. The pressure of the second passage 32 and the second pressure-inspected portion 36 is equal to that of the temperature-sensitive greenhouse 61 and exhibits the same behavior as the internal pressure of the temperature-sensitive greenhouse 61.

(1−4)第1差圧検出工程
平衡工程を経て、第2下流側開閉弁V36を閉じる。すなわち、第2通路32の被検圧部分36より感温室61側の部分を閉じる。これにより、第2被検圧部分36が感温室61から遮断される。したがって、図2において「感温室61の内圧」のチャートの二点鎖線に示すように、第2被検圧部分36の内圧が、感温室61の圧力変化ひいては被検室13の温度変化の影響を受けなくなる。以後、第2被検圧部分36の内圧は、開閉弁V36を閉じた時点tにおける大きさP36を維持する。第2マスタータンク38によって第2被検圧部分36の内圧P36を安定させることができる。第1下流側開閉弁V35は開状態を維持する。
(1-4) 1st differential pressure detection process The 2nd downstream on-off valve V36 is closed through an equilibration process. That is, the portion of the second passage 32 closer to the temperature sensitive room 61 than the detected pressure portion 36 is closed. As a result, the second detected pressure portion 36 is blocked from the sensitive room 61. Therefore, as shown by a two-dot chain line in the chart of “Internal pressure of the temperature-sensitive greenhouse 61” in FIG. 2, the internal pressure of the second test pressure portion 36 is influenced by the pressure change of the temperature-sensitive greenhouse 61 and the temperature change of the test chamber 13. No longer receive. Thereafter, the internal pressure of the second test pressure portion 36 maintains the magnitude P 36 at the time point t 1 when the on-off valve V 36 is closed. The second master tank 38 can stabilize the internal pressure P 36 of the second detected pressure portion 36. The first downstream opening / closing valve V35 is kept open.

続いて、差圧センサ33の検出差圧を一定期間記録する。以下、この期間を第1差圧検出期間と称し、第1差圧検出期間に検出した差圧データを第1差圧データと称す。第1差圧データは、被検室13の圧力と第2被検圧部分36の圧力P36(一定値)との差を示す。 Subsequently, the detected differential pressure of the differential pressure sensor 33 is recorded for a certain period. Hereinafter, this period is referred to as a first differential pressure detection period, and differential pressure data detected during the first differential pressure detection period is referred to as first differential pressure data. The first differential pressure data indicates a difference between the pressure in the test chamber 13 and the pressure P 36 (a constant value) in the second test pressure portion 36.

(1−5)第2差圧検出工程
第1差圧検出期間を終えた後、第2下流側開閉弁V36を開ける。これにより、第2被検圧部分36が、感温室61と連通する。したがって、第2被検圧部分36の内圧が、感温室61の内圧と等しくなり、以後、感温室61の温度変化に応じて変動する。
(1-5) Second Differential Pressure Detection Step After finishing the first differential pressure detection period, the second downstream on-off valve V 36 is opened. As a result, the second test pressure portion 36 communicates with the temperature sensitive greenhouse 61. Therefore, the internal pressure of the second test pressure portion 36 becomes equal to the internal pressure of the temperature-sensitive greenhouse 61 and thereafter varies according to the temperature change of the temperature-sensitive room 61.

続いて、第1下流側開閉弁V35を閉じる。すなわち、第1通路31の被検圧部分35より被検室13側の部分を閉じる。これにより、第1被検圧部分35が被検室13から遮断される。したがって、図2において「被検室13の内圧」のチャートの二点鎖線に示すように、第1被検圧部分35の内圧が、被検室13の圧力変化の影響を受けなくなり、ひいては被検室13からのエア漏れや被検室13の温度変化の影響を受けなくなる。以後、第1被検圧部分35の内圧は、開閉弁V35を閉じた時点tにおける大きさP35を維持する。第1マスタータンク37によって第1被検圧部分35の内圧P35を安定させることができる。 Subsequently, the first downstream opening / closing valve V35 is closed. That is, the portion closer to the test chamber 13 than the test pressure portion 35 of the first passage 31 is closed. As a result, the first test pressure portion 35 is blocked from the test chamber 13. Therefore, as shown by a two-dot chain line in the chart of “internal pressure of the test chamber 13” in FIG. 2, the internal pressure of the first test pressure portion 35 is not affected by the pressure change of the test chamber 13, and as a result It is not affected by air leakage from the examination room 13 or temperature changes in the examination room 13. Thereafter, the internal pressure of the first detected pressure portion 35 maintains the magnitude P 35 at the time point t 2 when the on-off valve V 35 is closed. The first master tank 37 can stabilize the internal pressure P 35 of the first test pressure portion 35.

そして、差圧センサ33の検出差圧を一定期間記録する。以下、この期間を第2差圧検出期間と称し、第2差圧検出期間に検出した差圧データを第2差圧データと称す。第2差圧データは、第1被検圧部分35の圧力P35(一定値)と感温室61の圧力との差を示す。 Then, the detected differential pressure of the differential pressure sensor 33 is recorded for a certain period. Hereinafter, this period is referred to as a second differential pressure detection period, and differential pressure data detected during the second differential pressure detection period is referred to as second differential pressure data. The second differential pressure data indicates a difference between the pressure P 35 (constant value) of the first test pressure portion 35 and the pressure of the temperature sensitive greenhouse 61.

(1−6)相関関係取得工程
以後、圧縮エア源2からの導入圧力、検査対象10Xの初期温度、感温部材60の初期温度、環境温度等の条件を種々変更し、上記(1−1)〜(1−6)の操作を反復し、第1差圧データ及び第2差圧データを採取する。なお、検査対象10Xは、上記の条件変更に拘わらず同じものを用いることが好ましい。
(1-6) Correlation acquisition process Thereafter, various conditions such as the pressure introduced from the compressed air source 2, the initial temperature of the inspection target 10X, the initial temperature of the temperature-sensitive member 60, the environmental temperature, etc. are changed, and the above (1-1 ) To (1-6) are repeated to collect first differential pressure data and second differential pressure data. Note that it is preferable to use the same inspection object 10X regardless of the above-described change in conditions.

そして、採取条件ごとの第1差圧データと第2差圧データを見比べ、両者の相関関係を探す。
例えば、採取条件ごとに第1、第2差圧データの変化勾配(又は微分値)を算出する。そして、第1差圧データの変化勾配を縦軸yとし、第2差圧データの変化勾配を縦軸xとしたグラフ上に上記採取条件ごとの変化勾配算出値をプロットし、最小二乗法等による直線補間を行なう。これによって、第1差圧データと第2差圧データとの相関関係を表す一次式(1)を得ることができる。
y=a・x+b …(1)
式(1)において、a、bは、それぞれ定数である。
Then, the first differential pressure data and the second differential pressure data for each sampling condition are compared to find a correlation between them.
For example, the change gradient (or differential value) of the first and second differential pressure data is calculated for each collection condition. Then, the change slope calculation value for each sampling condition is plotted on a graph with the change slope of the first differential pressure data as the vertical axis y and the change slope of the second differential pressure data as the vertical axis x. Perform linear interpolation with. As a result, it is possible to obtain a linear expression (1) representing the correlation between the first differential pressure data and the second differential pressure data.
y = a · x + b (1)
In the formula (1), a and b are constants.

或いは、特許文献1に記載されているように、指数関数を用いた近似式を立てて非線形フィッティングを行ない、上記近似式の係数を確定することにしてもよい。第1、第2差圧データの変化勾配に代えて、第1差圧検出期間中のある一定の時点における第1差圧データ及び第2差圧検出期間中のある一定の時点における第2差圧データを採取条件ごとにピックアップすることにしてもよい。そして、第1差圧データを縦軸yとし第2差圧データを縦軸xとしたグラフ(上掲特許文献2の図5参照)上に上記ピックアップデータをプロットし、最小二乗法等による直線補間を行なうことにしてもよい。この場合、上記式(1)と等価の相関関係式が得られる。   Alternatively, as described in Patent Document 1, an approximation formula using an exponential function may be established and nonlinear fitting may be performed to determine the coefficient of the approximation formula. Instead of the change gradient of the first and second differential pressure data, the first differential pressure data at a certain point in time during the first differential pressure detection period and the second difference at a certain point in time during the second differential pressure detection period. The pressure data may be picked up for each collection condition. The pickup data is plotted on a graph (see FIG. 5 of the above-mentioned Patent Document 2) in which the first differential pressure data is the vertical axis y and the second differential pressure data is the vertical axis x. Interpolation may be performed. In this case, a correlation equation equivalent to the above equation (1) is obtained.

上記の相関関係式(1)は、被検室13における温度変化と差圧変化の関係を示していると看做すことができる。また、相関関係式(1)の右辺第1項と第2項のうち、感温室61の内圧に関する第2差圧データを含むのは、第1項のみであり、第2項の定数bは、感温室61の差圧変化すなわち被検室13の温度変化とは無関係の量である。つまり、定数bは、被検室13の差圧変化量のうち温度変化に依存する分を除いたものに相当し、要するに被検室13からの漏れに起因する差圧変化成分を表している。したがって、被検室13の温度変化と、それのみに起因する差圧変化成分との相関関係は、次式(2)で表すことができる。
y=a・x …(2)
相関関係取得工程の後、検査対象10Xをリークテスト装置1から外す。
The above correlation equation (1) can be regarded as indicating the relationship between the temperature change and the differential pressure change in the test chamber 13. Of the first term and the second term on the right side of the correlation equation (1), only the first term includes the second differential pressure data relating to the internal pressure of the temperature-sensitive room 61, and the constant b of the second term is The amount is irrelevant to the differential pressure change in the temperature sensitive room 61, that is, the temperature change in the test chamber 13. In other words, the constant b corresponds to the amount of change in the differential pressure in the test chamber 13 excluding the amount dependent on the temperature change, and in short, represents the differential pressure change component due to leakage from the test chamber 13. . Therefore, the correlation between the temperature change of the test chamber 13 and the differential pressure change component due to it alone can be expressed by the following equation (2).
y = a · x (2)
After the correlation acquisition step, the inspection object 10X is removed from the leak test apparatus 1.

(2)本検査
その後、実際に検査すべき対象10に対する本検査を行なう。本検査に先立ち、検査対象10を、例えば40℃程度の温洗浄水で洗浄する。これにより、検査対象10が例えば約40℃程度に加温される。そして、上記相関関係取得のための準備作業と略同じ工程を順次実行する。
(2) Main inspection Thereafter, the main inspection is performed on the object 10 to be actually inspected. Prior to the main inspection, the inspection object 10 is washed with warm washing water of about 40 ° C., for example. Thereby, the test object 10 is heated to about 40 ° C., for example. Then, substantially the same steps as the preparatory work for acquiring the correlation are sequentially executed.

(2−1)設置工程
すなわち、検査対象10を設置台4に設置する。検査対象10の内部11に感温部材60を収容し、密閉された被検室13を形成する。被検室13に第1通路31を接続し、感温室61に第2通路32を接続する。
加温された検査対象10の熱が感温部材60に伝達し、感温部材60の温度が上昇する。検査対象10の温度は周辺環境との温度差による放熱によって低下する。
(2-1) Installation Step That is, the inspection object 10 is installed on the installation table 4. The temperature sensing member 60 is accommodated in the interior 11 of the inspection object 10 to form a sealed test chamber 13. The first passage 31 is connected to the test chamber 13, and the second passage 32 is connected to the temperature sensitive greenhouse 61.
The heated heat of the test object 10 is transmitted to the temperature sensing member 60, and the temperature of the temperature sensing member 60 rises. The temperature of the inspection object 10 decreases due to heat dissipation due to a temperature difference from the surrounding environment.

(2−2)圧力導入工程
排気用開閉弁V34を閉じ、開閉弁V30,V31,V32,V35,V36を開ける。そして、圧縮エア源2から差圧検出路3に数百kPaの圧縮エア(加圧気体)を導入する。圧縮エアは、第1通路31を経て、被検室13に導入されるとともに、第2通路32を経て、感温室61に導入される。更に、マスタータンク37,38にも圧縮エアが導入される。
(2-2) closing the pressure introduction process exhaust on-off valve V 34, opening the on-off valve V 30, V 31, V 32 , V 35, V 36. Then, several hundred kPa of compressed air (pressurized gas) is introduced from the compressed air source 2 into the differential pressure detection path 3. The compressed air is introduced into the test chamber 13 through the first passage 31 and is introduced into the temperature sensitive room 61 through the second passage 32. Furthermore, compressed air is also introduced into the master tanks 37 and 38.

(2−3)遮断工程
次に、共通開閉弁V30を閉じる。続いて、第1、第2上流側開閉弁V31、V32を閉じる。これにより、第1通路31と第2通路32が互いに遮断され、各々独立した閉鎖空間になる。被検室13の内圧は、エア漏れ、周辺環境との温度差、断熱圧縮後の放熱等により経時的に変化する。被検室13の温度変化は、良熱伝導性の感温部材60の壁を伝って感温室61に及ぶ。これによって、感温室61の内圧が経時的に変化する。
(2-3) blocking step then closes the common opening and closing valve V 30. Subsequently, the first and second upstream side on-off valves V 31 and V 32 are closed. Thereby, the 1st channel | path 31 and the 2nd channel | path 32 are interrupted | blocked mutually, and become each independent closed space. The internal pressure of the test chamber 13 changes over time due to air leakage, a temperature difference from the surrounding environment, heat dissipation after adiabatic compression, and the like. The temperature change in the test chamber 13 reaches the temperature-sensitive greenhouse 61 through the wall of the temperature-sensitive member 60 having good heat conductivity. As a result, the internal pressure of the sensitive greenhouse 61 changes with time.

(2−4)第1差圧検出工程
平衡工程を経て、第2下流側開閉弁V36を閉じる。これにより、第2被検圧部分36が感温室61から遮断される。したがって、第2被検圧部分36の内圧が、感温室61の圧力変化ひいては被検室13の温度変化の影響を受けなくなり、開閉弁V36を閉じた時点tにおける大きさP36を維持する。第2マスタータンク38によって第2被検圧部分36の内圧P36を安定させることができる。第1下流側開閉弁V35は開状態を維持する。続いて、差圧センサ33によって第1差圧検出期間における第1差圧データD、すなわち被検室13の圧力と第2被検圧部分36の圧力P36(一定値)との差を採取する。
(2-4) First differential pressure detection step The second downstream side on-off valve V36 is closed through the equilibration step. As a result, the second detected pressure portion 36 is blocked from the sensitive room 61. Accordingly, the internal pressure of the second test pressure portion 36 is not affected by the pressure change of the temperature sensing chamber 61 and thus the temperature change of the test chamber 13, and maintains the magnitude P 36 at the time t 1 when the on-off valve V 36 is closed. To do. The second master tank 38 can stabilize the internal pressure P 36 of the second detected pressure portion 36. The first downstream opening / closing valve V35 is kept open. Subsequently, the differential pressure sensor 33 calculates the difference between the first differential pressure data D 1 in the first differential pressure detection period, that is, the pressure in the test chamber 13 and the pressure P 36 (constant value) in the second test pressure portion 36. Collect.

(2−5)第2差圧検出工程
次に、第2下流側開閉弁V36を開ける。これにより、第2被検圧部分36が、感温室61と連通する。したがって、第2被検圧部分36の内圧が、感温室61の内圧と等しくなり、感温室61の温度変化に応じて変動する。
(2-5) Second Differential Pressure Detection Step Next, the second downstream opening / closing valve V36 is opened. As a result, the second test pressure portion 36 communicates with the temperature sensitive greenhouse 61. Therefore, the internal pressure of the second test pressure portion 36 becomes equal to the internal pressure of the temperature-sensitive greenhouse 61 and varies according to the temperature change of the temperature-sensitive room 61.

続いて、第1下流側開閉弁V35を閉じる。これにより、第1被検圧部分35が被検室13から遮断される。したがって、第1被検圧部分35の内圧が、被検室13の圧力変化の影響を受けなくなり、ひいては被検室13からのエア漏れや被検室13の温度変化の影響を受けなくなる。以後、第1被検圧部分35の内圧は、開閉弁V35を閉じた時点tにおける大きさP35を維持する。第1マスタータンク37によって第1被検圧部分35の内圧P35を安定させることができる。そして、差圧センサ33によって、第2差圧検出期間における第2差圧データD、すなわち第1被検圧部分35の圧力P35(一定値)と感温室61の圧力との差を採取する。 Subsequently, the first downstream opening / closing valve V35 is closed. As a result, the first test pressure portion 35 is blocked from the test chamber 13. Accordingly, the internal pressure of the first test pressure portion 35 is not affected by the pressure change in the test chamber 13, and consequently is not affected by the air leakage from the test chamber 13 or the temperature change of the test chamber 13. Thereafter, the internal pressure of the first detected pressure portion 35 maintains the magnitude P 35 at the time point t 2 when the on-off valve V 35 is closed. The first master tank 37 can stabilize the internal pressure P 35 of the first test pressure portion 35. Then, the differential pressure sensor 33 collects the second differential pressure data D 2 in the second differential pressure detection period, that is, the difference between the pressure P 35 (constant value) of the first detected pressure portion 35 and the pressure of the temperature sensing chamber 61. To do.

(2−6)補正工程
次いで、第1差圧データDを第2差圧データD及び上記相関関係式(2)に基づいて補正する。具体的には、第1差圧データDの勾配ΔDを算出するとともに、第2差圧データDの勾配ΔDを算出する。そして、第2差圧データDの算出勾配ΔDを式(2)の右辺の変数xに代入し、被検室13の温度変化に起因する差圧変化量a・ΔDを求める。この差圧変化量a・ΔDを、被検室13の実際の内圧変化を示す第1差圧データDの算出勾配ΔDから差し引く。すなわち、下式の演算を行なう。
ΔDLEAK=ΔD−a・ΔD …(3)
これによって、被検室13の差圧変化のうちエア漏れだけに起因する差圧変化量ΔDLEAKを得ることができる。
(2-6) Correction process is then corrected based on the first differential pressure data D 1 to the second differential pressure data D 2 and the correlation equation (2). Specifically, to calculate the slope [Delta] D 1 of the first differential pressure data D 1, and calculates the slope [Delta] D 2 of the second differential pressure data D 2. Then, the calculated gradient ΔD 2 of the second differential pressure data D 2 is substituted into the variable x on the right side of the equation (2), and the differential pressure change amount a · ΔD 2 due to the temperature change of the test chamber 13 is obtained. This differential pressure change amount a · ΔD 2 is subtracted from the calculated gradient ΔD 1 of the first differential pressure data D 1 indicating the actual internal pressure change in the test chamber 13. That is, the following formula is calculated.
ΔD LEAK = ΔD 1 −a · ΔD 2 (3)
As a result, it is possible to obtain a differential pressure change amount ΔD LEAK resulting from only air leakage among the differential pressure changes in the test chamber 13.

(2−7)漏れ判定工程
上記の差圧変化量ΔDLEAK(補正後の第1差圧データ)に基づいて、検査対象10の漏れ判定ひいては良否判定を行なう。すなわち、差圧変化量ΔDLEAKが許容限度以下であれば、検査対象10を良品と判定する。差圧変化量ΔDLEAKが許容限度を上回っていれば、検査対象10を不良品と判定する。
(2-7) Leakage determination step Based on the above-described differential pressure change amount ΔD LEAK (corrected first differential pressure data), the leakage determination of the inspection object 10 and the pass / fail determination are performed. That is, if the differential pressure change amount ΔD LEAK is less than or equal to the allowable limit, the inspection object 10 is determined as a non-defective product. If the differential pressure change amount ΔD LEAK exceeds the allowable limit, the inspection object 10 is determined to be defective.

この判定方法によれば、温度変化に起因する差圧変化分が取り除かれているので、判定の正確度を向上させることができる。
被検室13の温度変化を圧力換算で測定するものであるため、温度変化が微小であっても確実に感知できる。例えば、初期圧力を500kPa、初期温度を25℃とし、この温度が、+0.1℃だけ変化したものとすると、圧変化量は、ボイルシャルルの法則により167.8Paとなる。よって、微小な温度変化に対して大きな圧変化を得ることができる。これによって、温度測定を極めて高感度に行なうことができる。
感温部材60の体積の分だけ検査対象10の被検室13の容積を内部空間11の容積より小さくできる。したがって、被検室13からの漏れ流量に対する該被検室14の圧力変化の度合いを大きくでき、漏れ感度を高めることができる。
第1差圧検出工程では、第2被検圧部分36が、差圧センサ33の基準圧を与える基準タンクの役目を果たす。第2差圧検出工程では、第1被検圧部分35が、差圧センサ33の基準圧を与える基準タンクの役目を果たす。リークテスト装置1は、被検室13の内圧情報と感温室51の内圧情報が時間的にずらして取得するものであり、差圧センサ33は1つだけあればよく、差圧検出路3を簡素化でき、製品コストを低廉化できる。
According to this determination method, since the differential pressure change due to the temperature change is removed, the accuracy of the determination can be improved.
Since the temperature change of the test chamber 13 is measured in terms of pressure, it can be reliably detected even if the temperature change is minute. For example, if the initial pressure is 500 kPa and the initial temperature is 25 ° C., and this temperature is changed by + 0.1 ° C., the pressure change amount is 167.8 Pa according to Boyle's law. Therefore, a large pressure change can be obtained with respect to a minute temperature change. Thereby, temperature measurement can be performed with extremely high sensitivity.
The volume of the chamber 13 to be inspected 10 can be made smaller than the volume of the internal space 11 by the volume of the temperature sensitive member 60. Therefore, the degree of pressure change in the test chamber 14 with respect to the leakage flow rate from the test chamber 13 can be increased, and the leak sensitivity can be increased.
In the first differential pressure detection step, the second test pressure portion 36 serves as a reference tank that provides the reference pressure of the differential pressure sensor 33. In the second differential pressure detection step, the first test pressure portion 35 serves as a reference tank that provides the reference pressure of the differential pressure sensor 33. The leak test apparatus 1 acquires the internal pressure information of the test chamber 13 and the internal pressure information of the sensation greenhouse 51 in a time-shifted manner, and only one differential pressure sensor 33 is required. It can be simplified and the product cost can be reduced.

本発明は、上記実施形態に限定されるものではなく、種々の改変をなすことができる。
例えば、実施形態では、第1差圧検出工程を実行した後、第2差圧検出工程を実行しているが、第2差圧検出工程を実行した後、第1差圧検出工程を実行することにしてもよい。
感温部材60は、検査対象10の内部空間11の内面との間に被検室13を形成するように配置されればよく、検査対象10の内部空間11に収容されるのに限られず、検査対象10の外面に宛がわれ、該外面への内部空間11の開口を塞ぐように配置されるようになっていてもよい。
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the embodiment, after the first differential pressure detection step is executed, the second differential pressure detection step is executed. However, after the second differential pressure detection step is executed, the first differential pressure detection step is executed. You may decide.
The temperature-sensitive member 60 only needs to be arranged so as to form the test chamber 13 between the inner surface 11 of the inspection object 10 and is not limited to being housed in the inner space 11 of the inspection object 10, It may be arranged so as to be directed to the outer surface of the inspection object 10 and close the opening of the internal space 11 to the outer surface.

1 リークテスト装置
10 検査対象
10X 相関関係取得用検査対象
11 内部空間
13 被検室
2 圧縮エア源(加圧気体供給源)
3 差圧検出路
30 共通路
31 第1通路
31a 第1センサ接続路
32 第2通路
32a 第2センサ接続路
33 差圧センサ
33a 第1室
33b 第2室
34 排気路
35 第1通路の被検圧部分
36 第2通路の被検圧部分
37 第1マスタータンク
38 第2マスタータンク
60 感温部材
61 感温室
62,63 フィン
第1差圧データ(第1検出工程の差圧データ)
第2差圧データ(第2検出工程の差圧データ)
30 レギュレータ
30 共通開閉弁
31 第1上流側開閉弁(上流側開閉手段)
32 第2上流側開閉弁(上流側開閉手段)
34 排気用開閉弁
35 第1下流側開閉弁(第1下流側開閉手段)
36 第2下流側開閉弁(第2下流側開閉手段)
DESCRIPTION OF SYMBOLS 1 Leak test apparatus 10 Inspection object 10X Correlation acquisition inspection object 11 Internal space 13 Test chamber 2 Compressed air source (pressurized gas supply source)
3 Differential pressure detection path 30 Common path 31 First path 31a First sensor connection path 32 Second path 32a Second sensor connection path 33 Differential pressure sensor 33a First chamber 33b Second chamber 34 Exhaust path 35 Test of the first path Pressure portion 36 Pressure detection portion 37 in second passage First master tank 38 Second master tank 60 Temperature sensing member 61 Temperature sensing chamber 62, 63 Fin D 1 First differential pressure data (differential pressure data in the first detection step)
D 2 second differential pressure data (differential pressure data in the second detection step)
R 30 regulator V 30 common on-off valve V 31 first upstream side on-off valve (upstream side on-off means)
V 32 2nd upstream side opening / closing valve (upstream side opening / closing means)
V 34 exhaust on-off valve V 35 first downstream on-off valve (first downstream on-off means)
V 36 second downstream side switching valve (second downstream opening and closing means)

Claims (2)

内部空間を有する検査対象からの漏れを判定するリークテスト装置において、
(イ) 内部に感温室を有し、外面が前記内部空間の内面との間に被検室を形成するよう配置された良熱伝導材料からなる感温部材と、
(ロ) 前記被検室に連なり、加圧気体を前記被検室に導入する第1通路と、前記感温室に連なり、加圧気体を前記感温室に導入する第2通路とを有する差圧検出路と、
(ハ) 前記第1通路と第2通路の間に設けられ、これら通路の差圧を検出する差圧センサと、
(ニ) 前記差圧センサより上流側において前記第1、第2通路を連通して前記加圧気体の導入を許容した後、第1、第2通路を遮断する上流側開閉手段と、
(ホ) 前記差圧センサより下流側の第1通路に設けられ、前記遮断前は開き、前記遮断後は開から閉へ、又は閉から開へ動作する第1下流側開閉手段と、
(ヘ) 前記差圧センサより下流側の第2通路に設けられ、前記遮断前は開き、前記遮断後は第1下流側開閉手段が開のとき閉じ、前記第1下流側開閉手段が閉のとき開く第2下流側開閉手段と、
を備え、前記遮断後において、前記第1下流側開閉手段が開のときの前記差圧センサによる差圧データを、前記第2下流側開閉手段が開のときの前記差圧センサによる差圧データに基づいて補正し、補正後の差圧データに基づいて前記漏れ判定を行うことを特徴とするリークテスト装置。
In a leak test apparatus for judging leakage from an inspection object having an internal space,
(A) a temperature-sensitive member made of a good heat-conductive material that has a temperature-sensitive greenhouse inside and is arranged so that an outer surface forms a test chamber between the inner space and the inner space;
(B) A differential pressure having a first passage that leads to the test chamber and introduces pressurized gas into the test chamber, and a second passage that leads to the temperature sensitive greenhouse and introduces pressurized gas into the temperature sensitive greenhouse. A detection path;
(C) a differential pressure sensor provided between the first passage and the second passage for detecting a differential pressure in the passages;
(D) upstream opening / closing means for blocking the first and second passages after allowing the introduction of the pressurized gas through the first and second passages upstream from the differential pressure sensor;
(E) a first downstream opening / closing means that is provided in a first passage downstream of the differential pressure sensor and that opens before the blocking and operates from opening to closing or from closing to opening after the blocking;
(F) Provided in the second passage on the downstream side of the differential pressure sensor, opened before the interruption, and closed after the interruption when the first downstream opening / closing means is open, and the first downstream opening / closing means is closed. A second downstream opening / closing means that opens when
Differential pressure data obtained by the differential pressure sensor when the first downstream opening / closing means is open after the shut-off, and differential pressure data obtained by the differential pressure sensor when the second downstream opening / closing means is open. A leak test apparatus, wherein the leak determination is performed based on the differential pressure data after correction.
内部空間を有する検査対象からの漏れを判定するリークテスト方法において、
内部に感温室を有する良熱伝導性の感温部材を、前記内部空間の内面との間に被検室を形成するように配置し、
前記被検室に連なる第1通路と前記感温室に連なる第2通路を互いに連通させた状態で、加圧気体を前記第1、第2通路を介して前記被検室及び感温室にそれぞれ導入した後、前記第1通路と第2通路を互いに遮断し、
次に、前記第2通路の被検圧部分より感温室側の部分を閉じ、差圧センサによって前記被検室と前記第2通路の前記被検圧部分との差圧を検出する第1差圧検出工程と、前記第1通路の被検圧部分より被検室側の部分を閉じ、前記差圧センサによって前記感温室と前記第1通路の前記被検圧部分との差圧を検出する第2差圧検出工程とを実行し、
前記第1差圧検出工程の差圧データを前記第2差圧検出工程の差圧データに基づいて補正し、補正後の差圧データに基づいて前記漏れ判定を行なうことを特徴とするリークテスト方法。
In a leak test method for determining a leak from an inspection object having an internal space,
A highly heat-conductive temperature-sensitive member having a temperature-sensitive greenhouse inside is arranged so as to form a test chamber between the inner space and the inner space,
In a state where the first passage connected to the test chamber and the second passage connected to the temperature-sensitive room are in communication with each other, pressurized gas is introduced into the test room and the temperature-sensitive room through the first and second paths, respectively. And then shutting off the first passage and the second passage,
Next, the first pressure difference is detected by closing a portion of the second passage closer to the temperature sensitive room than the test pressure portion and detecting a differential pressure between the test chamber and the test pressure portion of the second passage by a differential pressure sensor. A pressure detecting step and a portion closer to the test chamber than the test pressure portion of the first passage is closed, and a differential pressure between the temperature sensing chamber and the test pressure portion of the first passage is detected by the differential pressure sensor. Performing a second differential pressure detecting step,
A leak test characterized in that the differential pressure data in the first differential pressure detection step is corrected based on the differential pressure data in the second differential pressure detection step, and the leakage determination is performed based on the corrected differential pressure data. Method.
JP2009116671A 2009-05-13 2009-05-13 Leak test apparatus and method Expired - Fee Related JP5340802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116671A JP5340802B2 (en) 2009-05-13 2009-05-13 Leak test apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116671A JP5340802B2 (en) 2009-05-13 2009-05-13 Leak test apparatus and method

Publications (2)

Publication Number Publication Date
JP2010266283A true JP2010266283A (en) 2010-11-25
JP5340802B2 JP5340802B2 (en) 2013-11-13

Family

ID=43363391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116671A Expired - Fee Related JP5340802B2 (en) 2009-05-13 2009-05-13 Leak test apparatus and method

Country Status (1)

Country Link
JP (1) JP5340802B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031543A (en) * 2013-07-31 2015-02-16 三菱重工業株式会社 Leakage detector and nuclear facility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442761Y2 (en) * 1988-02-05 1992-10-09
JP2001228047A (en) * 2000-02-17 2001-08-24 Fukuda:Kk Volume-adjusting method in air leak testing device and air leak testing device having volume adjusting function
JP2007064737A (en) * 2005-08-30 2007-03-15 Fukuda:Kk Leak test method and temperature-sensitive member used for it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442761Y2 (en) * 1988-02-05 1992-10-09
JP2001228047A (en) * 2000-02-17 2001-08-24 Fukuda:Kk Volume-adjusting method in air leak testing device and air leak testing device having volume adjusting function
JP2007064737A (en) * 2005-08-30 2007-03-15 Fukuda:Kk Leak test method and temperature-sensitive member used for it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031543A (en) * 2013-07-31 2015-02-16 三菱重工業株式会社 Leakage detector and nuclear facility

Also Published As

Publication number Publication date
JP5340802B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
US8205484B2 (en) Apparatus and method for leak testing
KR102093571B1 (en) Leak test device and method
CN107076636B (en) Thin film chamber with a measurement volume for a coarse leak test
GB2289944A (en) Gas sensing system
TWI494554B (en) Method and device for differential pressure measurement
JP2017524903A (en) Differential pressure measurement using a film chamber
JP2008309698A (en) Airtightness inspection device, airtightness inspection method and method for manufacturing airtight product
JP4630769B2 (en) Leak test method and temperature sensitive member used therefor
CN105466633B (en) A kind of low temperature lower pressure sensor calibrating installation
JP2007108102A (en) Flow-rate-type performance inspection device and inspection method thereof
JP5340802B2 (en) Leak test apparatus and method
JP2010266282A (en) Device and method for leakage test
JP6370113B2 (en) Pressure gauge inspection method
JP2012255687A (en) Pressure leakage measuring method
JP2018009955A (en) Leak inspection method and leak inspection device
JP6695153B2 (en) Leak inspection device and method
US20230280233A1 (en) Leak detection method and system
JP5221410B2 (en) Leak test apparatus and method, and temperature sensitive member
JP7162301B2 (en) PRESSURE GAUGE INSPECTION METHOD AND PRESSURE GAUGE INSPECTION DEVICE
JP2015158522A (en) Leak test method using differential pressure leak tester
JP3751958B2 (en) Leak inspection device calibration method, leak inspection device
US20150300863A1 (en) Method of determining an internal volume of a filter or bag device, computer program product and a testing apparatus for performing the method
AU2019212996B2 (en) Method for leak testing by means of a film chamber having a vented measurement volume
JP2004177275A (en) Method of leak test and device for leak test
JP3186644B2 (en) Gas leak inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130807

R150 Certificate of patent or registration of utility model

Ref document number: 5340802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees