JP2007108102A - Flow-rate-type performance inspection device and inspection method thereof - Google Patents

Flow-rate-type performance inspection device and inspection method thereof Download PDF

Info

Publication number
JP2007108102A
JP2007108102A JP2005301300A JP2005301300A JP2007108102A JP 2007108102 A JP2007108102 A JP 2007108102A JP 2005301300 A JP2005301300 A JP 2005301300A JP 2005301300 A JP2005301300 A JP 2005301300A JP 2007108102 A JP2007108102 A JP 2007108102A
Authority
JP
Japan
Prior art keywords
flow rate
inspection
valve
pressure
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005301300A
Other languages
Japanese (ja)
Other versions
JP4630791B2 (en
Inventor
Toru Sasaki
透 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Co Ltd
Original Assignee
Fukuda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Co Ltd filed Critical Fukuda Co Ltd
Priority to JP2005301300A priority Critical patent/JP4630791B2/en
Publication of JP2007108102A publication Critical patent/JP2007108102A/en
Application granted granted Critical
Publication of JP4630791B2 publication Critical patent/JP4630791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection device which needs no change of setting for each volume of an object to be inspected. <P>SOLUTION: A test pressure specified by a pressure control valve 2 is introduced in an object W to be inspected via a pressure introducing path 3L. The path 3L is branched to a first shunt 31 and a second shunt 32; when pressurizing, a first valve V31 is closed and a second valve V32 is opened; thereafter the first valve V31 is opened and the second valve V32 is closed; and then a flow rate is measured by a flow meter T31 in the first shunt 31. Based on the measured flow rate, a performance inspection is conducted for leakage of the object W to be inspected and distributability thereof. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、検査対象にテスト圧を導入し、検査対象の良否(漏れの有無等)やガス通路の流通性などの性能を検査する装置及び検査方法に関する。   The present invention relates to an apparatus and an inspection method for introducing a test pressure into an inspection object and inspecting performance such as pass / fail of the inspection object (existence of leakage or the like) and gas channel flowability.

例えば、半導体部品や自動車部品には密閉空間を有しているものがある。この密閉状態を検査する場合、差圧式の漏れ検査を行なうのが一般的である。差圧式の漏れ検査では、検査対象(ワーク)を含む空間と基準(マスタ)を含む空間を連通した状態でこれら2つの空間に等圧の加圧気体を導入する。その後、2つの空間を互いに遮断して各々閉鎖系とし、差圧センサを用いて2つの空間の差圧を検出する。これにより、検査対象の漏れの有無を検出でき、検査対象の密閉状態ひいては検査対象の良・不良を判定することができる。
特開2004−61201号公報
For example, some semiconductor parts and automobile parts have a sealed space. When inspecting this sealed state, a differential pressure type leak inspection is generally performed. In the differential pressure type leak inspection, a pressurized gas having an equal pressure is introduced into these two spaces in a state where the space including the inspection target (work) and the space including the reference (master) are communicated. Thereafter, the two spaces are blocked from each other to form a closed system, and a differential pressure between the two spaces is detected using a differential pressure sensor. Thereby, it is possible to detect the presence or absence of leakage of the inspection target, and to determine whether the inspection target is in a sealed state, and thus whether the inspection target is good or defective.
JP 2004-6201 A

上記の差圧式検査では、得られた差圧を流量に換算する必要がある。換算には検査対象の容積を係数として使用する。このため、検査対象の容積が異なる度に換算係数の切替が必要である。検査対象の容積ごとのグレープ管理も必要となり、煩雑である。検査対象の容積にバラツキがある場合には対応が困難になる。
また、差圧式検査装置では、自動車用マフラなどのように端部が開放されたガス通路を有する部品を検査対象として、前記ガス通路の流通性などを調べることはできない。
In the differential pressure type inspection, it is necessary to convert the obtained differential pressure into a flow rate. For conversion, the volume to be inspected is used as a coefficient. For this reason, it is necessary to switch the conversion coefficient every time the volume to be inspected is different. Grape management for each volume to be inspected is also necessary and complicated. When there is variation in the volume of the inspection object, it becomes difficult to cope with it.
In addition, in the differential pressure type inspection apparatus, it is not possible to examine the flowability of the gas passage by using a part having a gas passage with an open end, such as an automobile muffler, as an inspection target.

本発明は、検査対象の漏れ又は流通度から前記検査対象の良否や流通性等の性能検査を行なう装置であって、
圧力制御弁で設定したテスト圧を検査対象に導入する圧導入路と、
前記圧導入路に設けられた流量計と、
を備え、
前記テスト圧下における前記流量計の測定流量に基づいて前記性能検査を行なうことを特徴とする。
また、本発明は、検査対象の漏れ又は流通度から前記検査対象の性能検査を行なう方法であって、
圧導入路から前記検査対象に所定のテスト圧を導入する加圧工程と、
前記テスト圧下における前記圧導入路の流量を測定する検出工程と、
を実行し、前記測定流量を前記性能検査に資することを特徴とする。
これによって、換算が不要となり、検査対象の容積ごとに設定を変える必要がなく、容積にバラツキのある検査対象をも正確に検査することができる。密閉空間の漏れ検査だけでなくガス通路の流通性の検査にも適用可能である。
「検査対象の性能検査」とは、密閉空間を有すべき検査対象について密閉状態の良否を検査したり、自動車用マフラなどのガス通路を有する検査対象について前記ガス通路の流通性(コンダクタンス)を検査したりすることを含む。
The present invention is an apparatus for performing performance inspections such as pass / fail of the inspection object from the leakage or distribution degree of the inspection object,
A pressure introduction path for introducing the test pressure set by the pressure control valve into the inspection target;
A flow meter provided in the pressure introduction path;
With
The performance inspection is performed based on a measured flow rate of the flowmeter under the test pressure.
Further, the present invention is a method for performing a performance inspection of the inspection object from a leakage or distribution degree of the inspection object,
A pressurizing step of introducing a predetermined test pressure from the pressure introduction path to the inspection object;
A detection step of measuring a flow rate of the pressure introduction path under the test pressure;
And the measured flow rate contributes to the performance inspection.
This eliminates the need for conversion, and it is not necessary to change the setting for each volume to be inspected, and it is possible to accurately inspect an inspection object having a variation in volume. The present invention can be applied not only to leakage inspection of sealed spaces but also to inspection of gas channel flowability.
“Performance inspection of inspection object” means that the inspection object that should have a sealed space is inspected for the quality of the sealed state, or the inspection object having a gas passage such as an automobile muffler is the flowability (conductance) of the gas passage. Including inspection.

前記圧力制御弁より下流の圧導入路が、第1分流路と、この第1分流路をバイパスする第2分流路を有し、
前記第1分流路に、前記流量計と第1開閉弁が設けられ、
前記第2分流路に、第2開閉弁が設けられていることが好ましい。
検査対象へのテスト圧印加の際は、第1開閉弁を閉じた状態で第2開閉弁を開き、その後、第1開閉弁を開くのが好ましい。これにより、流量計に過大流量が流れるのを防止したり異物が混入するのを防止したりでき、流量計を保護することができる。
A pressure introduction path downstream from the pressure control valve has a first branch path and a second branch path that bypasses the first branch path;
The flow meter and the first on-off valve are provided in the first branch channel,
It is preferable that a second on-off valve is provided in the second branch channel.
When applying the test pressure to the inspection object, it is preferable to open the second on-off valve with the first on-off valve closed, and then open the first on-off valve. Thereby, it can prevent that an excessive flow volume flows into a flowmeter, or can prevent a foreign material from mixing in, and can protect a flowmeter.

前記第1開閉弁を閉じた状態で前記第2開閉弁を開き、前記第2分流路から検査対象にテスト圧を導入する加圧工程と、
前記第1開閉弁をも開く第1平衡工程と、
前記第1開閉弁を開いた状態で前記第2開閉弁を閉じる第2平衡工程と、
前記第2平衡工程による前記第1分流路から検査対象へのテスト圧の導入状態を維持しながら前記流量計にて前記第1分流路の流量測定を行なう検出工程と、
を順次実行し、前記流量計の測定流量に基づいて前記検査対象の性能検査を行なうことが好ましい。
これにより、加圧工程時の流量計への過大流量防止及び異物混入防止を図り、流量計を保護できるとともに、加圧工程と検出工程の間に第1平衡工程及び第2平衡工程を置くことにより弁開閉動作に伴う外乱を収束させることができ、検査の正確性を向上させることができる。
A pressurizing step of opening the second on-off valve in a state in which the first on-off valve is closed, and introducing a test pressure from the second branch flow path to a test object;
A first balancing step that also opens the first on-off valve;
A second equilibration step of closing the second on-off valve with the first on-off valve open;
A detection step of measuring the flow rate of the first diversion channel with the flow meter while maintaining the introduction state of the test pressure from the first diversion channel to the inspection object by the second equilibrium step;
Are sequentially executed, and the performance inspection of the inspection object is preferably performed based on the measured flow rate of the flowmeter.
As a result, it is possible to prevent the excessive flow rate and foreign matter from entering the flow meter during the pressurization process, protect the flowmeter, and place the first equilibrium process and the second equilibrium process between the pressurization process and the detection process. Therefore, the disturbance caused by the valve opening / closing operation can be converged, and the accuracy of the inspection can be improved.

検査対象は、同種のものが複数有るのが通例である。
この場合、これら複数の検査対象の1つについて前記加圧工程後の前記測定流量の経時変化のデータを記憶しておき、残りの検査対象について前記検出工程で得られた測定流量を前記経時変化データに基づいて補正し、補正後の測定流量を前記性能検査に資することが好ましい。
これにより、加圧工程での断熱圧縮後の放熱に因る外乱を補正でき、検査の正確性を高めることができる。
Usually, there are a plurality of inspection objects of the same kind.
In this case, the time-dependent change data of the measured flow rate after the pressurizing step is stored for one of the plurality of inspection objects, and the measurement flow rate obtained in the detection process is stored for the remaining inspection objects. It is preferable to correct based on the data, and to use the corrected measured flow rate for the performance inspection.
Thereby, the disturbance resulting from the heat dissipation after the adiabatic compression in the pressurizing step can be corrected, and the accuracy of the inspection can be improved.

前記経時変化データが、前記加圧工程後の放熱に伴い流量が減少する放熱期間における測定流量の平均値と、前記放熱期間の後、流量がほぼ一定になる安定期間における測定流量の差であり、
前記残りの検査対象については検出工程を放熱期間中に実行し、その測定流量の平均値から前記差を差し引くことにより、前記補正後の測定流量を得ることがより好ましい。
これにより、検査対象の1つを長期間にわたって流量測定すれば、残りの検査対象については放熱期間中に検査を行なうことができ、全体の所要検査時間を短縮することができる。
The time-varying data is the difference between the average value of the measured flow rate during the heat release period when the flow rate decreases with the heat release after the pressurizing step and the measured flow rate during the stable period when the flow rate becomes substantially constant after the heat release period. ,
It is more preferable to obtain the corrected measured flow rate by performing a detection step for the remaining inspection objects during the heat dissipation period and subtracting the difference from the average value of the measured flow rates.
Thus, if one of the inspection objects is subjected to flow measurement over a long period of time, the remaining inspection objects can be inspected during the heat dissipation period, and the overall required inspection time can be shortened.

本発明によれば、流量を直接得ることができるため換算の必要がない。したがって、検査対象の容積が異なっても設定を変える必要がなく、容積にバラツキのある検査対象をも正確に検査することができる。   According to the present invention, since the flow rate can be obtained directly, there is no need for conversion. Therefore, it is not necessary to change the setting even if the volume of the inspection object is different, and it is possible to accurately inspect an inspection object having a variation in volume.

以下、本発明の一実施形態を図面にしたがって説明する。
図1は、流量式性能検査システムを示したものである。このシステムは、加圧源1と、圧力制御弁2と、流量式性能検査装置3とを備えている。
加圧源1として例えばエアコンプレッサが用いられている。加圧源1から加圧路10が延びている。加圧路10に上記圧力制御弁2が設けられている。圧力制御弁2のバネ力を調節することにより圧力制御弁2の二次圧(システムのテスト圧)を設定できるようになっている。圧力制御弁2として電磁圧力制御弁を用い、後記圧力センサS31の検出値に基づいてテスト圧が所定になるように制御するようにしてもよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a flow rate type performance inspection system. This system includes a pressurizing source 1, a pressure control valve 2, and a flow rate type performance inspection device 3.
For example, an air compressor is used as the pressure source 1. A pressure passage 10 extends from the pressure source 1. The pressure control valve 2 is provided in the pressurizing passage 10. By adjusting the spring force of the pressure control valve 2, the secondary pressure (system test pressure) of the pressure control valve 2 can be set. An electromagnetic pressure control valve may be used as the pressure control valve 2, and the test pressure may be controlled to be predetermined based on a detection value of the pressure sensor S31 described later.

流量式性能検査装置3は、テスト圧導入路3Lを有している。テスト圧導入路3Lは、圧源接続路30と、この圧源接続路30から分岐された第1分流路31及び第2分流路32とを有している。圧源接続路30の上流端には入口ポートP30が設けられている。この入口ポートP30に加圧路10の下流端が接続されている。圧源接続路30にはフィルタF30が設けられている。フィルタF30より下流の圧源接続路30から第1分流路31と第2分流路32が分岐されている。   The flow rate type performance inspection device 3 has a test pressure introduction path 3L. The test pressure introduction path 3L includes a pressure source connection path 30, and a first branch path 31 and a second branch path 32 branched from the pressure source connection path 30. An inlet port P30 is provided at the upstream end of the pressure source connection path 30. The downstream end of the pressurizing path 10 is connected to the inlet port P30. The pressure source connection path 30 is provided with a filter F30. A first branch path 31 and a second branch path 32 are branched from the pressure source connection path 30 downstream from the filter F30.

第1分流路31には圧力センサS31と流量計T31と第1開閉弁V31とが上流側から順次設けられている。
第1開閉弁V31として、オフ時に閉じオン時に開く常閉の電磁開閉弁が用いられている。
A pressure sensor S31, a flow meter T31, and a first on-off valve V31 are sequentially provided in the first branch channel 31 from the upstream side.
As the first on-off valve V31, a normally closed electromagnetic on-off valve that is closed when turned off and opened when turned on is used.

第2分流路32は、第1分流路31の流量計T31をバイパスするバイパス路になっている。第2分流路32には第2開閉弁V32が設けられている。第2開閉弁V32として、オフ時に閉じオン時に開く常閉の電磁開閉弁が用いられている。   The second branch path 32 is a bypass path that bypasses the flow meter T31 of the first branch path 31. The second branch channel 32 is provided with a second on-off valve V32. As the second on-off valve V32, a normally closed electromagnetic on-off valve that is closed when off and opened when on is used.

第1分流路31と第2分流路32は、互いに合流し、そこからワーク接続路33が延びている。ワーク接続路33にはフィルタF33とワークポートバルブV33とワークポートP33が上流側から順次設けられている。ワークポートP33に検査対象W(ワーク)が接続されるようになっている。
検査対象Wは、例えば密閉空間を有する半導体部品や密閉空間又はガス通路を有する自動車部品などである。検査対象Wの密閉空間やガス通路にワークポートP33が連通するようにしていてもよく、密閉空間を有する検査対象Wをカプセルに収容し、このカプセルにワークポートP33が連通するようにしてもよい。
The first branch flow path 31 and the second branch flow path 32 merge with each other, and the work connection path 33 extends therefrom. A filter F33, a work port valve V33, and a work port P33 are sequentially provided in the work connection path 33 from the upstream side. The inspection object W (work) is connected to the work port P33.
The inspection target W is, for example, a semiconductor component having a sealed space or an automobile component having a sealed space or a gas passage. The work port P33 may be communicated with the sealed space or the gas passage of the inspection target W, or the inspection target W having the sealed space may be accommodated in a capsule, and the work port P33 may be communicated with the capsule.

フィルタF33より上流側のワーク接続路33から較正路34と排気路35がそれぞれ分岐して延びている。較正路34には開閉弁V34が設けられている。開閉弁V34として、オフ時に閉じオン時に開く常閉の電磁開閉弁が用いられている。
排気路35には開閉弁V35が設けられている。開閉弁V35として、オフ時に開きオン時に閉じる常開の電磁開閉弁が用いられている。
A calibration path 34 and an exhaust path 35 are branched and extended from the work connection path 33 upstream of the filter F33. The calibration path 34 is provided with an on-off valve V34. As the on-off valve V34, a normally closed electromagnetic on-off valve that is closed when turned off and opened when turned on is used.
The exhaust passage 35 is provided with an on-off valve V35. As the on-off valve V35, a normally-open electromagnetic on-off valve that opens when turned off and closes when turned on is used.

図示は省略するが、流量式性能検査システムには弁V31〜V35を操作したり流量計T31やセンサS31の測定結果に基づいて所定の処理を行なったりする制御手段が設けられている。   Although illustration is omitted, the flow rate type performance inspection system is provided with a control means for operating the valves V31 to V35 and performing predetermined processing based on the measurement results of the flowmeter T31 and the sensor S31.

上記構成のシステムを用いて検査対象Wの性能検査を行なう方法を図2のタイムチャートを参照して説明する。
テスト圧設定工程
予め、圧力制御弁2のバネを調節することによってテスト圧を設定しておく。設定は、圧力センサS31の読みを参照して行なうとよい。
A method for performing the performance inspection of the inspection object W using the system having the above configuration will be described with reference to the time chart of FIG.
Test pressure setting step The test pressure is set in advance by adjusting the spring of the pressure control valve 2. The setting may be performed with reference to the reading of the pressure sensor S31.

接続工程
ワークポートP33に検査対象Wを接続する。
4つの電磁開閉弁V31,V32,V34,V35はすべてオフにしておく。したがって、第1、第2分岐路31,32及び較正路34の電磁開閉弁V31,V32,V34は閉じ、排気路35の電磁開閉弁V35のみが開いている。
ワークポートバルブV33は開けておく。
The inspection object W is connected to the connection process work port P33.
All four electromagnetic on-off valves V31, V32, V34, and V35 are turned off. Therefore, the electromagnetic on-off valves V31, V32, V34 of the first and second branch paths 31, 32 and the calibration path 34 are closed, and only the electromagnetic on-off valve V35 of the exhaust path 35 is open.
The work port valve V33 is opened.

加圧工程
次に加圧工程を実行する。加圧工程では、第2分流路32の第2開閉弁V32をオンにして開くとともに、排気路35の開閉弁V35をオンにして閉じる。これにより、加圧源1の圧縮エアが、圧力制御弁2によって所定のテスト圧に調節されたうえで第2分流路32を経て検査対象Wに導入される。第1分流路31の第1開閉弁V31はオフのままにし、閉状態を維持しておく。したがって、加圧時の圧縮エアが第1分流路31を通ることはない。これによって、流量計T31に過大な流量が流れるのを防止したり、異物が混入するのを防止したりすることができ、流量計T31を保護することができる。
Pressurizing step next executes a pressurized process. In the pressurizing step, the second on-off valve V32 of the second branch passage 32 is turned on and opened, and the on-off valve V35 of the exhaust passage 35 is turned on and closed. Thereby, the compressed air of the pressurizing source 1 is adjusted to a predetermined test pressure by the pressure control valve 2 and then introduced into the inspection object W through the second branch channel 32. The first on-off valve V31 of the first branch channel 31 is kept off and kept closed. Therefore, compressed air during pressurization does not pass through the first branch channel 31. As a result, it is possible to prevent an excessive flow rate from flowing into the flow meter T31 or to prevent foreign matter from entering the flow meter T31, thereby protecting the flow meter T31.

平衡工程
検査対象Wの印加圧力がテスト圧に達した後、平衡工程を実行する。平衡工程は、第1平衡工程と第2平衡工程の2つの段階がある。
第1平衡工程では、第2分流路32の第2開閉弁V32の開状態を維持しながら、第1分流路31の第1開閉弁V31をオンにして開く。これにより、圧縮エアが、第2分流路32だけでなく第1分流路31をも流れることになる。
After the applied pressure of the equilibrium process inspection object W reaches the test pressure, the equilibrium process is executed. The equilibration process has two stages, a first equilibration process and a second equilibration process.
In the first equilibration step, the first on-off valve V31 of the first diversion channel 31 is turned on and opened while the second on-off valve V32 of the second diversion channel 32 is kept open. As a result, the compressed air flows not only through the second branch channel 32 but also through the first branch channel 31.

数秒後、第2平衡工程に移る。第2平衡工程では、第1分流路31の第1開閉弁V31の開状態を維持しながら、第2分流路32の第2開閉弁V32をオフにして閉じる。これにより、圧縮エアは、第1分流路31と第2分流路32のうち第1分流路31だけを介して検査対象Wに導入されることになる。第2平衡工程の時間は数秒間である。
この平衡工程によって弁開閉に伴う乱れが収まる。
After a few seconds, move on to the second equilibration step. In the second equilibration step, the second on-off valve V32 of the second branch passage 32 is turned off and closed while the first on-off valve V31 of the first branch passage 31 is kept open. As a result, the compressed air is introduced into the inspection object W through only the first branch channel 31 of the first branch channel 31 and the second branch channel 32. The time for the second equilibration step is a few seconds.
Disturbances associated with valve opening and closing are settled by this balancing process.

検出工程
平衡工程の終了後、検出工程を開始する。検出工程では、流量計T31によって第1分流路31の流量を測定する。
半導体パッケージや自動車エンジンのシリンダブロックように密閉空間を有する検査対象Wの場合、上記密閉空間からの漏れが無ければ流れも起きず流量はゼロとなる。一方、漏れが有ると加圧源1から第1分流路31を経て検査対象Wへのエア流が起き、このエア流量が流量計T31で検出される。これにより、検査対象Wの漏れを検出でき、この検出流量に基づき検査対象Wの良否判定を行なうことができる。
自動車用マフラのようにガス通路を有する検査対象Wの場合、加圧源1からのエアが第1分流路31を経て上記ガス通路を流れ、このエア流量が流量計T31で検出される。これにより、検査対象Wのガス通路の流通性を調べることができる。
After completion of the detection process equilibration process, the detection process is started. In the detection step, the flow rate of the first branch channel 31 is measured by the flow meter T31.
In the case of an inspection object W having a sealed space such as a cylinder block of a semiconductor package or an automobile engine, if there is no leakage from the sealed space, no flow occurs and the flow rate becomes zero. On the other hand, if there is a leak, an air flow from the pressure source 1 to the inspection object W occurs through the first branch flow path 31, and this air flow rate is detected by the flow meter T31. Thereby, the leakage of the inspection object W can be detected, and the quality of the inspection object W can be determined based on the detected flow rate.
In the case of an inspection target W having a gas passage such as an automobile muffler, air from the pressurization source 1 flows through the gas passage through the first branch passage 31, and this air flow rate is detected by the flow meter T31. Thereby, the flowability of the gas passage of inspection object W can be investigated.

性能評価の対象である流量(漏れを含む)を直接的に得ることができるため換算の必要がない。したがって、検査対象Wの容積が異なっても設定を変える必要がない。容積にバラツキのある検査対象Wをも正確に検査することができる。
流量計T31によれば、差圧センサでは検出困難な大きな漏れ(大流量)にも十分に対応することができる。
Since the flow rate (including leakage) that is the target of performance evaluation can be obtained directly, there is no need for conversion. Therefore, it is not necessary to change the setting even if the volume of the inspection object W is different. It is possible to accurately inspect the inspection target W having a variation in volume.
According to the flow meter T31, it is possible to sufficiently cope with a large leak (large flow rate) that is difficult to detect with a differential pressure sensor.

後工程
検出工程の終了後、第1分流路31の第1開閉弁V31をオフにするとともに排気路35の開閉弁V35をオフにしてテスト圧導入路3Lを排気する。また、検査対象Wを取り出す。
After completion of the post-process detection step, the first on-off valve V31 of the first branch passage 31 is turned off and the on-off valve V35 of the exhaust passage 35 is turned off to exhaust the test pressure introduction passage 3L. Further, the inspection object W is taken out.

次に、検査方法の改善態様を説明する。
上記加圧工程では断熱圧縮により系に熱が発生する。その後、放熱する。この発熱・放熱は流量測定の外乱となる。一方、この外乱が収束するのを待って検出工程を行なうようにすると、検査に時間がかかる。
そこで、以下のように事前に上記熱の影響を補正データとして求めておき、実際の検査において上記補正データを加味した検査を行なうことが望ましい。
Next, an improved aspect of the inspection method will be described.
In the pressurizing step, heat is generated in the system by adiabatic compression. Then, heat is dissipated. This heat generation and heat dissipation becomes a disturbance of flow measurement. On the other hand, if the detection process is performed after the disturbance has converged, the inspection takes time.
Therefore, it is desirable to obtain the influence of the heat as correction data in advance as follows and perform an inspection in consideration of the correction data in an actual inspection.

事前検査
基本的な操作は、上記第1態様と同様である。すなわち、テスト圧を設定したうえで(テスト圧設定工程)、1つの検査対象Wをワークポートに接続し(接続工程)、検査対象Wにテスト圧を導入し(加圧工程)、弁開閉に因る乱れが収まるのを待った後(第1平衡工程及び第2平衡工程)、検出を行なう(検出工程)。
The basic operation of the preliminary inspection is the same as that in the first aspect. That is, after setting the test pressure (test pressure setting process), one inspection object W is connected to the work port (connection process), the test pressure is introduced to the inspection object W (pressurization process), After waiting for the turbulence to settle (first equilibrium step and second equilibrium step), detection is performed (detection step).

図3は、第2平衡工程以後の第1分流路31における流量の経時変化の一例を示したものである。流量は、急峻に立ち上がり、ピークを迎えた後、上記の放熱の効果により次第に下がり、やがて一定の値に落ち着く。以下、立ち上がってピークを迎えるまでの期間を立ち上がり期間と言い、ピークから漸次下がって行く期間を放熱期間と言い、ほぼ一定の値になった以後の期間を安定期間と言う。   FIG. 3 shows an example of the change over time of the flow rate in the first branch channel 31 after the second equilibration step. The flow rate rises steeply and reaches a peak, then gradually decreases due to the effect of the heat dissipation, and eventually settles to a constant value. Hereinafter, a period from rising to reaching a peak is referred to as a rising period, a period gradually decreasing from the peak is referred to as a heat dissipation period, and a period after reaching a substantially constant value is referred to as a stable period.

事前検査における検出工程は、放熱期間から安定期間までの比較的長時間にわたって実行する。これにより、放熱期間の流量データと安定期間の流量データとを得る。
放熱期間は、一定時間置きに流量のサンプリングを行なう。そして、これら放熱期間のサンプリングデータの平均値を求める。例えば、0.1秒ごとに流量をサンプリングする。放熱期間が5秒間であれば50個のサンプリングデータが得られる。これら50個のデータの和を取り50で割り平均値を求める。
この放熱期間の平均値から安定期間の流量値を差し引く。差し引いて得られた値を補正値(流量の経時変化データ)として記憶しておく。
事前検査で用いる検査対象Wは良品に限られず不良品でもよい。検査対象Wと等価の物を用いてもよい。
The detection process in the preliminary inspection is performed over a relatively long time from the heat dissipation period to the stable period. As a result, flow rate data during the heat dissipation period and flow rate data during the stable period are obtained.
During the heat dissipation period, the flow rate is sampled at regular intervals. And the average value of the sampling data of these heat dissipation periods is calculated | required. For example, the flow rate is sampled every 0.1 seconds. If the heat dissipation period is 5 seconds, 50 sampling data are obtained. The sum of these 50 data is taken and divided by 50 to obtain an average value.
The flow rate value during the stable period is subtracted from the average value during this heat dissipation period. The value obtained by subtraction is stored as a correction value (flow rate change data).
The inspection object W used in the preliminary inspection is not limited to a non-defective product but may be a defective product. A thing equivalent to the inspection object W may be used.

本検査
次いで、残りの検査対象Wについて本検査を実行する。
この本検査では、事前検査での立ち上がり期間を第2平衡工程の時間として設定する。また、放熱期間の全期間または放熱期間の途中までを検出工程の時間として設定する。そして、上記第1態様と同様に、ワークをワークポートに接続し(接続工程)、検査対象Wに設定圧を導入し(加圧工程)、平衡状態になるのを待った後(平衡工程)、検出を行なう(検出工程)。
This test is then run this test for the remaining inspection object W.
In this inspection, the rising period in the preliminary inspection is set as the time of the second equilibrium process. Further, the entire period of the heat radiation period or the middle of the heat radiation period is set as the time for the detection process. Then, as in the first aspect, the work is connected to the work port (connection process), the set pressure is introduced into the inspection object W (pressurization process), and after waiting for an equilibrium state (equilibrium process), detection is performed. (Detection step).

検出工程では一定時間置きに流量のサンプリングを行なう。そして、これらサンプリングデータの平均値を求める。例えば、0.1秒ごとに5秒間サンプリングして50個のサンプリングデータを得、これら50個のデータの和を取り50で割り平均値を求める。この平均値を検査対象Wの実流量測定値とする。
上記の実流量測定値から事前検査で求めておいた補正値を差し引く。これよって、実流量測定値から放熱による外乱分を除去することができ、検査対象Wの正味の流量(漏れ)を得ることができる。
この改善態様によれば、放熱が収束するのを待つことなく検出工程を実行できるので、全体の所要検査時間を大幅に短縮することができる。
In the detection process, the flow rate is sampled at regular intervals. And the average value of these sampling data is calculated | required. For example, sampling is performed every 0.1 second for 5 seconds to obtain 50 sampling data, and the sum of these 50 data is taken and divided by 50 to obtain an average value. This average value is taken as the actual flow rate measurement value of the inspection object W.
Subtract the correction value obtained in the previous inspection from the actual flow rate measurement value. Thereby, disturbance due to heat radiation can be removed from the actual flow rate measurement value, and the net flow rate (leakage) of the inspection object W can be obtained.
According to this improvement mode, the detection process can be executed without waiting for the heat dissipation to converge, so that the entire required inspection time can be greatly shortened.

本発明は、上記実施形態に限定されるものでなく、種々の改変をなすことができる。   The present invention is not limited to the above embodiment, and various modifications can be made.

この発明は、半導体部品や自動車部品などの密閉空間を有すべき検査対象Wの漏れを検出し検査対象Wの良否判定をしたり、自動車用マフラなどのガス通路を有する検査対象Wの流通性を検査したりするのに適用することができる。   The present invention detects the leakage of an inspection target W that should have a sealed space such as a semiconductor part or an automobile part to determine whether the inspection target W is acceptable or not, and the flowability of the inspection target W having a gas passage such as an automobile muffler. It can be applied to the inspection.

本発明の一実施形態に係る流量式性能検査システムの概略構成を示す回路図である。1 is a circuit diagram showing a schematic configuration of a flow rate type performance inspection system according to an embodiment of the present invention. 前記流量式性能検査システムにて検査対象Wの性能検査するときの開閉弁のタイムチャートである。It is a time chart of the on-off valve when performing the performance inspection of the inspection object W in the flow rate type performance inspection system. 第2平衡工程以後の第1分流路における流量の経時変化の一例を示すグラフである。It is a graph which shows an example of a time-dependent change of the flow rate in the 1st distribution channel after the 2nd equilibration process.

符号の説明Explanation of symbols

1 加圧源
10 加圧路
2 圧力制御弁
3 流量式性能検査装置
3L テスト圧導入路
31 第1分流路
32 第2分流路
S31 圧力センサ
T31 流量計
V31 第1開閉弁
V32 第2開閉弁
W 検査対象
DESCRIPTION OF SYMBOLS 1 Pressurization source 10 Pressurization path 2 Pressure control valve 3 Flow type performance inspection apparatus 3L Test pressure introduction path 31 1st branch path 32 2nd branch path S31 Pressure sensor T31 Flowmeter V31 1st on-off valve V32 2nd on-off valve W Inspection target

Claims (6)

検査対象の漏れ又は流通度から前記検査対象の性能検査を行なう装置であって、
圧力制御弁で設定したテスト圧を検査対象に導入する圧導入路と、
前記圧導入路に設けられた流量計と、
を備え、
前記テスト圧下における前記流量計の測定流量に基づいて前記性能検査を行なうことを特徴とする流量式性能検査装置。
An apparatus for performing a performance inspection of the inspection object from a leakage or distribution degree of the inspection object,
A pressure introduction path for introducing the test pressure set by the pressure control valve into the inspection target;
A flow meter provided in the pressure introduction path;
With
A flow rate type performance inspection apparatus that performs the performance inspection based on a measured flow rate of the flowmeter under the test pressure.
前記圧力制御弁より下流の圧導入路が、第1分流路と、この第1分流路をバイパスする第2分流路を有し、
前記第1分流路に、前記流量計と第1開閉弁が設けられ、
前記第2分流路に、第2開閉弁が設けられていることを特徴とする請求項1に記載の流量式性能検査装置。
A pressure introduction path downstream from the pressure control valve has a first branch path and a second branch path that bypasses the first branch path;
The flow meter and the first on-off valve are provided in the first branch channel,
The flow rate type performance inspection apparatus according to claim 1, wherein a second on-off valve is provided in the second branch flow path.
検査対象の漏れ又は流通度から前記検査対象の性能検査を行なう方法であって、
圧導入路から前記検査対象に所定のテスト圧を導入する加圧工程と、
前記テスト圧下における前記圧導入路の流量を測定する検出工程と、
を実行し、前記測定流量を前記性能検査に資することを特徴とする流量式性能検査方法。
A method for performing a performance inspection of the inspection object from a leakage or distribution degree of the inspection object,
A pressurizing step of introducing a predetermined test pressure from the pressure introduction path to the inspection object;
A detection step of measuring a flow rate of the pressure introduction path under the test pressure;
The flow rate type performance inspection method is characterized in that the measured flow rate is contributed to the performance inspection.
請求項2に記載の流量式性能検査装置を用い、
前記第1開閉弁を閉じた状態で前記第2開閉弁を開き、前記第2分流路から検査対象にテスト圧を導入する加圧工程と、
前記第1開閉弁をも開く第1平衡工程と、
前記第1開閉弁を開いた状態で前記第2開閉弁を閉じる第2平衡工程と、
前記第2平衡工程による前記第1分流路から検査対象へのテスト圧の導入状態を維持しながら前記流量計にて前記第1分流路の流量測定を行なう検出工程と、
を順次実行し、前記流量計の測定流量に基づいて前記検査対象の性能検査を行なうことを特徴とする流量式性能検査方法。
Using the flow rate type performance inspection device according to claim 2,
A pressurizing step of opening the second on-off valve in a state in which the first on-off valve is closed, and introducing a test pressure from the second branch flow path to a test object;
A first balancing step that also opens the first on-off valve;
A second equilibration step of closing the second on-off valve with the first on-off valve open;
A detection step of measuring the flow rate of the first diversion channel with the flow meter while maintaining the introduction state of the test pressure from the first diversion channel to the inspection object by the second equilibrium step;
Are sequentially executed, and the performance inspection of the inspection object is performed based on the measured flow rate of the flowmeter.
同種の検査対象が複数有り、これら複数の検査対象の1つについて前記加圧工程後の前記測定流量の経時変化のデータを記憶しておき、
残りの検査対象について前記検出工程で得られた測定流量を前記経時変化データに基づいて補正し、補正後の測定流量を前記性能検査に資することを特徴とする請求項3又は4に記載の流量式性能検査方法。
There are a plurality of inspection objects of the same type, and for one of the plurality of inspection objects, data of change over time of the measured flow rate after the pressurizing step is stored,
5. The flow rate according to claim 3, wherein the measurement flow rate obtained in the detection step for the remaining inspection object is corrected based on the temporal change data, and the corrected measurement flow rate contributes to the performance inspection. Formula performance inspection method.
前記経時変化データが、前記加圧工程後の放熱に伴い流量が減少する放熱期間における測定流量の平均値と、前記放熱期間の後、流量がほぼ一定になる安定期間における測定流量の差であり、
前記残りの検査対象については検出工程を放熱期間中に実行し、その測定流量の平均値から前記差を差し引くことにより、前記補正後の測定流量を得ることを特徴とする請求項5に記載の流量式性能検査方法。
The time-varying data is the difference between the average value of the measured flow rate during the heat release period when the flow rate decreases with the heat release after the pressurizing step and the measured flow rate during the stable period when the flow rate becomes substantially constant after the heat release period. ,
The detected flow rate after correction is obtained by executing a detection step for the remaining inspection object during a heat dissipation period and subtracting the difference from the average value of the measured flow rate. Flow type performance inspection method.
JP2005301300A 2005-10-17 2005-10-17 Flow-type performance inspection method Active JP4630791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301300A JP4630791B2 (en) 2005-10-17 2005-10-17 Flow-type performance inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301300A JP4630791B2 (en) 2005-10-17 2005-10-17 Flow-type performance inspection method

Publications (2)

Publication Number Publication Date
JP2007108102A true JP2007108102A (en) 2007-04-26
JP4630791B2 JP4630791B2 (en) 2011-02-09

Family

ID=38034061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301300A Active JP4630791B2 (en) 2005-10-17 2005-10-17 Flow-type performance inspection method

Country Status (1)

Country Link
JP (1) JP4630791B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107454A (en) * 2008-10-31 2010-05-13 Yamatake Corp Leak detection system and method for sealed container
JP2010107452A (en) * 2008-10-31 2010-05-13 Yamatake Corp Leak detection system and method for sealed container
JP2012032351A (en) * 2010-08-03 2012-02-16 Ace:Kk Leakage inspection apparatus and leakage inspection method
CN105651467A (en) * 2016-01-13 2016-06-08 共享装备股份有限公司 Detection method of sandbox sealing performance
JP2017138173A (en) * 2016-02-03 2017-08-10 日本電産サンキョーシーエムアイ株式会社 Inspection device for crack detection of cylindrical member
CN107121244A (en) * 2017-04-10 2017-09-01 兰州大学 A kind of device and its detection method for detecting pyrometallurgical smelting spray gun water cooling safe practice
CN107407613A (en) * 2015-03-03 2017-11-28 Emd密理博公司 The system and method for testing the integrality of flexible container
KR20180065894A (en) * 2016-12-08 2018-06-18 폴 코포레이션 Method and system for leak testing
CN113790852A (en) * 2021-09-10 2021-12-14 江苏国富氢能技术装备股份有限公司 Detection device and detection method for detecting performance of high-pressure hydrogen pressure reducing valve
CN113790852B (en) * 2021-09-10 2024-04-30 江苏国富氢能技术装备股份有限公司 Detection method of detection device for detecting performance of pressure reducing valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185749A (en) * 1996-12-24 1998-07-14 Gas Mitsukusu Kogyo Kk Method and apparatus for leak inspection
JP2000039377A (en) * 1998-07-22 2000-02-08 Japan Tobacco Inc Ventilation measuring apparatus
JP2003035624A (en) * 2001-07-23 2003-02-07 Ee D:Kk Leak inspection method and apparatus therefor
JP2004061201A (en) * 2002-07-26 2004-02-26 Fukuda:Kk Method and system for leakage test
JP2004170167A (en) * 2002-11-19 2004-06-17 Fukuda:Kk Method and device for testing air leak

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185749A (en) * 1996-12-24 1998-07-14 Gas Mitsukusu Kogyo Kk Method and apparatus for leak inspection
JP2000039377A (en) * 1998-07-22 2000-02-08 Japan Tobacco Inc Ventilation measuring apparatus
JP2003035624A (en) * 2001-07-23 2003-02-07 Ee D:Kk Leak inspection method and apparatus therefor
JP2004061201A (en) * 2002-07-26 2004-02-26 Fukuda:Kk Method and system for leakage test
JP2004170167A (en) * 2002-11-19 2004-06-17 Fukuda:Kk Method and device for testing air leak

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107452A (en) * 2008-10-31 2010-05-13 Yamatake Corp Leak detection system and method for sealed container
JP2010107454A (en) * 2008-10-31 2010-05-13 Yamatake Corp Leak detection system and method for sealed container
JP2012032351A (en) * 2010-08-03 2012-02-16 Ace:Kk Leakage inspection apparatus and leakage inspection method
CN107407613A (en) * 2015-03-03 2017-11-28 Emd密理博公司 The system and method for testing the integrality of flexible container
JP2018507415A (en) * 2015-03-03 2018-03-15 イー・エム・デイー・ミリポア・コーポレイシヨン System and method for flexible container integrity testing
CN105651467A (en) * 2016-01-13 2016-06-08 共享装备股份有限公司 Detection method of sandbox sealing performance
JP2017138173A (en) * 2016-02-03 2017-08-10 日本電産サンキョーシーエムアイ株式会社 Inspection device for crack detection of cylindrical member
KR20180065894A (en) * 2016-12-08 2018-06-18 폴 코포레이션 Method and system for leak testing
JP2018096975A (en) * 2016-12-08 2018-06-21 ポール・コーポレーションPall Corporation Method and system for leak testing
KR101954929B1 (en) * 2016-12-08 2019-03-06 폴 코포레이션 Method and system for leak testing
US10422716B2 (en) 2016-12-08 2019-09-24 Pall Corporation Method and system for leak testing
CN107121244A (en) * 2017-04-10 2017-09-01 兰州大学 A kind of device and its detection method for detecting pyrometallurgical smelting spray gun water cooling safe practice
CN113790852A (en) * 2021-09-10 2021-12-14 江苏国富氢能技术装备股份有限公司 Detection device and detection method for detecting performance of high-pressure hydrogen pressure reducing valve
CN113790852B (en) * 2021-09-10 2024-04-30 江苏国富氢能技术装备股份有限公司 Detection method of detection device for detecting performance of pressure reducing valve

Also Published As

Publication number Publication date
JP4630791B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4630791B2 (en) Flow-type performance inspection method
US7594424B2 (en) Automated timer and setpoint selection for pneumatic test equipment
KR100990882B1 (en) Leak inspection method and leak inspector
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
KR20180091901A (en) Leakage test apparatus and method
JP4056818B2 (en) Leak test method and apparatus
JP6018632B2 (en) Leak detection device and method for inspecting an object for airtightness using the leak detection device
US6729177B2 (en) Method and apparatus for inspecting for airtightness failure
JP2022047607A (en) Gas leakage detection device, setting method of gas leakage detection, gas leakage detection method, and program
JP5049199B2 (en) External pressure detection type leak inspection device and leak inspection method using the same
JPH01311242A (en) Valve leak monitoring device
JP2005037268A (en) Flow rate inspection device
JP6695153B2 (en) Leak inspection device and method
JPS6280535A (en) Valve leak detecting method
JP2007147559A (en) Method and device for inspecting leakage
JP2003065885A (en) Leak inspection device
JP3349130B2 (en) Leak inspection device
JPH0465967B2 (en)
JP2004177275A (en) Method of leak test and device for leak test
CN113790893B (en) Quick check and verification system and check and verification method for discharge equipment
KR20180057391A (en) Continuous pressure leak test device module
CN211291988U (en) Flow testing device for preventing range overshoot and reducing switching disturbance
Kakuste et al. Review Paper on Leak Detection
JP3328203B2 (en) Container leakage inspection method and apparatus using differential pressure change rate
JP2010159974A (en) Helium leak detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250