JP2012255687A - Pressure leakage measuring method - Google Patents

Pressure leakage measuring method Download PDF

Info

Publication number
JP2012255687A
JP2012255687A JP2011128062A JP2011128062A JP2012255687A JP 2012255687 A JP2012255687 A JP 2012255687A JP 2011128062 A JP2011128062 A JP 2011128062A JP 2011128062 A JP2011128062 A JP 2011128062A JP 2012255687 A JP2012255687 A JP 2012255687A
Authority
JP
Japan
Prior art keywords
space
differential pressure
pressure
leakage
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011128062A
Other languages
Japanese (ja)
Inventor
Tooru Sasaki
透 佐々木
Yusuke Mochizuki
勇輔 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Co Ltd
Original Assignee
Fukuda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Co Ltd filed Critical Fukuda Co Ltd
Priority to JP2011128062A priority Critical patent/JP2012255687A/en
Publication of JP2012255687A publication Critical patent/JP2012255687A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To accelerate a processing speed by reducing the required storage amount of master data in pressure leakage measurement and operation amount in calculating an actual leakage rate of an object to be checked.SOLUTION: The aging of a differential pressure between a space 9a to be checked without leakage and a reference space 8a is created with gradients a, a, a... of each primary function as master data on the assumption that the inside of time zones τ, τ, τ... becomes the primary function (creation step). Next, gradients a, a, a... of the aging of a measured differential pressure between the space 9a to be checked and the reference space 8a for each of the time zones τ, τ, τ... are determined as measured data (measurement step). The master data of the same time zone are then subtracted from the measured data (arithmetic step).

Description

この発明は、密封された被検査空間内に加圧気体源から加圧気体を導入して、被検査空間からの圧力洩れを測定する圧力洩れ測定方法に関する。   The present invention relates to a pressure leak measurement method for measuring pressure leak from a space to be examined by introducing pressurized gas from a pressurized gas source into a sealed space to be examined.

密閉された内部空間(被検査空間)を有する被測定物の密閉性を検査するために、エアコンプレッサ等の加圧気体源から圧縮空気等の加圧気体を上記被測定物の内部空間に導入して、上記内部空間からの圧力洩れを測定することが知られている。圧力洩れの測定方式は、被検査空間の圧力それ自体の変化を圧力検出器にて検出する圧力方式と、被検査空間と基準空間との間の差圧の変化を差圧検出器にて検出する差圧方式とに大別される。前者の圧力方式は、圧力検出器の測定精度の制約がある。圧力洩れを高精度に測定するには後者の差圧方式が適している。   In order to inspect the tightness of the measurement object having a sealed internal space (inspection space), a pressurized gas such as compressed air is introduced into the internal space of the measurement object from a pressurized gas source such as an air compressor. It is known to measure pressure leakage from the internal space. The pressure leak measurement method is a pressure method that detects changes in the pressure of the space under test using a pressure detector, and a pressure difference detector that detects changes in the pressure difference between the space under test and the reference space. It is roughly divided into the differential pressure method. The former pressure method is limited in the measurement accuracy of the pressure detector. The latter differential pressure method is suitable for measuring pressure leakage with high accuracy.

差圧方式では、被検査空間とは独立した密閉空間(基準空間)を有する基準容器を用意して、被検査空間と基準空間とを差圧検出器を介して接続する。そして、被検査空間と基準空間とを互いに連通させた状態でこれら空間に加圧気体を導入する。圧力が平衡した後、被検査空間と基準空間とを遮断して各々閉鎖系とする。被測定物にピンホール等の欠陥部があったときはそこから加圧気体が洩れて被検査空間と基準空間との間に差圧が生じる。この差圧の変化を差圧検出器にて検出することによって、被検査空間からの圧力洩れを測定することができる。ひいては、被測定物の良否を判定できる。   In the differential pressure method, a reference container having a sealed space (reference space) independent of the space to be inspected is prepared, and the space to be inspected and the reference space are connected via a differential pressure detector. Then, the pressurized gas is introduced into the spaces to be inspected and the reference space in communication with each other. After the pressure equilibrates, the space to be inspected and the reference space are shut off to form a closed system. When there is a defect such as a pinhole in the object to be measured, the pressurized gas leaks from there and a differential pressure is generated between the inspection space and the reference space. By detecting the change in the differential pressure with a differential pressure detector, it is possible to measure pressure leakage from the space to be inspected. As a result, the quality of the object to be measured can be determined.

一方、被検査空間の圧力は、加圧気体の導入に伴う断熱圧縮による温度変化によっても変動する。この温度変化に起因する圧力変動は時間の経過とともに収束する。この収束を待って圧力洩れ測定を行なうのが一般的であるが、それでは測定に長時間を要する。   On the other hand, the pressure in the space to be inspected also varies due to a temperature change due to adiabatic compression accompanying the introduction of pressurized gas. The pressure fluctuation caused by this temperature change converges with time. Generally, pressure leak measurement is performed after this convergence, but this requires a long time.

そこで、特許文献1では、被検査空間に洩れがない場合の差圧の経時変化をマスタデータとして記憶しておく。そして、差圧の実測データをマスタデータと比較することによって洩れレートを算出している。具体的には、マスタデータは、洩れがない被検査空間と基準空間とが遮断された時点以降の経時変化する差圧値の集合であり、断熱圧縮による温度変化に起因する圧力変動の経時データに相当する。そして、実測時の被検査空間と基準空間とが遮断された時点以降のある測定時刻の実測差圧値からそれと対応する測定時刻におけるマスタデータの差圧値を差し引く。これによって、実測差圧値から洩れに起因する差圧(洩れ差圧)が抽出される。さらに二以上の測定時刻における洩れ差圧を求め、一回微分値(二つの洩れ差圧どうしの差)を算出することで、洩れ差圧の変化量すなわち洩れレートを求めている。   Therefore, in Patent Document 1, the change over time in the differential pressure when there is no leakage in the space to be inspected is stored as master data. Then, the leak rate is calculated by comparing the measured data of the differential pressure with the master data. Specifically, the master data is a set of differential pressure values that change with time after the time when the inspected space and the reference space that are not leaked are shut off, and the temporal data of pressure fluctuations caused by temperature changes due to adiabatic compression. It corresponds to. Then, the differential pressure value of the master data at the measurement time corresponding thereto is subtracted from the actual measurement differential pressure value at a certain measurement time after the time when the inspected space at the actual measurement and the reference space are blocked. As a result, a differential pressure (leakage differential pressure) due to leakage is extracted from the actually measured differential pressure value. Further, the leakage differential pressure at two or more measurement times is obtained, and the differential value (difference between the two leakage differential pressures) is calculated, thereby obtaining the amount of change in the leakage differential pressure, that is, the leakage rate.

特許文献2では、温度変化と洩れを加味した差圧の経時変化を表す方程式を近似的に設定しておき、実測データを上記方程式にフィッティングさせることで上記方程式の洩れに関わる係数を求め、洩れ判定を行なっている。   In Patent Document 2, an equation representing the change over time in the differential pressure taking temperature change and leakage into account is set approximately, and the coefficient relating to leakage of the above equation is obtained by fitting the measured data to the above equation to determine the leakage. Judgment is performed.

特許第3181199号公報Japanese Patent No. 3181199 特開2004−061201号公報JP 2004-062011 A

上掲特許文献1,2に記載の方法によれば、断熱圧縮による温度変化に起因する圧力変動が収束するのを待たなくても洩れ判定できる。しかし、特許文献1では、差圧値をマスタデータとしているから、リーク差圧の変化量を求めるために記憶させるべきデータ数が多くなり、リーク差圧の変化量を求める際の演算量も多くなる。
特許文献2では、差圧方程式を設定し、フィッティングするための演算ソフトウエアが煩雑になる。
本発明は、上記事情に鑑み、マスタデータの所要記憶量を減らし、更には実際の被検査物の洩れレートを算出する際の演算量を減らして処理速度を高めることを目的とする。
According to the methods described in the above-mentioned Patent Documents 1 and 2, it is possible to determine leakage even without waiting for the pressure fluctuation caused by the temperature change due to adiabatic compression to converge. However, in Patent Document 1, since the differential pressure value is used as master data, the number of data to be stored for obtaining the amount of change in leak differential pressure increases, and the amount of computation when obtaining the amount of change in leak differential pressure is also large. Become.
In Patent Document 2, calculation software for setting and fitting a differential pressure equation becomes complicated.
In view of the above circumstances, an object of the present invention is to reduce the required storage amount of master data and further reduce the amount of calculation when calculating the leakage rate of an actual inspection object to increase the processing speed.

前述の通り、被検査空間に加圧気体を導入すると、被検査空間の温度が、断熱圧縮によって上昇し、その後、放熱によって次第に下降する。この温度変化に起因して被検査空間の圧力が変動する。したがって、上記加圧気体の導入後に被検査空間と基準空間とを遮断すると、これら空間どうし間の差圧が変化する。   As described above, when the pressurized gas is introduced into the inspection space, the temperature of the inspection space rises due to adiabatic compression and then gradually decreases due to heat dissipation. Due to this temperature change, the pressure in the inspection space fluctuates. Therefore, if the space to be inspected and the reference space are shut off after the introduction of the pressurized gas, the differential pressure between these spaces changes.

図2において細い実曲線に示すように、上記の温度変化に起因する差圧成分の経時変化PM(t)は、一次遅れ要素のインディシャル応答(式(1))で近似的に表されることが知られている。以下、説明を簡略化するため、式(1)が成り立つものとして説明する。
PM(t)=b{1-exp(-ct)} (1)
ここで、b, cは、上記温度変化に起因する差圧変化に係る定数である。具体的には、bは、温度変化が収まったときの差圧の収束点を示す。cは、温度変化が収まる早さを示す。tは時間である。
As shown by a thin solid curve in FIG. 2, the time-dependent change P M (t) of the differential pressure component due to the above temperature change is approximately expressed by the initial response (formula (1)) of the first-order lag element. It is known that Hereinafter, in order to simplify the description, it is assumed that the expression (1) holds.
P M (t) = b {1-exp (-ct)} (1)
Here, b and c are constants related to the differential pressure change caused by the temperature change. Specifically, b indicates a convergence point of the differential pressure when the temperature change is settled. c indicates how quickly the temperature change is settled. t is time.

また、図2において二点鎖線に示すように、洩れに起因する差圧成分PLの経時変化は、時間に比例する一次関数となる(式(2))。
PL(t)=at (2)
ここで、aは、洩れに起因する差圧変化に係る定数であり、被検査空間からの単位時間当たりの漏れ量(洩れレート)に相当する。
Further, as shown by a two-dot chain line in FIG. 2, the change with time of the differential pressure component P L due to leakage is a linear function proportional to time (formula (2)).
P L (t) = at (2)
Here, a is a constant related to the differential pressure change caused by leakage, and corresponds to the leakage amount (leakage rate) per unit time from the space to be inspected.

図2において細い破曲線に示すように、実際の差圧の経時変化PT (t)は、上記温度変化に起因する差圧成分PMと洩れに起因する差圧成分PLの和になる(式(3))。
PT(t)=PM(t)+PL(t)=at+ b{1-exp(-ct)} (3)
As shown in the thin broken curve in FIG. 2, the actual change P T (t) of the differential pressure over time is the sum of the differential pressure component P M resulting from the temperature change and the differential pressure component P L resulting from leakage. (Formula (3)).
P T (t) = P M (t) + P L (t) = at + b {1-exp (-ct)} (3)

上記温度変化に起因する差圧変化式PM(t)(式(1))の導関数PM’(t)は、次式(4)になる。
PM’(t)=bc・exp(-ct) (4)
図3において細い実曲線に示すように、導関数PM’(t)は時間tの経過と共に漸次減少する。
The derivative P M ′ (t) of the differential pressure change expression P M (t) (expression (1)) resulting from the temperature change is expressed by the following expression (4).
P M '(t) = bc ・ exp (-ct) (4)
As shown by a thin solid curve in FIG. 3, the derivative P M ′ (t) gradually decreases with the passage of time t.

実際の差圧変化式PT(t)(式(3))の導関数PT’(t)は次式(5)になる。
PT’(t)=a+ bc・exp(-ct) (5)
図3において細い破曲線に示すように、導関数PT’(t)は時間tの経過と共に漸次減少する。
The derivative P T ′ (t) of the actual differential pressure change equation P T (t) (equation (3)) is expressed by the following equation (5).
P T '(t) = a + bc ・ exp (-ct) (5)
As shown by a thin fracture curve in FIG. 3, the derivative P T ′ (t) gradually decreases with the passage of time t.

実際の差圧変化の導関数PT’(t)(式(5))と、温度変化に起因する差圧変化の導関数PM’(t)(式(4))との差は、次式(6)の通り、洩れレートaと等しい。
PT’(t) - PM’(t)=a (6)
そこで、温度変化に起因する差圧変化の導関数PM’ (t)(式(4))をマスタデータとして記憶しておき、実測差圧から実際の差圧変化の導関数PT’ (t)(式(5))を算出し、その差を算出することで(式(6))、洩れ量を求める方法が考えられる。しかし、非線形の連続関数(式(1),(3))を立ててその導関数(式(4),(5))を求めるには、数多くの計算が必要になる。
The difference between the derivative P T ′ (t) (equation (5)) of the actual differential pressure change and the derivative P M ′ (t) (equation (4)) of the differential pressure change due to the temperature change is As the following equation (6), it is equal to the leakage rate a.
P T '(t)-P M ' (t) = a (6)
Therefore, the derivative P M ′ (t) (Equation (4)) of the differential pressure change caused by the temperature change is stored as master data, and the actual differential pressure change derivative P T ′ ( t) (Equation (5)) is calculated and the difference between them is calculated (Equation (6)). However, in order to establish a nonlinear continuous function (Equations (1) and (3)) and obtain its derivatives (Equations (4) and (5)), many calculations are required.

そこで、本発明は、被検査空間と基準空間とを互いに連通させた状態で前記被検査空間及び前記基準空間に加圧気体を導入した後、前記被検査空間と前記基準空間とを遮断して各々閉鎖系とし、前記被検査空間と前記基準空間との間の差圧によって前記被検査空間からの圧力洩れを測定する圧力洩れ測定方法において、
洩れが無い被検査空間と前記基準空間との間の差圧の経時変化を、各々の時間帯内は一次関数になると擬制したときの、前記各一次関数の勾配をマスタデータとして作成する作成工程と、
前記被検査空間と前記基準空間との間の実測差圧の経時変化の前記時間帯ごとの勾配を実測データとして求める実測工程と、
前記実測データから同じ時間帯の前記マスタデータを差し引く演算工程と、
を備えたことを特徴とする。
Therefore, the present invention cuts off the inspected space and the reference space after introducing pressurized gas into the inspected space and the reference space in a state where the inspected space and the reference space are in communication with each other. In the pressure leak measurement method, each of which is a closed system, and the pressure leak from the test space is measured by the differential pressure between the test space and the reference space.
A creation step of creating, as master data, the gradient of each linear function when the temporal change in the differential pressure between the test space without leakage and the reference space is simulated as a linear function within each time zone When,
An actual measurement step for obtaining, as actual measurement data, a gradient for each time zone of the temporal change of the actual measurement differential pressure between the inspection space and the reference space;
A calculation step of subtracting the master data of the same time zone from the measured data;
It is provided with.

すなわち、図2において折れ線状の実太線にて示すように、本発明は、差圧の経時変化を、時間帯τ1,τ2,τ3…,τn…ごとに区切り、1つの時間帯τn内では差圧が直線的に変化するものと擬制したものである。ここで、時間帯τnは、時刻tn-1から時刻tnまでの時間領域を言う。したがって、洩れがない被検査空間と基準空間との差圧の経時変化は、時間帯τ1,τ2,τ3…,τn…ごとの線分sM1,sM2,sM3…,sMn…を連ねた折れ線状の不連続関数PMn(t)で近似される。線分sMnは、時刻tn-1における差圧値PMn-1と時刻tnにおける差圧値PMnとを結ぶ直線線分である。 That is, as shown by a solid and thick polygonal line in FIG. 2, the present invention, the time course of differential pressure, time zone τ 1, τ 2, τ 3 ..., separated for each tau n ..., 1 single time slot It is assumed that the differential pressure changes linearly within τ n . Here, the time zone τ n is a time region from time t n −1 to time t n . Thus, aging of the pressure difference between the leakage is not inspected space and the reference space, time zone τ 1, τ 2, τ 3 ..., τ n ... each of the line segment s M1, s M2, s M3 ..., s It is approximated by Mn polygonal line which ... had been chosen discontinuous function P Mn (t). Segment s Mn is a straight line segment connecting the differential pressure values P Mn in differential pressure values P Mn-1 and the time t n at time t n-1.

不連続関数PMn (t)は、次式(11)で表される。

Figure 2012255687

上記不連続関数PMn(t)の導関数PMn’ (t)は、不連続点を除いて次式(12)となる。
Figure 2012255687
The discontinuous function P Mn (t) is expressed by the following equation (11).
Figure 2012255687

The discontinuous function P derivative of Mn (t) P Mn '(t) is represented by the following formula (12) with the exception of the discontinuities.
Figure 2012255687

式(12)から明らかな通り、時刻tn-1から時刻tnまでの間の1つの時間帯τn内の導関数PMn’ (t)の値は、tによらず一定値になる。また、より後の時間帯τほど(nが大きくなるほど)、導関数PMn’ の値が小さくなる。すなわち、
PM1’> PM2’> PM3’… (13)
となる。この様子を図3の階段状の実太線にて示す。本発明では、この導関数の値PM1’, PM2’, PM3’…をマスタデータとする。したがって、本発明によれば、従来の、各時間t0, t1, t2, t3…の差圧値PM0, PM1, PM2, PM3…をマスタデータとする方法(特許文献1)よりもマスタデータの所要記憶数を減らすことができる。
As is clear from the equation (12), the value of the derivative P Mn ′ (t) in one time zone τ n between time t n−1 and time t n becomes a constant value regardless of t. . Further, the value of the derivative P Mn 'decreases as the time zone τ later (as n increases). That is,
P M1 '> P M2 '> P M3 '… (13)
It becomes. This is indicated by the solid solid line in the step shape of FIG. In the present invention, the derivative values P M1 ′, P M2 ′, P M3 ′, etc. are used as master data. Therefore, according to the present invention, the conventional method of using the differential pressure values P M0 , P M1 , P M2 , P M3 ... At each time t 0 , t 1 , t 2 , t 3 . The required number of master data can be reduced as compared with 1).

同様に、図2において折れ線状の破太線にて示すように、実際の被検査空間と基準空間との差圧の経時変化についても、時間帯τ1,τ2,τ3…,τn…ごとの線分sT1,sT2,sT3…,sTn…を連ねた折れ線状の不連続関数PTn(t)で近似する。線分sTnは、時刻tn-1における実際の差圧値PTn-1と時刻tnにおける実際の差圧値PTnとを結ぶ直線線分である。 Similarly, as shown by a thick line fracture of polygonal line in FIG. 2, the time course of the pressure difference between the actual inspection space and reference space also, the time period τ 1, τ 2, τ 3 ..., τ n ... Each line segment s T1 , s T2 , s T3 ..., s Tn ... is approximated by a broken line discontinuous function P Tn (t). Segment s Tn is a straight line connecting the actual differential pressure values P Tn in the actual differential pressure values P Tn-1 and the time t n at time t n-1.

不連続関数PTn(t)は、次式(14)で表される。

Figure 2012255687

上記不連続関数PTn(t)の導関数PTn’(t)は、不連続点を除いて次式(15)となる。
Figure 2012255687
The discontinuous function P Tn (t) is expressed by the following equation (14).
Figure 2012255687

The discontinuous function P derivative of Tn (t) P Tn '(t) is represented by the following formula (15) with the exception of the discontinuities.
Figure 2012255687

式(15)から明らかな通り、時刻tn-1から時刻tnまでの間の1つの時間帯τn内の導関数PTn’ (t)の値は、tによらず一定値になる。また、より後の時間帯τほど(nが大きくなるほど)、導関数PTn’ の値が小さくなる。すなわち、
PT1’> PT2’> PT3’… (16)
となる。この様子を図3の階段状の破太線にて示す。本発明では、この導関数の値PT1’,PT2’ ,PT3’…を実測データとして求める。そして、互いに同じ時間帯τの実測データとマスタデータの差を求める。
As is clear from equation (15), the value of the derivative P Tn ′ (t) in one time zone τ n between time t n−1 and time t n is a constant value regardless of t. . In addition, the value of the derivative P Tn 'decreases as the time zone τ later (as n increases). That is,
P T1 '> P T2 '> P T3 '… (16)
It becomes. This is shown by the stepped broken lines in FIG. In the present invention, values P T1 ′, P T2 ′, P T3 ′... Of this derivative are obtained as measured data. Then, the difference between the measured data and the master data in the same time zone τ is obtained.

ここで、実測の導関数PTn’(t)(式(15))からマスタの導関数PMn’(t)(式(12))を差し引くと、下式(17)の通り、洩れレートを示す定数aになる。
PTn’ (t) - PMn’ (t) = a (17)
この結果は、連続関数について求めた洩れレート(式(6))と同じである。すなわち、同じ時間帯τnにおける不連続関数PMn(t),PTn(t)の導関数PMn’(t),PTn’(t)どうしの差(式(17))は、連続関数PM(t),PT(t)の導関数PM’(t),PT’(t)どうしの差(式(6))と同じになる。
Here, if the master derivative P Mn '(t) (Equation (12)) is subtracted from the measured derivative P Tn ' (t) (Equation (15)), the leakage rate is obtained as shown in the following equation (17). The constant a indicating
P Tn '(t)-P Mn ' (t) = a (17)
This result is the same as the leakage rate (equation (6)) obtained for the continuous function. That is, the difference (equation (17)) between the derivatives P Mn '(t) and P Tn ' (t) of the discontinuous functions P Mn (t) and P Tn (t) in the same time period τ n is continuous. function P M (t), P T derivative P M of (t) becomes the same as '(t), P T' (t) How to difference (equation (6)).

要するに、本発明によれば、図3に示すように、互いに同じ時間帯τ1,τ2,τ3…,τn…の実測データPT1’,PT2’ ,PT3’…,PTn’…からマスタデータPM1’,PM2’ ,PM3’… ,PMn’…を差し引くことで、洩れレートa1,a2,a3…,an…を直接的に求めることができる(式(18))。

Figure 2012255687

したがって、従来の、差圧からなるマスタデータと実測差圧との差を取って更に一回微分するやり方(特許文献1)よりも、実際の被検査物に対する洩れ検査時の演算量を減らすことができる。よって、判定処理の速度を高めることができる。 In short, according to the present invention, as shown in FIG. 3, each other the same time period τ 1, τ 2, τ 3 ..., τ n ... measured data P T1 of ', P T2', P T3 '..., P Tn '... master data P M1 from', P M2 ', P M3 ' ..., P Mn '... by subtracting a leakage rate a 1, a 2, a 3 ..., can be obtained directly a n ... (Formula (18)).
Figure 2012255687

Therefore, compared with the conventional method of taking the difference between the master data consisting of the differential pressure and the actual measurement differential pressure and further differentiating it once (Patent Document 1), the amount of calculation at the time of leak inspection for the actual inspection object is reduced. Can do. Therefore, the speed of the determination process can be increased.

上記式(18)の演算結果a1,a2,a3…,an…は互いに同程度の大きさになる。
a1≒a2≒a3…≒an… (19)
これらの値a1,a2,a3…,an…を平均することで、測定のばらつきを修正でき、洩れレートaを精度良く求めることができる。
The calculation results a 1 , a 2 , a 3 ..., A n .
a 1 ≒ a 2 ≒ a 3 ... ≒ a n ... (19)
By averaging these values a 1 , a 2 , a 3 ..., A n ..., The measurement variation can be corrected and the leak rate a can be obtained with high accuracy.

図2に示すように、本発明のマスタデータすなわち導関数PMn’ (t) の値は、温度変化に起因する差圧変化式PM(t)を表す折れ線(図2の実太線)の各線分sM1,sM2,sM3…,sMn…の勾配aM1,aM2,aM3…,aMn…に相当する。勾配aM1,aM2,aM3…,aMn…は、下式(21)のようにして算出できる。

Figure 2012255687
As shown in FIG. 2, the master data of the present invention, that is, the value of the derivative P Mn ′ (t) is represented by a broken line (solid line in FIG. 2) representing the differential pressure change equation P M (t) due to temperature change. Each segment s M1, s M2, s M3 ..., s Mn ... gradient a M1, a M2, a M3 ..., corresponding to a Mn .... The gradients a M1 , a M2 , a M3 ..., A Mn ... Can be calculated as in the following equation (21).
Figure 2012255687

また、本発明の実測データすなわち導関数PTn’ (t) の値は、実測差圧変化式PT(t)を表す折れ線(図2の破太線)の各線分sT1,sT2,sT3…,sTn…の勾配aT1,aT2,aT3…,aTn…に相当する。勾配aT1,aT2,aT3…,aTn…は、下式(22)のようにして算出できる。

Figure 2012255687
In addition, the measured data of the present invention, that is, the value of the derivative P Tn ′ (t) is the line segment s T1 , s T2 , s of the broken line (abundant line in FIG. 2) representing the measured differential pressure change equation P T (t). T3 ..., s Tn ... gradient of a T1, a T2, a T3 ..., equivalent to a Tn .... The gradients a T1 , a T2 , a T3 ..., A Tn ... Can be calculated as in the following equation (22).
Figure 2012255687

したがって、上記作成工程では、勾配aM1,aM2,aM3…,aMn…をマスタデータとして求め、上記実測工程では勾配aT1,aT2,aT3…,aTn…を実測データとして求め、上記演算工程では、式(23)に示すように、互いに同じ時間帯τ1,τ2,τ3…,τn…の実測勾配aT1,aT2,aT3…,aTn…からマスタ勾配aM1,aM2,aM3…,aMn…を差し引くことで、洩れレートa1,a2,a3…,an…を算出することが好ましい。

Figure 2012255687
Thus, in the generating step, the gradient a M1, a M2, a M3 ..., seeking a Mn ... as the master data, in the actual process determined as the gradient a T1, a T2, a T3 ..., a Tn ... measured data In the above calculation step, as shown in the equation (23), from the measured gradients a T1 , a T2 , a T3 ..., a Tn ... in the same time zone τ 1 , τ 2 , τ 3 ..., τ n ... gradient a M1, a M2, a M3 ..., by subtracting the a Mn ..., leakage rate a 1, a 2, a 3 ..., it is preferable to calculate the a n ....
Figure 2012255687

時間帯τ1,τ2,τ3…,τn…の長さは、互いに等しいことが好ましい。すなわち、下式(24)が成り立つことが好ましい。
(t1-t0)= (t2-t1)= (t3-t2)=…=(tn-tn-1)=… (24)
そうすることで、すべての式(21)及び式(22)の右辺の分母を1に置き換えることができ(式(21a)及び式(22a))、マスタデータの作成及び実測データの算出を簡単化できる。

Figure 2012255687

Figure 2012255687
The lengths of the time zones τ 1 , τ 2 , τ 3 ..., Τ n . That is, it is preferable that the following formula (24) holds.
(t 1 -t 0 ) = (t 2 -t 1 ) = (t 3 -t 2 ) =… = (t n -t n-1 ) =… (24)
By doing so, the denominator on the right side of all equations (21) and (22) can be replaced with 1 (equations (21a) and (22a)), making it easy to create master data and calculate actual data Can be
Figure 2012255687

Figure 2012255687

本発明によれば、マスタデータの所要記憶量を減らすことができる、更には、洩れレートを演算する際の演算量を減らすことができ、処理速度を高めることができる。   According to the present invention, the required storage amount of master data can be reduced, and further, the calculation amount when calculating the leakage rate can be reduced, and the processing speed can be increased.

本発明の一実施形態に係る圧力洩れ測定装置の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the pressure leak measuring apparatus which concerns on one Embodiment of this invention. 本発明のマスタデータ及び実測データを説明するために差圧の経時変化を例示したグラフである。It is the graph which illustrated change with time of differential pressure in order to explain master data and actual measurement data of the present invention. 本発明のマスタデータ及び実測データを説明するために差圧の経時変化の導関数(勾配)を例示したグラフである。It is the graph which illustrated the derivative (gradient) of the time-dependent change of differential pressure in order to explain the master data and actual measurement data of the present invention.

以下、本発明の一実施形態を図面にしたがって説明する。
図1は、被検査物9からの圧力洩れを測定する圧力洩れ測定装置1を示したものである。被検査物9は、特に限定がなく、例えばエンジンのシリンダブロック、燃料タンク等である。被検査物9は内部空間を有している。この内部空間が被検査空間9aになっている。検査物9の内周面によって被被検査空間9aが画成されている。詳細な図示は省略するが、被検査空間9aの開口部は冶具等によって閉塞されている。これによって、被検査空間9aが密封されている。被検査物9がカプセル内に収容されていてもよく、このカプセルの内周と被検査物9の外周との間の空間が被検査空間9aを構成していてもよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a pressure leak measuring apparatus 1 for measuring pressure leak from an object 9 to be inspected. The inspection object 9 is not particularly limited and is, for example, an engine cylinder block, a fuel tank, or the like. The inspection object 9 has an internal space. This internal space is the inspection space 9a. An inspected space 9 a is defined by the inner peripheral surface of the inspection object 9. Although detailed illustration is omitted, the opening of the space 9a to be inspected is closed by a jig or the like. As a result, the space 9a to be inspected is sealed. The inspected object 9 may be accommodated in the capsule, and the space between the inner periphery of the capsule and the outer periphery of the inspected object 9 may constitute the inspected space 9a.

圧力洩れ測定装置1は、測定部2と、コントローラ3(制御手段)を備えている。測定部2は、供給路10と、検査路11と、基準路12を有している。これら通路10〜12は、ブロック内に形成されていてもよく、配管によって構成されていてもよい。   The pressure leak measuring apparatus 1 includes a measuring unit 2 and a controller 3 (control means). The measurement unit 2 includes a supply path 10, an inspection path 11, and a reference path 12. These passages 10 to 12 may be formed in the block or may be constituted by piping.

供給路10の上流端の接続端子10aに、図示しないエア圧力源が接続される。供給路10には、上流側(接続端子10aの側)から順に、レギュレータ13(減圧弁)と、圧力計14と、二位置三方型の電磁方向制御弁15とが設けられている。供給路10の下流端から検査路11と基準路12が分岐されている。検査路11の下流端が被検査物9の被検査空間9aに連なっている。   An air pressure source (not shown) is connected to the connection terminal 10 a at the upstream end of the supply path 10. The supply path 10 is provided with a regulator 13 (pressure reducing valve), a pressure gauge 14, and a two-position three-way electromagnetic directional control valve 15 in this order from the upstream side (connection terminal 10a side). The inspection path 11 and the reference path 12 are branched from the downstream end of the supply path 10. The downstream end of the inspection path 11 is connected to the inspection space 9 a of the inspection object 9.

基準路12の下流端が、冶具(図示省略)を介して基準容器8の内部空間8a(基準空間)に連なっている。基準空間8aは、密閉されている。被検査空間9aと基準空間8aの形状及び容積は、ほぼ同一であってもよく異なっていてもよい。   The downstream end of the reference path 12 is connected to the internal space 8a (reference space) of the reference container 8 through a jig (not shown). The reference space 8a is sealed. The shapes and volumes of the space 9a to be inspected and the reference space 8a may be substantially the same or different.

検査路11には電磁開閉弁16が設けられ、基準路12には電磁開閉弁17が設けられている。開閉弁16,17より下流の通路11,12どうしの間に差圧検出器20が設けられている。差圧検出器20の内部がダイヤフラム21によって被検室23と基準室24に仕切られている。被検室23のポートが検査圧導入路25を介して検査路11に連なっている。基準室24のポートが基準圧導入路26を介して基準路12に連なっている。被検査空間9aと基準空間8aとの間に差圧が生じると、被検室23と基準室24との間に差圧が生じ、その差圧の大きさに応じてダイヤフラム21が変形する。差圧検出器20は、この変形を電圧に変換してコントローラ3へ出力する。これによって、被検査空間9aと基準空間8aとの間の差圧を検出できる。   The inspection path 11 is provided with an electromagnetic open / close valve 16, and the reference path 12 is provided with an electromagnetic open / close valve 17. A differential pressure detector 20 is provided between the passages 11 and 12 downstream of the on-off valves 16 and 17. The inside of the differential pressure detector 20 is partitioned into a test chamber 23 and a reference chamber 24 by a diaphragm 21. A port of the test chamber 23 is connected to the test path 11 via the test pressure introduction path 25. A port of the reference chamber 24 is connected to the reference path 12 through a reference pressure introduction path 26. When a differential pressure is generated between the test space 9a and the reference space 8a, a differential pressure is generated between the test chamber 23 and the reference chamber 24, and the diaphragm 21 is deformed according to the magnitude of the differential pressure. The differential pressure detector 20 converts this deformation into a voltage and outputs it to the controller 3. Thereby, the differential pressure between the space 9a to be inspected and the reference space 8a can be detected.

測定部2の動作はコントローラ3にて制御される。コントローラ3には、上記弁15〜17の駆動回路(図示省略)や、マイクロコンピュータ31が設けられている。マイクロコンピュータ31には、CPUからなる演算処理部32、RAMやROMからなる記憶部33等が設けられている。記憶部33には、制御動作のためのプログラムやマスタデータが格納されている。図2に示すように、マスタデータは、洩れがない被検査空間9aと基準空間8aとの差圧の経時変化PM(t)を、各々の時間帯τ1(= t0〜t1),τ2(= t1〜t2),τ3(= t2〜t3)…τn(= tn-1〜tn)…内は一次関数になると擬制したときの、上記各一次関数すなわち各直線線分sM1,sM2,sM3…sMn…の勾配aM1,aM2,aM3…aMn…である。マスタデータの作成方法については追って詳述する。演算処理部32は、差圧検出器20の実測差圧データと上記マスタデータとによって所定の演算処理を行なうことで被検査空間9aからの洩れ検査を行なう。 The operation of the measurement unit 2 is controlled by the controller 3. The controller 3 is provided with a drive circuit (not shown) for the valves 15 to 17 and a microcomputer 31. The microcomputer 31 is provided with an arithmetic processing unit 32 including a CPU, a storage unit 33 including a RAM and a ROM, and the like. The storage unit 33 stores programs and master data for control operations. As shown in FIG. 2, the master data represents the time-dependent change P M (t) of the differential pressure between the space 9a to be inspected and the reference space 8a without leakage, in each time zone τ 1 (= t 0 to t 1 ). , Τ 2 (= t 1 to t 2 ), τ 3 (= t 2 to t 3 ) ... τ n (= t n-1 to t n ) ... The function, that is, the gradients a M1 , a M2 , a M3 ... a Mn ... of each straight line segment s M1 , s M2 , s M3 ... s Mn ... The method for creating the master data will be described in detail later. The arithmetic processing unit 32 performs a leak test from the inspected space 9a by performing a predetermined arithmetic process based on the actually measured differential pressure data of the differential pressure detector 20 and the master data.

洩れ検査の際は、方向制御弁15をオンして供給路10を連通させ、かつ開閉弁16,17を開くことで、加圧気体源の気体圧力を供給路10から検査路11及び基準路12に導入し、更には被検査空間9a及び基準空間8aに導入する。この圧力導入時の断熱圧縮によって空間9a,8aの温度が上昇し、その後、放熱によって上記温度が低下する。被検査物9と基準容器8とでは、種々の条件の違いから断熱圧縮に伴なう温度変化の程度が異なる。   In the leak inspection, the direction control valve 15 is turned on to connect the supply passage 10 and the on-off valves 16 and 17 are opened, so that the gas pressure of the pressurized gas source is changed from the supply passage 10 to the inspection passage 11 and the reference passage. 12 and further into the inspection space 9a and the reference space 8a. The temperature of the spaces 9a and 8a is increased by the adiabatic compression at the time of introducing the pressure, and then the temperature is decreased by heat radiation. The inspected object 9 and the reference container 8 differ in the degree of temperature change accompanying adiabatic compression due to differences in various conditions.

しばらくの時間が経過した後、開閉弁16,17を閉じて検査路11と基準路12を遮断し、ひいては被検査空間9aと基準空間8aを遮断して各々閉鎖系とする。これによって、上記断熱圧縮に伴なう温度変化の違いが、被検査空間9aと基準空間8aとの間の圧力差として現れる。この差圧が差圧検出器20によって検出される。図2の実細線PM(t)は、上記の断熱圧縮による温度変化に起因する差圧変化の様子を示したものである。この差圧変化は、ほぼ一次遅れ要素のインディシャル応答になる。 After a while, the on-off valves 16 and 17 are closed, the inspection path 11 and the reference path 12 are shut off, and the inspection space 9a and the reference space 8a are shut off to form a closed system. As a result, a difference in temperature change due to the adiabatic compression appears as a pressure difference between the space 9a to be inspected and the reference space 8a. This differential pressure is detected by the differential pressure detector 20. The solid thin line P M (t) in FIG. 2 shows the state of the differential pressure change caused by the temperature change due to the adiabatic compression. This change in differential pressure becomes an initial response of a first-order lag element.

さらに、被検査空間9aに洩れがあれば、この洩れに起因する被検査空間9aの圧力低下分が上記空間9a,8aどうし間の差圧に加わる。図2の二点鎖線PL(t)に示すように、上記洩れに起因する差圧変化は直線状になる。図2の破細線PT(t)に示すように、実際の差圧変化は、断熱圧縮による温度変化に起因する差圧変化と洩れに起因する差圧変化を加算したものになる。 Furthermore, if there is a leak in the space 9a to be inspected, the pressure drop in the space 9a to be inspected due to this leakage is added to the differential pressure between the spaces 9a and 8a. As shown by the two-dot chain line P L (t) in FIG. 2, the change in differential pressure due to the leakage is linear. As shown by the broken line P T (t) in FIG. 2, the actual differential pressure change is the sum of the differential pressure change caused by the temperature change due to adiabatic compression and the differential pressure change caused by leakage.

図2において、時刻t0は、開閉弁16,17によって被検査空間9aと基準空間8aを遮断した時点、又はそれ以後の当該遮断操作に伴なう圧力の乱れが収まった時点(遮断時点から1〜数秒後)である。この時点t0の差圧検出器20の読みを0にリセットすることが好ましい。 In FIG. 2, the time t 0 is the time when the inspected space 9a and the reference space 8a are shut off by the on-off valves 16 and 17, or the time when the pressure disturbance accompanying the shut-off operation after that is stopped (from the shut-off time). 1 to several seconds later). It is preferable to reset the reading of the differential pressure detector 20 at this time t 0 to zero.

装置1による圧力洩れ測定方法を、更に詳述する。
圧力洩れ検査は、上記マスタデータの作成工程、実際の被検査物9を対象とする実測工程、圧力洩れの判定のための演算工程の順に実施する。
The method for measuring pressure leakage using the apparatus 1 will be described in more detail.
The pressure leak inspection is performed in the order of the master data creation process, the actual measurement process for the actual inspection object 9, and the calculation process for determining the pressure leak.

[マスタデータの作成工程]
マスタデータ作成工程では、まず、測定部2を上述した手順で操作し、洩れがない被検査空間9aと基準空間8aとの間の差圧の時刻t0以降の経時変化を差圧検出器20にて測定する。具体的には、図2の実細線PM(t)上の差圧変化データPM0,PM1,PM2,PM3…PMn…を一定の時間間隔τn(=τ123…)をおいて時刻t1,t2,t3…,tn…ごとに取得する。ここでの被検査物9は、実際に洩れが無いことが判明しているものを用いてもよく、洩れの有無が不明なものを用いてもよい。前者の場合、被検査空間9aと基準空間8aとの間の測定差圧は、そのまま上記断熱圧縮による温度変化に起因する差圧データとして使用できる。後者の場合、差圧がリニアに変化する線形領域まで差圧測定を長時間行ない、リニアになる前の非線形領域の測定差圧から線形領域の差圧変化分を差し引くことで、洩れが無い差圧データすなわち断熱圧縮による温度変化に起因する差圧変化データを得ることができる。上記線形領域では、温度変化が充分に収束しているから、その差圧変化は、洩れに起因する変化分に相当する。
[Master data creation process]
In the master data creation process, first, the measurement unit 2 is operated in the above-described procedure, and the change with time after time t 0 of the differential pressure between the space 9a to be inspected and the reference space 8a is checked for the differential pressure detector 20. Measure with Specifically, the differential pressure change data P M0 , P M1 , P M2 , P M3 ... P Mn ... On the solid thin line P M (t) in FIG. 2 are set to a certain time interval τ n (= τ 1 = τ 2 = τ 3 ...) at a time t 1, t 2, t 3 ..., to get every t n .... In this case, the inspection object 9 may be one that has actually been found to be free of leakage, or may be one whose leakage is unknown. In the former case, the measured differential pressure between the inspected space 9a and the reference space 8a can be used as it is as differential pressure data resulting from the temperature change due to the adiabatic compression. In the latter case, the differential pressure measurement is performed for a long time to the linear region where the differential pressure varies linearly, and the difference in pressure difference in the linear region is subtracted from the measured differential pressure in the non-linear region before becoming linear. Pressure data, that is, differential pressure change data resulting from temperature changes due to adiabatic compression can be obtained. In the linear region, since the temperature change has sufficiently converged, the change in the differential pressure corresponds to a change caused by leakage.

そして、差圧の非線形な経時変化PM(t)を、各々の時間帯τ1(=t0〜t1),τ2(=t1〜t2),τ3(=t2〜t3)…τn(=tn-1〜tn)…内は一次関数になると擬制したときの上記各一次関数の勾配aM1,aM2,aM3…aMn…を求める。要するに、図2の連続曲線状の実細線PM(t)を、同図の実太線PMn(t)に示すように、時間t1,t2,t3…,tn…ごとに不連続的に折曲した折れ線で擬制し、該折れ線の各直線線分sM1,sM2,sM3…sMn…の勾配aM1,aM2,aM3…aMn…を求める。具体的には、式(21)の演算を行う。

Figure 2012255687
Then, the non-linear temporal change P M (t) of the differential pressure is converted into each time zone τ 1 (= t 0 to t 1 ), τ 2 (= t 1 to t 2 ), τ 3 (= t 2 to t 3) ... τ n (= t n-1 ~t n) ... in the above gradient a M1 of the linear function when the fiction becomes a linear function, a M2, a M3 ... a Mn ... seek. In short, the continuous curved solid thin line P M (t) in FIG. 2 is not changed every time t 1 , t 2 , t 3 ..., T n ... as shown by the solid thick line P Mn (t) in FIG. and constructive with and continuously bent fold line, said fold line the line segments s of M1, s M2, s M3 ... s Mn ... gradient a M1, a M2, a M3 ... a Mn ... seek. Specifically, the calculation of Expression (21) is performed.
Figure 2012255687

各時間帯τ1(=t0〜t1),τ2(=t1〜t2),τ3(=t2〜t3)…τn(=tn-1〜tn)…の長さを互いに等しくすることで、上記勾配aM1,aM2,aM3…,aMn…の演算式を下式(21a)のように簡略化できる。

Figure 2012255687

このようにして求めた勾配aM1,aM2,aM3…,aMn…の値をマスタデータとして記憶部33に記憶しておく。本発明方法によれば、上記差圧変化データPM0,PM1,PM2,PM3…PMn…そのものをマスタデータとする従来方法(特許文献1)よりもマスタデータの所要記憶数を減らすことができる。例えば、t0からt3までのマスタデータ数を比較すると、上記従来方法では4つのデータPM0,PM1,PM2,PM3が必要であるが、本発明方法では3つのデータaM1,aM2,aM3で済む。 Each time zone τ 1 (= t 0 to t 1 ), τ 2 (= t 1 to t 2 ), τ 3 (= t 2 to t 3 ) ... τ n (= t n-1 to t n ) By making the lengths equal to each other, the arithmetic expression of the gradients a M1 , a M2 , a M3 ..., A Mn ... Can be simplified as the following expression (21a).
Figure 2012255687

The values of gradients a M1 , a M2 , a M3 ..., A Mn ... Thus obtained are stored in the storage unit 33 as master data. According to the present invention method reduces the required number of stored master data than the conventional method of the difference pressure change data P M0, a P M1, P M2, P M3 ... P Mn ... itself as master data (Patent Document 1) be able to. For example, when comparing the number of master data from t 0 to t 3 , the above-described conventional method requires four data P M0 , P M1 , P M2 , and P M3, but the method of the present invention provides three data a M1 , a M2 and a M3 are sufficient.

[実測工程]
マスタデータを取得後、実際の被検査物9に対し実測工程を行う。実測工程では、上記実際の被検査物9を検査路11に接続したうえで、測定部2を上述した手順で操作し、被検査空間9aと基準空間8aとの間の差圧の時刻t0以降の経時変化を差圧検出器20にて測定する。図2の破細線PT(t)にて示すように、被検査空間9aからの圧力洩れがある場合、測定差圧は、断熱圧縮による温度変化に起因する差圧変化PM(t)と、洩れに起因する差圧変化PL(t)とを加算した挙動を示す。この破細線PT(t)上の差圧変化データPT0,PT1,PT2,PT3…PTn…を一定の時間間隔τn(=τ123…)をおいて時刻t1,t2,t3…,tn…ごとに取得する。次に、連続曲線状の差圧変化PT(t)を、図2の破太線PTn(t)に示すように、時間t1,t2,t3…,tn…ごとに不連続的に折曲した折れ線で擬制したときの各時間帯τ1,τ2,τ3…,τn…の直線線分sT1,sT2,sT3…,sTn…の勾配aT1,aT2,aT3…,aTn…を求める。具体的には、式(22)の演算を行う。

Figure 2012255687
[Measurement process]
After acquiring the master data, an actual measurement process is performed on the actual inspection object 9. In the actual measurement step, the actual inspection object 9 is connected to the inspection path 11, and then the measuring unit 2 is operated in the above-described procedure, so that the time t 0 of the differential pressure between the inspection space 9a and the reference space 8a is obtained. Subsequent changes over time are measured by the differential pressure detector 20. As shown by the broken line P T (t) in FIG. 2, when there is a pressure leak from the space 9a to be inspected, the measured differential pressure is the differential pressure change P M (t) caused by the temperature change due to adiabatic compression. FIG. 4 shows a behavior in which a differential pressure change PL (t) caused by leakage is added. The differential pressure change data P T0 , P T1 , P T2 , P T3 … P Tn … on this broken line P T (t) are set at a fixed time interval τ n (= τ 1 = τ 2 = τ 3 …). And obtained at every time t 1 , t 2 , t 3 ..., T n . Next, discontinuous continuous curved difference pressure change P T (t), as shown in dashed heavy line P Tn (t) in FIG. 2, the time t 1, t 2, t 3 ..., each t n ... to each time period tau 1 when the fictitious a line which is bent, τ 2, τ 3 ..., line segments of τ n ... s T1, s T2 , s T3 ..., s Tn ... gradient a T1, a the T2 , aT3 ..., aTn ... are obtained. Specifically, the calculation of Expression (22) is performed.
Figure 2012255687

各時間帯τ1,τ2,τ3…,τn…の長さを互いに等しくすることで、上記勾配aT1,aT2,aT3…,aTn…の演算式を下式(22a)のように簡略化できる。

Figure 2012255687

このようにして求めた勾配aT1,aT2,aT3…,aTn…の値を実測データとする。 By making the lengths of the respective time zones τ 1 , τ 2 , τ 3, ..., N ... Equal to each other, the arithmetic expressions of the gradients a T1 , a T2 , a T3 , a Tn . It can be simplified as follows.
Figure 2012255687

The values of the gradients a T1 , a T2 , a T3 ..., A Tn .

[演算工程]
続いて、マスタデータと実測データを比較する。具体的には、同じ時間帯τ1,τ2,τ3…,τn…ごとに実測データaT1,aT2,aT3…,aTn…からマスタデータaM1,aM2,aM3…,aMn…を差し引く(式(23))。これによって、各時間帯τ1,τ2,τ3…,τn…における洩れレートa1,a2,a3…,an…が得られる。

Figure 2012255687
[Calculation process]
Subsequently, the master data and the actually measured data are compared. Specifically, the master data a M1 , a M2 , a M3 ... from the measured data a T1 , a T2 , a T3 ..., a Tn ... for each same time zone τ 1 , τ 2 , τ 3 ..., τ n ... , A Mn ... are subtracted (formula (23)). Thus, each time zone τ 1, τ 2, τ 3 ..., rate a 1 leakage in τ n ..., a 2, a 3 ..., a n ... are obtained.
Figure 2012255687

すなわち、本発明方法によれば、式(23)の差し引き演算を行なうことで、洩れレートa1,a2,a3…,an…を直接的に求めることができる。また、演算に際して記憶部33から読み出すマスタデータの数は少なくて済み、差し引きの演算数も少なくて済む。したがって、従来の、差圧からなるマスタデータと実測差圧との差を取って更に一回微分するやり方(特許文献1)よりも、演算工程における演算量を減らすことができる。よって、演算処理の速度を高めることができる。 That is, according to the method of the present invention, the leak rates a 1 , a 2 , a 3 ..., A n . Further, the number of master data to be read from the storage unit 33 during the calculation is small, and the number of subtraction calculations is also small. Therefore, the calculation amount in the calculation process can be reduced as compared with the conventional method (Patent Document 1) in which the difference between the master data including the differential pressure and the actual measurement differential pressure is taken and differentiated once more. Therefore, the speed of arithmetic processing can be increased.

図3に示すように、上記式(23)の演算結果すなわち洩れレートa1,a2,a3…,an…は、時間帯τ1,τ2,τ3…,τn…に依らず互いに同程度の大きさになる。
a1≒a2≒a3…≒an… (25)
これら洩れレートa1,a2,a3…,an…の平均値aavを算出することで、測定のばらつきを修正できる。
As shown in FIG. 3, the equation (23) of the operation result i.e. leakage rate a 1, a 2, a 3 ..., a n ... , the time period τ 1, τ 2, τ 3 ..., τ n ... to depend It becomes the same size mutually.
a 1 ≒ a 2 ≒ a 3 ... ≒ a n ... (25)
By calculating the average value a av of these leak rates a 1 , a 2 , a 3 ..., A n .

[判定工程]
この平均洩れレートaavに基づいて圧力洩れ判定を行なう。すなわち、洩れレートaavが閾値以下であれば、被検査物9を良品と判定する。洩れレートaavが閾値を上回っていれば、被検査物9を不良と判定する。
[Judgment process]
Based on this average leakage rate a av , pressure leakage determination is performed. That is, if the leakage rate a av is equal to or less than the threshold value, the inspection object 9 is determined as a non-defective product. If the leakage rate a av exceeds the threshold value, the inspection object 9 is determined to be defective.

本発明は、上記実施形態に限定されず、発明の要旨を変更しない限りにおいて種々の改変をなすことができる。
たとえば、上記の説明では、マスタデータ及び実測データは互いに連続する時間帯τ1,τ2,τ3,τ4,τ5…ごとに取得するとしていたが、例えばτ1,τ3,τ5,τ7,τ9…やτ1,τ4,τ7,τ10,τ13…などのように飛び飛びの時間帯ごとに取得してもよい。むしろ、飛び飛びにしたほうが、少ない演算数で広い時間領域の差圧変化を圧力洩れ判定に反映させることができ、かつプログラミングを容易化でき実用的である。
時間帯τ1,τ2,τ3…,τn…のうち2つの時間帯の長さが互いに異なっていてもよい。
判定工程では、平均値aavを算出せずに、1つの洩れレートanに基づいて洩れ判定を行なってもよい。
The present invention is not limited to the above-described embodiment, and various modifications can be made without changing the gist of the invention.
For example, in the above description, the master data and the actual measurement data are acquired every time period τ 1 , τ 2 , τ 3 , τ 4 , τ 5 ..., For example, τ 1 , τ 3 , τ 5. , Τ 7 , τ 9 ..., Τ 1 , τ 4 , τ 7 , τ 10 , τ 13 . On the contrary, it is more practical to make it skipped because it is possible to reflect a change in differential pressure in a wide time domain in the pressure leak determination with a small number of operations, and to facilitate programming.
Of the time zones τ 1 , τ 2 , τ 3 ..., Τ n , the lengths of the two time zones may be different from each other.
In the determination step, without calculating the average value a av, it may perform leakage determination based on one of the leakage rate a n.

本発明は、密封容器状の被測定物の密封状態の良否判定に適用可能である。   The present invention can be applied to determine whether the sealed state of a sealed container-like object is good or bad.

1 圧力洩れ測定装置
2 測定部
8 基準容器
8a 基準空間
9 被検査物
9a 被検査空間
10 共通路
10a 接続端子
11 検査路
12 基準路
13 レギュレータ
14 圧力計
15 方向制御弁
16 開閉弁
17 開閉弁
20 差圧検出器
21 ダイヤフラム
23 被検室
24 基準室
25 検査圧導入路
26 基準圧導入路
3 コントローラ(制御手段)
31 マイクロコンピュータ
32 演算処理部
33 記憶部
DESCRIPTION OF SYMBOLS 1 Pressure leak measuring apparatus 2 Measuring part 8 Reference container 8a Reference space 9 Inspected object 9a Inspected space 10 Common path 10a Connection terminal 11 Inspection path 12 Reference path 13 Regulator 14 Pressure gauge 15 Directional control valve 16 On-off valve 17 On-off valve 20 Differential pressure detector 21 Diaphragm 23 Test chamber 24 Reference chamber 25 Inspection pressure introduction path 26 Reference pressure introduction path 3 Controller (control means)
31 microcomputer 32 arithmetic processing unit 33 storage unit

Claims (3)

被検査空間と基準空間とを互いに連通させた状態で前記被検査空間及び前記基準空間に加圧気体を導入した後、前記被検査空間と前記基準空間とを遮断して各々閉鎖系とし、前記被検査空間と前記基準空間との間の差圧によって前記被検査空間からの圧力洩れを測定する圧力洩れ測定方法において、
洩れが無い被検査空間と前記基準空間との間の差圧の経時変化を、各々の時間帯内は一次関数になると擬制したときの、前記各一次関数の勾配をマスタデータとして作成する作成工程と、
前記被検査空間と前記基準空間との間の実測差圧の経時変化の前記時間帯ごとの勾配を実測データとして求める実測工程と、
前記実測データから同じ時間帯の前記マスタデータを差し引く演算工程と、
を備えたことを特徴とする圧力洩れ測定方法。
After introducing pressurized gas into the inspected space and the reference space in a state where the inspected space and the reference space are in communication with each other, the inspected space and the reference space are shut off to form a closed system, In a pressure leak measurement method for measuring pressure leak from the inspection space by a differential pressure between the inspection space and the reference space,
A creation step of creating, as master data, the gradient of each linear function when the temporal change in the differential pressure between the test space without leakage and the reference space is simulated as a linear function within each time zone When,
An actual measurement step for obtaining, as actual measurement data, a gradient for each time zone of the temporal change of the actual measurement differential pressure between the inspection space and the reference space;
A calculation step of subtracting the master data of the same time zone from the measured data;
A method for measuring pressure leakage, comprising:
前記演算工程において、前記時間帯毎の前記実測データと前記マスタデータとの差の平均値を算出することを特徴とする請求項1に記載の圧力洩れ測定方法。   The pressure leak measurement method according to claim 1, wherein, in the calculation step, an average value of a difference between the actual measurement data and the master data for each time period is calculated. 前記各時間帯の長さが互いに等しいことを特徴とする請求項1又は2に記載の圧力洩れ測定方法。   3. The pressure leak measuring method according to claim 1, wherein the lengths of the respective time zones are equal to each other.
JP2011128062A 2011-06-08 2011-06-08 Pressure leakage measuring method Pending JP2012255687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011128062A JP2012255687A (en) 2011-06-08 2011-06-08 Pressure leakage measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011128062A JP2012255687A (en) 2011-06-08 2011-06-08 Pressure leakage measuring method

Publications (1)

Publication Number Publication Date
JP2012255687A true JP2012255687A (en) 2012-12-27

Family

ID=47527383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011128062A Pending JP2012255687A (en) 2011-06-08 2011-06-08 Pressure leakage measuring method

Country Status (1)

Country Link
JP (1) JP2012255687A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679897A (en) * 2016-09-14 2017-05-17 合肥工业大学 Leakage hole's leakage rate measuring apparatus
JP2018009955A (en) * 2016-06-29 2018-01-18 暎三 浦田 Leak inspection method and leak inspection device
CN108007655A (en) * 2017-12-11 2018-05-08 浙江海洋大学 A kind of closed container leak detection system peculiar to vessel and slip detection method
JP2018124162A (en) * 2017-01-31 2018-08-09 暎三 浦田 Leak inspection method and leak inspection device
CN111157187A (en) * 2019-12-27 2020-05-15 安徽拓扑思汽车零部件有限公司 Air spring air tightness detection device and detection method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933381A (en) * 1995-07-20 1997-02-07 Toyota Motor Corp Method for measuring pressure leakage
JP2003254855A (en) * 2002-03-04 2003-09-10 Yutaka Giken Co Ltd Leakage-detecting apparatus
JP2009183975A (en) * 2008-02-05 2009-08-20 Fukui Byora Co Ltd Staking quality judging method for driving rivet staking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933381A (en) * 1995-07-20 1997-02-07 Toyota Motor Corp Method for measuring pressure leakage
JP2003254855A (en) * 2002-03-04 2003-09-10 Yutaka Giken Co Ltd Leakage-detecting apparatus
JP2009183975A (en) * 2008-02-05 2009-08-20 Fukui Byora Co Ltd Staking quality judging method for driving rivet staking

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009955A (en) * 2016-06-29 2018-01-18 暎三 浦田 Leak inspection method and leak inspection device
CN106679897A (en) * 2016-09-14 2017-05-17 合肥工业大学 Leakage hole's leakage rate measuring apparatus
JP2018124162A (en) * 2017-01-31 2018-08-09 暎三 浦田 Leak inspection method and leak inspection device
CN108007655A (en) * 2017-12-11 2018-05-08 浙江海洋大学 A kind of closed container leak detection system peculiar to vessel and slip detection method
CN108007655B (en) * 2017-12-11 2019-10-08 浙江海洋大学 A kind of closed container leak detecting device peculiar to vessel and slip detection method
CN111157187A (en) * 2019-12-27 2020-05-15 安徽拓扑思汽车零部件有限公司 Air spring air tightness detection device and detection method thereof

Similar Documents

Publication Publication Date Title
JP6636044B2 (en) Leak inspection apparatus and method
KR100990882B1 (en) Leak inspection method and leak inspector
KR101117749B1 (en) Gas flow rate verification unit
US7594424B2 (en) Automated timer and setpoint selection for pneumatic test equipment
US9377374B2 (en) Leak testing methods and systems
JP2012255687A (en) Pressure leakage measuring method
JP4056818B2 (en) Leak test method and apparatus
TWI494554B (en) Method and device for differential pressure measurement
JP2008309698A (en) Airtightness inspection device, airtightness inspection method and method for manufacturing airtight product
JP2018124162A (en) Leak inspection method and leak inspection device
JP3411374B2 (en) Temperature compensation method in leak test
JP2016118528A (en) Method and device for measuring leakage from elastic body
US9810564B2 (en) Method of determining an internal volume of a filter or bag device, computer program product and a testing apparatus for performing the method
JP3186644B2 (en) Gas leak inspection method
JP4087773B2 (en) Leak inspection device calibration method, leak inspection device
JPH11304632A (en) Computing device for drift correction value for leak inspection and leak inspection apparatus using it
JP6931596B2 (en) Leak inspection method Leak inspection equipment, program
JP2017116387A (en) Differential pressure change amount calculation device and differential pressure change amount calculation method
JP2000162084A (en) Method and apparatus for inspection of leak
JP6781757B2 (en) Methods and fuel cell systems for diagnosing leaks
JP2017129477A (en) Leakage inspection device and method
JP2004177275A (en) Method of leak test and device for leak test
JP2017067714A (en) Leakage inspection device and method
JP5964933B2 (en) Leakage inspection method, leakage inspection apparatus and program
JP2002267567A (en) Leak test method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602