JP2000162084A - Method and apparatus for inspection of leak - Google Patents

Method and apparatus for inspection of leak

Info

Publication number
JP2000162084A
JP2000162084A JP10341784A JP34178498A JP2000162084A JP 2000162084 A JP2000162084 A JP 2000162084A JP 10341784 A JP10341784 A JP 10341784A JP 34178498 A JP34178498 A JP 34178498A JP 2000162084 A JP2000162084 A JP 2000162084A
Authority
JP
Japan
Prior art keywords
differential pressure
value
pressure change
leakage
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10341784A
Other languages
Japanese (ja)
Inventor
Akio Furuse
昭男 古瀬
Kazutoshi Hamaide
和敏 濱出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Instruments Co Ltd
Original Assignee
Cosmo Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Instruments Co Ltd filed Critical Cosmo Instruments Co Ltd
Priority to JP10341784A priority Critical patent/JP2000162084A/en
Publication of JP2000162084A publication Critical patent/JP2000162084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute the inspection of a leak in a short time and precisely even when a temperature environment is changed by a method wherein a differential-pressure change value which corresponds to a true leak amount is estimated and computed so as to be found for every object, to be inspected, by using a specific expression and the existence of the leak is judged on the basis of whether its computed result is large or small. SOLUTION: A differential-pressure-change measuring means 40 is constituted of a reset-signal generator 44 or the like which applies a gas pressure to an object 20, to be inspected, and to a reference tank 21 and which gives a reset signal to an automatic zero reset-type amplifier 31 at unit time intervals. Differential-pressure change values a1, a2, a3 per unit time which are detected by the differential-pressure-change measuring means 40 are sent to a computing and control device 43 via a sample-and- hold circuit 41 and an A/D converter 42, The differential-pressure change values a1, a2, a3 as measured values which are input from an input port 43D are substituted into an expression by a computing means 43C-2, and a differential-pressure change value C in a state that a drift is removed is calculated. Then, the differential-pressure change value C is compared with a set value by a comparison and judgment means 43C-3, and the existence of a leak is judged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明に属する技術分野】この発明は各種の容器等の洩
れの有無を検査する洩れ検査方法及びこの洩れ検査方法
を利用して動作する洩れ検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a leakage inspection method for inspecting the presence or absence of leakage of various containers and the like, and a leakage inspection apparatus which operates using the leakage inspection method.

【0002】[0002]

【従来の技術】従来より使用状態で洩れの存在が無いこ
とが必要な製品もしくは部品を、その生産工程ライン中
において、順次検査し、その検査データを設定基準と比
較して製品もしくは部品の良否を判定している。図3は
この種の洩れ検査装置の一般的な構成を示すブロック図
で、空圧源11の出力側に接続された流管10は調圧弁
12及び3方電磁弁14を介して3方電磁弁14の出口
側で分岐される分岐路15A,15Bにそれぞれ接続さ
れている。調圧弁12の出口側と3方電磁弁14の入口
側の間には検査圧を設定する圧力計13が接続されてい
る。
2. Description of the Related Art Conventionally, products or parts which are required to have no leakage in use are inspected sequentially in a production process line, and the inspection data is compared with a set standard to determine whether the products or parts are good or bad. Is determined. FIG. 3 is a block diagram showing a general configuration of this type of leakage inspection device. A flow tube 10 connected to an output side of a pneumatic pressure source 11 has a three-way electromagnetic valve via a pressure regulating valve 12 and a three-way electromagnetic valve 14. The outlets of the valve 14 are connected to branch paths 15A and 15B, respectively. A pressure gauge 13 for setting an inspection pressure is connected between an outlet side of the pressure regulating valve 12 and an inlet side of the three-way solenoid valve 14.

【0003】分岐路15Aは電磁弁16を介して導管1
8の一端に接続され、この導管18の他端部には洩れが
検査される被検査体20が接続可能な接続治具24が設
けられる。この接続治具24により被検査体20が順次
接続されて洩れ検査可能な構成となっている。一方、分
岐路15Bは電磁弁17を介して導管19の一端に接続
され、この導管19の他端部には基準タンク21が接続
されている。電磁弁16及び17の出口側において導管
18A及び19Aがそれぞれ分岐して取り出されそれぞ
れの端部間に差圧検出器22が取り付けられている。
[0003] The branch path 15A is connected to the conduit 1 via an electromagnetic valve 16.
At the other end of the conduit 18 is provided a connection jig 24 to which an object 20 to be inspected for leakage can be connected. The inspection objects 20 are sequentially connected by the connection jig 24 so that the inspection can be performed. On the other hand, the branch path 15B is connected to one end of a conduit 19 via an electromagnetic valve 17, and the other end of the conduit 19 is connected to a reference tank 21. At the outlet side of the solenoid valves 16 and 17, conduits 18A and 19A are branched off and taken out, and a differential pressure detector 22 is mounted between their ends.

【0004】差圧検出器22の出力信号はオートゼロリ
セット式増幅器31を介して比較器32に与えられ、比
較器32において基準信号値設定器33の基準値と比較
可能な構成とされる。被検査体20を導管18の端部に
取り付け、導管19には洩れの無い基準タンク21を取
り付けて3方電磁弁14のa−b間を閉状態とし、調圧
弁12を開いて圧力計13によって空圧源11からの所
定の空気圧が得られるように調節する。電磁弁16及び
17を開状態とし、3方電磁弁14をa−b間を開状態
にして設定された一定の空気圧を分岐路15A,15
B,導管18、19を通じてそれぞれ被検査体20及び
基準タンク21に供給する。
The output signal of the differential pressure detector 22 is supplied to a comparator 32 via an auto-zero reset type amplifier 31 so that the comparator 32 can compare with a reference value of a reference signal value setting unit 33. The test object 20 is attached to the end of the conduit 18, the reference tank 21 having no leakage is attached to the conduit 19, the space between a and b of the three-way solenoid valve 14 is closed, the pressure regulating valve 12 is opened, and the pressure gauge 13 is opened. Is adjusted so that a predetermined air pressure from the air pressure source 11 is obtained. The solenoid valves 16 and 17 are opened, the three-way solenoid valve 14 is opened between a and b, and the set constant air pressure is applied to the branch passages 15A and 15A.
B, and supplies the specimen 20 and the reference tank 21 through the conduits 18 and 19, respectively.

【0005】一定時間が経過して被検査体20及び基準
タンク21内の圧力が安定した後に電磁弁16及び17
を閉状態にする。更に所定の安定時間後に差圧検出器2
2に接続されたオートゼロリセット式増幅器31の出力
信号の読み取りが行われる。被検査体20の気密が完全
で洩れが存在しない状態では、増幅器31からの出力信
号は一定検出時間後において理想的には零となる。被検
査体20に洩れが存在すると、その内部の圧力が正圧の
場合は漸次減少し、負圧の場合は漸次増加する出力信号
が得られ、一定検出時間内の出力信号は負又は正の洩れ
量にほぼ比例した値となる。
After a predetermined time has passed and the pressures in the test object 20 and the reference tank 21 have stabilized, the solenoid valves 16 and 17
Is closed. Further, after a predetermined stabilization time, the differential pressure detector 2
The output signal of the auto-zero reset type amplifier 31 connected to 2 is read. When the test object 20 is completely airtight and has no leakage, the output signal from the amplifier 31 becomes ideally zero after a certain detection time. When a leak exists in the test object 20, an output signal that gradually decreases when the internal pressure is a positive pressure and gradually increases when the internal pressure is a negative pressure is obtained, and the output signal within a certain detection time is negative or positive. The value is almost proportional to the leakage amount.

【0006】基準信号設定器33から与えられる基準差
圧値と増幅器31の出力値が比較器32で比較され、出
力信号が基準差圧値を越えたか否かにより良品もしくは
不良品を示す良否判定出力35が得られる。この一般的
な洩れ検査装置においては基準タンク21を被検査体2
0と全く同一形状で洩れの無いものを使用しても、主に
被検査体20と基準タンク21との温度差によって影響
を受ける。被検査体20と基準タンク21の形状が異な
れば気体を加圧したとき断熱変化による気体温度の上昇
が被検査体20と基準タンク21の温度に等しくなって
いく過程での気体温度差が発生し、出力信号が理想的に
零の状態にならない。即ち、被検査体20に全く洩れが
無くても、一定検出時間中の出力信号は理想的な零状態
とならず、正又は負の漏れ量に匹敵する程度の差圧値を
示すのが通常である。この洩れ量に匹敵する差圧値を一
般にドリフト量と称している。
[0006] The reference differential pressure value provided from the reference signal setting unit 33 and the output value of the amplifier 31 are compared by a comparator 32, and whether or not the output signal exceeds the reference differential pressure value indicates whether the product is good or bad. An output 35 is obtained. In this general leak inspection device, the reference tank 21 is
Even if a sample having exactly the same shape as 0 and having no leakage is used, it is mainly affected by the temperature difference between the test object 20 and the reference tank 21. If the shapes of the test object 20 and the reference tank 21 are different, when the gas is pressurized, a gas temperature difference occurs in a process in which the gas temperature rise due to adiabatic change becomes equal to the temperature of the test object 20 and the reference tank 21. However, the output signal does not ideally become zero. That is, even if there is no leakage of the test object 20, the output signal during the certain detection time does not become an ideal zero state and usually shows a differential pressure value comparable to a positive or negative leakage amount. It is. The differential pressure value equivalent to this leakage amount is generally called a drift amount.

【0007】この様子を図4を用いて説明する。図4に
示す曲線Aはドリフト量、曲線Bは洩れ量、曲線Cはド
リフト量に洩れ量を加えた実質的に差圧検出器22によ
って検出される差圧値を示す。図4から解るように曲線
Cで示す差圧値は大部分がドリフト量であり、洩れ量に
相当する差圧値はわずかである。この差圧値(曲線C)
から洩れ量だけを取り出す方法として、ドリフトによっ
て発生する差圧値は時間が経過するとその増加率ははぼ
0に近づく、これに対して、洩れ量によって発生する差
圧値は時間が経過してもいつまでも一定の増加率で上昇
する現象を呈する。
This situation will be described with reference to FIG. A curve A shown in FIG. 4 indicates a drift amount, a curve B indicates a leak amount, and a curve C indicates a differential pressure value substantially detected by the differential pressure detector 22 obtained by adding the leak amount to the drift amount. As can be seen from FIG. 4, most of the differential pressure value indicated by the curve C is the drift amount, and the differential pressure value corresponding to the leakage amount is small. This differential pressure value (curve C)
As a method of taking out only the leakage amount from the differential pressure value generated by the drift, the rate of increase approaches zero over time, whereas the differential pressure value generated by the leakage amount It also exhibits a phenomenon of rising at a constant rate of increase.

【0008】この点に着目して、図3に示す構成の洩れ
検査装置ではオートゼロリセット式増幅器31の出力を
或る時間(ドリフト量の増加率が0に近づいた時点以後
のタイミング)TIM1で強制的にゼロにリセットし、
ゼロリセット後に利得を高めて差圧検出器22の検出信
号を増幅させ出力信号SD(曲線D)を得るようにし、
この出力信号SDを比較器32に供給し、一定時間後に
発生する出力信号SDを比較器32で基準値と比較し、
一定時間が経過した時点で出力信号SDが基準値を越え
ていれば不良と判定している。
Focusing on this point, in the leak inspection apparatus having the configuration shown in FIG. 3, the output of the auto-zero reset type amplifier 31 is forced for a certain time (timing after the rate of increase of the drift amount approaches 0) TIM1. Reset to zero,
After the zero reset, the gain is increased to amplify the detection signal of the differential pressure detector 22 to obtain an output signal SD (curve D),
The output signal SD is supplied to a comparator 32, and the output signal SD generated after a predetermined time is compared with a reference value by the comparator 32.
If the output signal SD exceeds the reference value at the point in time when the predetermined time has elapsed, it is determined that the output signal SD is defective.

【0009】この検出方法によればドリフト量の増加率
が0に近づくのを待って検査を開始するから、1個の被
検査体に要する検査時間が長くなる欠点がある。この欠
点を解消するために、図5に示すような洩れ検査方法が
提案されている。この検査方法は校正モードにおいて、
差圧検出器22に発生する差圧発生値を例えば図3に示
したオートゼロリセット式増幅器31に示したオートゼ
ロリセット式増幅器31で一定時間毎にゼロにリセット
し、単位時間当たりの差圧変化値が一定値に収束される
までこれを繰り返し、単位時間当たりの差圧変化値が一
定値に収束した時点でその収束した差圧変化値Dbを取
得する。この差圧変化値Dbは真の、洩れ量で発生する
単位時間当たりの差圧値を示す。従って初回の差圧変化
値DaからDbを差し引いたDa−Db=D1を求める
ことにより、この差の値D1が温度等の外乱によるドリ
フト値と見なすことができる。
According to this detection method, the inspection is started after the rate of increase of the drift amount approaches zero, and therefore, there is a disadvantage that the inspection time required for one inspection object is increased. In order to solve this drawback, a leak inspection method as shown in FIG. 5 has been proposed. This inspection method is in the calibration mode,
The differential pressure generation value generated in the differential pressure detector 22 is reset to zero at regular intervals by, for example, an auto zero reset type amplifier 31 shown in an auto zero reset type amplifier 31 shown in FIG. This is repeated until is converged to a constant value. When the differential pressure change value per unit time converges to a constant value, the converged differential pressure change value Db is obtained. This differential pressure change value Db indicates a true differential pressure value per unit time generated by the amount of leakage. Therefore, by obtaining Da−Db = D1 by subtracting Db from the first differential pressure change value Da, the difference value D1 can be regarded as a drift value due to disturbance such as temperature.

【0010】従って、値D1をドリフト補正値として記
憶しておくことにより、爾後は被検査体20に加圧気体
を印加した直後の1回目の差圧発生値からドリフト補正
値D1を差し引くことにより、各被検査体20の真の洩
れ量に対応した差圧値を求めることができることにな
る。
Therefore, by storing the value D1 as a drift correction value, the drift correction value D1 is then subtracted from the first differential pressure generation value immediately after the pressurized gas is applied to the test object 20. Thus, a differential pressure value corresponding to the true leak amount of each test object 20 can be obtained.

【0011】[0011]

【発明が解決しようとする課題】図5に示した校正方法
では校正モードを実行した温度環境下(気温、被検査体
20の温度)に限れば正しい、洩れ検査を実行すること
ができる。然し乍ら気温域は被検査体20の温度がドリ
フト補正値D1を求めた校正モードの条件から外れる
と、その都度校正モードを実行し、ドリフト補正値D1
を求め直さなくてはならない欠点がある。
In the calibration method shown in FIG. 5, it is possible to perform a correct leak test only in a temperature environment (air temperature, temperature of the inspection object 20) in which the calibration mode is executed. However, in the temperature range, the calibration mode is executed each time the temperature of the test object 20 deviates from the condition of the calibration mode for obtaining the drift correction value D1, and the drift correction value D1 is set.
There is a drawback that has to be sought again.

【0012】この発明の目的は温度環境が如何に変化し
たとしても短時間に正確な洩れ検査を実行し続けること
ができる洩れ検査方法とこの洩れ検査方法を用いた洩れ
検査装置を提案するものである。
An object of the present invention is to propose a leakage inspection method and a leakage inspection apparatus using the leakage inspection method, which can continue to execute an accurate leakage inspection in a short time regardless of how the temperature environment changes. is there.

【0013】[0013]

【課題を解決するための手段】この発明では各被検査体
を検査する過程で加圧気体を印加した直後から単位時間
当たりの差圧変化値を短時間の間に複数回に渡って実測
し、その複数の実測値から図5に示した収束値Dbに相
当する真の洩れ量に対応する差圧変化値を各被検査体毎
に予測演算して求め、この演算結果の大小により洩れの
有無を判定することを特徴とする洩れ検査方法及び装置
を提案するものである。
In the present invention, a differential pressure change per unit time is measured a plurality of times in a short time immediately after the pressurized gas is applied in the process of inspecting each test object. A differential pressure change value corresponding to a true leak amount corresponding to the convergence value Db shown in FIG. 5 is obtained from the plurality of actually measured values by performing a predictive calculation for each of the test objects. The present invention proposes a leakage inspection method and apparatus characterized by determining the presence / absence.

【0014】従って、この発明によれば各被検査体毎に
図5に示した校正モードを短時間に実行しているのと等
価となり、温度条件が如何に変化しても各被検査体毎に
正しいドリフト補正を施すことができるため、正確な洩
れ検査を実行し続けることができる利点が得られる。
Therefore, according to the present invention, it is equivalent to executing the calibration mode shown in FIG. 5 for each test object in a short time. , The correct drift correction can be performed, so that the advantage that the accurate leakage inspection can be continuously performed is obtained.

【0015】[0015]

【発明の実施の形態】図1にこの発明による洩れ検査方
法の概要を示す。図中曲線A1は洩れの無い被検査体を
検査した場合に差圧検出器22が検出した差圧発生特性
曲線A1' は洩れのある被検査体を検査した場合に差圧
検出器22が検出した差圧発生特性曲線を示す。
FIG. 1 shows an outline of a leakage inspection method according to the present invention. In the figure, a curve A1 indicates a differential pressure generation characteristic curve A1 ' detected by the differential pressure detector 22 when an object to be inspected without leakage is detected by the differential pressure detector 22 when an inspected object to be leaked is inspected. 5 shows the obtained differential pressure generation characteristic curve.

【0016】この発明では各被検査体毎に発生する差圧
発生特性曲線A1又はA1’毎に単位時間当たりの差圧
変化値を複数a1,a2,a3,又はa1’,a2’,
a3’を実測し、この実測値a1,a2,a3,又はa
1’a2’,a3’を用いて充分時間が経過した時点の
収束値C1又はC1’を予測演算して算出する。この収
束値C1又はC1’は温度に影響されない真の洩れによ
る単位時間当たりの差圧変化値である。従ってこの差圧
変化値C1又はC1’の大小により洩れの有無を判定す
れば、温度等の外乱に影響されない真に洩れの有無を判
定することができる。
According to the present invention, a plurality of differential pressure change values per unit time a1, a2, a3, or a1 ', a2', for each differential pressure generation characteristic curve A1 or A1 'generated for each test object.
a3 'is measured, and the measured values a1, a2, a3, or a
The convergence value C1 or C1 'at the time when a sufficient time has elapsed is calculated by predictive calculation using 1'a2' and a3 '. The convergence value C1 or C1 ′ is a differential pressure change value per unit time due to a true leak that is not affected by temperature. Therefore, if the presence or absence of a leak is determined based on the magnitude of the differential pressure change value C1 or C1 ', the presence or absence of a leak that is not affected by disturbance such as temperature can be determined.

【0017】単位時間当たりの差圧変化値を実測するに
は単位時間間隔で差圧発生特性曲線A1又はA1’の変
化分を検出すればよい。このためには、例えばオートゼ
ロリセット式増幅器に等時間間隔でリセット信号を与
え、等時間間隔で差圧検出値をリセットすると共に、そ
のリセットの直前の差圧値をサンプリングして記憶させ
ればよい。
In order to measure the differential pressure change value per unit time, the change of the differential pressure generation characteristic curve A1 or A1 'may be detected at unit time intervals. For this purpose, for example, a reset signal may be given to the auto-zero reset type amplifier at equal time intervals, the differential pressure detection value may be reset at equal time intervals, and the differential pressure value immediately before the reset may be sampled and stored. .

【0018】単位時間当たりの差圧変化値a1,a2,
a3又はa1’a2’,a3’が実測されることにより
減衰曲線B1又はB1’を予測する。この減衰曲線B
1、B1’を演算により求めることにより、充分時間が
経過した時点の単位時間当たりの差圧変化値C1又はC
1’を算出することができる。以下に減衰曲線B1又は
B1’を予測し、充分時間が経過した時点における単位
時間当たりの差圧変化値C1又はC1’を算出する方法
について説明する。
Differential pressure change values a1, a2, per unit time
The attenuation curve B1 or B1 'is predicted by actually measuring a3 or a1'a2' and a3 '. This decay curve B
1, B1 'is obtained by calculation to obtain the differential pressure change value C1 or C1 per unit time at the time when a sufficient time has elapsed.
1 ′ can be calculated. Hereinafter, a method of predicting the attenuation curve B1 or B1 ′ and calculating the differential pressure change value C1 or C1 ′ per unit time when a sufficient time has elapsed will be described.

【0019】被検査体20(図2又は図3参照)内に閉
じ込められた気体の温度はニュートンの冷却の法則にし
たがって、被検査体20内の表面温度に次第に等しくな
っていく過程を通る。差圧式洩れ検査装置では単位時間
当たりの大気に洩れる流量Qは、 Q=(VE /Po)×(dp/dt)・・・・・(1) で表される。
The temperature of the gas confined in the test object 20 (see FIG. 2 or FIG. 3) goes through a process of gradually becoming equal to the surface temperature in the test object 20 according to Newton's law of cooling. In the differential pressure type leak inspection device, the flow rate Q leaked to the atmosphere per unit time is represented by: Q = (V E / Po) × (dp / dt) (1)

【0020】ここでVE は被検査体20の等価内容積
(洩れ検査装置から見た被検査体20側の内容積)、P
oは大気圧力、pは差圧検出時における差圧変化値であ
る。ニュートンの冷却の法則からdp/dtは dp/dt=Ae-kt +C・・・・・(2) Aは比例定数、Kは減衰の速度に関係する定数、Cは求
める差圧変化値つまり、洩れによる差圧の単位時間当た
りの変化であり、検査中は常に一定であると仮定する。
Here, V E is the equivalent internal volume of the test object 20 (the internal volume on the test object 20 side viewed from the leak test apparatus), and P
o is the atmospheric pressure, and p is the differential pressure change value at the time of detecting the differential pressure. From Newton's law of cooling, dp / dt is: dp / dt = Ae- kt + C (2) where A is a proportional constant, K is a constant related to the speed of decay, and C is the differential pressure change value to be obtained. It is a change in pressure difference per unit time due to leakage, and is assumed to be constant at all times during the inspection.

【0021】(2)式を解くためにt=T1,t=2T
1,t=3T1のそれぞれの時刻における(2)式の単
位時間当たりの差圧変化値を実測する。これをT1のと
きa1又はa1’,2T1のときa2又はa2’,3T
1のときa3又はa3’とすると、(2)式は(以下こ
こでは減衰曲線Bについてだけ説明する) a1=Ae-kT1 +C・・・・・(3) a2=Ae-2kT1 +C・・・・・(4) a3=Ae-3kT1 +C・・・・・(5) (4)、(5)、(6)式から差圧変化値Cを求める
と、 C=a1−(a2−a3)/[{(a2−a3)/(a1−a2)} −{(a2−a3)2 /(a1−a2)2 }]・・・・・(6) (6)式により被検査体20内の気体温度が一定値に収
束したときの単位時間当たりの差圧変化値Cを求めるこ
とができる。すなわち洩れだけにより発生する単位時間
当たりの差圧変化値C1又はC1’を求めることができ
る。従ってこの差圧変化値Cが洩れ有りと無しの境界値
Rと比較して小さいか大きいかによって洩れの有無を判
定することができる。
In order to solve the equation (2), t = T1, t = 2T
The differential pressure change value per unit time of Expression (2) at each time of 1, t = 3T1 is actually measured. This is defined as a1 or a1 'for T1, a2 or a2', 3T for 2T1.
If a3 or a3 'is set at 1, the equation (2) is described below (only the attenuation curve B will be described below). A1 = Ae- kT1 + C (3) a2 = Ae- 2kT1 + C ... .. (4) a3 = Ae −3kT1 + C (5) When the differential pressure change value C is obtained from the equations (4), (5) and (6), C = a1− (a2−a3) / [{(A2-a3) / (a1-a2)}-{(a2-a3) 2 / (a1-a2) 2 }] (6) Inside the object 20 according to the equation (6) The differential pressure change value C per unit time when the gas temperature converges to a constant value can be obtained. That is, the differential pressure change value C1 or C1 'per unit time generated only by leakage can be obtained. Therefore, the presence or absence of leakage can be determined based on whether the differential pressure change value C is smaller or larger than the boundary value R between the presence and absence of leakage.

【0022】(2)式から明らかなように(2)式を解
くためにはA,K,Cの3つのパラメータを決定しなけ
ればならない。従って未知数が3であるから実測は少な
くとも3回必要である。従ってこの実施例でもa1,a
2,a3の3回分の実測を実施した例を示している。こ
の3回の実測はオートゼロリセット式増幅器31にリセ
ット信号を与える動作と、そのリセット信号を与える直
前にオートゼロリセット式増幅器31の出力値を読み取
るサンプリング手段を設ければよい。
As is apparent from equation (2), to solve equation (2), three parameters A, K, and C must be determined. Therefore, since the unknown number is 3, actual measurement is required at least three times. Therefore, in this embodiment, a1, a
2 shows an example in which three measurements of a3 are performed. The three actual measurements may be performed by providing an operation for supplying a reset signal to the auto-zero reset type amplifier 31 and a sampling means for reading the output value of the auto-zero reset type amplifier 31 immediately before supplying the reset signal.

【0023】図2は図1で説明したこの発明による洩れ
検査方法を採る洩れ検査装置の実施例を示す。図3と対
応する部分には同一符号を付して示す。図2において図
3と異なる構成はオートゼロリセット式増幅器31から
以後の構成であるから、ここでは異なる構成の部分につ
いてだけ説明する。この発明による洩れ検査装置は被検
査体20と基準タンク21に気体圧を印加した直後から
オートゼロリセット式増幅器31に単位時間間隔でリセ
ット信号を与えるリセット信号発生器44と、オートゼ
ロリセット式増幅器31とによって差圧変化計測手段4
0を構成した点と、この差圧変化計測手段40で検出す
る単位時間当たりの差圧変化値a1,a2,a3をサン
プリングするサンプルホールド回路41を設けた点と、
このサンプルホールド回路41でサンプルホールドした
各単位時間当たりの差圧変化値a1,a2,a3をAD
変換するAD変換器42を設けた点と、このAD変換器
42でAD変換した差圧変化値a1,a2,a3を取り
込んで上記した(6)式にしたがって差圧変化値Cを算
出する演算制御装置43を設けた構成を特徴とするもの
である。
FIG. 2 shows an embodiment of a leakage inspection apparatus employing the leakage inspection method according to the present invention described with reference to FIG. Parts corresponding to those in FIG. 3 are denoted by the same reference numerals. In FIG. 2, the configuration different from that in FIG. 3 is a configuration subsequent to the auto-zero reset type amplifier 31, so that only the different configuration will be described here. The leak inspection apparatus according to the present invention includes a reset signal generator 44 for giving a reset signal to the auto zero reset type amplifier 31 at unit time intervals immediately after gas pressure is applied to the test object 20 and the reference tank 21; an auto zero reset type amplifier 31; Differential pressure change measuring means 4
0 and a sample and hold circuit 41 for sampling the differential pressure change values a1, a2 and a3 per unit time detected by the differential pressure change measuring means 40,
The differential pressure change values a1, a2 and a3 per unit time sampled and held by the sample and hold circuit 41 are AD
An operation of obtaining the AD converter 42 to be converted and the differential pressure change values a1, a2, and a3 AD-converted by the AD converter 42 and calculating the differential pressure change value C according to the above equation (6). It is characterized by a configuration in which a control device 43 is provided.

【0024】演算制御装置43はコンピュータシステム
によって構成することができる。コンピュータシステム
とはよく知られているように中央演算処理装置43A
と、ROM43Bと、RAM43Cと、入力ポート43
D、出力ポート43Eとによって構成される。RAM4
3Cには入力ポート43Dから入力された実測した差圧
変化値a1,a2,a3を記憶する実測値記憶器43C
−1と、この実測値a1,a2,a3を(6)式に代入
し、ドリフトが除去された状態にある差圧変化値Cを算
出する演算手段43C−2と、この演算手段43C−2
で算出した差圧変化値Cを設定値と比較し、洩れの有無
を判定する比較判定手段43C−3とが格納される。
The arithmetic and control unit 43 can be constituted by a computer system. As is well known, the computer system is a central processing unit 43A.
, ROM 43B, RAM 43C, input port 43
D and an output port 43E. RAM4
3C stores an actually measured value storage unit 43C that stores the actually measured differential pressure change values a1, a2, and a3 input from the input port 43D.
-1 and the actual measurement values a1, a2, and a3 are substituted into the equation (6) to calculate a differential pressure change value C in a state where the drift is removed, and the operation means 43C-2.
And a comparison / decision unit 43C-3 for comparing the differential pressure change value C calculated in the above with a set value to determine the presence or absence of leakage.

【0025】つまり、これらの各実測値記憶器43C−
1,演算手段43C−2,比較判定手段43C−3はR
AM43Cに記憶したプログラムによって構成され、こ
のプログラムが中央演算処理装置43Aの指示に従って
実動することにより実測した差圧変化値a1,a2,a
3の読み込みと、(6)式の演算と、比較判定動作が実
行される。
That is, each of these measured value storage units 43C-
1, the calculating means 43C-2 and the comparing / determining means 43C-3
The differential pressure change values a1, a2, and a are actually measured by executing the program in accordance with an instruction from the central processing unit 43A.
3, the calculation of the expression (6), and the comparison / determination operation are executed.

【0026】RAM43Cにはその他にサンプルホール
ド回路41とリセット信号発生器44を制御する制御手
段43C−4とが設けられ、この制御手段43C−4に
よってサンプルホールド回路41とリセット信号発生器
44とが出力ポート43Eを通じて制御されてサンプリ
ング動作と、リセット動作を実行する尚、図2に示した
実行例ではRAM43Cに各種のプログラムを格納した
場合を説明したが、これらのプログラムをROM43B
に格納することもでき、その選択は自由である。
The RAM 43C is further provided with control means 43C-4 for controlling the sample hold circuit 41 and the reset signal generator 44. The control means 43C-4 controls the sample hold circuit 41 and the reset signal generator 44. The sampling operation and the reset operation are executed under the control of the output port 43E. In the execution example shown in FIG. 2, the case where various programs are stored in the RAM 43C has been described.
And can be freely selected.

【0027】また、図1を用いて説明したこの発明によ
る洩れ検査方法では(6)式で求めた差圧変化値Cをそ
のまま設定値と比較し、洩れの有無を判定するものとし
て説明したが、(6)式を用いて算出した差圧変化値C
と実際に時間をかけて実測した差圧変化値Cnとには差
C−Cn=Coが生じることが考えられる。この差の値
C−Cn=Coが0にならないということは(6)式の
予測演算に誤差を含むことを意味している。
In the leakage inspection method according to the present invention described with reference to FIG. 1, the differential pressure change value C obtained by the equation (6) is compared with a set value as it is to determine whether or not leakage has occurred. , The differential pressure change value C calculated using the equation (6)
It is conceivable that a difference C-Cn = Co occurs between the difference and the pressure difference change value Cn actually measured over time. The fact that the difference value C−Cn = Co does not become 0 means that the prediction calculation of the equation (6) includes an error.

【0028】この予測演算の誤差Coを一度求めておく
ことにより、毎回算出される差圧変化値CからCoを差
し引いてC−Coを求めることにより予測演算に伴う誤
差分を除去することができる。つまり、或る被検査体2
0を接続した状態で通常通り、a1,a2,a3を実測
し、演算手段43C−2で予測される差圧変化値Cを算
出する。差圧変化値Cを算出したまま、その被検査体2
0を接続した状態を維持し、充分時間が経過し、被検査
体20内の空気の温度が被検査体20の内壁の温度に等
しくなった時点でオートゼロリセット式増幅器31をリ
セットし、単位時間経過後の差圧変化値Cnを読み取
り、その差圧変化値Cnを演算して求めた差圧変化値C
から差し引いてC−Cn=Coを求めれば、爾後他の被
検査体20を検査する都度その予測演算して求める差圧
変化値CからCoを差し引けば予測演算に伴う誤差を除
去できることになる。但し、誤差Coはごくわずかな値
であり、また外乱によって大きく変動する性質の誤差で
ないから必ずしも実行しなければならない補正でないこ
とは容易に理解できよう。
By calculating the error Co of the prediction operation once, the difference between the differential pressure change value C calculated every time and C-Co is determined, thereby removing the error associated with the prediction operation. . That is, a certain test object 2
In the state where 0 is connected, a1, a2, and a3 are actually measured as usual, and the differential pressure change value C predicted by the calculating means 43C-2 is calculated. While the differential pressure change value C is calculated, the test object 2
0, the auto-zero reset type amplifier 31 is reset when a sufficient time has passed and the temperature of the air inside the device under test 20 becomes equal to the temperature of the inner wall of the device under test 20, and the unit time The differential pressure change value Cn obtained by reading the differential pressure change value Cn after elapse and calculating the differential pressure change value Cn is obtained.
Is subtracted from C to obtain C-Cn = Co, an error associated with the prediction operation can be removed by subtracting Co from the differential pressure change value C obtained by the prediction operation each time another test object 20 is inspected. . However, it can be easily understood that the error Co is a very small value and is not a correction that must be always executed because it is not an error having a nature that greatly fluctuates due to disturbance.

【0029】また、上述では被検査体20と基準タンク
21に空圧源11から正圧を印加するものとして説明し
たが、この発明は正圧に限らず負圧でも適用することが
できる。負圧とは、完全真空でなく或る程度空気が被検
査体20と基準タンク21に残留する状態を指す。
In the above description, the positive pressure is applied from the pneumatic pressure source 11 to the test object 20 and the reference tank 21. However, the present invention is not limited to the positive pressure and can be applied to a negative pressure. The negative pressure refers to a state in which a certain amount of air remains in the test object 20 and the reference tank 21 instead of a complete vacuum.

【0030】[0030]

【発明の効果】以上説明したように、この発明によれば
各被検査体20毎に等時間間隔で単位時間当たりの差圧
変化値a1,a2,a3を実測し、この実測値a1,a
2,a3から単位時間当たりの差圧変化値の減衰特性を
予測し、予測演算により充分時間が経過した時点におけ
る差圧変化値Cを求めるから、この演算して求めた差圧
変化値Cはどの被検査体20に対しても各被検査時点に
おける温度等の外乱の影響を除去した真に洩れ量のみに
対応した値と見ることができる。
As described above, according to the present invention, the differential pressure change values a1, a2, and a3 per unit time are measured at equal time intervals for each of the test objects 20, and the actual measured values a1, a
Since the damping characteristic of the differential pressure change value per unit time is predicted from 2 and a3, and the differential pressure change value C at the time when a sufficient time has passed by the prediction calculation is obtained, the differential pressure change value C obtained by this calculation is It can be seen that any test object 20 can be regarded as a value corresponding to only the true leakage amount, which is free from the influence of disturbance such as temperature at each test time.

【0031】従って、この発明による洩れ検査方法を用
いることにより、被検査体20の温度が被検査体20毎
に大きく変化しても、その温度によるドリフトの影響を
除去して正しい洩れの有無を判定することができる。ま
た気温が変化しても、その気温の変化に伴ってドリフト
量が変動しても、そのドリフト量の変動も除去すること
ができる。
Therefore, by using the leak inspection method according to the present invention, even if the temperature of the device under test 20 changes greatly for each device under test 20, the influence of the drift due to the temperature is removed and the presence or absence of correct leakage is determined. Can be determined. Further, even if the temperature changes or the drift amount changes with the change in the temperature, the change in the drift amount can be removed.

【0032】また、差圧変化値a1,a2,a3を実測
する時間間隔は例えば0.5〜1秒程度の極短い時間間
隔で済むから、差圧変化値a1,a2,a3を実測する
時間は短時間で済む。よって1個の被検査体20を検査
する時間も短時間で済み、高速試験を実現できる利点も
得られる。従って、いつでも全く無調整で正しい洩れ検
査を高速で行うことができるため、その効果は実用に供
して頗る大である。
The time interval for actually measuring the differential pressure change values a1, a2, a3 can be an extremely short time interval of, for example, about 0.5 to 1 second, so that the time for actually measuring the differential pressure change values a1, a2, a3 is sufficient. Is short. Therefore, the time required to inspect one test object 20 is short, and the advantage that a high-speed test can be realized is obtained. Therefore, the correct leak inspection can be performed at high speed without any adjustment at all times, and the effect is extremely large for practical use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による洩れ検査方法を説明するための
グラフ。
FIG. 1 is a graph for explaining a leak inspection method according to the present invention.

【図2】この発明による、洩れ検査方法を適用した洩れ
検査装置の実測例を説明するためのブロック図。
FIG. 2 is a block diagram for explaining an actual measurement example of a leakage inspection apparatus to which the leakage inspection method according to the present invention is applied.

【図3】従来の洩れ検査装置の構成を説明するためのブ
ロック図。
FIG. 3 is a block diagram for explaining a configuration of a conventional leakage inspection device.

【図4】従来の洩れ検査方法を説明するためのグラフ。FIG. 4 is a graph for explaining a conventional leak inspection method.

【図5】従来の洩れ検査装置において、温度等の外乱に
よるドリフトを除去する方法を説明するためのグラフ。
FIG. 5 is a graph for explaining a method for removing drift due to disturbance such as temperature in a conventional leak inspection apparatus.

【符号の説明】[Explanation of symbols]

a1,a2,a3 単位時間当たりの差圧変化値を
表す実測値 C1 予測演算して求める差圧変化値 B1 減衰曲線 T1 単位時間 31 オートゼロリセット式増幅器 41 サンプルホールド回路 42 AD変換器 43 演算制御装置 43C−1 実測値記憶器 43C−2 演算手段 43C−3 比較判定手段 44 リセット信号発生器
a1, a2, a3 Actual measured value representing the differential pressure change value per unit time C1 Differential pressure change value obtained by predictive calculation B1 Decay curve T1 Unit time 31 Auto-zero reset type amplifier 41 Sample hold circuit 42 AD converter 43 Operation control device 43C-1 Measured value storage device 43C-2 Operation means 43C-3 Comparison judgment means 44 Reset signal generator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検査体と基準タンクに正又は負の気体
圧を印加し、所定時間経過した時点で両者間に所定以上
の差圧が発生するか否かにより上記被検査体に洩れが有
るか否かを判定する洩れ検査方法において、 上記被検査体と基準タンクに気体圧を印加した時点から
単位時間間隔で単位時間当たりの差圧変化値を複数求
め、この複数の差圧変化値から充分長い時間が経過した
時点における洩れ量に相当する単位時間当たりの差圧変
化値Cを予測演算式により算出し、この算出値が所定値
以上か否かにより洩れの有無乃至は洩れの大小を判定す
ることを特徴とする洩れ検査方法。
1. A positive or negative gas pressure is applied to an object to be inspected and a reference tank, and leakage of the object to be inspected depends on whether or not a predetermined differential pressure or more is generated between the two after a lapse of a predetermined time. In the leak inspection method for determining whether or not there is, a plurality of differential pressure change values per unit time are obtained at a unit time interval from the time when gas pressure is applied to the test object and the reference tank, and the plurality of differential pressure change values are determined. , A differential pressure change value C per unit time corresponding to the amount of leakage at the time when a sufficiently long time has elapsed is calculated by a prediction calculation formula, and whether or not leakage is present or the magnitude of leakage is determined based on whether the calculated value is a predetermined value or more. A leakage inspection method characterized by determining the following.
【請求項2】 請求項1記載の洩れ検査方法において、
実測する単位時間当たりの差圧変化値をa1,a2,a
3の値とし、この3値を用いて充分時間が経過した時点
における単位時間当たりの差圧変化値Cを C=a1−(a2−a3)/[{(a2−a3)/(a
1−a2)}−{(a2−a3)2 /(a1−a
2)2 }] とする予測演算式で算出することを特徴とする洩れ検査
方法。
2. The leak inspection method according to claim 1, wherein
A1, a2, a are the differential pressure change values per unit time to be measured.
The differential pressure change value C per unit time at the time when a sufficient time has elapsed using the three values is C = a1- (a2-a3) / [/ (a2-a3) / (a
1-a2)}-{(a2-a3) 2 / (a1-a
2) A leakage inspection method, wherein the calculation is performed using a prediction operation expression of 2 }].
【請求項3】 A.被検査体と基準タンクに空圧源から
気体圧を与え、この気体圧の印加時点から両者間に発生
する差圧値を差圧検出器によって測定し、この差圧値が
規定値以上に達したことを検出して被検査体に洩れ有り
と判定する洩れ検査装置において、 B.上記気体圧の印加直後から単位時間間隔で上記差圧
検出器が検出する差圧値の増加量を計測し、単位時間当
たりの差圧変化値を複数のタイミングで検出する差圧変
化計測手段と、 C.この差圧変化計測手段で計測した複数の単位時間当
たりの差圧変化値を取り込むサンプリング手段と、 D.このサンプリング手段で取り込んだ複数の差圧変化
値を C=a1−(a2−a3)/[{(a2−a3)/(a
1−a2)}− {(a2−a3)2 /(a1−a2)
2 }] に代入して算出する演算手段と、 E.この演算手段で算出した値Cを設定値と比較し、洩
れの有無を判定する比較判定手段と、 を具備したことを特徴とする洩れ検査装置。
3. A. A gas pressure is applied to the test object and the reference tank from an air pressure source, and a differential pressure value generated between the two at the time of application of the gas pressure is measured by a differential pressure detector, and the differential pressure value exceeds a specified value. B. A leakage inspection apparatus that detects that the inspection has been performed and determines that the inspection object has leakage. Immediately after the application of the gas pressure, a differential pressure change measuring unit that measures an increase amount of the differential pressure value detected by the differential pressure detector at unit time intervals, and detects a differential pressure change value per unit time at a plurality of timings. C. B. sampling means for taking in a plurality of differential pressure change values per unit time measured by the differential pressure change measuring means; A plurality of differential pressure change values taken in by this sampling means are calculated as C = a1- (a2-a3) / [{(a2-a3) / (a
1-a2)}-{(a2-a3) 2 / (a1-a2)
2 }], and an arithmetic means for calculating by substituting And a comparing and judging means for comparing the value C calculated by the calculating means with a set value and judging the presence or absence of a leak.
JP10341784A 1998-12-01 1998-12-01 Method and apparatus for inspection of leak Pending JP2000162084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10341784A JP2000162084A (en) 1998-12-01 1998-12-01 Method and apparatus for inspection of leak

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10341784A JP2000162084A (en) 1998-12-01 1998-12-01 Method and apparatus for inspection of leak

Publications (1)

Publication Number Publication Date
JP2000162084A true JP2000162084A (en) 2000-06-16

Family

ID=18348738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10341784A Pending JP2000162084A (en) 1998-12-01 1998-12-01 Method and apparatus for inspection of leak

Country Status (1)

Country Link
JP (1) JP2000162084A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322867A (en) * 2005-05-20 2006-11-30 Tokyo Gas Co Ltd Vessel inspection method and its device
CN103674452A (en) * 2013-12-26 2014-03-26 滁州汽车与家电技术及装备研究院 Leak detection method for floating air bag
JP2017111016A (en) * 2015-12-17 2017-06-22 暎三 浦田 Leak inspection method and leak inspection device
JP2018009955A (en) * 2016-06-29 2018-01-18 暎三 浦田 Leak inspection method and leak inspection device
JP2018124162A (en) * 2017-01-31 2018-08-09 暎三 浦田 Leak inspection method and leak inspection device
CN110114662A (en) * 2016-12-28 2019-08-09 松下知识产权经营株式会社 Gas-detecting device, gas detecting system, fuel cell car and gas detection method
JP2020027028A (en) * 2018-08-10 2020-02-20 株式会社ガスター Leak inspection system, and program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322867A (en) * 2005-05-20 2006-11-30 Tokyo Gas Co Ltd Vessel inspection method and its device
JP4663400B2 (en) * 2005-05-20 2011-04-06 東京瓦斯株式会社 Container inspection method and apparatus
CN103674452A (en) * 2013-12-26 2014-03-26 滁州汽车与家电技术及装备研究院 Leak detection method for floating air bag
JP2017111016A (en) * 2015-12-17 2017-06-22 暎三 浦田 Leak inspection method and leak inspection device
JP2018009955A (en) * 2016-06-29 2018-01-18 暎三 浦田 Leak inspection method and leak inspection device
CN110114662A (en) * 2016-12-28 2019-08-09 松下知识产权经营株式会社 Gas-detecting device, gas detecting system, fuel cell car and gas detection method
CN110114662B (en) * 2016-12-28 2022-03-18 新唐科技日本株式会社 Gas detection device, gas detection system, fuel cell vehicle, and gas detection method
JP2018124162A (en) * 2017-01-31 2018-08-09 暎三 浦田 Leak inspection method and leak inspection device
JP2020027028A (en) * 2018-08-10 2020-02-20 株式会社ガスター Leak inspection system, and program
JP7286282B2 (en) 2018-08-10 2023-06-05 株式会社ガスター Leak inspection system, program

Similar Documents

Publication Publication Date Title
US7818133B2 (en) Leak inspection method and leak inspector
JPH11118657A (en) Drift correction value calculator and leakage detector equipped with calculator
US7594424B2 (en) Automated timer and setpoint selection for pneumatic test equipment
CN101371122B (en) Method for detecting fault in leakage inspector, leakage inspector
JPS59206737A (en) Leakage testing device having temperature compensating function
JP4056818B2 (en) Leak test method and apparatus
JP4994494B2 (en) Differential pressure measurement method and apparatus
JP4630791B2 (en) Flow-type performance inspection method
JP2000162084A (en) Method and apparatus for inspection of leak
JP2012255687A (en) Pressure leakage measuring method
CN111024334B (en) Control device, flow sensitivity correction method, and storage medium
JP7286282B2 (en) Leak inspection system, program
JP4087773B2 (en) Leak inspection device calibration method, leak inspection device
JPH11304632A (en) Computing device for drift correction value for leak inspection and leak inspection apparatus using it
JP6931596B2 (en) Leak inspection method Leak inspection equipment, program
JP3212898B2 (en) Leak test method and apparatus
CN115597771B (en) Sensor calibration method and high-precision calibration system device
JPH0240515Y2 (en)
JP2000205991A (en) Leak tester
JP2001050854A (en) Drift correction factor calculating method for leak inspection, drift correcting method, leak inspection method, drift correction factor learnion method and leak inspection apparatus
JP2017067714A (en) Leakage inspection device and method
JPH0222666Y2 (en)
JPH10300624A (en) Inspection method for gas leakage
JPH0157299B2 (en)
JP2024504908A (en) Leakage testing device and method