JP2010265487A - Martensitic stainless steel and rolling bearing - Google Patents

Martensitic stainless steel and rolling bearing Download PDF

Info

Publication number
JP2010265487A
JP2010265487A JP2009115158A JP2009115158A JP2010265487A JP 2010265487 A JP2010265487 A JP 2010265487A JP 2009115158 A JP2009115158 A JP 2009115158A JP 2009115158 A JP2009115158 A JP 2009115158A JP 2010265487 A JP2010265487 A JP 2010265487A
Authority
JP
Japan
Prior art keywords
stainless steel
martensitic stainless
hardness
range
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009115158A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamada
廣志 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2009115158A priority Critical patent/JP2010265487A/en
Publication of JP2010265487A publication Critical patent/JP2010265487A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a martensitic stainless steel having ≥HV1400 surface hardness and ≥HV650 inner part hardness. <P>SOLUTION: This martensitic stainless steel contains, by weight, 0.35-0.45% C, ≤0.2% Si, ≤0.2% Mn, ≤0.01% P, ≤0.01% S, 15.5-16.5% Cr, 1.5-2.5% Mo, 0.001-0.0015% B, 0.15-0.25% N and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐食性および耐摩耗性に優れた高強度を有する転がり軸受用のマルテンサイト系ステンレス鋼に関する。   The present invention relates to a martensitic stainless steel for rolling bearings having high strength excellent in corrosion resistance and wear resistance.

従来、SUS440A、SUS440B、SUS440C等のマルテンサイト系ステンレス鋼は、硬さが高いため軸受や刃物等に使用されている。ところで、同様に高い硬さが求められる転がり軸受にあっては、耐摩耗性を上げるために窒化処理を施す場合がある。この種の転がり軸受用ステンレス鋼は、特許文献1で知られている。   Conventionally, martensitic stainless steels such as SUS440A, SUS440B, and SUS440C are used for bearings and blades because of their high hardness. Incidentally, in rolling bearings that similarly require high hardness, nitriding treatment may be performed in order to increase wear resistance. This type of rolling bearing stainless steel is known from US Pat.

また、上記SUS440A、SUS440B、SUS440C等のマルテンサイト系ステンレス鋼に焼き入れ・焼き戻しを施してから、さらに表面硬さを上げて耐摩耗性の向上を図るために、窒化処理を施す場合がある。この時、表層の硬さは約HV900程度であるので、転がり軸受の転動体(ボール)に窒化ケイ素を用いた場合には、外輪および内輪の摩耗が大きくなる場合がある。これを避けるために、外輪および内輪も窒化ケイ素とすると、非常に高価なものとなり、製品化が難しくなる。   Further, after martensitic stainless steel such as SUS440A, SUS440B, and SUS440C is quenched and tempered, a nitriding treatment may be applied to further increase the surface hardness and improve wear resistance. . At this time, since the hardness of the surface layer is about HV900, when silicon nitride is used for the rolling elements (balls) of the rolling bearing, wear of the outer ring and the inner ring may be increased. In order to avoid this, if the outer ring and the inner ring are also made of silicon nitride, it becomes very expensive and difficult to produce.

窒化処理の手法としては、プラズマ窒化法、ガス窒化法などある。ガス軟窒化またはプラズマ窒化を行う場合は600℃付近の温度で行われるが、この温度で処理すると、焼き戻し温度よりかなり高くなるため、内部の硬さがHV300程度まで低下してしまう。この程度まで軟化してしまうと、転動体から受ける高い接触応力によって転がり軸受の内輪および外輪の各部材が圧壊してしまう場合がある。   Nitriding techniques include plasma nitriding and gas nitriding. When gas soft nitriding or plasma nitriding is performed, it is performed at a temperature around 600 ° C. However, if it is processed at this temperature, the temperature becomes considerably higher than the tempering temperature, so that the internal hardness decreases to about HV300. If softened to this extent, the members of the inner and outer rings of the rolling bearing may be crushed by high contact stress received from the rolling elements.

そこで、より低い温度で窒化処理を行うために、フッ化処理を行った後に窒化処理を行う方法(例えばエア・ウォーター社のNV窒化処理)が特許文献2で知られている。また、転がり軸受の部材にNV窒化処理を施した転がり軸受用ステンレス鋼は、表面硬さがHV900以上、内部硬さがHV600以上になることが、特許文献3〜5で知られている。   Therefore, in order to perform nitriding at a lower temperature, a method of performing nitriding after performing fluorination (for example, NV nitriding by Air Water) is known from Patent Document 2. In addition, it is known in Patent Documents 3 to 5 that the stainless steel for rolling bearings in which the rolling nitriding member is subjected to NV nitriding treatment has a surface hardness of HV900 or more and an internal hardness of HV600 or more.

特許第3326912号公報Japanese Patent No. 3326912 特許第3428776号(特開平8−193256)Japanese Patent No. 34287776 (JP-A-8-193256) 特開2001−74053号公報JP 2001-74053 A 特開2001−187916号公報JP 2001-187916 A WO98/44270号公報WO98 / 44270 Publication

上記特許文献3〜5によると、表面硬さがHV900以上、内部硬さがHV600以上のステンレス鋼が得られるとされている。しかしながら、転がり軸受の転動体に窒化ケイ素のボールを用いた場合、より高い接触面圧に耐えられるように、現状では、最表面から深さ10μmまでの表面硬さはHV1400以上、また、深さ40μmまでの硬さはHV1200以上、さらに、それより内部のおける内部硬さはHV650以上を有するマルテンサイト系ステンレス鋼が求められている。   According to Patent Documents 3 to 5, stainless steel having a surface hardness of HV900 or more and an internal hardness of HV600 or more is obtained. However, when silicon nitride balls are used for the rolling elements of the rolling bearing, the surface hardness from the outermost surface to a depth of 10 μm is HV1400 or more at present so that it can withstand higher contact surface pressure. There is a demand for martensitic stainless steel having a hardness of up to 40 μm and HV1200, and further having an internal hardness of HV650 or more.

よって本発明は上記事情に鑑みてなされたものであり、より高い表面硬さと適切な内部硬さを有するマルテンサイト系ステンレス鋼および転がり軸受を提供することを目的としている。   Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a martensitic stainless steel and a rolling bearing having higher surface hardness and appropriate internal hardness.

本発明者は上記目的を達成することのできるマルテンサイト系ステンレス鋼の開発を鋭意進めたところ、特定の範囲のCに対して、Siを0.2%以下の範囲、Mnを0.2%以下の範囲、Pを0.01%以下の範囲、Sを0.01%以下の範囲、Crを15.5〜16.5%の範囲、Moを1.5〜2.5%の範囲の範囲でそれぞれ含有し、残部がFeおよび不可避不純物からなるマルテンサイト系ステンレス鋼に、焼き入れ、サブゼロ処理、500℃付近での高温焼き戻し処理を施すことにより、内部の硬さが増加し、さらに、NV窒化処理などを行うことにより、表面から深さ40μmまでの表面硬さがHV1200以上と高く、残留オーステナイト量や経年による寸法変化が少なく、腐食しやすい雰囲気で使用する軸受として好適な、マルテンサイト系ステンレス鋼を得ることができることを見出した。   The inventor diligently developed a martensitic stainless steel capable of achieving the above object. As a result, the Si content is 0.2% or less and the Mn content is 0.2% with respect to a specific range of C. The following ranges, P is 0.01% or less, S is 0.01% or less, Cr is 15.5 to 16.5%, Mo is 1.5 to 2.5%. By adding quenching, sub-zero treatment, and high temperature tempering treatment at around 500 ° C. to the martensitic stainless steel each containing in the range and the balance being Fe and inevitable impurities, the internal hardness increases, and By performing the NV nitriding treatment, the surface hardness from the surface to a depth of 40 μm is as high as HV1200 or more, and there is little dimensional change due to the amount of retained austenite and aging. It found that it is possible to obtain a martensitic stainless steel.

本発明のマルテンサイト系ステンレス鋼は上記知見に基づいてなされたものであり、成分が、重量比で、Cを0.35〜0.45%の範囲、Siを0.2%以下の範囲、Mnを0.2%以下の範囲、Pを0.01%以下の範囲、Sを0.01%以下の範囲、Crを15.5〜16.5%の範囲、Moを1.5〜2.5%の範囲、Bを0.001〜0.0015%の範囲、Nを0.15〜0.25%の範囲でそれぞれ含有し、残部がFeおよび不可避不純物からなることを特徴とする。   The martensitic stainless steel of the present invention has been made based on the above findings, and the components are in a weight ratio, C in the range of 0.35 to 0.45%, Si in the range of 0.2% or less, Mn is 0.2% or less, P is 0.01% or less, S is 0.01% or less, Cr is 15.5 to 16.5%, Mo is 1.5 to 2 It is characterized by containing 0.5%, B in the range of 0.001 to 0.0015% and N in the range of 0.15 to 0.25%, the balance being Fe and inevitable impurities.

本発明のマルテンサイト系ステンレス鋼によれば、Nは、焼き戻しの際にCrNを析出させ、焼き戻しによる硬度の低下を防止する重要な元素である。また、0.001〜0.0015%の範囲のBを含有させることで、強度の向上に有効で、かつ、焼き入れ性が高まり、BNの析出による強度と靭性の向上効果がさらに大きく得られるマルテンサイト系ステンレス鋼を提供することができる。   According to the martensitic stainless steel of the present invention, N is an important element that precipitates CrN during tempering and prevents a decrease in hardness due to tempering. Moreover, by containing B in the range of 0.001 to 0.0015%, it is effective for improving the strength, and the hardenability is enhanced, and the effect of improving the strength and toughness due to the precipitation of BN can be obtained further. Martensitic stainless steel can be provided.

本発明の請求項2に記載した発明では、請求項1の発明において、成分として、さらに重量比で0.18〜0.22%の範囲のWを含有させることで、強度と靭性をさらに向上させたマルテンサイト系ステンレス鋼を提供することができる。   In the invention described in claim 2 of the present invention, the strength and toughness are further improved by adding W in the range of 0.18 to 0.22% by weight as a component in the invention of claim 1. The martensitic stainless steel made can be provided.

また、請求項3に記載した発明は、上記本発明のステンレス鋼を、フッ素ガスで活性化した後、400〜600℃、好ましくは450〜550℃で窒化処理してなることを特徴とする。   The invention described in claim 3 is characterized in that the stainless steel of the present invention is activated with fluorine gas and then subjected to nitriding treatment at 400 to 600 ° C., preferably 450 to 550 ° C.

また、請求項4に記載した発明は、上記窒化処理後の、表面硬さがHV1400以上、内部の硬さがHV650以上であることを特徴とするマルテンサイト系ステンレス鋼であり、表面および内部の硬さが、本発明の目的とする値を示している。   The invention described in claim 4 is a martensitic stainless steel having a surface hardness of HV1400 or more and an internal hardness of HV650 or more after the nitriding treatment. The hardness indicates the target value of the present invention.

また、請求項5に記載した発明では、請求項1、2、3または4の発明のマルテンサイト系ステンレス鋼を軸受材料として用いることで、焼き入れ、サブゼロ処理、焼き戻し処理により、表面硬さHV650以上が可能で、SUS440Cよりも耐食性、冷間加工性および耐摩耗性に優れ、残留オーステナイト量や経年による寸法変化が少なく、腐食しやすい雰囲気での使用に好適な転がり軸受を提供することができる。   Further, in the invention described in claim 5, by using the martensitic stainless steel of the invention of claim 1, 2, 3 or 4 as a bearing material, surface hardness can be obtained by quenching, sub-zero treatment, and tempering treatment. It is possible to provide a rolling bearing suitable for use in a corrosive atmosphere that is capable of HV650 or more, is superior in corrosion resistance, cold workability and wear resistance to SUS440C, has little residual austenite amount and dimensional change due to aging. it can.

次に、本発明における化学成分(元素)の含有量等の根拠を説明する。なお、以下の%は重量比である。本発明は以下に挙げた成分の他の残部が、Feおよび不可避的に混入する不純物とされる。   Next, the basis of the content of chemical components (elements) in the present invention will be described. In addition, the following% is a weight ratio. In the present invention, the remainder of the components listed below is considered to be Fe and impurities inevitably mixed.

・C(炭素):0.35〜0.45%
Cはオーステナイト生成元素であって、多量に添加すると共晶炭化物を生成しやすく、割れが発生しやすいので、十分な耐食性が得られなくなるため、上限を0.45%とした。また、十分な焼き入れ硬さを得るためにCの下限は0.35%とした。
・ C (carbon): 0.35-0.45%
C is an austenite-forming element, and if added in a large amount, eutectic carbide tends to be formed and cracking is likely to occur, so that sufficient corrosion resistance cannot be obtained, so the upper limit was made 0.45%. In order to obtain sufficient quenching hardness, the lower limit of C is set to 0.35%.

・Si(ケイ素):0.2%以下
0.2%を超える量のSiを含有していると、靭性が著しく低下し、熱間加工性に有害になるので、Siは0.2%以下の範囲で含有させることとした。
-Si (Silicon): 0.2% or less Si containing 0.2% or less, if containing Si in an amount exceeding 0.2%, the toughness is remarkably deteriorated and harmful to hot workability. It was decided to make it contain in the range.

・Mn(マンガン):0.2%以下
Mnはオーステナイト安定化元素であり、過度の添加は残留オーステナイト量を増加させるため、熱処理後の表面硬さを低下させるのみでなく、耐食性も害するほか、経年による寸法変化を起こしやすい。したがってMnの含有量は0.2%以下の範囲とした。
Mn (manganese): 0.2% or less Mn is an austenite stabilizing element, and excessive addition increases the amount of retained austenite, not only lowering the surface hardness after heat treatment, but also harming corrosion resistance. It tends to cause dimensional changes over time. Therefore, the Mn content is set to a range of 0.2% or less.

・P(リン):0.01%以下
Pは、結晶粒界に析出して冷間脆性を引き起こす成分であり、冷間脆性を避けるために含有量を0.01%以下の範囲とした。
P (phosphorus): 0.01% or less P is a component that precipitates at grain boundaries and causes cold brittleness, and the content is made 0.01% or less in order to avoid cold brittleness.

・S(硫黄):0.01%以下
Sは、耐食性を劣化させたり熱間加工性を害したりするので、含有量を0.01%以下の範囲とした。
-S (sulfur): 0.01% or less Since S deteriorates corrosion resistance or impairs hot workability, the content is made 0.01% or less.

・Cr(クロム):15.5〜16.5%
Crは、Mnと同様にNの固溶限を高め、また、耐食性を改善する効果を持つが、これは13%以上添加された場合である。本発明ではCを0.35〜0.45%と低めに規定したため、Crを増加し耐食性を低下させないよう下限を15.5%とした。また、強固な不動態被膜を形成させるためと焼き入れ温度でのオーステナイト単相を確保するために上限は16.5%とした。なお、16.5%を超えて含有すると、Cr,Feの炭化物であるM23型炭化物が生成し、熱処理後の表面硬さを低下させたり耐食性を劣化させたりしてしまう。
-Cr (chromium): 15.5 to 16.5%
Cr, like Mn, has the effect of increasing the solid solubility limit of N and improving the corrosion resistance. This is when 13% or more is added. In the present invention, since C is defined as low as 0.35 to 0.45%, the lower limit is set to 15.5% so that Cr is not increased and the corrosion resistance is not lowered. In order to form a strong passive film and to secure an austenite single phase at the quenching temperature, the upper limit was made 16.5%. Incidentally, when the content exceeds 16.5%, Cr, and generates the M 23 C 6 type carbide which is a carbide of Fe, resulting in or deteriorate the corrosion resistance or to reduce the hardness after heat treatment.

・Mo(モリブデン):1.5〜2.5%
Moは、Crと同様にNの固溶限を高め、また、耐食性を改善し、焼き入れ性を上げる効果を持つが、このような効果を得るためには1.5%以上の添加が必要である。また、過度の添加は靭性の低下を招くので、上限は2.5%とした。
Mo (molybdenum): 1.5 to 2.5%
Mo, like Cr, has the effect of increasing the solid solubility limit of N, improving the corrosion resistance and improving the hardenability, but in order to obtain such an effect, addition of 1.5% or more is necessary. It is. Moreover, since excessive addition causes the fall of toughness, the upper limit was made into 2.5%.

・N(窒素):0.15〜0.25%
Nは、マルテンサイト系ステンレス鋼の熱処理後の表面硬さ・耐食性を向上させるのに非常に有効な元素であり、この効果を得るためには0.15%以上、望ましくは、0.18%以上を必要とする。また、大気溶解では、材料中にブロー(気泡)の発生がなく、実用に供し得るマルテンサイト系ステンレス鋼にするにはその固溶限界が0.25%であるため、0.25%を上限とした。
・ N (nitrogen): 0.15 to 0.25%
N is an element that is very effective in improving the surface hardness and corrosion resistance after heat treatment of martensitic stainless steel. To obtain this effect, N is 0.15% or more, preferably 0.18%. Need more. In addition, in the case of atmospheric dissolution, there is no blow (bubbles) in the material, and the solid solution limit is 0.25% for a martensitic stainless steel that can be used practically, so the upper limit is 0.25%. It was.

・B(ホウ素):0.001%〜0.0015%
Bを添加するとBNが析出して強度の向上に有効で、かつ焼き入れ性を高めるが、この効果を得るためには0.001%以上の添加が必要である。一方、過度の添加は靭性の低下を招くので、添加量の上限を0.0015%とする。
B (boron): 0.001% to 0.0015%
When B is added, BN precipitates, which is effective for improving the strength and enhances the hardenability. However, in order to obtain this effect, addition of 0.001% or more is necessary. On the other hand, excessive addition causes a decrease in toughness, so the upper limit of the addition amount is made 0.0015%.

以上が本発明の合金の必須成分であるが、これらの他に本発明の合金にはWが含まれる場合もある。   The above are the essential components of the alloy of the present invention. In addition to these, the alloy of the present invention may contain W.

・W(タングステン):0.18%〜0.22%
Wは原子半径が大きいため、固溶強化元素として作用する。この作用を得るためには、0.18%以上の添加が必要である。また、過度の添加は靭性の低下を招くので、添加量の上限を0.22%とする。
W (tungsten): 0.18% to 0.22%
Since W has a large atomic radius, W acts as a solid solution strengthening element. In order to obtain this effect, addition of 0.18% or more is necessary. Moreover, since excessive addition causes the fall of toughness, the upper limit of addition amount shall be 0.22%.

本発明のマルテンサイト系ステンレス鋼は、表面硬さがHV1400以上、内部硬さがHV650以上を有するマルテンサイト系ステンレス鋼を提供することができる。また、耐食性および冷間加工性に優れているととともに、残留オーステナイト量が少なく経年による寸法変化が少なく、焼き入れおよびその後のサブゼロ処理で割れが発生することがないことから、熱処理後の表面硬さ、耐摩耗性および耐食性の点で高いレベルが要求される転がり軸受の材料としてきわめて有望である。   The martensitic stainless steel of the present invention can provide martensitic stainless steel having a surface hardness of HV1400 or more and an internal hardness of HV650 or more. In addition to being excellent in corrosion resistance and cold workability, the amount of retained austenite is small, dimensional change due to aging is small, and cracking does not occur in quenching and subsequent subzero treatment. In addition, it is extremely promising as a material for rolling bearings that require a high level of wear resistance and corrosion resistance.

実施例のサブゼロ処理後の焼き戻し曲線であって、表面硬さと焼き戻し温度の関係を示す線図である。It is a tempering curve after the subzero process of an Example, Comprising: It is a diagram which shows the relationship between surface hardness and tempering temperature. 実施例の窒化処理後の硬さ分布を示す線図である。It is a diagram which shows the hardness distribution after the nitriding process of an Example. 実施例で行った転動疲労試験に用いた転動疲労試験機を模式的に示す(a)正面図、(b)側面図である。It is the (a) front view and (b) side view which show typically the rolling fatigue testing machine used for the rolling fatigue test done in the Example.

以下、本発明を実施例によって説明する。
10kgの高周波誘導炉を用いて、表1に示す化学成分(重量%)の各合金を溶解し、均質加熱後、固化させたインゴットを切断し、熱間鍛造にてφ20の丸棒の試料を作製した。実施例1〜3は、B,Nを添加した材料であり、比較例1は、実施例1〜3の成分からBを除いた材料である。また、比較例2,3は、それぞれJIS規格の鋼種であるSUS440C、SUS420J2である。なお、これら試料は、いずれも表1に示す化学成分以外に残部としてFeおよび不可避的に混入する不純物を含んでいる。
Hereinafter, the present invention will be described by way of examples.
Using a 10 kg high-frequency induction furnace, each alloy of the chemical components (% by weight) shown in Table 1 is melted, and after homogeneous heating, the solidified ingot is cut, and a sample of a φ20 round bar is obtained by hot forging. Produced. Examples 1 to 3 are materials obtained by adding B and N, and Comparative Example 1 is a material obtained by removing B from the components of Examples 1 to 3. Further, Comparative Examples 2 and 3 are SUS440C and SUS420J2 which are JIS standard steel types, respectively. In addition to these chemical components shown in Table 1, these samples all contain Fe and impurities that are inevitably mixed.

これら試料につき、1075℃で1時間保持後に水冷し、続いて、液体窒素中に投入するサブゼロ処理を行った。   These samples were kept at 1075 ° C. for 1 hour and then water-cooled, followed by sub-zero treatment that was put into liquid nitrogen.

Figure 2010265487
Figure 2010265487

(1)焼き戻し温度と表面硬さ
実施例1〜3および比較例1〜3の焼き入れ、サブゼロ処理後の焼き戻し曲線を図1に示す。図1で横軸は焼き戻し温度(℃)、縦軸は表面硬さ(HV)を表す。ここでは、いずれの実施例および比較例に対してもNV窒化処理を施していない。表面硬さに対する焼き戻し温度の影響を調べるために、焼き戻し温度を150℃から800℃まで変化させ、それぞれの焼き戻し温度ごとの試料を得た。表面硬さはJIS−Z2244に規定されている「ビッカース硬さ試験−試験方法」によりビッカース硬さ計を用いて測定した。
(1) Tempering temperature and surface hardness FIG. 1 shows the tempering curves after quenching and sub-zero treatment of Examples 1 to 3 and Comparative Examples 1 to 3. In FIG. 1, the horizontal axis represents the tempering temperature (° C.), and the vertical axis represents the surface hardness (HV). Here, no NV nitriding treatment is applied to any of the examples and comparative examples. In order to investigate the influence of the tempering temperature on the surface hardness, the tempering temperature was changed from 150 ° C. to 800 ° C., and a sample for each tempering temperature was obtained. The surface hardness was measured using a Vickers hardness tester according to “Vickers hardness test-test method” defined in JIS-Z2244.

図1によると、Nを0.2%程度添加した実施例1〜3および比較例1は、焼き戻し温度300℃付近までの場合では表面硬さは下がるが、それ以上では、2次硬化によって表面硬さが増加し、500℃付近で最大値をとる。これは、CrNの析出によるものと推測される。また、実施例1〜3は、Bの添加量が多いほど表面硬さが高くなることを示している。これは、BNの析出によるものと推測される。   According to FIG. 1, in Examples 1 to 3 and Comparative Example 1 in which about 0.2% of N is added, the surface hardness decreases when the tempering temperature is up to about 300 ° C., but beyond that, by secondary curing. The surface hardness increases and takes a maximum value around 500 ° C. This is presumably due to the precipitation of CrN. Moreover, Examples 1-3 have shown that surface hardness becomes so high that the addition amount of B is large. This is presumably due to the precipitation of BN.

特に比較例1では、Nを0.2%添加したにもかかわらず初期の表面硬さが低い。これはBを添加していないため、十分な焼き入れ性が得られなかったと考えられる。すなわち、Bを含有していないと十分な冷却速度が得られず、完全なマルテンサイト変態をしていない箇所が出てくるため、表面硬さが低いのである。比較例2はNを含有せずとも初期硬さが高いが、これはCの含有量が高いためである。また、Nを含まない比較例2,3は、二次硬化を示さず、500℃付近で表面硬さがHV300以下になってしまう。   Particularly in Comparative Example 1, the initial surface hardness is low despite the addition of 0.2% of N. It is considered that sufficient hardenability was not obtained because B was not added. That is, when B is not contained, a sufficient cooling rate cannot be obtained, and a portion that has not undergone complete martensitic transformation appears, so that the surface hardness is low. Although the comparative example 2 does not contain N, initial hardness is high, but this is because the content of C is high. Moreover, the comparative examples 2 and 3 which do not contain N do not show secondary hardening, and surface hardness will be HV300 or less in the vicinity of 500 degreeC.

(2)窒化処理後の硬さ
次に、実施例1〜3および比較例1〜3につき、上記同様に焼き入れ・サブセロ処理・焼き戻し後、表層の酸素をフッ素置換した後、Nを拡散させるNV窒化処理(前述のエア・ウォーター社の商品名)を500℃で行った。この場合の試料表面から内部におよぶ硬さを測定した結果を、図2に示す。
(2) Hardness after nitriding treatment Next, for Examples 1 to 3 and Comparative Examples 1 to 3, after quenching, sub-celling treatment, and tempering, oxygen in the surface layer was substituted with fluorine, and then N was diffused The NV nitriding treatment (trade name of Air Water Co., Ltd.) was performed at 500 ° C. The result of measuring the hardness from the sample surface to the inside in this case is shown in FIG.

図2によると、実施例および比較例のいずれも、表面硬さは表面から内部へ向かうにしたがって低下し、約80μm以上の深さでは硬さがほぼ一定値になる。本発明では、このほぼ一定値の硬さを内部硬さとみなす。実施例1〜3および比較例1は、Nが添加されているため、CrNの析出により、内部硬さはHV650以上となっている。また、実施例1〜3では、表面硬さはHV1400以上の高い値を示している。さらに、表面から深さ40μmまでの表面硬さもHV1200以上と高い値を示している。   According to FIG. 2, the surface hardness of both the example and the comparative example decreases from the surface toward the inside, and the hardness becomes a substantially constant value at a depth of about 80 μm or more. In the present invention, this almost constant hardness is regarded as internal hardness. In Examples 1 to 3 and Comparative Example 1, since N is added, the internal hardness is HV650 or more due to precipitation of CrN. Moreover, in Examples 1-3, the surface hardness has shown the high value of HV1400 or more. Furthermore, the surface hardness from the surface to a depth of 40 μm is a high value of HV1200 or higher.

表面硬さをHV1400以上で、深さ40μmまでの表面硬さもHV1200以上にするためには、Nの固溶限0.25%を超えるNを添加して、結晶格子をより大きく歪ませることにより可能となるが、通常の大気溶解では、0.25%以上のNを添加するとブローが発生してしまう。そこで、加圧ESR炉などの特別な設備を用いれば多量のNを添加することができるが、それでは材料のコストが大幅に増加してしまう。ところが本発明では、微量のBを添加することにより、BNが析出し、Nを0.25%以上添加せずとも表面硬さがHV1400以上で、深さ40μmまでの表面硬さもHV1200以上となり、より耐摩耗性に優れた材料を得ることができるのである。   In order to make the surface hardness HV1400 or more and the surface hardness up to a depth of 40 μm also HV1200 or more, N exceeding the solid solubility limit of N is added to distort the crystal lattice more greatly. Although it becomes possible, in normal atmospheric dissolution, blow occurs when N of 0.25% or more is added. Therefore, if special equipment such as a pressurized ESR furnace is used, a large amount of N can be added. However, this greatly increases the cost of the material. However, in the present invention, by adding a small amount of B, BN precipitates, the surface hardness is HV1400 or more without adding N 0.25% or more, and the surface hardness up to a depth of 40 μm is HV1200 or more, A material with higher wear resistance can be obtained.

(3)転動疲労試験
実施例1〜3および比較例1〜3の材料から、φ12mm×L22mmの円筒試験片をそれぞれ8本ずつ作製した。これら試験片を、1050℃で1時間保持後に水冷し、続いて500℃でNV窒化処理し、この後、転動疲労試験に供した。転動疲労試験は、図3に示す転動疲労試験機を用いて、接触面圧6GPa、回転数23130rpmの条件で行った。相手玉は、直径3/4インチ(19.05mm)の鋼球を用いた。また潤滑油としてタービンオイル#68を用いた。
(3) Rolling fatigue test Eight cylindrical test pieces of φ12 mm × L22 mm were produced from the materials of Examples 1 to 3 and Comparative Examples 1 to 3, respectively. These test pieces were held at 1050 ° C. for 1 hour and then cooled with water, followed by NV nitriding at 500 ° C., and then subjected to a rolling fatigue test. The rolling fatigue test was performed using a rolling fatigue tester shown in FIG. 3 under the conditions of a contact surface pressure of 6 GPa and a rotational speed of 23130 rpm. As the opponent ball, a steel ball having a diameter of 3/4 inch (19.05 mm) was used. Turbine oil # 68 was used as the lubricating oil.

転動疲労試験結果は、ワイブル分布確率紙上にプロットし、10%破損確率を示すL10寿命と、50%破損確率を示すL50寿命を求め、転動疲労寿命を評価した。その結果 The rolling fatigue test results were plotted on Weibull distribution probability paper, L 10 life showing 10 % failure probability and L 50 life showing 50% failure probability were determined, and rolling fatigue life was evaluated. as a result

Figure 2010265487
Figure 2010265487

表2によると、実施例1〜3は、比較例1〜3に比べ高い転動疲労寿命を示している。比較例1は比較例中では最も高い寿命値であるが、いずれの実施例よりも低い寿命値を示している。これは、実施例と比較してBが添加されていないため、焼き入れが不十分で、部分的にマルテンサイト変態していないためと考えられる。また、比較例2、3は実施例1〜3および比較例1に比べて低い寿命値を示しているが、これはNもBも添加されていないため、表面および内部の硬さが低いためと考えられる。   According to Table 2, Examples 1 to 3 show a higher rolling fatigue life than Comparative Examples 1 to 3. Comparative Example 1 has the highest lifetime value among the comparative examples, but shows a lower lifetime value than any of the Examples. This is probably because B was not added as compared with the examples, and thus quenching was insufficient and the martensite was not partially transformed. Further, Comparative Examples 2 and 3 show lower lifetime values than Examples 1 to 3 and Comparative Example 1, but since neither N nor B is added, the surface and internal hardness are low. it is conceivable that.

Claims (5)

成分が、重量比で、Cを0.35〜0.45%の範囲、Siを0.2%以下の範囲、Mnを0.2%以下の範囲、Pを0.01%以下の範囲、Sを0.01%以下の範囲、Crを15.5〜16.5%の範囲、Moを1.5〜2.5%の範囲、Bを0.001〜0.0015%の範囲、Nを0.15〜0.25%の範囲でそれぞれ含有し、残部がFeおよび不可避不純物からなることを特徴とするマルテンサイト系ステンレス鋼。   The components are, by weight ratio, C in the range of 0.35 to 0.45%, Si in the range of 0.2% or less, Mn in the range of 0.2% or less, P in the range of 0.01% or less, S in a range of 0.01% or less, Cr in a range of 15.5 to 16.5%, Mo in a range of 1.5 to 2.5%, B in a range of 0.001 to 0.0015%, N In a range of 0.15 to 0.25%, the balance being made of Fe and inevitable impurities, martensitic stainless steel. 成分として、重量比でさらに0.18〜0.22%の範囲のWを含有することを特徴とする請求項1に記載のマルテンサイト系ステンレス鋼。   The martensitic stainless steel according to claim 1, further comprising W in a range of 0.18 to 0.22% by weight as a component. フッ素ガスで活性化された後、400〜600℃で窒化処理されてなることを特徴とする請求項1または2に記載のマルテンサイト系ステンレス鋼。   3. The martensitic stainless steel according to claim 1, wherein the martensitic stainless steel is subjected to nitriding treatment at 400 to 600 ° C. after being activated with fluorine gas. 前記窒化処理後の、表面硬さがHV1400以上、内部の硬さがHV650以上であることを特徴とする請求項3に記載のマルテンサイト系ステンレス鋼。   The martensitic stainless steel according to claim 3, wherein the surface hardness after nitriding is HV1400 or more and the internal hardness is HV650 or more. 内輪、外輪、転動体のうちの少なくとも1つを構成する材料が請求項1〜4のいずれかに記載のマルテンサイト系ステンレス鋼からなることを特徴とする転がり軸受。   A rolling bearing characterized in that a material constituting at least one of an inner ring, an outer ring and a rolling element is made of the martensitic stainless steel according to any one of claims 1 to 4.
JP2009115158A 2009-05-12 2009-05-12 Martensitic stainless steel and rolling bearing Pending JP2010265487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115158A JP2010265487A (en) 2009-05-12 2009-05-12 Martensitic stainless steel and rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115158A JP2010265487A (en) 2009-05-12 2009-05-12 Martensitic stainless steel and rolling bearing

Publications (1)

Publication Number Publication Date
JP2010265487A true JP2010265487A (en) 2010-11-25

Family

ID=43362713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115158A Pending JP2010265487A (en) 2009-05-12 2009-05-12 Martensitic stainless steel and rolling bearing

Country Status (1)

Country Link
JP (1) JP2010265487A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077525A (en) * 2008-09-01 2010-04-08 Minebea Co Ltd Martensitic stainless steel and roller bearing
JP2013160376A (en) * 2012-02-08 2013-08-19 Nsk Ltd Rolling support device
CN103602920A (en) * 2013-11-25 2014-02-26 山东时雨轴承有限公司 Bearing steel and manufacturing process of wear-resistant bearing
JP2014055357A (en) * 2008-09-01 2014-03-27 Minebea Co Ltd Ball bearing, and water pump and reel for fishing having the same
WO2022064643A1 (en) * 2020-09-25 2022-03-31 ミネベアミツミ株式会社 Highly corrosion-resistant stainless steel member and method for manufacturing same, heat treatment method for stainless steel member, and rolling bearing and method for manufacturing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044270A1 (en) * 1997-04-03 1998-10-08 Koyo Seiko Co., Ltd. Rolling bearing
JP2001049399A (en) * 1999-08-06 2001-02-20 Hitachi Metals Ltd High hardness martensitic stainless steel excellent in pitting corrosion resistance
JP2001074053A (en) * 1999-04-01 2001-03-23 Nsk Ltd Rolling bearing
JP2001187916A (en) * 1999-12-28 2001-07-10 Nsk Ltd Roller bearing
JP3428776B2 (en) * 1994-11-18 2003-07-22 エア・ウォーター株式会社 Steel nitriding method
JP2004092686A (en) * 2002-08-29 2004-03-25 Nsk Ltd Rolling bearing
JP2007277639A (en) * 2006-04-07 2007-10-25 Daido Steel Co Ltd Martensitic steel
JP2010077525A (en) * 2008-09-01 2010-04-08 Minebea Co Ltd Martensitic stainless steel and roller bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428776B2 (en) * 1994-11-18 2003-07-22 エア・ウォーター株式会社 Steel nitriding method
WO1998044270A1 (en) * 1997-04-03 1998-10-08 Koyo Seiko Co., Ltd. Rolling bearing
JP2001074053A (en) * 1999-04-01 2001-03-23 Nsk Ltd Rolling bearing
JP2001049399A (en) * 1999-08-06 2001-02-20 Hitachi Metals Ltd High hardness martensitic stainless steel excellent in pitting corrosion resistance
JP2001187916A (en) * 1999-12-28 2001-07-10 Nsk Ltd Roller bearing
JP2004092686A (en) * 2002-08-29 2004-03-25 Nsk Ltd Rolling bearing
JP2007277639A (en) * 2006-04-07 2007-10-25 Daido Steel Co Ltd Martensitic steel
JP2010077525A (en) * 2008-09-01 2010-04-08 Minebea Co Ltd Martensitic stainless steel and roller bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077525A (en) * 2008-09-01 2010-04-08 Minebea Co Ltd Martensitic stainless steel and roller bearing
JP2014055357A (en) * 2008-09-01 2014-03-27 Minebea Co Ltd Ball bearing, and water pump and reel for fishing having the same
JP2013160376A (en) * 2012-02-08 2013-08-19 Nsk Ltd Rolling support device
CN103602920A (en) * 2013-11-25 2014-02-26 山东时雨轴承有限公司 Bearing steel and manufacturing process of wear-resistant bearing
WO2022064643A1 (en) * 2020-09-25 2022-03-31 ミネベアミツミ株式会社 Highly corrosion-resistant stainless steel member and method for manufacturing same, heat treatment method for stainless steel member, and rolling bearing and method for manufacturing same

Similar Documents

Publication Publication Date Title
CN106574338B (en) Carbo-nitriding parts of bearings
JP3452225B2 (en) Bearing steel, bearing member excellent in heat resistance and toughness, and manufacturing method thereof
JP2008133499A (en) High-hardness martensitic stainless steel
JP4941252B2 (en) Case-hardened steel for power transmission parts
JP2009215597A (en) Rolling-motion part and manufacturing method therefor
JP2010265487A (en) Martensitic stainless steel and rolling bearing
EP3348662B1 (en) Near-eutectic bearing steel
JP5463662B2 (en) Bearing steel excellent in rolling fatigue characteristics and manufacturing method thereof
JP2015180773A (en) Age hardening type bainitic non-heat-treated steel
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
JP3241921B2 (en) Wear-resistant and corrosion-resistant bearing steel with excellent rolling fatigue characteristics
JP7464822B2 (en) Steel for bearing raceways and bearing raceways
JP6639839B2 (en) Bearing steel with excellent whitening resistance and exfoliation life
JP6922415B2 (en) Carburized parts
TWI630278B (en) Surface hardened steel
JP5119717B2 (en) Method for manufacturing rolling bearing component and rolling bearing
JP2014114508A (en) High corrosion resistance rolling bearing
JP2004300550A (en) High-strength case hardening steel
WO2022064643A1 (en) Highly corrosion-resistant stainless steel member and method for manufacturing same, heat treatment method for stainless steel member, and rolling bearing and method for manufacturing same
JP7464821B2 (en) Steel for bearing raceways and bearing raceways
JP2008088482A (en) Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing
JP2007113034A (en) Bearing steel
JP2000204444A (en) Rolling bearing parts for high temperature use
JP2017119900A (en) Induction hardening gear
JP2018199837A (en) Carburized part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128