JP2013160376A - Rolling support device - Google Patents

Rolling support device Download PDF

Info

Publication number
JP2013160376A
JP2013160376A JP2012025325A JP2012025325A JP2013160376A JP 2013160376 A JP2013160376 A JP 2013160376A JP 2012025325 A JP2012025325 A JP 2012025325A JP 2012025325 A JP2012025325 A JP 2012025325A JP 2013160376 A JP2013160376 A JP 2013160376A
Authority
JP
Japan
Prior art keywords
rolling
mass
rolling element
content
support device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012025325A
Other languages
Japanese (ja)
Other versions
JP5982846B2 (en
Inventor
Toru Ueda
徹 植田
Yasuhiro Iwanaga
泰弘 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012025325A priority Critical patent/JP5982846B2/en
Publication of JP2013160376A publication Critical patent/JP2013160376A/en
Application granted granted Critical
Publication of JP5982846B2 publication Critical patent/JP5982846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Abstract

PROBLEM TO BE SOLVED: To provide a rolling support device having high crushing strength in which cracking and early exfoliation hardly occurs and which has a long service life even when being used under contaminated lubrication.SOLUTION: At least one rolling member among an inner ring 1, an outer ring 2, and a ball 3 constituting a deep groove ball bearing is manufactured by applying a heat treatment including carbonitriding or nitriding after working a blank made of steel into a prescribed shape. In the ball 3, a Vickers hardness HV of a surface 3a of the ball 3 measured at a measurement load of 2.94 N satisfies HV≥800, and a Rockwell hardness HRC of the surface 3a of the ball 3 measured by a C scale satisfies HRC≤66.

Description

本発明は、転がり軸受、ボールねじ、リニアガイド等の転がり支持装置に関する。   The present invention relates to a rolling support device such as a rolling bearing, a ball screw, and a linear guide.

自動車、農業機械、建設機械、鉄鋼機械等のトランスミッションやエンジンで用いられる転がり軸受は、潤滑油中に金属の切粉、削り屑、バリ、摩耗粉等の異物が混入した条件下(以下、「異物混入潤滑下」と記す。)で使用されることが多いため、軌道輪や転動体に異物による早期剥離が生じて、大幅に寿命が低下する場合がある。
このような異物混入潤滑下における早期剥離は、軌道輪と転動体との間に異物が噛み込むことで転がり面に形成された圧痕のエッジ部(以下、「圧痕縁」と記す。)に、応力集中が生じることが原因であると言われている。
Rolling bearings used in transmissions and engines of automobiles, agricultural machinery, construction machinery, steel machinery, etc. are under conditions where foreign matters such as metal chips, shavings, burrs, and abrasion powder are mixed in the lubricating oil (hereinafter referred to as “ In many cases, it is used as "under lubrication mixed with foreign matter."), And there is a case where the raceway or rolling element is prematurely peeled off by foreign matter, resulting in a significant decrease in service life.
Such early peeling under foreign matter-mixed lubrication is performed on the edge portion of the indentation (hereinafter referred to as “indentation edge”) formed on the rolling surface by foreign matter biting between the raceway and the rolling element. It is said that the cause is stress concentration.

そこで、本出願人は、異物混入潤滑下で転がり面に圧痕が形成された場合であっても、圧痕縁への応力集中を緩和するために、特許文献1において、内外輪のうち少なくとも一つの軌道面をなす表層部と、転動体の転動面をなす表層部の残留オーステナイト量を20体積%以上45体積%以下とし、さらに、転動体の転動面をなす表層部の炭窒化物の含有率を体積比で5%以上15%以下とすることを提案している。   Therefore, in order to alleviate the stress concentration on the indentation edge even in the case where the indentation is formed on the rolling surface under the contamination with foreign matters, the applicant of the present application disclosed in Patent Document 1 at least one of the inner and outer rings. The amount of retained austenite of the surface layer portion forming the raceway surface and the surface layer portion forming the rolling surface of the rolling element is set to 20% by volume or more and 45% by volume or less, and the carbonitride of the surface layer portion forming the rolling surface of the rolling element It has been proposed that the content is 5% to 15% by volume.

特開昭64−55423号公報Japanese Patent Laid-Open No. 64-55423

ところで、近年、異物混入潤滑下で生じる早期剥離は、上述した圧痕縁への応力集中だけでなく、軌道輪と転動体との転がり面に作用する接線力が原因となっていることが分かってきている。接線力に影響を及ぼす要因としては、転がり面のすべり速度や面圧の他に、転がり面の表面形状や表面粗さ等が挙げられる。すなわち、異物混入潤滑下において早期剥離を生じ難くするためには、転がり面に形成された圧痕縁への応力集中を抑制するとともに、転がり面に作用する接線力を小さくする必要がある。   By the way, in recent years, it has been found that the early peeling that occurs under the contamination with foreign matter is caused not only by the stress concentration on the indentation edge described above but also by the tangential force acting on the rolling surface of the race and the rolling element. ing. Factors affecting the tangential force include the surface shape and surface roughness of the rolling surface in addition to the sliding speed and surface pressure of the rolling surface. That is, in order to make it difficult for early peeling to occur under lubrication mixed with foreign matter, it is necessary to suppress stress concentration on the indentation edge formed on the rolling surface and to reduce the tangential force acting on the rolling surface.

しかしながら、上述した特許文献1では、圧痕縁への応力集中を抑制するために、転がり面をなす表層部の残留オーステナイト量を多くしているため、表層部の硬さが小さくなり、耐摩耗性や耐圧痕性が低下して、転がり面に異物による圧痕が形成され易くなる場合がある。その結果、形成される圧痕の大きさや数が増大する程、転がり面の形状崩れが起こり易く、表面粗さが大きくなるため、転がり面に作用する接線力が大きくなる。   However, in Patent Document 1 described above, in order to suppress stress concentration on the indentation edge, the amount of retained austenite in the surface layer portion that forms the rolling surface is increased, so that the hardness of the surface layer portion is reduced and wear resistance is increased. In some cases, the indentation resistance is lowered, and the indentation due to the foreign matter is easily formed on the rolling surface. As a result, as the size and number of indentations to be formed increase, the shape of the rolling surface tends to collapse and the surface roughness increases, so the tangential force acting on the rolling surface increases.

ここで、上記接線力を低減させるためには、加工により初期粗さを良好にすることが効果的だが、それだけではなく、軸受稼働中に生じる表面粗さの悪化を抑制することも重要である。
また、圧痕起点型はく離に代表される表面起点型はく離は、接触する2物体のうち、周速の速い駆動側より、周速の遅い従動側で生じやすいことが知られている。一方で、はく離を生じる部位の接触相手材の表面粗さが良いほど、表面起点型はく離寿命を延ばすことができる。例えば玉軸受の場合、転動体と軌道輪間で生じる差動すべりの影響により、転動体が駆動側となり、軌道輪が従動側となる。
Here, in order to reduce the tangential force, it is effective to improve the initial roughness by processing, but it is also important to suppress the deterioration of the surface roughness that occurs during the operation of the bearing. .
Further, it is known that surface origin type separation represented by indentation origin type separation is more likely to occur on the driven side having a lower peripheral speed than the driving side having a higher peripheral speed among the two contacting objects. On the other hand, the better the surface roughness of the contact partner material at the site where peeling occurs, the longer the surface-initiated peeling life can be extended. For example, in the case of a ball bearing, due to the effect of differential slip that occurs between the rolling elements and the races, the rolling elements are on the drive side and the races are on the driven side.

したがって、玉軸受などの転がり支持装置では、軌道輪にはく離が生じやすく、転動体の粗さが良好なほど寿命は延長する。
圧痕の付きやすさに影響を及ぼす材料因子としては、硬さがある。特に、異物圧痕に関しては、ごく表層の硬さが大きく影響する。
一方、転がり軸受の転動体に割れが生じると、軸受がロックし、回転できなくなり、重大な事故を引き起こす可能性があるため、転がり軸受の転動体としては、はく離だけでなく、割れに対して十分な強度を有する必要がある。
Therefore, in a rolling support device such as a ball bearing, the raceway is easily peeled off, and the life becomes longer as the rolling element has a better roughness.
Hardness is a material factor that affects the ease of indentation. In particular, the hardness of the surface layer greatly affects the foreign matter indentation.
On the other hand, if the rolling element of a rolling bearing cracks, the bearing locks and cannot rotate, causing a serious accident. Therefore, the rolling element of a rolling bearing is not only separated but also against cracking. It is necessary to have sufficient strength.

しかしながら、前述したように、硬さを向上させ、異物圧痕を付き難くするほど、はく離寿命は延長するが、心部まで硬さを向上させると割れが生じやすくなる。
そこで、本発明は上記の問題点に着目してなされたものであり、その目的は、異物混入潤滑下で使用された場合であっても、割れや早期剥離が生じ難く、寿命が長く、圧砕強度が高い転がり支持装置を提供することにある。
However, as described above, the more the hardness is improved and the more the foreign object indentation is made, the longer the peeling life is. However, when the hardness is improved to the center, cracking is likely to occur.
Therefore, the present invention has been made paying attention to the above-mentioned problems, and its purpose is to prevent cracks and early peeling even when used under foreign matter lubrication, to have a long life, and to achieve crushing. An object of the present invention is to provide a rolling support device having high strength.

前記課題を解決するため、本発明者らが鋭意検討を重ねた結果、転動体のごく表層のみ硬さを向上させ、表層以外の部分は硬さを低くし、表面から亀裂が発生しても短い亀裂で伝播を停止して割れ難くすることが有効であることを知見した。
本発明は、本発明者らによる前記知見に基づくものであり、上記課題を解決するための本発明の請求項1に係る転がり支持装置は、互いに対向配置される軌道面を有する第1部材及び第2部材と、前記第1部材及び前記第2部材の間に転動自在に配置され、前記軌道面に対する転動面を有する転動体と、を備え、前記転動体が転動することにより、前記第1部材及び前記第2部材のうち一方が他方に対して相対移動する転がり支持装置において、
前記転動体並びに、前記第1部材及び前記第2部材の少なくともいずれか一つの転動部材は、鋼からなる素材を所定形状に加工した後に、浸炭窒化又は窒化を含む熱処理が施されて得られ、
前記転動体は、測定荷重2.94Nで測定した当該転動体の表面のビッカース硬さHVがHV≧800を満たし、かつ、Cスケールで測定した当該転動体の表面のロックウェル硬さHRCがHRC≦66を満たすことを特徴としている。
In order to solve the above problems, as a result of intensive studies by the present inventors, the hardness of only the surface layer of the rolling element is improved, and the portion other than the surface layer is reduced in hardness and cracks are generated from the surface. It was found that it is effective to stop propagation with a short crack and make it difficult to break.
This invention is based on the said knowledge by the present inventors, The rolling support apparatus which concerns on Claim 1 of this invention for solving the said subject is the 1st member which has the track surface arrange | positioned mutually, and A second member, and a rolling element that is arranged between the first member and the second member so as to be freely rollable and has a rolling surface with respect to the raceway surface, and the rolling element rolls, In the rolling support device in which one of the first member and the second member moves relative to the other,
The rolling element and at least one rolling member of the first member and the second member are obtained by processing a material made of steel into a predetermined shape and then performing heat treatment including carbonitriding or nitriding. ,
In the rolling element, the Vickers hardness HV of the surface of the rolling element measured at a measurement load of 2.94N satisfies HV ≧ 800, and the Rockwell hardness HRC of the surface of the rolling element measured on the C scale is HRC. It is characterized by satisfying ≦ 66.

ここで、前記鋼は、C含有率が0.8質量%以上1.2質量%以下で、Si含有率が0.3質量%以上2.0質量%以下で、Mn含有率が0.3質量%以上2.0質量%以下で、Cr含有率が0.5質量%以上1.6質量%以下で、残部がFe及び不可避不純物からなることが好ましい。
なお、本発明の転がり支持装置とは、例えば、転がり軸受、ボールねじ、リニアガイドを指す。ここで、転がり支持装置が転がり軸受の場合には、第1部材及び第2部材は内輪及び外輪を指す。同様に、転がり支持装置がボールねじの場合には、第1部材及び第2部材はねじ軸及びナットを指し、転がり支持装置がリニアガイドの場合には、第1部材及び第2部材は案内レール及びスライダを指す。また、転動体はボールを指す。
Here, the steel has a C content of 0.8 mass% to 1.2 mass%, an Si content of 0.3 mass% to 2.0 mass%, and an Mn content of 0.3 mass%. Preferably, the Cr content is 0.5% by mass or more and 1.6% by mass or less, and the balance is made of Fe and inevitable impurities.
In addition, the rolling support apparatus of this invention points out a rolling bearing, a ball screw, and a linear guide, for example. Here, when the rolling support device is a rolling bearing, the first member and the second member indicate an inner ring and an outer ring. Similarly, when the rolling support device is a ball screw, the first member and the second member indicate a screw shaft and a nut, and when the rolling support device is a linear guide, the first member and the second member are guide rails. And a slider. The rolling element refers to a ball.

ここで、転動体の表面から亀裂が発生しても短い亀裂で伝播を停止して割れ難くするために、転動体のごく表層のみ硬さを向上させるためには、ずぶ焼き入れで研削やバレルピーニングの条件をコントロールすることによっても可能であるが、浸炭窒化条件を最適化することにより、ごく表層部のみに高硬度な窒化物が析出されることが好ましい。
通常、材料のビッカース硬さが大きいほど、ロックウェル硬さも大きくなる。
Here, even if a crack occurs on the surface of the rolling element, in order to stop the propagation with a short crack and make it difficult to break, in order to improve the hardness of only the very surface layer of the rolling element, grinding or barreling is performed by continuous quenching. Although it is possible to control the peening conditions, it is preferable that a highly hard nitride is deposited only on the surface layer part by optimizing the carbonitriding conditions.
Usually, the greater the Vickers hardness of the material, the greater the Rockwell hardness.

しかし、軽荷重のピッカース硬さは、形成される圧痕が小さく、測定範囲が小さいのに対し、ロックウェルCスケールは、形成される圧痕が大きく、測定範囲も大きい。
したがって、表面から内部にかけて急激な硬さ勾配が存在する場合は、ビッカース硬さとロックウェル硬さに必ずしも相関は得られない。
本発明では、急激な硬さ勾配を設けることにより、表面の硬さがHV≧800、HRC≦66である転動体を実現した。なお、上記硬さの値は、測定値(球面硬さ)を、JIS−B1501に従い、平面硬さに換算した値である。
However, the picker hardness of light load has a small indentation and a small measurement range, whereas the Rockwell C scale has a large indentation and a large measurement range.
Therefore, when there is a steep hardness gradient from the surface to the inside, a correlation cannot always be obtained between the Vickers hardness and the Rockwell hardness.
In the present invention, a rolling element having a surface hardness of HV ≧ 800 and HRC ≦ 66 is realized by providing a steep hardness gradient. In addition, the value of the said hardness is a value which converted the measured value (spherical hardness) into plane hardness according to JIS-B1501.

このように、転動体表面硬さをHV≧800、HRC≦66(好ましくは、HV≧830、HRC≦65)とすることで、異物圧痕形成による転動体表面性状の劣化抑制と割れ強度向上を両立することが可能となり、その転動部材と転がり接触する相手部材との間に作用する接線力を小さくできる。
よって、本発明の転がり支持装置は、異物混入潤滑下で使用された場合であっても、割れや早期剥離が生じ難くなり、寿命が長くなる。
Thus, by setting the rolling element surface hardness to HV ≧ 800 and HRC ≦ 66 (preferably HV ≧ 830, HRC ≦ 65), it is possible to suppress deterioration of rolling element surface properties and improve crack strength due to formation of foreign matter indentations. It becomes possible to achieve both, and the tangential force acting between the rolling member and the mating member in rolling contact can be reduced.
Therefore, even when the rolling support device of the present invention is used under foreign matter-mixed lubrication, cracks and early peeling are unlikely to occur, and the life is extended.

また、本発明の転がり支持装置は、前記転動体の転動面の窒素含有率が0.2〜1.5質量%であり、かつ前記転動体の転動面のSi及びMnを含有した窒化物(以下、Si−Mn系窒化物と呼ぶ。)の面積率が1%以上10%未満であることが好ましい。
本発明の転がり支持装置は、軌道輪又は転動体の表面層に所定の窒素を富化させるために、浸炭窒化処理が行われる。
In the rolling support device of the present invention, the nitrogen content of the rolling surface of the rolling element is 0.2 to 1.5% by mass, and the rolling surface of the rolling element is nitrided containing Si and Mn. The area ratio of the product (hereinafter referred to as Si-Mn nitride) is preferably 1% or more and less than 10%.
In the rolling support device of the present invention, carbonitriding is performed in order to enrich the surface layer of the raceway or rolling element with predetermined nitrogen.

窒素は炭素と同じようにマルテンサイトの固溶強化及び残留オーステナイトの安定確保に作用するだけでなく、窒化物又は炭窒化物を形成して耐圧痕性、耐摩耗性を向上させる作用がある。
表面窒素含有率が高いほど耐摩耗性、耐圧痕性に優れており、表面窒素含有率が0.2%を超えると顕著に効果が現れるが、より好ましくは0.35%以上とする。
Nitrogen, like carbon, not only acts to strengthen the solid solution strengthening of martensite and ensure the stability of retained austenite, but also has the effect of forming a nitride or carbonitride to improve the pressure resistance and wear resistance.
The higher the surface nitrogen content is, the better the wear resistance and pressure scar resistance are. When the surface nitrogen content exceeds 0.2%, the effect is remarkable, but more preferably 0.35% or more.

一方で、窒素含有率が高すぎると、靭性や静的強度が低下してしまう欠点がある。転がり軸受の転動体にとって靭性や静的強度は必要な性能であるため、窒素含有率が高すぎるのは好ましくない。
したがって、本発明の転がり支持装置を構成する転動体の表面の窒素含有率の上限は1.5%としたが、より好ましくは1.0%とする。
On the other hand, if the nitrogen content is too high, there is a drawback that toughness and static strength are lowered. Since the toughness and static strength are necessary performances for rolling elements of a rolling bearing, it is not preferable that the nitrogen content is too high.
Therefore, the upper limit of the nitrogen content on the surface of the rolling element constituting the rolling support device of the present invention is 1.5%, more preferably 1.0%.

上述したように、表面の窒素含有率が高いほど、材料の耐圧痕性、耐摩耗性が向上することが明らかになった。
しかし、本発明者らはさらに、窒素含有率が同じ場合でも、材料内部の窒素の存在状態によって、耐圧痕性、耐摩耗性が変わるという知見を得た。
窒素は材料内部に固溶して存在する場合と窒化物として析出して存在する場合がある。
As described above, it has been clarified that the higher the nitrogen content on the surface, the better the pressure-proof scar resistance and wear resistance of the material.
However, the present inventors have further found that even when the nitrogen content is the same, the pressure scar resistance and wear resistance change depending on the presence of nitrogen inside the material.
Nitrogen may be present as a solid solution in the material or may be precipitated as a nitride.

詳細な数値については後述するが、Si−Mnを多く含む材料を浸炭窒化処理した場合には、同じ窒素含有率でも材料中に固溶して存在する窒素量より、表面にSi−Mn系の窒化物を析出して存在する窒素量が多くなる。
Si−Mn系窒化物の面積率が高いほど耐摩耗性、耐圧痕性に優れており、Si−Mn系窒化物の面積率が1%を超えると顕著に効果が現れるが、より好ましくは2%以上とする。
Although detailed numerical values will be described later, when carbonitriding a material containing a large amount of Si-Mn, even if the nitrogen content is the same, the amount of nitrogen present as a solid solution in the material is less than the Si-Mn-based surface. The amount of nitrogen present by precipitation of nitride increases.
The higher the area ratio of the Si—Mn nitride, the more excellent the wear resistance and the scratch resistance, and when the area ratio of the Si—Mn nitride exceeds 1%, a remarkable effect appears. % Or more.

また、窒素含有率と同様にSi−Mn系窒化物の析出量が多くなりすぎると、靭性や静的強度が低下してしまう欠点がある。
転がり軸受の転動体にとって靭性や静的強度は必要な性能であるため、Si−Mn系窒化物の析出量が多くなりすぎるのは好ましくない。
したがって、本発明のSi−Mn系窒化物の面積率の上限は10%としたが、より好ましくは8%とする。
Moreover, when the precipitation amount of Si-Mn nitride is too large as in the case of the nitrogen content, there is a drawback that toughness and static strength are lowered.
Since toughness and static strength are necessary performances for rolling elements of a rolling bearing, it is not preferable that the amount of Si-Mn nitride precipitates is excessive.
Therefore, the upper limit of the area ratio of the Si—Mn nitride of the present invention is set to 10%, more preferably 8%.

なお、上記を達成するためには、通常の浸炭窒化処理では不十分であり、アンモニア流量を増やした特殊浸炭窒化処理が必要となる。
また、本発明の転がり支持装置は、前記転動体の転動面の表面から200μmの深さの位置の窒素含有率が0.3質量%以下であり、かつ前記転動体の転動面の表面から200μmの深さの位置のSi−Mn系窒化物の面積率が3%以下であることが好ましい。
In order to achieve the above, a normal carbonitriding process is insufficient, and a special carbonitriding process with an increased ammonia flow rate is required.
In the rolling support device of the present invention, the nitrogen content at a position 200 μm deep from the surface of the rolling surface of the rolling element is 0.3 mass% or less, and the surface of the rolling surface of the rolling element is It is preferable that the area ratio of the Si—Mn nitride at a depth of 200 μm to 200 μm is 3% or less.

前述したように、転動体の表面においては、窒素含有率が高く、窒化物の面積率が大きいほど、当該転動体の表面に圧痕や傷は付き難くなる。
しかし、窒素含有率が高く、窒化物の面積率が大きいほど、割れは生じやすくなる。
そこで、極表層のみ窒素含有率を高くし、表面から心部への窒素含有率勾配を急にして、心部の窒素含有率は低くすることで、耐圧痕性・耐傷性の向上と割れ強度向上を両立されることが可能である。
As described above, on the surface of the rolling element, the higher the nitrogen content and the larger the area ratio of the nitride, the less likely the surface of the rolling element is indented or scratched.
However, the higher the nitrogen content and the larger the area ratio of nitride, the easier it is to crack.
Therefore, by increasing the nitrogen content only in the extreme surface layer, steepening the nitrogen content gradient from the surface to the core, and lowering the nitrogen content in the core, the pressure resistance and scratch resistance are improved and the crack strength is increased. It is possible to achieve both improvements.

窒素含有率の具体的な数値は、転動体の転動面から200μm位置における窒素含有率が0.3質量%以下であることが好ましく、0.2質量%以下であることがより好ましい。
また、Si−Mn系窒化物の面積率は、3%以下が好ましく、2%以下がより好ましい。このようにすることで、耐割れ性を向上させることが可能である。
As for the specific value of the nitrogen content, the nitrogen content at a position of 200 μm from the rolling surface of the rolling element is preferably 0.3% by mass or less, and more preferably 0.2% by mass or less.
Further, the area ratio of the Si—Mn nitride is preferably 3% or less, and more preferably 2% or less. By doing in this way, it is possible to improve crack resistance.

転動面表面からの窒素含有率、窒化物面積率の勾配を急にするためには、アンモニア流量を増やした高窒素雰囲気中で短時間の窒化処理を実施することが重要である。
<転動体について>
以下、本発明に係る転がり支持装置を構成する転動体について、詳細に説明する。
本発明で用いる転動部材のうち、転動体は、熱処理後において、その転動体の表面を、測定荷重2.94Nで測定したビッカース硬さHVがHV≧800であり、かつCスケールで測定したロックウェル硬さHRCがHRC≦66となるように、鋼からなる素材を所定形状に加工した後に、浸炭窒化又は窒化を含む熱処理が施されて得られる。このように転動体の表面の硬さを規定することにより、転動体の耐圧痕性・耐傷性向上による軸受寿命延長と転動体の耐割れ性向上を両立させることが可能である。
In order to make the gradient of the nitrogen content ratio and nitride area ratio from the rolling contact surface abrupt, it is important to perform nitriding for a short time in a high nitrogen atmosphere with an increased ammonia flow rate.
<About rolling elements>
Hereinafter, the rolling element which comprises the rolling support apparatus which concerns on this invention is demonstrated in detail.
Among the rolling members used in the present invention, after the heat treatment, the rolling elements were measured on the surface of the rolling elements with a Vickers hardness HV measured at a measurement load of 2.94 N of HV ≧ 800 and C scale. It is obtained by processing a material made of steel into a predetermined shape so that the Rockwell hardness HRC is HRC ≦ 66, and then performing a heat treatment including carbonitriding or nitriding. By defining the hardness of the surface of the rolling element in this way, it is possible to achieve both an increase in bearing life and an improvement in the cracking resistance of the rolling element by improving the pressure scar resistance and scratch resistance of the rolling element.

さらに、転動体の転動面の窒素含有率が0.2〜1.5質量%、Si−Mn系窒化物の面積率が1%以上10%未満とし、転動体転動面から200μm位置の窒素含有率が0.3質量%以下、Si−Mn系窒化物の面積率が3%以下とすることにより、さらに上記機能を向上させることが可能である。   Furthermore, the nitrogen content of the rolling surface of the rolling element is 0.2 to 1.5% by mass, the area ratio of the Si—Mn nitride is 1% or more and less than 10%, and is located 200 μm from the rolling element rolling surface. When the nitrogen content is 0.3% by mass or less and the area ratio of the Si—Mn nitride is 3% or less, the above functions can be further improved.

<素材をなす鋼について>
本発明に係る転がり支持装置を構成する転動体の素材をなす鋼の各成分について、以下に詳述する。
[C(炭素)について]
炭素は、鋼に必要な強度と寿命を得るために重要な元素である。炭素が少なすぎると、十分な強度が得られないだけでなく、後述する浸炭窒化の際に必要な硬化層深さを得るための熱処理時間が長くなり、熱処理コストの増大につながる。
そのため、本発明に係る転がり支持装置を構成する転動体の素材をなす鋼は、C含有率を0.8質量%以上1.2質量%以下とし、Cr含有率を0.9質量%以上1.2質量%以下とすることが好ましい。
<About the steel used as the material>
Each component of the steel constituting the rolling element constituting the rolling support device according to the present invention will be described in detail below.
[About C (carbon)]
Carbon is an important element for obtaining the strength and life required for steel. If the amount of carbon is too small, not only the sufficient strength cannot be obtained, but also the heat treatment time required to obtain the hardened layer depth required for carbonitriding described later is increased, leading to an increase in heat treatment cost.
Therefore, the steel constituting the rolling element constituting the rolling support device according to the present invention has a C content of 0.8% by mass to 1.2% by mass and a Cr content of 0.9% by mass to 1%. It is preferable to set it to 2 mass% or less.

ここで、素材をなす鋼のC含有率が少なすぎると、転動部材に必要な強度を付与できないだけでなく、窒化又は浸炭窒化を行う際に転がり面に必要な硬化層深さを得るための熱処理時間が長くなり、熱処理コストが増大する。よって、素材をなす鋼のC含有率は0.8質量%以上とすることが好ましく、0.9質量%以上とすることがより好ましい。
一方、素材をなす鋼のC含有率が多過ぎると、製鋼時に巨大な炭化物が生成されて、その後の焼入れ特性や転がり疲れ寿命に悪影響を与えるだけでなく、ヘッダー加工性が低下してコストの上昇を招く。よって、C含有率は1.2質量%以下とすることが好ましい。
Here, if the C content of the steel constituting the material is too small, not only can the necessary strength be imparted to the rolling member, but also to obtain the necessary hardened layer depth on the rolling surface when performing nitriding or carbonitriding. This increases the heat treatment time and increases the heat treatment cost. Therefore, the C content of the steel constituting the material is preferably 0.8% by mass or more, and more preferably 0.9% by mass or more.
On the other hand, if the C content of the steel material is too large, huge carbides are generated during steelmaking, which not only adversely affects the subsequent quenching characteristics and rolling fatigue life, but also reduces the header workability and reduces the cost. Invite rise. Therefore, the C content is preferably 1.2% by mass or less.

[Si(ケイ素)及びMn(マンガン)について]
上述したように、Si−Mn系窒化物を十分に析出させるためには、Si及びMnを多く含有した鋼材を用いる必要がある。一般的な軸受材料であるSUJ2(Si含有量0.25%、Mn含有量0.4%)では、浸炭窒化等で窒素を過剰に付加しても、Si−Mn系窒化物量が少ない。
[Si (silicon) and Mn (manganese)]
As described above, in order to sufficiently precipitate the Si—Mn nitride, it is necessary to use a steel material containing a large amount of Si and Mn. In SUJ2 (Si content 0.25%, Mn content 0.4%) which is a general bearing material, even if nitrogen is excessively added by carbonitriding or the like, the amount of Si—Mn nitride is small.

このため、転動体の素材をなす鋼におけるSi及びMnの含有量としては、Si含有率が0.3質量%以上2.0質量%以下で、Mn含有率が0.3質量%以上2.0質量%以下であることが好ましい。また、転がり面にSi−Mn系窒化物を効率よく析出させ、転がり面をなす表層部に本発明の範囲内のN(窒素)を固溶させるためには、Si含有率とMn含有率との合計を1質量%以上とすることが好ましい。   For this reason, as content of Si and Mn in the steel which makes the raw material of a rolling element, Si content rate is 0.3 mass% or more and 2.0 mass% or less, and Mn content rate is 0.3 mass% or more. It is preferable that it is 0 mass% or less. In order to efficiently precipitate Si—Mn nitride on the rolling surface and to dissolve N (nitrogen) within the scope of the present invention in the surface layer portion forming the rolling surface, the Si content and the Mn content It is preferable to make the total of 1 mass% or more.

ここで、Si含有率及びMn含有率は、Si−Mn系窒化物を効率よく析出させるために、それぞれ0.3質量%以上とする。一方、Si含有率が多すぎると、加工性や被削性が低下するだけでなく、浸炭窒化特性や窒化特性が低下して、転がり面をなす表層部のN含有率を本発明の範囲内にできなくなる。また、Mn含有率が多すぎると、熱処理後に転がり面をなす表層部の残留オーステナイト量が多くなり、硬さ、耐摩耗性、及び耐圧痕性が劣化する。よって、Si含有率及びMn含有率は、共に2.0質量%以下とすることが好ましい。   Here, the Si content and the Mn content are each 0.3% by mass or more in order to precipitate Si—Mn nitride efficiently. On the other hand, if the Si content is too high, not only the workability and machinability are lowered, but also the carbonitriding characteristics and nitriding characteristics are lowered, and the N content of the surface layer portion forming the rolling surface is within the scope of the present invention. It becomes impossible to. Moreover, when there is too much Mn content, the amount of retained austenite of the surface layer part which makes a rolling surface after heat processing will increase, and hardness, abrasion resistance, and pressure dent will deteriorate. Therefore, it is preferable that both Si content rate and Mn content rate shall be 2.0 mass% or less.

[Cr(クロム)について]
転動体の素材をなす鋼中に存在するCrは、基地に固溶して、焼入れ性及び焼戻し軟化抵抗性を向上させる作用を有するとともに、高硬度の微細な炭化物や炭窒化物を形成して、転動部材の硬さや熱処理時の結晶粒粗大化を抑制するため、転がり疲れ寿命を向上させる作用を有する。これらの作用を得るために、素材をなす鋼のCr含有率は0.5質量%以上とすることが好ましく、1.3質量%以上とすることがより好ましい。
[Cr (chromium)]
Cr present in the steel constituting the rolling element has the effect of improving the hardenability and temper softening resistance by forming a solid solution in the base, and forming fine carbides and carbonitrides with high hardness. In order to suppress the hardness of the rolling member and the coarsening of crystal grains during heat treatment, it has the effect of improving the rolling fatigue life. In order to obtain these effects, the Cr content of the material steel is preferably 0.5% by mass or more, and more preferably 1.3% by mass or more.

ここで、転動体の素材をなす鋼のCr含有率が多過ぎると、製鋼時に巨大な炭化物が生成されて、その後の焼入れ特性や転がり疲れ寿命に悪影響を与えたり、ヘッダー加工性及び被削性が低下する場合がある。よって、素材をなす鋼のCr含有率は2.0質量%以下とすることが好ましく、1.6質量%以下とすることがより好ましい。
なお、素材をなす鋼には、上述した元素に加えて、Crと同様の作用を有するMoやV等の炭化物形成促進元素を、素材費の上昇や加工性の低下によるコスト上昇を招かない範囲(例えば、それぞれ選択的に0〜2%程度)で含有してもよい。
Here, when the Cr content of the steel forming the rolling element is too large, huge carbides are generated during steelmaking, which adversely affects the subsequent quenching characteristics and rolling fatigue life, and header workability and machinability. May decrease. Therefore, the Cr content of the steel constituting the material is preferably 2.0% by mass or less, and more preferably 1.6% by mass or less.
In addition to the elements described above, carbide forming promoting elements such as Mo and V, which have the same action as Cr, are included in the steel that forms the material in a range that does not cause an increase in cost due to an increase in material cost or a decrease in workability. (For example, each may be selectively contained at about 0 to 2%).

また、素材をなす鋼の残部は、実質的にFeからなるが、不可避不純物として、S,P,Al,Ti,O等を含有してもよい。これらの元素は、圧痕縁を起点とする表面起点型の剥離に対して特に際立った抑制効果はないと言われているが、鋼の品質が著しく悪い場合には、これらが起点となって内部起点型の剥離が生じる。このため、コストの著しい上昇を招くような厳しい不純物規制は行わないが、不可避不純物の含有率は、JIS G 4805に規定された高炭素クロム軸受鋼の清浄度規制を満たす品質レベルとする。   The balance of the steel constituting the material is substantially made of Fe, but may contain S, P, Al, Ti, O, etc. as inevitable impurities. These elements are said to have no particularly remarkable inhibitory effect on surface-initiated peeling starting from the indentation edge. Origin-type peeling occurs. For this reason, strict impurity regulation that causes a significant increase in cost is not performed, but the content of inevitable impurities is set to a quality level that satisfies the cleanliness regulation of high carbon chromium bearing steel defined in JIS G 4805.

<熱処理について>
まず、上述した鋼からなる素材を、成形加工や粗研削等で所定形状に加工した後に、RXガスを導入した炉内で加熱保持することによる「ずぶ焼き」を行うか、混合ガス(例えば、RXガス+エンリッチガス+アンモニアガス)を導入した炉内で加熱保持することによる「浸炭窒化」を行う。特に、この「浸炭窒化」は、アンモニア流量を増やした高窒素雰囲気中で短時間の窒化処理を実施する「特殊浸炭窒化」である。これらの処理は、熱処理後において、転動体の転動面におけるSi−Mn系窒化物の存在率が1%以上10%以下で、転がり面をなす表層部の窒素の含有率が0.2質量%以上1.5質量%以下となるような条件で行うことが好ましい。
<About heat treatment>
First, after the above-described steel material is processed into a predetermined shape by forming or rough grinding, the steel is heated and held in a furnace introduced with RX gas, or mixed gas (for example, “Carbonitriding” is performed by heating and holding in a furnace in which (RX gas + enrich gas + ammonia gas) is introduced. In particular, this “carbonitriding” is “special carbonitriding” in which nitriding is performed in a short time in a high nitrogen atmosphere with an increased ammonia flow rate. In these treatments, after heat treatment, the abundance of Si-Mn nitride on the rolling surface of the rolling element is 1% or more and 10% or less, and the nitrogen content of the surface layer portion forming the rolling surface is 0.2 mass. % To 1.5% by mass or less is preferable.

次に、焼入れ及び焼戻しを行う。これらの処理は、熱処理後における転がり面をなす表層部に、転動部材として必要な硬さ(例えば、Hv750以上)が得られるような条件で行うことが好ましい。特に、この熱処理後における転動体の表面は、測定荷重2.94Nで測定したビッカース硬さHVがHV≧800であり、かつCスケールで測定したロックウェル硬さHRCがHRC≦66となるような条件で行う。   Next, quenching and tempering are performed. These treatments are preferably performed under such conditions that the surface layer portion that forms the rolling surface after the heat treatment has a hardness necessary for a rolling member (for example, Hv 750 or more). In particular, the surface of the rolling element after this heat treatment is such that the Vickers hardness HV measured at a measurement load of 2.94 N is HV ≧ 800 and the Rockwell hardness HRC measured on the C scale is HRC ≦ 66. Perform under conditions.

上述のように、本発明に係る転がり支持装置によれば、異物混入潤滑下で使用された場合であっても、割れや早期剥離が生じ難く、寿命が長く、圧砕強度が高い転がり支持装置を提供することができる。   As described above, according to the rolling support device according to the present invention, even when used under foreign matter lubrication, it is difficult to cause cracking or early peeling, has a long life, and has a high crushing strength. Can be provided.

本発明に係る転がり支持装置の一例として、深溝玉軸受を示す断面図である。It is sectional drawing which shows a deep groove ball bearing as an example of the rolling support apparatus which concerns on this invention.

以下、本発明の効果を実施例に基づいて検証した結果について説明する。   Hereinafter, the results of verifying the effects of the present invention based on examples will be described.

本実施例では、日本精工株式会社製呼び番号6206の深溝玉軸受(内径:30mm,外径:62mm,幅16mm)を以下に示す手順で作製した。この深溝玉軸受は、図1に示すように、軌道輪(内輪1、外輪2)、転動体(玉3)、及び保持器4からなる。この深溝玉軸受(転がり支持装置)は、内輪(第1部材)1及び外輪(第2部材)2は、互いに対向配置される軌道面1a,2aをそれぞれ有する。玉3は内輪1と外輪2との間に転動自在に配置され、軌道面1a,2aに対する転動面3aを有する。そして、玉3が転動することにより、内輪1及び外輪2のうち一方が他方に対して相対移動する。   In this example, a deep groove ball bearing (inner diameter: 30 mm, outer diameter: 62 mm, width: 16 mm) having a designation number of 6206 manufactured by NSK Ltd. was produced by the following procedure. As shown in FIG. 1, this deep groove ball bearing includes a race ring (inner ring 1, outer ring 2), rolling elements (ball 3), and cage 4. In this deep groove ball bearing (rolling support device), an inner ring (first member) 1 and an outer ring (second member) 2 have raceway surfaces 1a and 2a arranged to face each other. The ball 3 is disposed between the inner ring 1 and the outer ring 2 so as to freely roll, and has a rolling surface 3a for the raceway surfaces 1a and 2a. Then, as the ball 3 rolls, one of the inner ring 1 and the outer ring 2 moves relative to the other.

<軌道輪の作製>
内輪1及び外輪2は、高炭素クロム軸受鋼二種(SUJ2)からなる素材を、所定形状に加工した後、熱処理及び鏡面仕上げ加工を施すことにより作製した。ここで、軌道輪の作製における上記熱処理としては、ずぶ焼入れ(RXガスを導入した炉内において、840〜880℃で1時間加熱保持した後、油焼入れ)の後、焼き戻し(160〜220℃,2時間)を施した。
なお、SUJ2からなる素材は、C含有率が0.99質量%で、Si含有率が0.25質量%で、Mn含有率が0.40質量%で、Cr含有率が1.49質量%の鋼である。
<Production of race ring>
The inner ring 1 and the outer ring 2 were produced by processing a material made of two types of high carbon chrome bearing steel (SUJ2) into a predetermined shape, and then performing heat treatment and mirror finishing. Here, as the heat treatment in the production of the bearing ring, after quenching (after heating and holding at 840 to 880 ° C. for 1 hour in the furnace introduced with RX gas and oil quenching), tempering (160 to 220 ° C.) , 2 hours).
In addition, the material which consists of SUJ2 is C content rate 0.99 mass%, Si content rate is 0.25 mass%, Mn content rate is 0.40 mass%, Cr content rate is 1.49 mass%. Of steel.

<転動体の作製>
一方、転動体は、鋼からなる素材を、ヘッダー加工、粗研削加工により所定形状に加工した後、熱処理及び鏡面仕上げ加工を施すことにより複数種類の転動体を作製した。ここで、上記素材としては、SUJ2の線材及びSUJ3(高炭素クロム軸受鋼三種)の線材を採用し、転動体の作製における熱処理としては、「特殊浸炭窒化焼入れ」と「ずぶ焼入れ」とを採用した。なお、SUJ2からなる素材は、C含有率が1.0質量%で、Si含有率が0.55質量%で、Mn含有率が1.1質量%で、Cr含有率が1.15質量%の鋼である。
<Production of rolling elements>
On the other hand, after rolling the raw material which consists of steel into the predetermined shape by header processing and rough grinding, multiple types of rolling elements were produced by performing heat processing and mirror surface finishing. Here, SUJ2 wire and SUJ3 (3 types of high carbon chromium bearing steel) are used as the above materials, and “Special carbonitriding and quenching” and “Subsequent quenching” are used as heat treatment in the production of rolling elements. did. The material consisting of SUJ2 has a C content of 1.0 mass%, an Si content of 0.55 mass%, an Mn content of 1.1 mass%, and a Cr content of 1.15 mass%. Of steel.

「特殊浸炭窒化焼入れ」は、上記素材を加工後、混合ガス(RXガス+エンリッチガス+アンモニアガス雰囲気)を導入した炉内において、830℃で1〜20時間加熱保持することによる特殊浸炭窒化し、180〜270℃での焼戻しを施す熱処理方法である。
一方、上記「ずぶ焼入れ」は、上記素材を加工後、RXガスを導入した炉内において、840〜880℃で1時間加熱保持した後、油焼入れ)の後、焼き戻し(160℃〜220℃,2時間)を施す熱処理方法である。
“Special carbonitriding and quenching” is a special carbonitriding process by heating and holding at 830 ° C. for 1 to 20 hours in a furnace where mixed gas (RX gas + enriched gas + ammonia gas atmosphere) is introduced after processing the above materials. , A heat treatment method for tempering at 180 to 270 ° C.
On the other hand, the above-mentioned “subsequent quenching” is performed by tempering (160 ° C. to 220 ° C.) after processing the above-mentioned raw material, after heating and holding at 840 to 880 ° C. for 1 hour in an oven introduced with RX gas, and then oil quenching. , 2 hours).

ここで、SUJ3材を用いた転動体は、熱処理条件(時間、アンモニア流量)により硬さを変更することにより硬さ(ビッカース硬さHv,ロックウェル硬さHRC)を調整した。また、SUJ2材を用いた転動体は、ボールピーニング条件(時間、回転数)を変更することにより硬さ(ビッカース硬さHv,ロックウェル硬さHRC)を調整した。得られた転動体は、いずれも、ビッカース硬さHvが800以上、ロックウェル硬さHRCが66以下とした。なお、上記硬さは、各転動体の表層部に対して、JIS Z 2244に規定されたビッカース硬さ試験方法を用いて測定した。
以上の「材料」、「熱処理方法」、「ビッカース硬さ」、及び「ロックウェル硬さ」の各条件について、表1に示す組合せで各試験体を作製した。
Here, the rolling elements using the SUJ3 material were adjusted in hardness (Vickers hardness Hv, Rockwell hardness HRC) by changing the hardness according to heat treatment conditions (time, ammonia flow rate). Moreover, the rolling element using SUJ2 material adjusted hardness (Vickers hardness Hv, Rockwell hardness HRC) by changing ball peening conditions (time, rotation speed). All of the obtained rolling elements had a Vickers hardness Hv of 800 or more and a Rockwell hardness HRC of 66 or less. In addition, the said hardness was measured using the Vickers hardness test method prescribed | regulated to JISZ2244 with respect to the surface layer part of each rolling element.
For each of the above conditions of “material”, “heat treatment method”, “Vickers hardness”, and “Rockwell hardness”, test specimens were prepared in combinations shown in Table 1.

[窒素量の含有率の測定]
各試験体について、転動体の表層部(表面から50μmの深さまでの部分)と、内部(表面から200μmまでの深さの部分)とにおける窒素の含有率を、電子線マイクロアナライザ(EPMA)を用いて、加速電圧15kVで測定した。その結果を表1に示す。
[Si−Mn系窒化物の面積率の測定]
Si−Mn系窒化物の面積率の測定は、電界放射型走査型電子顕微鏡(FE−SEM)を用いて、加速電圧10KVで転動面の表面の観察を行い、倍率5,000倍で最低3視野以上写真を撮影した。その後、画像解析装置を用いて、得られた写真を二値化した後に存在率(面積率)を測定した。その結果を表1に示す。
なお、表1に示した、転動体のHV硬さ、HRC硬さ、窒素含有率、及び窒化物の面積率の値は、同一ロット品をそれぞれ10回測定し、その平均値を示した。
[Measurement of nitrogen content]
For each test specimen, the nitrogen content in the surface layer part (the part from the surface to a depth of 50 μm) and the inside (the part from the surface to a depth of 200 μm) was measured using an electron beam microanalyzer (EPMA). And measured at an acceleration voltage of 15 kV. The results are shown in Table 1.
[Measurement of area ratio of Si-Mn nitride]
The area ratio of the Si-Mn nitride is measured by using a field emission scanning electron microscope (FE-SEM) to observe the surface of the rolling surface at an acceleration voltage of 10 KV, and at a magnification of 5,000 times. I took photos over 3 fields of view. Thereafter, the presence rate (area ratio) was measured after binarizing the obtained photograph using an image analysis apparatus. The results are shown in Table 1.
The values of HV hardness, HRC hardness, nitrogen content, and nitride area ratio of the rolling elements shown in Table 1 were measured 10 times for the same lot product, and the average value was shown.

(評価)
得られた各転動体(玉3)と、SUJ2製の内輪1及び外輪2と、プラスチック製の保持器4とを用いて日本精工株式会社製呼び番号6206の深溝玉軸受(内径:30mm,外径:62mm,幅16mm,動定格荷重:19.5kN,静定格荷重:11.3kN)を組み立てた後、異物混入潤滑下で使用することを想定した以下に示す条件で寿命試験及び圧砕試験を行った。その結果を表1に示す。
(Evaluation)
Using the obtained rolling elements (ball 3), SUJ2 inner ring 1 and outer ring 2, and plastic cage 4, a deep groove ball bearing (inner diameter: 30 mm, outer diameter) manufactured by NSK Ltd. (Diameter: 62 mm, width 16 mm, dynamic load rating: 19.5 kN, static load rating: 11.3 kN) went. The results are shown in Table 1.

<寿命試験について>
寿命試験は、各試験体(実施例1〜13及び比較例1〜4)について12回ずつ行い、はく離が発生するまでの寿命時間を調査して、ワイブルプロットを作成し、ワイブル分布の結果から、L10寿命を求め、寿命値とした。なお、表1中の異物混入寿命は、最も短寿命であった比較例1の値を1として比の値で示してある。
[寿命試験の条件]
試験荷重:Fr=6.5kN
回転数:3,000min-1
潤滑油:ISO−VG68
異物の硬さ:HV519
異物サイズ:74〜147μm
異物混入量:0.05g
<About life test>
The life test is performed 12 times for each specimen (Examples 1 to 13 and Comparative Examples 1 to 4), the life time until peeling occurs is investigated, a Weibull plot is created, and the results of the Weibull distribution are used. , L 10 life was obtained and used as the life value. In Table 1, the foreign matter mixing lifetime is shown as a ratio value with the value of Comparative Example 1 having the shortest lifetime as 1.
[Conditions for life test]
Test load: Fr = 6.5 kN
Rotational speed: 3,000 min -1
Lubricating oil: ISO-VG68
Hardness of foreign matter: HV519
Foreign material size: 74-147 μm
Foreign matter contamination: 0.05g

<圧砕試験について>
また、寿命試験に用いた呼び3/8inchの鋼球と同ロットの鋼球の圧砕試験も実施した。
圧砕試験は、角度120度の円錐座を有した2個の治具を用いて、玉を2個重ねて2.0kN/sで加圧する方法で行なった。
2個中1個の玉には、高硬度ドリルによりφ0.2mm×深さ0.2mmの欠陥を設けており、欠陥を設けた玉が壊れた時の荷重を求めた。
なお、圧砕試験は、各試験体について5回ずつ実施し、表1には圧砕荷重の平均値を示している。なお、表1中の圧砕値は、比較例4の値を1として示している。
<About crushing test>
In addition, a crushing test was carried out on a nominal 3/8 inch steel ball used in the life test and a steel ball of the same lot.
The crushing test was performed by a method in which two balls having two conical seats with an angle of 120 degrees were stacked and pressed at 2.0 kN / s.
One of the two balls was provided with a defect of φ0.2 mm × depth 0.2 mm by a high hardness drill, and the load when the ball provided with the defect was broken was determined.
The crushing test was performed five times for each specimen, and Table 1 shows the average value of the crushing load. In addition, the crushing value in Table 1 shows the value of Comparative Example 4 as 1.

Figure 2013160376
Figure 2013160376

表1の結果から、測定荷重2.94Nで測定した表面のビッカース硬さが800以上で、かつ、Cスケールで測定した表面のロックウェル硬さが66以下の玉3を用いた実施例1〜13は、比較例1〜4と比べて、長寿命化と高い圧砕強度とを両立していることがわかる。   From the results in Table 1, Examples 1 to 3 using the balls 3 having a surface Vickers hardness of 800 or more measured with a measurement load of 2.94 N and a Rockwell hardness of 66 or less measured on the C scale. It can be seen that No. 13 has both a long life and high crushing strength as compared with Comparative Examples 1 to 4.

また、実施例1〜13の中でも、玉3の表面3aのビッカース硬さが830を超える実施例3〜6,8〜13では、長寿命化効果がさらに顕著に現れることがわかる。また、玉3の表面3aの硬さが65以下の実施例1〜3,7〜11では、圧砕強度がさらに向上していることがわかる。
また、同程度のビッカース硬さでも、浸炭窒化を施した実施例7〜13は、ずぶ焼きを施した実施例1〜6よりも長寿命化及び圧砕強度向上の顕著な効果が明確に表れている。
Further, among Examples 1 to 13, it can be seen that in Examples 3 to 6 and 8 to 13 in which the Vickers hardness of the surface 3a of the ball 3 exceeds 830, the effect of extending the life appears more remarkably. Moreover, in Examples 1-3, 7-11 whose hardness of the surface 3a of the ball | bowl 3 is 65 or less, it turns out that crushing strength further improves.
In addition, even with the same Vickers hardness, Examples 7 to 13 subjected to carbonitriding clearly show a remarkable effect of extending the life and improving the crushing strength as compared with Examples 1 to 6 subjected to soaking. Yes.

また、特殊浸炭窒化による熱処理を施した実施例7〜13の中でも、窒素含有率が0.3質量%以下、窒化物の面積率が3%以下である実施例7〜12は、より効果的に圧砕強度を向上していることがわかる。特に、窒素含有率が0.2質量%以上であり、Si−Mn系窒化物の面積率が1%以上である実施例8〜12は、長寿命化効果がさらに顕著であることがわかる。   Among Examples 7 to 13 subjected to heat treatment by special carbonitriding, Examples 7 to 12 having a nitrogen content of 0.3% by mass or less and a nitride area ratio of 3% or less are more effective. It can be seen that the crushing strength is improved. In particular, it can be seen that in Examples 8 to 12 in which the nitrogen content is 0.2% by mass or more and the area ratio of the Si—Mn nitride is 1% or more, the effect of extending the life is further remarkable.

したがって、本発明に係る転がり支持装置によれば、異物混入潤滑下で使用された場合であっても、割れや早期剥離が生じ難く、寿命が長く、圧砕強度が高い転がり支持装置を提供することができる。
なお、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更が可能である。例えば、上記実施例では、玉軸受の評価結果を示したが、その他の玉軸受や各種ころ軸受等でも同等の性能を得ることができる。また、上記実施例では、転動体の素材にSUJ3材を用いた場合を示したが、C:0.8〜1.2質量%、Si:0.3〜2.0質量%、Mn:0.3〜2.0質量%、Cr:0.5〜1.6質量%を満足する成分であれば、同様の性能が得られる。
Therefore, according to the rolling support device according to the present invention, even when used under foreign matter lubrication, it is difficult to cause cracking or early peeling, has a long life, and provides a rolling support device with high crushing strength. Can do.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably. For example, in the above embodiment, the evaluation result of the ball bearing is shown, but equivalent performance can be obtained with other ball bearings and various roller bearings. Moreover, in the said Example, although the case where SUJ3 material was used for the raw material of a rolling element was shown, C: 0.8-1.2 mass%, Si: 0.3-2.0 mass%, Mn: 0 The same performance can be obtained as long as the component satisfies 3 to 2.0 mass% and Cr: 0.5 to 1.6 mass%.

1 内輪(第1部材)
2 外輪(第2部材)
3 玉(転動体)
3a 転動面
4 保持器
1 Inner ring (first member)
2 Outer ring (second member)
3 balls (rolling elements)
3a Rolling surface 4 Cage

Claims (5)

互いに対向配置される軌道面を有する第1部材及び第2部材と、前記第1部材及び前記第2部材の間に転動自在に配置され、前記軌道面に対する転動面を有する転動体と、を備え、前記転動体が転動することにより、前記第1部材及び前記第2部材のうち一方が他方に対して相対移動する転がり支持装置において、
前記転動体並びに、前記第1部材及び前記第2部材の少なくともいずれか一つの転動部材は、鋼からなる素材を所定形状に加工した後に、浸炭窒化又は窒化を含む熱処理が施されて得られ、
前記転動体は、測定荷重2.94Nで測定した当該転動体の表面のビッカース硬さHVがHV≧800を満たし、かつ、Cスケールで測定した当該転動体の表面のロックウェル硬さHRCがHRC≦66を満たすことを特徴とする転がり支持装置。
A first member and a second member having raceway surfaces arranged to face each other; a rolling element which is disposed between the first member and the second member so as to freely roll and has a rolling surface with respect to the raceway surface; In the rolling support device in which one of the first member and the second member moves relative to the other by rolling the rolling element,
The rolling element and at least one rolling member of the first member and the second member are obtained by processing a material made of steel into a predetermined shape and then performing heat treatment including carbonitriding or nitriding. ,
In the rolling element, the Vickers hardness HV of the surface of the rolling element measured at a measurement load of 2.94 N satisfies HV ≧ 800, and the Rockwell hardness HRC of the surface of the rolling element measured on the C scale is HRC. A rolling support device satisfying ≦ 66.
前記ビッカース硬さHVがHV≧830を満たすか、又は前記ロックウェル硬さHRCがHRC≦65を満たすことを特徴とする請求項1に記載の転がり支持装置。   2. The rolling support device according to claim 1, wherein the Vickers hardness HV satisfies HV ≧ 830 or the Rockwell hardness HRC satisfies HRC ≦ 65. 3. 前記転動体の転動面の窒素含有率が0.2〜1.5質量%であり、かつ前記転動体の転動面のSi及びMnを含有した窒化物の面積率が1%以上10%未満であることを特徴とする請求項1又は2に記載の転がり支持装置。   The nitrogen content of the rolling surface of the rolling element is 0.2 to 1.5 mass%, and the area ratio of the nitride containing Si and Mn on the rolling surface of the rolling element is 1% or more and 10%. The rolling support device according to claim 1 or 2, wherein the rolling support device is less than the number. 前記転動体の転動面の表面から200μmの深さの位置の窒素含有率が0.3質量%以下であり、かつ前記転動体の転動面の表面から200μmの深さの位置のSi及びMnを含有した窒化物の面積率が3%以下であることを特徴とする請求項3に記載の転がり支持装置。   The nitrogen content at a position 200 μm deep from the surface of the rolling surface of the rolling element is 0.3 mass% or less, and Si at a position 200 μm deep from the surface of the rolling surface of the rolling element The rolling support device according to claim 3, wherein the area ratio of the nitride containing Mn is 3% or less. 前記鋼は、C含有率が0.8質量%以上1.2質量%以下で、Si含有率が0.3質量%以上2.0質量%以下で、Mn含有率が0.3質量%以上2.0質量%以下で、Cr含有率が0.5質量%以上1.6質量%以下で、残部がFe及び不可避不純物からなることを特徴とする請求項1〜4のいずれかに記載の転がり支持装置。   The steel has a C content of 0.8% by mass or more and 1.2% by mass or less, an Si content of 0.3% by mass or more and 2.0% by mass or less, and an Mn content of 0.3% by mass or more. The content of Cr is 0.5% by mass or more and 1.6% by mass or less at 2.0% by mass or less, and the balance is made of Fe and inevitable impurities. Rolling support device.
JP2012025325A 2012-02-08 2012-02-08 Rolling support device Active JP5982846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012025325A JP5982846B2 (en) 2012-02-08 2012-02-08 Rolling support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012025325A JP5982846B2 (en) 2012-02-08 2012-02-08 Rolling support device

Publications (2)

Publication Number Publication Date
JP2013160376A true JP2013160376A (en) 2013-08-19
JP5982846B2 JP5982846B2 (en) 2016-08-31

Family

ID=49172784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012025325A Active JP5982846B2 (en) 2012-02-08 2012-02-08 Rolling support device

Country Status (1)

Country Link
JP (1) JP5982846B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333558A (en) * 1991-05-10 1992-11-20 Koyo Seiko Co Ltd Bearing parts
JP2002349581A (en) * 2001-05-23 2002-12-04 Nsk Ltd Roller
JP2006046380A (en) * 2004-07-30 2006-02-16 Nsk Ltd Ball bearing
JP2008267402A (en) * 2007-04-16 2008-11-06 Nsk Ltd Roller bearing
JP2010265487A (en) * 2009-05-12 2010-11-25 Minebea Co Ltd Martensitic stainless steel and rolling bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333558A (en) * 1991-05-10 1992-11-20 Koyo Seiko Co Ltd Bearing parts
JP2002349581A (en) * 2001-05-23 2002-12-04 Nsk Ltd Roller
JP2006046380A (en) * 2004-07-30 2006-02-16 Nsk Ltd Ball bearing
JP2008267402A (en) * 2007-04-16 2008-11-06 Nsk Ltd Roller bearing
JP2010265487A (en) * 2009-05-12 2010-11-25 Minebea Co Ltd Martensitic stainless steel and rolling bearing

Also Published As

Publication number Publication date
JP5982846B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5194532B2 (en) Rolling bearing
JP2006322017A (en) Rolling bearing
JP5477111B2 (en) Nitriding induction hardening steel and nitriding induction hardening parts
JP2006348342A (en) Rolling supporter
JP2009192071A (en) Roller bearing
JP4998054B2 (en) Rolling bearing
JP6004698B2 (en) Rolling bearing raceway manufacturing method and rolling bearing manufacturing method
JP4857746B2 (en) Rolling support device
JP6939670B2 (en) Steel parts with excellent rolling fatigue characteristics
JP5786815B2 (en) Steel for carburized or carbonitrided parts
JP2006241480A (en) Rolling support device, method for manufacturing rolling member of rolling support device, and heat treatment process for steel
JP2018021654A (en) Rolling slide member, its manufacturing method, carburization steel material and rolling bearing
JP2012207247A (en) Carburizing member, steel for carburizing member and method for producing carburizing member
JP2006328514A (en) Rolling supporting device
JP5982846B2 (en) Rolling support device
JP2022170056A (en) steel
JP5194538B2 (en) Rolling bearing
JP5853409B2 (en) Manufacturing method of rolling bearing
JP2009174656A (en) Rolling bearing
JP5211453B2 (en) Rolling bearing
JP2006045591A (en) Tapered roller bearing
JP2009191942A (en) Rolling bearing
JP2005337362A (en) Full type roller bearing
JP2006183845A (en) Rolling bearing
JP2013164132A (en) Self-aligning roller bearing and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent or registration of utility model

Ref document number: 5982846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350