JP2007277639A - Martensitic steel - Google Patents

Martensitic steel Download PDF

Info

Publication number
JP2007277639A
JP2007277639A JP2006106101A JP2006106101A JP2007277639A JP 2007277639 A JP2007277639 A JP 2007277639A JP 2006106101 A JP2006106101 A JP 2006106101A JP 2006106101 A JP2006106101 A JP 2006106101A JP 2007277639 A JP2007277639 A JP 2007277639A
Authority
JP
Japan
Prior art keywords
mass
amount
hardness
quenching
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006106101A
Other languages
Japanese (ja)
Other versions
JP4952888B2 (en
Inventor
Motohiro Ibuki
基宏 伊吹
Shuji Hamano
修次 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2006106101A priority Critical patent/JP4952888B2/en
Publication of JP2007277639A publication Critical patent/JP2007277639A/en
Application granted granted Critical
Publication of JP4952888B2 publication Critical patent/JP4952888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a martensitic steel exhibiting high hardness/high corrosion resistance, hardly causing cracks after quenching/subzero treatment and having excellentmirror finishability. <P>SOLUTION: The martensitic steel has a composition cpntaining, by mass, 0.15 to <0.70% C, 0.05 to 1.00% Si, 0.05 to 1.00% Mn, ≤0.030% P, ≤0.030% S, 0.001 to 0.50% Cu, 0.05 to 0.50% Ni, 11.0 to 18.0% Cr, 0.05 to 2.0% Mo, 0.01 to 0.50% W, 0.01 to 0.50% V, 0.05 to 0.40% N, ≤0.02% O, ≤0.080% Al and 0.0005 to 0.0050% B, and the balance substantially Fe with inevitable impurities, and satisfying 0.4%<C+N<0.7%, and C/N≥0.75. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マルテンサイト鋼に関し、さらに詳しくは、高硬度及び高耐食性を示し、プラスチック成型用金型、冷間金型、軸受等として好適なマルテンサイト鋼に関する。   The present invention relates to martensitic steel, and more particularly to martensitic steel that exhibits high hardness and high corrosion resistance and is suitable as a plastic molding die, cold die, bearing, and the like.

プラスチックの射出成形は、溶融させた樹脂を金型のキャビティ内に圧入し、金型内で固化させる成形方法である。プラスチック製品には、主成分の樹脂に加えて、プラスチック製品の強度を改善するための硬質物質(例えば、ガラス繊維)が添加される場合がある。また、樹脂が混練の過程で分解し、腐食性のガスが発生する場合がある。この腐食性のガスは、金型への樹脂の充填の際に圧縮されて高温、高圧となり、金型を腐食させ、製品表面の肌荒れ、バリの発生等の原因となる。さらに、プラスチック製品は、筐体などに使用され、成型肌が良好なことが求められる。
そのため、プラスチック成型用金型に用いられる材料は、
(1) 高硬度・耐摩耗性に優れていること、
(2) 耐食性が高いこと、
(3) 鏡面性が高いこと、
などが求められる。
Plastic injection molding is a molding method in which a molten resin is pressed into a mold cavity and solidified in the mold. In addition to the main component resin, a hard material (for example, glass fiber) for improving the strength of the plastic product may be added to the plastic product. Further, the resin may be decomposed during the kneading process to generate corrosive gas. This corrosive gas is compressed when the resin is filled into the mold and becomes a high temperature and a high pressure, corroding the mold and causing the surface of the product to become rough and the generation of burrs. Furthermore, plastic products are used for cases and the like, and good molded skin is required.
Therefore, the material used for the plastic mold is
(1) Excellent hardness and wear resistance,
(2) High corrosion resistance,
(3) High specularity,
Etc. are required.

従来、この種の用途には、マルテンサイト系ステンレス鋼の一種であるSUS440C(17%Cr鋼)、SUS420J2(13%Cr鋼)又はこれらの改良材が用いられている。しかしながら、SUS440Cは、ステンレス鋼中、最高硬度が得られるが、母相の固溶Cr量が少ないために、十分な耐食性が得られない。一方、SUS420J2は、炭素量が相対的に少ないために十分な硬さが得られない。   Conventionally, SUS440C (17% Cr steel), SUS420J2 (13% Cr steel), or an improved material thereof, which is a kind of martensitic stainless steel, is used for this type of application. However, although SUS440C has the highest hardness among stainless steels, sufficient corrosion resistance cannot be obtained because the amount of solid solution Cr in the parent phase is small. On the other hand, since SUS420J2 has a relatively small amount of carbon, sufficient hardness cannot be obtained.

そこでこの問題を解決するために、従来から種々の提案がなされている。
例えば、特許文献1には、重量%でC:0.25〜1.0、Si:最大1.0、Mn:最大1.6、N:0.10〜0.35、Al:最大1.0、Co:最大2.8、Cr:14.0〜25.0、Mo:0.5〜3.0、Ni:最大3.9、V:0.04〜0.4、W:最大3.0、Nb:最大0.18、Ti:最大0.2を含み、CとNの濃度の和が重量%で0.5〜1.2であり、残部が鉄及び不可避的不純物からなり、少なくとも45HRCの硬度及び高い耐食性を持ち、熱処理されるプラスチック用金型用の合金が開示されている。同文献には、CとNの濃度の和を上述の範囲内とすると、疲れ強度が著しく高まる点が記載されている。
In order to solve this problem, various proposals have heretofore been made.
For example, in Patent Document 1, C: 0.25 to 1.0, Si: maximum 1.0, Mn: maximum 1.6, N: 0.10 to 0.35, Al: maximum 1. 0, Co: maximum 2.8, Cr: 14.0 to 25.0, Mo: 0.5 to 3.0, Ni: maximum 3.9, V: 0.04 to 0.4, W: maximum 3 0.0, Nb: 0.18 at the maximum, Ti: 0.2 at the maximum, the sum of the concentrations of C and N is 0.5 to 1.2 by weight%, the balance is made of iron and inevitable impurities, Alloys for plastic molds that have a hardness of at least 45 HRC and high corrosion resistance and are heat treated are disclosed. This document describes that the fatigue strength is remarkably increased when the sum of the concentrations of C and N is within the above range.

また、特許文献2には、重量%でC:0.16〜0.27、N:0.06〜0.13(但し、C+Nの合計量が0.3≦C+N≦0.4)、Si:0.1〜1.5、Mn:0.1〜1.2、Cr:12.5〜14.5、Ni:0.5〜1.7、Mo:0.2〜0.8、及びV:0.1〜0.5を含み、場合により切削性を高めるために、S(最大0.15%)、Ca(最大0.01%)、及びO(最大0.01%)の1つ以上の元素を含み、残部がFe及び不可避的不純物からなるスチール合金が開示されている。同文献には、このような組成にすることによって、焼入れ性及び靱性が向上する点が記載されている。   Patent Document 2 discloses that C: 0.16 to 0.27, N: 0.06 to 0.13 (provided that the total amount of C + N is 0.3 ≦ C + N ≦ 0.4), Si, : 0.1-1.5, Mn: 0.1-1.2, Cr: 12.5-14.5, Ni: 0.5-1.7, Mo: 0.2-0.8, and V: 0.1 to 0.5, and in order to enhance the machinability, S (maximum 0.15%), Ca (maximum 0.01%), and O (maximum 0.01%) 1 Steel alloys are disclosed that contain one or more elements, the balance being Fe and inevitable impurities. This document describes that the hardenability and toughness are improved by using such a composition.

さらに、特許文献3には、重量%で、C:0.35〜0.65%、Si:1.0%以下、Mn:1.0%以下、Cr:12.0〜18.0%、Mo:0.2〜1.0%、さらに、V:0.05〜0.50%及びNb:0.05〜0.50%の1種又は2種を含有し、残部が実質的にFeからなる合金組成を有する工具鋼が開示されている。同文献には、このような組成にすることによって、SUS440Cの焼入れ焼戻し処理硬さ以上の硬さと、SUS420J2を超える耐食性が得られる点が記載されている。   Furthermore, in Patent Document 3, by weight, C: 0.35 to 0.65%, Si: 1.0% or less, Mn: 1.0% or less, Cr: 12.0 to 18.0%, Mo: 0.2 to 1.0%, V: 0.05 to 0.50% and Nb: 0.05 to 0.50% of one or two types, the balance being substantially Fe A tool steel having an alloy composition is disclosed. This document describes that by using such a composition, a hardness higher than the quenching and tempering hardness of SUS440C and a corrosion resistance exceeding SUS420J2 can be obtained.

特許第3438121号公報Japanese Patent No. 3438121 特表2004−503677号公報JP-T-2004-503676 特開2001−294987号公報JP 2001-294987 A

一般に、鋼中の炭素量が多くなるほど、マルテンサイト変態終了温度(Mf)は低くなり、高炭素鋼では、Mfは室温以下にある。このような鋼を焼入れすると、全面マルテンサイトにならず、残留オーステナイトが生じ、必要な硬さが得られない。また、残留オーステナイトを室温で放置すると、次第に組織変化を起こし、寸法に狂いが生ずる。そのため、このような場合には、焼入れ後、速やかに0℃以下の温度まで冷却する処理(サブゼロ処理)が行われる。
プラスチック成型用金型に用いられる材料は、一般に、高硬度が要求されるので、相対的に炭素量が多い。そのため、高い寸法精度と必要な硬さを得るためには、焼入れ後にサブゼロ処理を行うのが好ましい。
しかしながら、マルテンサイト変態は、体積膨張を伴うので、焼入れ・サブゼロ処理を行うと、材料中に割れ(焼割れ、置き割れ)が発生する場合がある。プラスチック成型用金型に割れが発生すると、割れが製品表面に転写されたり、あるいは、金型の強度が低下し、カケなどの問題が生ずる。また、鋼中に粗大な炭化物、窒化物等が含まれると、鏡面性を低下させる原因となる。
さらに、高硬度・高耐食性を示し、焼入れ・サブゼロ処理の際に割れが発生しにくく、かつ、鏡面性に優れた材料が提案された例は、従来にはない。
In general, the higher the amount of carbon in the steel, the lower the martensitic transformation end temperature (Mf), and in high carbon steel, Mf is below room temperature. When such steel is quenched, it does not become martensite on the entire surface, and retained austenite is generated, and the required hardness cannot be obtained. In addition, when the retained austenite is left at room temperature, the structure gradually changes and the dimensions are distorted. Therefore, in such a case, after quenching, a process (sub-zero process) for quickly cooling to a temperature of 0 ° C. or less is performed.
Since the material used for the plastic mold is generally required to have high hardness, the amount of carbon is relatively large. Therefore, in order to obtain high dimensional accuracy and required hardness, it is preferable to perform sub-zero treatment after quenching.
However, since the martensitic transformation is accompanied by volume expansion, cracking (quenching, setting crack) may occur in the material when quenching and subzero treatment are performed. When a crack occurs in a plastic molding die, the crack is transferred to the surface of the product, or the strength of the die is reduced, causing problems such as chipping. Moreover, if coarse carbides, nitrides, and the like are contained in the steel, it will cause a decrease in specularity.
Furthermore, there has never been proposed an example of a material that exhibits high hardness and high corrosion resistance, is resistant to cracking during quenching and sub-zero treatment, and has excellent specularity.

本発明が解決しようとする課題は、高硬度・高耐食性を示すマルテンサイト鋼を提供することにある。
また、本発明が解決しようとする他の課題は、焼入れ・サブゼロ処理後に割れが発生しにくいマルテンサイト鋼を提供することにある。
さらに、本発明が解決しようとする他の課題は、鏡面性に優れたマルテンサイト鋼を提供することにある。
The problem to be solved by the present invention is to provide martensitic steel exhibiting high hardness and high corrosion resistance.
Another problem to be solved by the present invention is to provide a martensitic steel that is unlikely to crack after quenching and sub-zero treatment.
Furthermore, another problem to be solved by the present invention is to provide martensitic steel excellent in specularity.

上記課題を解決するために本発明に係るマルテンサイト鋼は、
0.15mass%≦C<0.70mass%、
0.05mass%≦Si≦1.00mass%、
0.05mass%≦Mn≦1.00mass%、
P≦0.030mass%、
S≦0.030mass%、
0.001mass%≦Cu≦0.50mass%、
0.05mass%≦Ni≦0.50mass%、
11.0mass%≦Cr≦18.0mass%、
0.05mass%≦Mo≦2.0mass%、
0.01mass%≦W≦0.50mass%、
0.01mass%≦V≦0.50mass%、
0.05mass%≦N≦0.40mass%、
O≦0.02mass%、
Al≦0.080mass%、及び、
0.0005mass%≦B≦0.0050mass%
を含み、残部が実質的にFe及び不可避的不純物からなり、
0.4mass%<C+N<0.7mass%、かつ
C/N≧0.75
であることを要旨とする。
In order to solve the above problems, the martensitic steel according to the present invention is
0.15 mass% ≦ C <0.70 mass%,
0.05 mass% ≦ Si ≦ 1.00 mass%,
0.05 mass% ≦ Mn ≦ 1.00 mass%,
P ≦ 0.030 mass%,
S ≦ 0.030 mass%,
0.001 mass% ≦ Cu ≦ 0.50 mass%,
0.05 mass% ≦ Ni ≦ 0.50 mass%,
11.0 mass% ≦ Cr ≦ 18.0 mass%,
0.05 mass% ≦ Mo ≦ 2.0 mass%,
0.01 mass% ≦ W ≦ 0.50 mass%,
0.01 mass% ≦ V ≦ 0.50 mass%,
0.05 mass% ≦ N ≦ 0.40 mass%,
O ≦ 0.02 mass%,
Al ≦ 0.080 mass%, and
0.0005 mass% ≦ B ≦ 0.0050 mass%
And the balance substantially consists of Fe and inevitable impurities,
0.4 mass% <C + N <0.7 mass% and C / N ≧ 0.75
It is a summary.

侵入型原子としてCに加えてNを添加し、かつ、C+N量及びC/N比を最適化すると、焼入れ温度でのCの固溶限を大きくする(すなわち、オーステナイト領域を広くする)ことができる。そのため、マルテンサイト変態後に高硬度が得られる。また、耐食性を向上させる各種の元素を添加することに加えて、マトリックス中に適量のNを固溶させると、耐食性がさらに向上する。さらに、鋼中にBを添加することによって粒界が強化され、焼入れ・サブゼロ処理の際の割れを低減することができる。   Adding N in addition to C as an interstitial atom and optimizing the amount of C + N and the C / N ratio can increase the solid solubility limit of C at the quenching temperature (that is, widen the austenite region). it can. Therefore, high hardness is obtained after martensitic transformation. Moreover, in addition to adding various elements that improve the corrosion resistance, when an appropriate amount of N is dissolved in the matrix, the corrosion resistance is further improved. Furthermore, the grain boundary is strengthened by adding B to the steel, and cracks during quenching and sub-zero treatment can be reduced.

以下に、本発明の一実施の形態について詳細に説明する。
本発明に係るマルテンサイト鋼は、以下のような元素を含み、残部が実質的にFe及び不可避的不純物からなる。添加元素の種類、その成分範囲、及び、その限定理由は、以下の通りである。
Hereinafter, an embodiment of the present invention will be described in detail.
The martensitic steel according to the present invention contains the following elements, with the balance being substantially composed of Fe and inevitable impurities. The kind of additive element, its component range, and the reason for limitation are as follows.

(1) 0.15mass%≦C<0.70mass%。
Cは、強度及び耐摩耗性を確保するのに必要な元素であり、Cr、Mo、W、V、Nb等の炭化物形成元素と結合して炭化物を形成する元素である。また、焼入れ時にマトリックスに固溶し、マトリックスをマルテンサイト組織化することによって硬度を確保する元素である。このような効果を得るためには、C量は、0.15mass%以上が好ましい。
一方、C量が過剰になると、Cが炭化物形成元素と結合して炭化物を形成し、母相中のCr、Mo等の固溶量が低下する。母相中のCr、Mo等の固溶量の低下は、耐食性を低下させる原因となる。従って、C量は、0.70mass%未満が好ましい。
(1) 0.15 mass% ≦ C <0.70 mass%.
C is an element necessary for ensuring strength and wear resistance, and is an element that forms a carbide by combining with a carbide forming element such as Cr, Mo, W, V, and Nb. Moreover, it is an element which ensures hardness by forming a solid solution in the matrix at the time of quenching and forming a martensite structure in the matrix. In order to obtain such an effect, the amount of C is preferably 0.15 mass% or more.
On the other hand, when the amount of C becomes excessive, C combines with the carbide-forming element to form carbide, and the solid solution amount of Cr, Mo, etc. in the matrix phase decreases. A decrease in the amount of solid solution of Cr, Mo, etc. in the matrix phase causes a decrease in corrosion resistance. Therefore, the amount of C is preferably less than 0.70 mass%.

(2) 0.05mass%≦Si≦1.00mass%。
Siは、主に脱酸剤又は窒素添加のために添加される。そのためには、Si量は、0.05mass%以上が好ましい。
一方、Si量が過剰になると、熱間での加工性を低下させたり、靱性を低下させる。従って、Si量は、1.00mass%以下が好ましい。
(2) 0.05 mass% ≦ Si ≦ 1.00 mass%.
Si is mainly added for deoxidizer or nitrogen addition. For that purpose, the Si amount is preferably 0.05 mass% or more.
On the other hand, when the amount of Si is excessive, hot workability is lowered or toughness is lowered. Therefore, the amount of Si is preferably 1.00 mass% or less.

(3) 0.05mass%≦Mn≦1.00mass%。
Mnは、焼入れ性向上元素として添加される。また、不可避的に含まれるSを固定し、靱性の低下を防止する効果もある。このような効果を得るためには、Mn量は、0.05mass%以上が好ましい。
一方、Mn量が過剰になると、熱間加工性を低下させる。従って、Mn量は、1.00mass%以下が好ましい。
(3) 0.05 mass% ≦ Mn ≦ 1.00 mass%.
Mn is added as a hardenability improving element. Moreover, S contained unavoidable is also fixed and there exists an effect which prevents the fall of toughness. In order to obtain such an effect, the amount of Mn is preferably 0.05 mass% or more.
On the other hand, when the amount of Mn becomes excessive, hot workability is lowered. Therefore, the amount of Mn is preferably 1.00 mass% or less.

(4) P≦0.030mass%。
(5) S≦0.030mass%。
P、Sは、鋼中に不可避的に含まれる。Pは結晶粒界への偏析、Sは硫化物を形成し、靱性を低下させる原因となる。従って、P量は、0.030mass%以下が好ましい。また、S量は、0.030mass%以下が好ましい。
(4) P ≦ 0.030 mass%.
(5) S ≦ 0.030 mass%.
P and S are inevitably contained in the steel. P segregates to the grain boundaries, and S forms sulfides, causing toughness to decrease. Therefore, the amount of P is preferably 0.030 mass% or less. The amount of S is preferably 0.030 mass% or less.

(6) 0.001mass%≦Cu≦0.50mass%。
Cuは、耐食性を向上させる元素である。特に、塩酸による浸食を抑制する効果が大きい。このような効果を得るためには、Cu量は、0.001mass%以上が好ましい。
一方、Cu量が過剰になると、残留オーステナイト量が増加し、寸法の経年変化を引き起こす。また、熱間での加工性を低下させる。従って、Cu量は、0.50mass%以下が好ましい。
(6) 0.001 mass% ≦ Cu ≦ 0.50 mass%.
Cu is an element that improves the corrosion resistance. In particular, the effect of suppressing erosion by hydrochloric acid is great. In order to obtain such an effect, the amount of Cu is preferably 0.001 mass% or more.
On the other hand, when the amount of Cu becomes excessive, the amount of retained austenite increases and causes aging of the dimensions. In addition, hot workability is reduced. Therefore, the amount of Cu is preferably 0.50 mass% or less.

(7) 0.05mass%≦Ni≦0.50mass%。
Niは、窒素の溶解量を増加させる元素である。このような効果を得るためには、Ni量は、0.05mass%以上が好ましい。
一方、Ni量が過剰になると、残留オーステナイト量が増加し、寸法の経年変化を引き起こす。従って、Ni量は、0.50mass%以下が好ましい。
(7) 0.05 mass% ≦ Ni ≦ 0.50 mass%.
Ni is an element that increases the amount of nitrogen dissolved. In order to obtain such an effect, the Ni amount is preferably 0.05 mass% or more.
On the other hand, when the amount of Ni becomes excessive, the amount of retained austenite increases and causes aging of the dimensions. Therefore, the amount of Ni is preferably 0.50 mass% or less.

(8) 11.0mass%≦Cr≦18.0mass%。
Crは、耐食性を向上させる元素である。また、Crは、窒素の溶解量を増加させる。このような効果を得るためには、Cr量は、11.0mass%以上が好ましい。
一方、Cr量が過剰になると、サブゼロ処理を行っても残留オーステナイト量が増加し、硬さが低下する。従って、Cr量は、18.0mass%以下が好ましい。
(8) 11.0 mass% ≦ Cr ≦ 18.0 mass%.
Cr is an element that improves the corrosion resistance. Cr also increases the amount of nitrogen dissolved. In order to obtain such an effect, the Cr content is preferably 11.0 mass% or more.
On the other hand, when the amount of Cr becomes excessive, the amount of retained austenite increases and the hardness decreases even if the sub-zero treatment is performed. Therefore, the Cr amount is preferably 18.0 mass% or less.

(9) 0.05mass%≦Mo≦2.0mass%。
Moは、耐食性を向上させる元素である。このような効果を得るためには、Mo量は、0.05mass%以上が好ましい。
一方、Mo量が過剰になると、粗大な炭窒化物を形成し、鏡面性の低下を招く。従って、Mo量は、2.0mass%以下が好ましい。
(9) 0.05 mass% ≦ Mo ≦ 2.0 mass%.
Mo is an element that improves the corrosion resistance. In order to obtain such an effect, the Mo amount is preferably 0.05 mass% or more.
On the other hand, when the amount of Mo becomes excessive, coarse carbonitrides are formed and the specularity is lowered. Therefore, the Mo amount is preferably 2.0 mass% or less.

(10) 0.01mass%≦W≦0.50mass%。
Wは、焼入れ性を向上させる元素である。このような効果を得るためには、W量は、0.01mass%以上が好ましい。
一方、W量が過剰になると、粗大な炭窒化物を形成し、鏡面性の低下を招く。従って、W量は、0.50mass%以下が好ましい。
(10) 0.01 mass% ≦ W ≦ 0.50 mass%.
W is an element that improves hardenability. In order to obtain such an effect, the W amount is preferably 0.01 mass% or more.
On the other hand, when the amount of W becomes excessive, coarse carbonitrides are formed, resulting in a decrease in specularity. Therefore, the amount of W is preferably 0.50 mass% or less.

(11) 0.01mass%≦V≦0.50mass%。
Vは、窒素の溶解量を増加させる元素である。このような効果を得るためには、V量は、0.01mass%以上が好ましい。
一方、V量が過剰になると、粗大な炭窒化物を形成し、鏡面性の低下を招く。従って、V量は、0.50mass%以下が好ましい。
(11) 0.01 mass% ≦ V ≦ 0.50 mass%.
V is an element that increases the amount of nitrogen dissolved. In order to obtain such an effect, the V amount is preferably 0.01 mass% or more.
On the other hand, when the amount of V becomes excessive, coarse carbonitrides are formed, resulting in a decrease in specularity. Therefore, the V amount is preferably 0.50 mass% or less.

(12) 0.05mass%≦N≦0.40mass%。
Nは、侵入型元素であり、マルテンサイト組織の硬さの上昇に寄与する。また、マトリックス中にNを固溶させると、耐食性が向上する。このような効果を得るためには、N量は、0.05mass%以上が好ましい。なお、シーベルトの法則(Sievert's law)に従って加圧溶解することで、大気溶解以上のNの添加が可能となる。
一方、N量が過剰になると、凝固中の窒素の濃化により、加圧による窒素ガス噴出抑制の限界を超えてしまい、窒素ガスが生じる。従って、N量は、0.40mass%以下が好ましい。
(12) 0.05 mass% ≦ N ≦ 0.40 mass%.
N is an interstitial element and contributes to an increase in the hardness of the martensite structure. Further, when N is dissolved in the matrix, the corrosion resistance is improved. In order to obtain such an effect, the N amount is preferably 0.05 mass% or more. In addition, it is possible to add N more than atmospheric dissolution by dissolving under pressure according to Sievert's law.
On the other hand, when the amount of N becomes excessive, the concentration of nitrogen during solidification exceeds the limit of nitrogen gas ejection suppression by pressurization, and nitrogen gas is generated. Therefore, the amount of N is preferably 0.40 mass% or less.

(13) O≦0.02mass%。
Oは、溶鋼中に不可避的に含まれる元素である。O量が過剰になると、Al、Siと粗大な酸化物を形成して介在物となり、靱性、鏡面性を低下させる。従って、O量は、0.02mass%以下が好ましい。
(14) Al≦0.080mass%。
Alは、脱酸剤として添加される元素である。Al量が過剰になると、粗大な窒化物を形成し、鏡面性を低下させる。従って、Al量は、0.080mass%以下が好ましい。
(13) O ≦ 0.02 mass%.
O is an element inevitably contained in the molten steel. When the amount of O is excessive, coarse oxides are formed with Al and Si to become inclusions, and toughness and specularity are lowered. Therefore, the amount of O is preferably 0.02 mass% or less.
(14) Al ≦ 0.080 mass%.
Al is an element added as a deoxidizer. When the amount of Al becomes excessive, coarse nitrides are formed and the specularity is lowered. Therefore, the Al content is preferably 0.080 mass% or less.

(15) 0.0005mass%≦B≦0.0050mass%。
Bは、粒界を強化させ、焼入れ・サブゼロ処理の際の割れを低減させる元素である。このような効果を得るためには、B量は、0.0005mass%以上が好ましい。
一方、B量が過剰になると、窒化物を形成し、耐食性を低下させる。従って、B量は、0.0050mass%以下が好ましい。
(15) 0.0005 mass% ≦ B ≦ 0.0050 mass%.
B is an element that strengthens the grain boundaries and reduces cracks during quenching and sub-zero treatment. In order to obtain such an effect, the amount of B is preferably 0.0005 mass% or more.
On the other hand, when the amount of B becomes excessive, nitride is formed and corrosion resistance is lowered. Therefore, the amount of B is preferably 0.0050 mass% or less.

本発明に係るマルテンサイト鋼は、添加元素が上述した範囲にあることに加えて、C量及びN量の間に、以下の関係を有していることを特徴とする。
(A) 0.4mass%<C+N<0.7mass%。
(B) C/N≧0.75。
Nは、耐食性と硬さの双方を向上させる元素である。しかしながら、N単独では、十分な硬さが得られない。これに対し、Cを含む鋼中にさらにNを添加すると、焼入れ温度でのCの固溶限が大きくなり、マルテンサイト変態後に高硬度が得られる。このような効果を得るためには、C+N量は、0.4mass%より大きいことが好ましい。
一方、C+N量が過剰になると、粗大な炭窒化物を形成し、鏡面性を低下させる。従って、C+N量は、0.7mass%未満が好ましい。
また、Nに対してCが相対的に少ないと、焼入れ時の硬さが確保できない。従って、C/Nは、0.75以上が好ましい。
The martensitic steel according to the present invention is characterized by having the following relationship between the C content and the N content in addition to the additive element being in the above-described range.
(A) 0.4 mass% <C + N <0.7 mass%.
(B) C / N ≧ 0.75.
N is an element that improves both corrosion resistance and hardness. However, sufficient hardness cannot be obtained with N alone. On the other hand, when N is further added to steel containing C, the solid solubility limit of C at the quenching temperature is increased, and high hardness is obtained after martensitic transformation. In order to obtain such an effect, the C + N amount is preferably larger than 0.4 mass%.
On the other hand, when the amount of C + N becomes excessive, coarse carbonitrides are formed and the specularity is lowered. Therefore, the amount of C + N is preferably less than 0.7 mass%.
On the other hand, if C is relatively small with respect to N, the hardness during quenching cannot be ensured. Therefore, C / N is preferably 0.75 or more.

本発明に係るマルテンサイト鋼は、上述した各種の元素に加えて、以下の第1添加元素を含んでいても良い。
(16) 0.001mass%≦Co≦0.50mass%。
Coは、焼入れ性を向上させるために添加することができる。このような効果を得るためには、Co量は、0.001mass%以上が好ましい。
一方、Coを過剰に添加しても、効果が飽和し、実益がない。従って、Co量は、0.50mass%以下が好ましい。
The martensitic steel according to the present invention may contain the following first additive element in addition to the various elements described above.
(16) 0.001 mass% ≦ Co ≦ 0.50 mass%.
Co can be added to improve hardenability. In order to obtain such an effect, the amount of Co is preferably 0.001 mass% or more.
On the other hand, even if Co is added excessively, the effect is saturated and there is no actual benefit. Therefore, the amount of Co is preferably 0.50 mass% or less.

本発明に係るマルテンサイト鋼は、上述した第1添加元素に加えて、又は、これに代えて、以下のいずれか1以上の第2添加元素をさらに含んでいても良い。
(17) 0.001mass%≦Se≦0.3mass%。
(18) 0.001mass%≦Te≦0.3mass%。
(19) 0.0002mass%≦Ca≦0.10mass%。
(20) 0.001mass%≦Pb≦0.20mass%。
Se、Te、Ca、Pb及びBiは、いずれも被削性を向上させるために添加することができる。このような効果を得るためには、各元素の添加量は、上述した下限値以上が好ましい。
一方、これらの元素を過剰に添加すると、靱性の低下を招く。従って、各元素の添加量は、上述した上限値以下が好ましい。
The martensitic steel according to the present invention may further include any one or more of the following second additive elements in addition to or instead of the first additive element described above.
(17) 0.001 mass% ≦ Se ≦ 0.3 mass%.
(18) 0.001 mass% ≦ Te ≦ 0.3 mass%.
(19) 0.0002 mass% ≦ Ca ≦ 0.10 mass%.
(20) 0.001 mass% ≦ Pb ≦ 0.20 mass%.
Se, Te, Ca, Pb and Bi can all be added to improve machinability. In order to obtain such an effect, the amount of each element added is preferably equal to or greater than the lower limit value described above.
On the other hand, when these elements are added excessively, the toughness is reduced. Therefore, the addition amount of each element is preferably equal to or less than the upper limit value described above.

本発明に係るマルテンサイト鋼は、上述した第1添加元素及び/若しくは第2添加元素に加えて、又は、これらに代えて、以下のいずれか1以上の第3添加元素をさらに含んでいても良い。
(21) 0.001mass%≦Nb≦0.30mass%。
(22) 0.001mass%≦Ta≦0.30mass%。
(23) Ti≦0.20mass%。
(24) 0.001mass%≦Zr≦0.30mass%。
Ti、Nb、Ta及びZrは、いずれもC、Nと結合して炭窒化物を形成し、結晶粒の粗大化抑制に効果がある。このような効果を得るためには、これらの元素の添加量は、上述した下限値以上が好ましい。
一方、これらの元素を過剰に添加すると、被削性を劣化させる。従って、これらの元素の添加量は、上述した上限値以下が好ましい。
The martensitic steel according to the present invention may further include any one or more of the following third additive elements in addition to, or instead of, the first additive element and / or the second additive element described above. good.
(21) 0.001 mass% ≦ Nb ≦ 0.30 mass%.
(22) 0.001 mass% ≦ Ta ≦ 0.30 mass%.
(23) Ti ≦ 0.20 mass%.
(24) 0.001 mass% ≦ Zr ≦ 0.30 mass%.
Ti, Nb, Ta, and Zr all combine with C and N to form carbonitrides, and are effective in suppressing coarsening of crystal grains. In order to obtain such an effect, the addition amount of these elements is preferably equal to or greater than the lower limit value described above.
On the other hand, if these elements are added excessively, the machinability is deteriorated. Therefore, the addition amount of these elements is preferably equal to or less than the upper limit value described above.

本発明に係るマルテンサイト鋼は、通常、溶解・鋳造後、焼入れ処理、サブゼロ処理、及び焼戻し処理(又は、時効処理)を施して使用される。
焼入れ処理は、一般に、鋼材を焼入れ温度又は溶体化温度(1020〜1150℃)に加熱した後、油焼入れ、ガス冷却等の方法を用いて、所定の冷却速度で急冷することにより行う。
また、サブゼロ処理は、焼入れした後、速やかに0℃以下の寒剤(例えば、ドライアイス、ドライアイス+アルコール(−80℃)、炭酸ガス(−130℃)、液体窒素(−196℃)など)を用いて再急冷することにより行う。
さらに、焼戻し処理(又は、時効処理)は、必要に応じてサブゼロ処理が行われた鋼材を200℃〜450℃に加熱することにより行う。
このような処理を施すことにより、焼入れ・サブゼロ処理−焼戻し後の硬さ(HRC)が55以上、58以上、あるいは、59以上であり(すなわち、SUS440Cと同等以上の硬さを有し)、かつ、SUS420J2を超える耐食性を有するマルテンサイト鋼が得られる。また、焼入れ・サブゼロ処理の際の割れが無く、鏡面性の高いマルテンサイト鋼が得られる。
The martensitic steel according to the present invention is usually used after melting and casting, followed by quenching, sub-zero treatment, and tempering (or aging treatment).
The quenching treatment is generally performed by heating a steel material to a quenching temperature or a solution temperature (1020 to 1150 ° C.) and then rapidly cooling it at a predetermined cooling rate using a method such as oil quenching or gas cooling.
In addition, the subzero treatment is performed after quenching, and a cryogen of 0 ° C. or less (for example, dry ice, dry ice + alcohol (−80 ° C.), carbon dioxide (−130 ° C.), liquid nitrogen (−196 ° C.), etc.) It is performed by re-quenching again using
Furthermore, a tempering process (or aging process) is performed by heating the steel material by which the subzero process was performed to 200 to 450 degreeC as needed.
By performing such a treatment, the hardness after quenching / sub-zero treatment-tempering (HRC) is 55 or more, 58 or more, or 59 or more (that is, has a hardness equal to or more than SUS440C), And the martensitic steel which has corrosion resistance exceeding SUS420J2 is obtained. In addition, martensitic steel with high specularity can be obtained without cracking during quenching and sub-zero treatment.

次に、本発明に係るマルテンサイト鋼の作用について説明する。
侵入型原子としてCに加えてNを添加し、かつ、C+N量及びC/N比を最適化すると、焼入れ温度でのCの固溶限を大きくする(すなわち、オーステナイト領域を広くする)ことができる。そのため、マルテンサイト変態後に高硬度が得られる。また、耐食性を向上させる各種の元素を添加することに加えて、マトリックス中に適量のNを固溶させると、耐食性がさらに向上する。さらに、鋼中にBを添加することによって粒界が強化され、焼入れ・サブゼロ処理の際の割れを低減することができる。
Next, the operation of the martensitic steel according to the present invention will be described.
Adding N in addition to C as an interstitial atom and optimizing the amount of C + N and the C / N ratio can increase the solid solubility limit of C at the quenching temperature (that is, widen the austenite region). it can. Therefore, high hardness is obtained after martensitic transformation. Moreover, in addition to adding various elements that improve the corrosion resistance, when an appropriate amount of N is dissolved in the matrix, the corrosion resistance is further improved. Furthermore, the grain boundary is strengthened by adding B to the steel, and cracks during quenching and sub-zero treatment can be reduced.

(実施例1〜16、及び、比較例1〜5、A〜I)
[1. 試料の作製]
表1に示す化学組成の鋼を加圧溶解炉で溶製後、50kgに鋳造し、熱間鍛造により60mm角の棒材を製造した。その後、焼鈍しを行った。得られた棒材から各種試験に供するための試験片を切り出し、表2に示す条件下で、焼入れ、サブゼロ処理(一部の試料を除く)、及び焼戻しを行った。
なお、焼入れは、各温度で保持後、油冷若しくはガス噴霧冷却することにより行った。
また、サブゼロ処理は、液体窒素又はドライアイス+アルコールに浸漬することにより行った。
さらに、焼戻しは、各温度で1時間保持後、空冷を2回繰り返すことにより行った。
(Examples 1-16 and Comparative Examples 1-5, AI)
[1. Preparation of sample]
Steel having the chemical composition shown in Table 1 was melted in a pressure melting furnace, cast to 50 kg, and a 60 mm square bar was manufactured by hot forging. Thereafter, annealing was performed. Test pieces for use in various tests were cut out from the obtained bar material, and were subjected to quenching, sub-zero treatment (excluding some samples), and tempering under the conditions shown in Table 2.
In addition, quenching was performed by oil cooling or gas spray cooling after holding at each temperature.
Further, the sub-zero treatment was performed by immersing in liquid nitrogen or dry ice + alcohol.
Furthermore, tempering was performed by repeating air cooling twice after holding at each temperature for 1 hour.

Figure 2007277639
Figure 2007277639

Figure 2007277639
Figure 2007277639

[2. 試験方法(1)]
[2.1. 硬さ]
棒材から1辺10mmの立方体のブロックを切り出し、表2に示す条件下で熱処理を行った。次いで、測定面と接地面を#400まで研磨し、ロックウェルCスケールにより硬さを測定した。
[2.2. 耐摩耗性]
棒材からφ8mmのピンを2本切り出し、表2に示す条件下で熱処理を行った。熱処理後のピンを用いて、ピンオンディスク摩擦摩耗試験機により耐摩耗性を評価した。ディスクには、S45Cを用いた。試験条件は、すべり速度:1.6m/s、すべり距離:5000m、押し付け加重:10.5kgf、潤滑油なし、とした。
試験前後にピンの重量を測定し、摩耗重量を測定した。さらに、比較鋼3(SUS440C相当)の摩耗量を100として、各試料の摩耗量を相対値で表した。
[2.3. 鏡面性]
棒材から50×45×12の板材を切り出し、表2に示す条件下で熱処理を行った。次いで、試験片の鏡面を機械研磨により#14000まで研磨した。JIS B 0633に従い、試験片の表面粗さを測定し、鏡面性の評価とした。
[2.4. 塩水噴霧]
棒材からφ15×60の丸棒を切り出し、表2に示す条件下で熱処理を行った。次いで、仕上げ加工により表面を#400相当にして、JIS Z 2371に従い、塩水噴霧試験を行った。発錆は、A(発錆なし)、B(僅かに発生)、C(かなり発生)、D(全面腐食)で評価した。
[2.5. 孔食電位]
棒材から12×12×3mmの板を切り出し、表2に示す条件下で熱処理を行った。次いで、得られた試験片を用いて、JIS G 0577「ステンレス鋼の孔食電位測定」に従って、孔食電位Vc100を測定した。
[2.6. 焼割れ性]
棒材から1辺15mmの立方体のブロックを各10個づつ切り出し、表2に示す条件下で熱処理を行った。その後、鏡面まで研磨を行い、カラーチェックにより割れの有無を確認した。
[2. Test method (1)]
[2.1. Hardness]
A cubic block having a side of 10 mm was cut out from the bar and heat-treated under the conditions shown in Table 2. Next, the measurement surface and the ground contact surface were polished to # 400, and the hardness was measured by Rockwell C scale.
[2.2. Abrasion resistance]
Two pins with a diameter of 8 mm were cut out from the bar and heat-treated under the conditions shown in Table 2. Wear resistance was evaluated by a pin-on-disk friction and wear tester using the pins after heat treatment. S45C was used for the disk. The test conditions were: sliding speed: 1.6 m / s, sliding distance: 5000 m, pressing load: 10.5 kgf, no lubricant.
The weight of the pin was measured before and after the test, and the wear weight was measured. Further, the wear amount of each sample was expressed as a relative value with the wear amount of Comparative Steel 3 (equivalent to SUS440C) being 100.
[2.3. Specularity]
A 50 × 45 × 12 plate was cut out from the bar and heat treated under the conditions shown in Table 2. Next, the mirror surface of the test piece was polished to # 14000 by mechanical polishing. According to JIS B 0633, the surface roughness of the test piece was measured to evaluate the specularity.
[2.4. Salt spray]
A round bar of φ15 × 60 was cut out from the bar and heat-treated under the conditions shown in Table 2. Next, the surface was made equivalent to # 400 by finishing, and a salt spray test was performed according to JIS Z 2371. Rusting was evaluated by A (no rusting), B (slightly occurring), C (considerably occurring), and D (entire corrosion).
[2.5. Pitting potential]
A 12 × 12 × 3 mm plate was cut out from the bar and heat treated under the conditions shown in Table 2. Subsequently, the pitting corrosion potential Vc100 was measured according to JIS G 0577 “Measurement of pitting corrosion potential of stainless steel” using the obtained test piece.
[2.6. Sinterability]
Ten cubic blocks each having a side of 15 mm were cut out from the bar and heat-treated under the conditions shown in Table 2. Then, it polished to the mirror surface and the presence or absence of the crack was confirmed by the color check.

[3. 結果(1)]
表3に、試験結果を示す。比較例1は、C+Nが0.4%未満であるために、硬さが低い。比較例2は、C+Nが0.7を超え、かつ、B無添加であるために、硬さ、耐食性は十分であったが、焼割れが生じた。比較例3(SUS440C相当)は、Nを含まず、かつ、C量が過剰であるために、耐食性が低い。比較例4(SUS420J2相当)は、C+Nが0.4未満であり、かつ、Nを含まないので、硬さ、耐食性が低い。さらに、比較例5(SUS630(析出硬化型ステンレス鋼)相当)は、Cuの析出による析出硬化型であるので、硬さが低い。
これに対し、実施例1〜16は、いずれも、C量及びN量が最適化され、かつ、適量のBを含んでいるので、SUS440Cと同等以上の硬さと、SUS420J2を超える耐食性を示した。また、耐摩耗性、鏡面性も、従来鋼と同等以上であり、焼割れも認められなかった。
[3. Result (1)]
Table 3 shows the test results. In Comparative Example 1, since C + N is less than 0.4%, the hardness is low. In Comparative Example 2, since C + N exceeded 0.7 and B was not added, the hardness and corrosion resistance were sufficient, but there were fire cracks. Comparative Example 3 (equivalent to SUS440C) does not contain N, and the amount of C is excessive, so that the corrosion resistance is low. Since Comparative Example 4 (equivalent to SUS420J2) has C + N of less than 0.4 and does not contain N, hardness and corrosion resistance are low. Furthermore, since Comparative Example 5 (equivalent to SUS630 (precipitation hardening type stainless steel)) is a precipitation hardening type by precipitation of Cu, the hardness is low.
On the other hand, all of Examples 1 to 16 showed the hardness equal to or higher than SUS440C and the corrosion resistance exceeding SUS420J2 because the C amount and the N amount were optimized and contained an appropriate amount of B. . In addition, the wear resistance and specularity were equal to or higher than those of conventional steel, and no burning cracks were observed.

Figure 2007277639
Figure 2007277639

[4. 試験方法(2)]
実施例2、4、10において、B添加の効果を明らかにするために、それぞれ、他の成分がほぼ同一であり、かつ、B<0.0001mass%、0.0001mass%≦B<0.0005mass%、0.0005mass%≦B≦0.0050、0.0050mass%<Bの4種類の材料を作製し、焼割れ性及び孔食電位の測定を行った。
なお、焼割れ性及び孔食電位の測定方法は、上述した[2.]と同一とした。また、比較例A〜C、比較例D〜F、及び比較例G〜Iの熱処理条件は、それぞれ、実施例2、4、10と同一とした。
[4. Test method (2)]
In Examples 2, 4, and 10, in order to clarify the effect of B addition, the other components are almost the same, and B <0.0001 mass%, 0.0001 mass% ≦ B <0.0005 mass. %, 0.0005 mass% ≦ B ≦ 0.0050, 0.0050 mass% <B, and the crack resistance and pitting potential were measured.
The method for measuring the cracking resistance and pitting potential has been described above [2. ]. The heat treatment conditions of Comparative Examples A to C, Comparative Examples D to F, and Comparative Examples G to I were the same as those of Examples 2, 4, and 10, respectively.

[5. 結果(2)]
表4に、実施例2、4、10及び比較例A〜Iの成分組成を示す。また、表5に、試験結果を示す。なお、表5中、「測定不能」は、孔食が発生せず、全面腐食したことを意味する。表5より、B量が多くなるほど、耐焼割れ性は向上するが、B量が過剰になると、耐食性が低下することがわかる。
[5. Result (2)]
Table 4 shows component compositions of Examples 2, 4, 10 and Comparative Examples A to I. Table 5 shows the test results. In Table 5, “not measurable” means that pitting corrosion did not occur and the entire surface was corroded. From Table 5, it can be seen that as the amount of B increases, the anti-cracking resistance improves, but when the amount of B becomes excessive, the corrosion resistance decreases.

Figure 2007277639
Figure 2007277639

Figure 2007277639
Figure 2007277639

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明に係るマルテンサイト鋼は、
(1) プラスチック成形用金型(日曜雑貨品、家電製品外装・内装、OA機器外装・内装・部品、携帯電話外装、自動車やオートバイ等の内装部品や外装部品、及びその構造部材など)、ライト類の反射板成型用金型、光学レンズ用金型、食品容器用金型、医療機器用金型、化学容器用金型、精密成型品金型(受板、ペットボトル成形母型、ゴム型類)、樹脂類用金型、導光板用金型、フィルム成型用の金型、
(2) 治工具類、プラスチック成型機内の治工具、ダイス、化学繊維成型ノズル、
(3) 冷間において、鍛造、順送型プレスによって加工する冷間金型や構造部材(冷間金型としては、曲げ型、打ち抜き型、切り刃、転造型、パンチ部材、絞り型、鍛造型、歯車パンチ部材・ダイス、スエージングダイス等が相当する。構造部材としては、塑性加工工具、スクリュー部材、カム部品、シャフト、軸受、歯車、ピン、ボルト、ねじ、ロール、タービンブレード、シールプレート、ゲージ等が該当する)、
などに使用することができる。
The martensitic steel according to the present invention is
(1) Molds for plastic molding (Sunday miscellaneous goods, home appliance exterior / interior, OA equipment exterior / interior / part, mobile phone exterior, interior / exterior parts such as automobiles and motorcycles, and structural members thereof), light Reflector molds, optical lens molds, food container molds, medical device molds, chemical container molds, precision molded product molds (receiving plates, plastic bottle molds, rubber molds) ), Resin molds, light guide plate molds, film molds,
(2) Tools, jigs in plastic molding machines, dies, chemical fiber molding nozzles,
(3) Cold molds and structural members that are processed by cold forging and progressive die press (cold molds include bending dies, punching dies, cutting blades, rolling dies, punch members, drawing dies, forgings. Corresponding to molds, gear punch members / dies, swaging dies, etc. Structural members include plastic working tools, screw members, cam parts, shafts, bearings, gears, pins, bolts, screws, rolls, turbine blades, seal plates , Gauge, etc.)
Can be used for etc.

Claims (4)

0.15mass%≦C<0.70mass%、
0.05mass%≦Si≦1.00mass%、
0.05mass%≦Mn≦1.00mass%、
P≦0.030mass%、
S≦0.030mass%、
0.001mass%≦Cu≦0.50mass%、
0.05mass%≦Ni≦0.50mass%、
11.0mass%≦Cr≦18.0mass%、
0.05mass%≦Mo≦2.0mass%、
0.01mass%≦W≦0.50mass%、
0.01mass%≦V≦0.50mass%、
0.05mass%≦N≦0.40mass%、
O≦0.02mass%、
Al≦0.080mass%、及び、
0.0005mass%≦B≦0.0050mass%
を含み、残部が実質的にFe及び不可避的不純物からなり、
0.4mass%<C+N<0.7mass%、かつ
C/N≧0.75
であるマルテンサイト鋼。
0.15 mass% ≦ C <0.70 mass%,
0.05 mass% ≦ Si ≦ 1.00 mass%,
0.05 mass% ≦ Mn ≦ 1.00 mass%,
P ≦ 0.030 mass%,
S ≦ 0.030 mass%,
0.001 mass% ≦ Cu ≦ 0.50 mass%,
0.05 mass% ≦ Ni ≦ 0.50 mass%,
11.0 mass% ≦ Cr ≦ 18.0 mass%,
0.05 mass% ≦ Mo ≦ 2.0 mass%,
0.01 mass% ≦ W ≦ 0.50 mass%,
0.01 mass% ≦ V ≦ 0.50 mass%,
0.05 mass% ≦ N ≦ 0.40 mass%,
O ≦ 0.02 mass%,
Al ≦ 0.080 mass%, and
0.0005 mass% ≦ B ≦ 0.0050 mass%
And the balance substantially consists of Fe and inevitable impurities,
0.4 mass% <C + N <0.7 mass% and C / N ≧ 0.75
Is martensitic steel.
0.001mass%≦Co≦0.50mass%
をさらに含む請求項1に記載のマルテンサイト鋼。
0.001 mass% ≦ Co ≦ 0.50 mass%
The martensitic steel according to claim 1, further comprising:
0.001mass%≦Se≦0.3mass%、
0.001mass%≦Te≦0.3mass%、
0.0002mass%≦Ca≦0.10mass%、及び、
0.001mass%≦Pb≦0.20mass%
からなる群から選ばれるいずれか1以上をさらに含む請求項1又は2に記載のマルテンサイト鋼。
0.001 mass% ≦ Se ≦ 0.3 mass%,
0.001 mass% ≦ Te ≦ 0.3 mass%,
0.0002 mass% ≦ Ca ≦ 0.10 mass%, and
0.001 mass% ≦ Pb ≦ 0.20 mass%
The martensitic steel according to claim 1 or 2, further comprising at least one selected from the group consisting of:
0.001mass%≦Nb≦0.30mass%、
0.001mass%≦Ta≦0.30mass%、
Ti≦0.20mass%、及び、
0.001mass%≦Zr≦0.30mass%
からなる群から選ばれるいずれか1以上をさらに含む請求項1から3までのいずれかに記載のマルテンサイト鋼。
0.001 mass% ≦ Nb ≦ 0.30 mass%,
0.001 mass% ≦ Ta ≦ 0.30 mass%,
Ti ≦ 0.20 mass%, and
0.001 mass% ≦ Zr ≦ 0.30 mass%
The martensitic steel according to any one of claims 1 to 3, further comprising any one or more selected from the group consisting of:
JP2006106101A 2006-04-07 2006-04-07 Martensite steel Active JP4952888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006106101A JP4952888B2 (en) 2006-04-07 2006-04-07 Martensite steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006106101A JP4952888B2 (en) 2006-04-07 2006-04-07 Martensite steel

Publications (2)

Publication Number Publication Date
JP2007277639A true JP2007277639A (en) 2007-10-25
JP4952888B2 JP4952888B2 (en) 2012-06-13

Family

ID=38679381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106101A Active JP4952888B2 (en) 2006-04-07 2006-04-07 Martensite steel

Country Status (1)

Country Link
JP (1) JP4952888B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2920784A1 (en) * 2007-09-10 2009-03-13 Aubert & Duval Soc Par Actions MARTENSITIC STAINLESS STEEL, PROCESS FOR MANUFACTURING WORKPIECES PRODUCED IN THIS STEEL AND PARTS PRODUCED THEREBY
JP2010077525A (en) * 2008-09-01 2010-04-08 Minebea Co Ltd Martensitic stainless steel and roller bearing
EP2218802A1 (en) * 2009-01-29 2010-08-18 Daido Tokushuko Kabushiki Kaisha Steel for mold for plastic molding and mold for plastic molding
JP2010265487A (en) * 2009-05-12 2010-11-25 Minebea Co Ltd Martensitic stainless steel and rolling bearing
US8071017B2 (en) * 2008-02-06 2011-12-06 Fedchun Vladimir A Low cost high strength martensitic stainless steel
JP2012533688A (en) * 2009-07-21 2012-12-27 アクチボラゲット エス ケイ エフ Bearing steel
CN102925818A (en) * 2012-11-23 2013-02-13 中天钢铁集团有限公司 Corrosion-resistant and high-temperature resistant bearing steel and production process thereof
WO2013146046A1 (en) * 2012-03-26 2013-10-03 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipe for oil wells
US20130309126A1 (en) * 2010-12-27 2013-11-21 Posco Martensitic Stainless Steel Highly Resistant to Corrosion, and Method for Manufacturing Same
JP2014055357A (en) * 2008-09-01 2014-03-27 Minebea Co Ltd Ball bearing, and water pump and reel for fishing having the same
CN104213043A (en) * 2014-08-28 2014-12-17 南京赛达机械制造有限公司 Impact resisting stainless steel for blades of steam turbine and production process thereof
JP5705345B1 (en) * 2014-03-06 2015-04-22 日本高周波鋼業株式会社 High mirror surface plastic mold steel
EP2875926A1 (en) * 2013-11-21 2015-05-27 Böhler Edelstahl GmbH & Co KG Method for the production of plastic moulds made from martensitic chromium steel and plastic mould
CN105200323A (en) * 2015-10-28 2015-12-30 上海大学兴化特种不锈钢研究院 Martensitic stainless steel for medical surgical devices having infection resistance
CN106947922A (en) * 2017-03-13 2017-07-14 浙江工贸职业技术学院 A kind of martensite steel and its structure hardening processing method
JP2017145497A (en) * 2016-02-19 2017-08-24 株式会社ジェイテクト Rolling slide member and rolling shaft bearing using the same, and manufacturing method of rolling slide member
JP2017166066A (en) * 2016-03-11 2017-09-21 大同特殊鋼株式会社 Steel for mold and mold
WO2018008674A1 (en) * 2016-07-06 2018-01-11 日立金属株式会社 Martensitic stainless steel for fuel injection member and fuel injection member using same
JP2018500460A (en) * 2014-11-26 2018-01-11 ポスコPosco High hardness martensitic stainless steel with excellent antibacterial properties and method for producing the same
CN110923579A (en) * 2019-12-11 2020-03-27 上大新材料(泰州)研究院有限公司 High-molybdenum martensitic stainless steel for cutter with toughness and corrosion resistance superior to 9Cr18MoV and method
JP2020050917A (en) * 2018-09-27 2020-04-02 日鉄ステンレス株式会社 Martensitic stainless steel for high hardness and high corrosion resistant applications, excellent in cold workability, and manufacturing method therefor
CN111183240A (en) * 2017-10-05 2020-05-19 尤迪霍尔姆斯有限责任公司 Stainless steel, prealloyed powder obtained by atomizing steel and use of prealloyed powder
CN113446141A (en) * 2020-03-27 2021-09-28 日立安斯泰莫株式会社 Direct injection fuel injection valve
JP7326957B2 (en) 2019-07-22 2023-08-16 大同特殊鋼株式会社 Martensitic stainless steel and fasteners

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112639148B (en) 2018-09-04 2022-11-01 国立大学法人东北大学 Iron-based alloy and method for producing iron-based alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121209A (en) * 1996-10-16 1998-05-12 Sanyo Special Steel Co Ltd High hardness stainless steel excellent in hardenability
JP2000337389A (en) * 1999-03-19 2000-12-05 Nsk Ltd Rolling bearing
JP2001049399A (en) * 1999-08-06 2001-02-20 Hitachi Metals Ltd High hardness martensitic stainless steel excellent in pitting corrosion resistance
JP2005344184A (en) * 2004-06-04 2005-12-15 Daido Steel Co Ltd Martensitic stainless steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121209A (en) * 1996-10-16 1998-05-12 Sanyo Special Steel Co Ltd High hardness stainless steel excellent in hardenability
JP2000337389A (en) * 1999-03-19 2000-12-05 Nsk Ltd Rolling bearing
JP2001049399A (en) * 1999-08-06 2001-02-20 Hitachi Metals Ltd High hardness martensitic stainless steel excellent in pitting corrosion resistance
JP2005344184A (en) * 2004-06-04 2005-12-15 Daido Steel Co Ltd Martensitic stainless steel

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034282A1 (en) * 2007-09-10 2009-03-19 Aubert & Duval Martensitic stainless steel, method for making parts from said steel and parts thus made
JP2010539325A (en) * 2007-09-10 2010-12-16 オウベル・アンド・デュヴァル Martensitic stainless steel, manufacturing method of parts made from this steel, and parts manufactured by this method
FR2920784A1 (en) * 2007-09-10 2009-03-13 Aubert & Duval Soc Par Actions MARTENSITIC STAINLESS STEEL, PROCESS FOR MANUFACTURING WORKPIECES PRODUCED IN THIS STEEL AND PARTS PRODUCED THEREBY
US8071017B2 (en) * 2008-02-06 2011-12-06 Fedchun Vladimir A Low cost high strength martensitic stainless steel
JP2014055357A (en) * 2008-09-01 2014-03-27 Minebea Co Ltd Ball bearing, and water pump and reel for fishing having the same
JP2010077525A (en) * 2008-09-01 2010-04-08 Minebea Co Ltd Martensitic stainless steel and roller bearing
EP2218802A1 (en) * 2009-01-29 2010-08-18 Daido Tokushuko Kabushiki Kaisha Steel for mold for plastic molding and mold for plastic molding
JP2010265487A (en) * 2009-05-12 2010-11-25 Minebea Co Ltd Martensitic stainless steel and rolling bearing
JP2012533688A (en) * 2009-07-21 2012-12-27 アクチボラゲット エス ケイ エフ Bearing steel
US9731345B2 (en) * 2010-12-27 2017-08-15 Posco Martensitic stainless steel highly resistant to corrosion, and method for manufacturing same
US20130309126A1 (en) * 2010-12-27 2013-11-21 Posco Martensitic Stainless Steel Highly Resistant to Corrosion, and Method for Manufacturing Same
US9783876B2 (en) 2012-03-26 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Stainless steel for oil wells and stainless steel pipe for oil wells
WO2013146046A1 (en) * 2012-03-26 2013-10-03 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipe for oil wells
JP5348354B1 (en) * 2012-03-26 2013-11-20 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipes for oil wells
AU2013238482B2 (en) * 2012-03-26 2015-07-16 Nippon Steel Corporation Stainless steel for oil wells and stainless steel pipe for oil wells
CN102925818A (en) * 2012-11-23 2013-02-13 中天钢铁集团有限公司 Corrosion-resistant and high-temperature resistant bearing steel and production process thereof
CN104651745A (en) * 2013-11-21 2015-05-27 百乐特殊钢有限两合公司 Method for producing plastic molds made from martensitic chromium steel and plastic mold
EP2875926A1 (en) * 2013-11-21 2015-05-27 Böhler Edelstahl GmbH & Co KG Method for the production of plastic moulds made from martensitic chromium steel and plastic mould
WO2015132977A1 (en) * 2014-03-06 2015-09-11 日本高周波鋼業株式会社 Steel for mold for plastic with high specularity
JP5705345B1 (en) * 2014-03-06 2015-04-22 日本高周波鋼業株式会社 High mirror surface plastic mold steel
CN106460108A (en) * 2014-03-06 2017-02-22 日本高周波钢业株式会社 Steel for mold for plastic with high specularity
CN104213043A (en) * 2014-08-28 2014-12-17 南京赛达机械制造有限公司 Impact resisting stainless steel for blades of steam turbine and production process thereof
JP2018500460A (en) * 2014-11-26 2018-01-11 ポスコPosco High hardness martensitic stainless steel with excellent antibacterial properties and method for producing the same
CN105200323A (en) * 2015-10-28 2015-12-30 上海大学兴化特种不锈钢研究院 Martensitic stainless steel for medical surgical devices having infection resistance
US20190249718A1 (en) * 2016-02-19 2019-08-15 Jtekt Corporation Rolling slide member, rolling bearing using same, and method for manufacturing rolling slide member
JP2017145497A (en) * 2016-02-19 2017-08-24 株式会社ジェイテクト Rolling slide member and rolling shaft bearing using the same, and manufacturing method of rolling slide member
US11268572B2 (en) 2016-02-19 2022-03-08 Jtekt Corporation Rolling slide member, rolling bearing using same, and method for manufacturing rolling slide member
US11215230B2 (en) 2016-02-19 2022-01-04 Jtekt Corporation Rolling slide member, rolling bearing using same, and method for manufacturing rolling slide member
WO2017141928A1 (en) * 2016-02-19 2017-08-24 株式会社ジェイテクト Rolling slide member, rolling bearing using same, and method for manufacturing rolling slide member
JP2017166066A (en) * 2016-03-11 2017-09-21 大同特殊鋼株式会社 Steel for mold and mold
JPWO2018008674A1 (en) * 2016-07-06 2018-07-12 日立金属株式会社 Martensitic stainless steel for fuel injection member and fuel injection member using the same
WO2018008674A1 (en) * 2016-07-06 2018-01-11 日立金属株式会社 Martensitic stainless steel for fuel injection member and fuel injection member using same
CN106947922A (en) * 2017-03-13 2017-07-14 浙江工贸职业技术学院 A kind of martensite steel and its structure hardening processing method
CN111183240B (en) * 2017-10-05 2022-09-13 尤迪霍尔姆斯有限责任公司 Stainless steel, prealloyed powder obtained by atomizing steel and use of prealloyed powder
KR20200078500A (en) 2017-10-05 2020-07-01 우데홀름스 악티에보라그 Stainless steel, prealloy powder obtained by spraying the steel and use of the prealloy powder
JP2020536169A (en) * 2017-10-05 2020-12-10 ウッデホルムズ アーベー Use of stainless steel, pre-alloy powder and pre-alloy powder obtained by atomizing stainless steel
CN111183240A (en) * 2017-10-05 2020-05-19 尤迪霍尔姆斯有限责任公司 Stainless steel, prealloyed powder obtained by atomizing steel and use of prealloyed powder
US11591678B2 (en) 2017-10-05 2023-02-28 Uddeholms Ab Stainless steel
JP7249338B2 (en) 2017-10-05 2023-03-30 ウッデホルムズ アーベー Use of stainless steel, pre-alloyed powder obtained by atomizing stainless steel, and pre-alloyed powder
KR102622335B1 (en) * 2017-10-05 2024-01-08 우데홀름스 악티에보라그 Stainless steel, pre-alloy powder obtained by spraying the steel, and use of the pre-alloy powder
JP2020050917A (en) * 2018-09-27 2020-04-02 日鉄ステンレス株式会社 Martensitic stainless steel for high hardness and high corrosion resistant applications, excellent in cold workability, and manufacturing method therefor
JP7326957B2 (en) 2019-07-22 2023-08-16 大同特殊鋼株式会社 Martensitic stainless steel and fasteners
CN110923579A (en) * 2019-12-11 2020-03-27 上大新材料(泰州)研究院有限公司 High-molybdenum martensitic stainless steel for cutter with toughness and corrosion resistance superior to 9Cr18MoV and method
CN113446141A (en) * 2020-03-27 2021-09-28 日立安斯泰莫株式会社 Direct injection fuel injection valve
JP2021156236A (en) * 2020-03-27 2021-10-07 日立Astemo株式会社 Direct injection type fuel injection valve
US11644001B2 (en) 2020-03-27 2023-05-09 Hitachi Astemo, Ltd. Direct injection fuel injection valve

Also Published As

Publication number Publication date
JP4952888B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4952888B2 (en) Martensite steel
RU2309190C2 (en) Steel blank for manufacture of mold for pressure molding or for manufacture of parts subjected to metalworking
KR20100135205A (en) Hot work tool steel and steel product using the same
JP2007009321A (en) Steel for plastic molding die
KR101930860B1 (en) Stainless hot-rolled steel sheet
KR20100135206A (en) Hot work tool steel and steel product using the same
JP2008056983A (en) Precipitation hardening type stainless steel die
JP2002256397A (en) High hardness martensitic stainless steel having excellent corrosion resistance
JP2007197784A (en) Alloy steel
JP2008169411A (en) Steel for die materials
JP2007197746A (en) Tool steel
KR20140110720A (en) Mold steel for die casting and hot stamping having the high thermal conductivity and method thereof
CN1918315A (en) Steel alloy for cutting details
JP5186878B2 (en) Steel for plastic molds and plastic molds
KR20200103821A (en) Steel for parts subjected to carburization treatment
TWI435938B (en) High-characteristic steel for solid parts
CN101634002B (en) Free-cutting alloy tool steel
US6893608B2 (en) Steel for plastic molds and process for their heat treatment
EP2915895A2 (en) Steel for mold
JP2008291307A (en) Method for manufacturing die, method for manufacturing steel for die, and method for manufacturing die using steel for die
JP2001123244A (en) Steel for large-sized bearing and large-sized bearing parts
JP2014025103A (en) Hot tool steel
JP2007063658A (en) Martensitic stainless steel
EP3569719B1 (en) Steel for die-casting die, die-casting die and use of the die-casting die
KR20160041869A (en) Mold steel for die casting and hot stamping having the high thermal conductivity and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Ref document number: 4952888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3