JP2010263064A - 薄膜トランジスタ、液晶表示装置及びこれらの製造方法 - Google Patents

薄膜トランジスタ、液晶表示装置及びこれらの製造方法 Download PDF

Info

Publication number
JP2010263064A
JP2010263064A JP2009112496A JP2009112496A JP2010263064A JP 2010263064 A JP2010263064 A JP 2010263064A JP 2009112496 A JP2009112496 A JP 2009112496A JP 2009112496 A JP2009112496 A JP 2009112496A JP 2010263064 A JP2010263064 A JP 2010263064A
Authority
JP
Japan
Prior art keywords
film transistor
thin film
semiconductor layer
manufacturing
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009112496A
Other languages
English (en)
Inventor
Hideo Kawano
英郎 川野
Kenta Kamoshita
健太 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Videocon Global Ltd
Original Assignee
Videocon Global Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Videocon Global Ltd filed Critical Videocon Global Ltd
Priority to JP2009112496A priority Critical patent/JP2010263064A/ja
Publication of JP2010263064A publication Critical patent/JP2010263064A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】In、Ga及びZnを含むアモルファス酸化物からなる半導体層の高導電率化工程やソース電極及びドレイン電極のエッチング工程において、半導体層にダメージを与えないような薄膜トランジスタ及びこれを用いた液晶表示装置を提供する。
【解決手段】In、Ga及びZnを含むアモルファス酸化物からなる半導体層を備え、ゲート電極から見てソース領域又はドレイン領域の向こう側にソース電極又はドレイン電極が形成されてなるトップゲート型薄膜トランジスタを構成する。このような構造を持つ薄膜トランジスタではドレイン電極等の金属層のエッチングによって半導体層がダメージを受けることはない。また、紫外線の表面照射によって照射された半導体層部分を高導電率化するため、半導体層へのダメージが生じない。従って、高導電率化工程及びエッチング工程のいずれにおいても半導体層はダメージを受けることがないため信頼性が向上する。
【選択図】図3

Description

本発明は、薄膜トランジスタ、液晶表示装置及びこれらの製造方法に関し、特に、金属酸化物系のアモルファス半導体薄膜を用いた薄膜トランジスタ、液晶表示装置及びその製造方法に関する。
近年、金属酸化物系半導体薄膜を用いた半導体素子が注目されている。この薄膜は、低温で成膜することができ、また、可視光に対して透明な膜を形成できること等の特徴を有しており、プラスチック基板やフィルムなどの透明性基板上にフレキシブルで透明な薄膜トランジスタを形成することが可能である(特許文献1)。
また、薄膜トランジスタの活性層に用いる酸化物半導体膜として、In、Ga及びZnを含む酸化物から構成される半絶縁性の透明なアモルファス薄膜が知られており、これをチャネル層に用いるとともに、電気伝導度の大きなInGaZnO(ZnO)の層にAu膜を積層したものをソース電極及びドレイン電極として用いたトップゲート型薄膜トランジスタの構造が開示されており、さらに、アモルファスInGaZnO 薄膜トランジスタはアモルファスシリコン薄膜トランジスタに比べて格段に大きな移動度を有することが開示されている(特許文献2)。そして、このような優れた特性を備える薄膜トランジスタを液晶表示装置に利用すべく、現在活発な研究開発が行われている。なお、本明細書においては、In、Ga及びZnを含む酸化物を「IGZO」と呼ぶこととする。
特開2000−150900号公報 特開2006−165529号公報
IGZO薄膜を例えばガラス基板上に成膜するには、一般に、スパッタリング法が用いられている。IGZO薄膜の形成にスパッタリング方式を用いることにより、一般にアモルファスのIGZO薄膜を形成することができ、そして、その成膜時のガス流量や成膜雰囲気中の酸素分圧等の成膜条件を制御することで成膜の導電率やキャリア濃度、移動度等を制御することができる。
しかしながら、これらの成膜条件の範囲は非常に狭い上に、得られる導電率や移動度は限られた範囲のものに留まっており、移動度や導電率を飛躍的に向上することは困難である。そのため、スパッタリング法で成膜したアモルファスIGZO薄膜の導電率が低いためにこれを薄膜トランジスタの半導体層として使用できない場合には、例えば、移動度や導電率を飛躍的に向上させるために、レーザーアニールによる結晶化やイオンドーピング等の方法が考えられている。しかし、いずれの方法もIGZO半導体層にダメージを与えたり製造工程が複雑化したり高価な装置を必要とするため、より適切な方法によって半導体層の導電率を制御できる製造方法が求められている。
また、IGZOを半導体層とするトップゲート型の薄膜トランジスタであって金属からなるソース電極及びドレイン電極が半導体層の直上に形成された構造を備える薄膜トランジスタを形成する場合には、金属層をエッチングする際にIGZO半導体層がさらにダメージを受けるという不具合がある。即ち、このような金属層からなるソース電極及びドレイン電極がIGZO半導体層の直上に形成された構造を備えるトップゲート型薄膜トランジスタ、言い換えれば、ゲート電極から見て金属層からなるソース電極及びドレイン電極がIGZO半導体層の手前側にあるような構造のトップゲート型薄膜トランジスタにおいては、このような金属層に対してウェットエッチングを施すと、チャネル領域上の金属層がエッチングされるだけでなくチャネル領域となるIGZO半導体層もエッチングされてしまい、IGZO半導体層の層厚が薄くなったりエッチングの際にエッチング液の濃度等の局所的な不均一によって半導体層自体が除去されたりする。
AlやMoのような金属層のウェットエッチングに用いるエッチャントは、一部のエッチャントを除き、一般にIGZOに対してもエッチャントとして機能するため、このようなことが生じやすい。また、金属層からなるソース電極及びドレイン電極に対してドライエッチング法でエッチングをするという方法もあるが、薄膜トランジスタの半導体層のチャネル領域がプラズマによってダメージを受け薄膜トランジスタのスレッシュホールド電圧が大きくシフトしたり薄膜トランジスタのオフ電流(Ioff)の値が増加したりするというような薄膜トランジスタの特性変動が生じ、信頼性上の問題がある。
このように、IGZOを半導体層とするトップゲート型の薄膜トランジスタを形成するためには、IGZO半導体層の導電率を制御においても、また、エッチングにおいても、半導体層、特にチャネル領域にダメージを与えないような製造方法が必要となる。本発明は以上の点に鑑みてなされたものであり、本発明の目的は、IGZOを半導体層とするトップゲート型薄膜トランジスタ及びこれを用いた液晶表示装置の製造方法であって、半導体層へのダメージを生じさせることなく半導体層の導電率を制御することが可能な方法を提供することにある。また、本発明の目的は、エッチングによってもチャネル領域へのダメージが生じないような方法を提供することにある。さらに、本発明の目的は、このようなダメージを受けない信頼性の高い薄膜トランジスタ及びこれを用いた液晶表示装置を提供することにある。
本発明の薄膜トランジスタの製造方法は、基板上に金属層からなるドレイン電極を形成する第1工程と、In、Ga及びZnを含むアモルファス酸化物からなる薄膜トランジスタの半導体層をその一部が該ドレイン電極の一部を覆うように形成する第2工程と、該半導体層の上にゲート絶縁膜を形成する第3工程と、該ゲート絶縁膜の上に遮光性を備えるゲート電極を形成する第4工程と、紫外線を該ゲート電極の側から該半導体層に向けて照射することにより照射前よりも導電率の高いアモルファスのソース領域及びドレイン領域を構成する第5工程とを含むことを特徴とする。かかる構成をとることにより、ゲート電極から見て金属層からなるドレイン電極がIGZO半導体層の向こう側にあるような構造のトップゲート型の薄膜トランジスタを形成することができる。
即ち、本発明は、薄膜トランジスタの半導体層の材料としてIn、Ga及びZnを含む透明なアモルファス酸化物を用いているため、これに紫外線を照射することにより、半導体層を導電材料並みに高導電率化することができる。そして、このような紫外線を半導体層の一部の領域に選択的に照射することにより、その照射された領域のみ導電率を高めることができる。従って、半導体層のうちソース領域及びドレイン領域となるべき領域に紫外線を選択的に照射することにより、電極として機能する程度の高い導電率を備えた透明なソース領域及びドレイン領域を構成することができる。一方、半導体層のうち紫外線の照射がされてなかった領域の導電率は、照射前の導電率がそのまま維持されることになるため、薄膜トランジスタのチャネル領域となるべき領域には遮光性のあるゲート電極をシャドーマスクとして紫外線が照射されないようにすることにより、その領域は薄膜トランジスタのチャネルとして使用できる導電率を備える領域となる。その結果、このような紫外線照射工程を経てセルフアライン構造を備える薄膜トランジスタが形成される。そして、紫外線を照射するだけであるため、レーザー光照射やイオンドーピングを行う場合のように半導体層にダメージを与えることなく、薄膜トランジスタの半導体層の導電率の制御を行うことができる。
そして、半導体層の一部、即ちドレイン領域の一部はドレイン電極の上に形成されるため、本発明の薄膜トランジスタは、ゲート電極から見て金属層からなるドレイン電極が半導体層の向こう側にあるような構造のトップゲート型薄膜トランジスタとなる。そして、半導体層は、金属層の直上に成膜された後、所定の形状にパターニングすることにより形成される。このパターニングにおいては、IGZOの半導体層の直上には金属層は存在しないため金属用のエッチャントを使用する必要がなく、従って金属用エッチャントがIGZOの半導体層にさらされることがない。また、ドライエッチングも使用する必要がないため、IGZO半導体層の、特にチャネル領域がプラズマによるダメージを受けることはない。このように、IGZOを半導体層とするトップゲート型薄膜トランジスタにおいて、半導体層へのダメージを生じさせることなく半導体層の導電率を制御することが可能となり、また、エッチングによってもチャネル領域へのダメージが生じない。そのため、信頼性の高い薄膜トランジスタを製造することができる。
本発明の薄膜トランジスタの製造方法は、前記ソース領域又は前記ドレイン領域の前記紫外線の照射後の抵抗は、前記薄膜トランジスタのオン抵抗よりも低いことを特徴とする。かかる構成をとることにより、ソース領域全体又はドレイン領域全体の抵抗による電圧降下を、例えば液晶表示装置であれば画像信号等の信号レベルの低下を小さくすることができる。本発明の薄膜トランジスタの製造方法は、前記半導体層のチャネル領域の不純物濃度と前記ソース領域又は前記ドレイン領域の不純物濃度とが同じであることを特徴とする。かかる構成をとることにより、従来のように、チャネル領域よりも導電率の高いソース領域又はドレイン領域を形成するにあたってイオンドーピング等の処理をする必要がないため、製造設備の合理化に寄与する。また、イオンドーピングによるダメージを回避することができるため、薄膜トランジスタの信頼性の向上につながる。
本発明の薄膜トランジスタの製造方法は、前記紫外線を照射する光源は、面光源であることを特徴とする。本発明は、かかる構成をとるため、基板全体をカバーするような広い照射面積に対して一度に紫外線を一様に照射することができる。また、面光源を使用するため、光線スポットの狭小なレーザー光源の場合のように基板をスキャンする必要がなく、スキャンによる半導体層の二重照射も生じない。そのため、均一な照射エネルギーでもって紫外線を照射することができ、その結果、液晶表示装置のように大面積の表示画面全体にわたって多数の薄膜トランジスタを形成する場合に、工程の簡素化、量産性の向上のみならず、薄膜トランジスタの特性のばらつきを抑えて均一なものとすることができ、輝度ばらつきや輝度むらがなく表示品質の高い表示装置を得ることができる。
本発明の薄膜トランジスタの製造方法は、前記紫外線を照射する光源は、水銀ランプであることを特徴とする。本発明は、かかる構成をとるため、レーザー光源ではなく、特定の範囲の波長の紫外線を照射するランプを用いることができる。従って、レーザー光による基板の発熱等による不具合を回避することができ、また、プラスチックフィルム基板を使用することが可能となる。また、レーザー光照射装置に比べて安価な紫外線照射装置を使用できる。
本発明の薄膜トランジスタの製造方法は、前記紫外線の波長は、270nmから450nmまでの範囲にわたることを特徴とする。このような波長の範囲の紫外線を照射することで、紫外線が照射されたソース領域及びドレイン領域の導電率を適正な程度にまで向上することができる。本発明の薄膜トランジスタの製造方法は、前記第5工程における紫外線の積算照射エネルギー密度は、導電率を10倍(但し、0<n≦6)に増加させる場合に、(309・n)ないし(392・n)J/cmとすることを特徴とする。本発明は、かかる構成をとるため、目的とする導電率を設定すれば紫外線の積算照射エネルギー密度、照射時間等をあらかじめ計算することができる。従って、成膜条件が厳しいために成膜直後の導電率が好ましくない値であっても、成膜後に導電率を容易に制御することができる。
本発明の薄膜トランジスタの製造方法は、前記第5工程における紫外線の積算照射エネルギー密度は、1620J/cm以上であることを特徴とする。本発明は、かかる構成をとるため、ソース領域又はドレイン領域の導電率を電極として機能するのに十分な導電率(例えば、約10−1S/m以上)にまで高めることができる。本発明の薄膜トランジスタの製造方法は、前記第5工程における紫外線の照射エネルギー密度は、100mJ/sec・cmであることを特徴とする。本発明は、かかる構成をとるため、この照射エネルギー密度であれば、他の用途に用いられているような一般的な紫外線照射装置を使用して照射を行うことができるため、製造設備の合理化を図ることができる。
本発明の薄膜トランジスタの製造方法は、前記第2工程と前記第4工程との間に、さらに、前記半導体層に紫外線を照射して紫外線照射前よりも導電率の高いアモルファスの半導体層を構成するサブ紫外線照射工程を含むことを特徴とする。この工程を追加することにより、半導体層の成膜後の導電率が低いためにそのままでは薄膜トランジスタのチャネル領域の導電率としては好ましくないような場合でも、このようなサブ紫外線照射工程によってその導電率をチャネル領域として適切な導電率にまで向上させることができ、歩留まりの向上を図ることができる。本発明の薄膜トランジスタの製造方法は、前記サブ紫外線照射工程における紫外線の積算照射エネルギー密度を148ないし1012J/cmとすることを特徴とする。このような積算照射エネルギー密度をえらぶことにより、チャネル領域の導電率を適切なもの(例えば、約10−4ないし10−3S/m)にすることができる。
本発明の薄膜トランジスタの製造方法は、前記半導体層を形成する前記第2工程は、前記アモルファス酸化物を成膜した後、蓚酸を含むエッチャントを用いたウェットエッチングによってパターニングする工程を含むことを特徴とする。かかる構成をとることにより、半導体層は、アモルファスIGZOを成膜した後、これに対して蓚酸によるウェットエッチングを施すことにより所定の形状にパターニングされる。IGZOの化学的性質がITO(インジウムスズ酸化物:Indium Tin Oxide)の化学的性質に似ていることから、紫外線の照射の前後にかかわらず、蓚酸等のITO用のエッチャントを使用することができる。また、蓚酸は、AlやMo等の金属層をエッチングすることなくIGZOをエッチングすることができる。このようなウェットエッチングを施しても、IGZOの半導体層の直上には金属層は存在しないため金属用のエッチャントを使用する必要がなく、従って金属用エッチャントがIGZOの半導体層にさらされることがない。また、ドライエッチングも使用する必要がないため、IGZO半導体層の、特にチャネル領域がプラズマによるダメージを受けることはない。
従って、従来構造のトップゲート型薄膜トランジスタであってゲート電極から見て金属層からなるソース電極又はドレイン電極がIGZO半導体層の手前側にあるような構造のトップゲート型薄膜トランジスタのように、金属層に対してウェットエッチングを施すと、チャネル領域上においてはチャネル領域上の金属層がエッチングされるだけでなくチャネル領域となるIGZO半導体層もエッチングされてしまい、IGZOの半導体層の層厚が薄くなったりエッチング液の濃度等の局所的な不均一によって半導体層自体が除去されたりする、といった不具合を生じない。また、金属層からなるソース電極及びドレイン電極に対してドライエッチング法でエッチングをする場合のように、薄膜トランジスタの半導体層のチャネル領域がプラズマによってダメージを受けスレッシュホールド電圧が大きくシフトしたりオフ電流(Ioff)の値が増加したりするというような薄膜トランジスタの特性変動も生じない。そのため、信頼性の高い薄膜トランジスタを製造することができる。
本発明の薄膜トランジスタは、基板上に形成された金属からなるドレイン電極と、チャネル領域と紫外線の照射によって高導電率化されたドレイン領域及びソース領域とからなり該ドレイン領域の一部が該ドレイン電極の一部を覆うように形成されIn、Ga及びZnを含むアモルファス酸化物からなる薄膜トランジスタの半導体層と、該半導体層の上に形成されたゲート絶縁膜と、該ゲート絶縁膜の上に形成された遮光性を備えるゲート電極とを含むことを特徴とする。
本発明の液晶表示装置の製造方法は、対向する基板間に液晶を挟持する液晶表示装置の製造方法であって、前記の薄膜トランジスタの製造方法によって薄膜トランジスタを形成する工程と、前記ゲート電極の上に絶縁層を形成する工程と、前記ソース領域と導通する画素電極を該絶縁層の上に形成する工程とを含むことを特徴とする。本発明の液晶表示装置は、対向する基板間に液晶を挟持する液晶表示装置であって、前記の薄膜トランジスタと、前記ゲート電極の上に形成された絶縁層と、前記ソース領域と導通し該絶縁層の上に形成された画素電極とを含むことを特徴とする。
かかる構成を備えるため、本発明は、IGZOを半導体層とするトップゲート型薄膜トランジスタ及びこれを用いた液晶表示装置の製造方法であって、半導体層へのダメージを生じさせることなく半導体層の導電率を制御することが可能な方法を提供することができる。また、エッチングによってもチャネル領域へのダメージが生じないような方法を提供することができる。さらに、このようなダメージを受けない信頼性の高い薄膜トランジスタ及びこれを用いた液晶表示装置を提供することができる。
本発明の一実施形態である液晶表示装置の概略の構成図である。 本発明の一実施形態である画素部の概略の平面図である。 本発明の一実施形態である画素部の製造工程の説明図である。 本発明のアモルファスIGZO半導体層の導電率と紫外線照射時間との関係を示すグラフである。 本発明の一実施形態の変形例である画素部の概略の断面図である。
以下、図面を参照しながら本発明の実施の形態を説明する。なお、便宜上、本明細書においては、薄膜トランジスタのソース及びドレインのうち、負荷(例えば、液晶)を接続する側をソースと呼び、他方をドレインと呼ぶこととするが、本発明は、ソースをドレインと呼び、またドレインをソースと呼んでもその作用及び効果は同じである。
[全体構成]
本実施の形態にかかる液晶表示装置は、セル・アレイ基板と対向基板との間に液晶を挟持した液晶パネルを含んで構成される。図1は、本実施の形態にかかるアクティブマトリックス型の液晶表示装置の液晶パネル部の模式的な概略の構成図である。図1(a)は、セル・アレイ基板101の模式的な平面図であり、図1(b)は、画素部10及びその周辺の各部材の機能を説明するための等価回路図である。なお、本明細書において説明に用いる各図面では、便宜上、縮尺又は縦横比等を適宜変更している。
セル・アレイ基板101には、X(行)方向に延び走査線外部端子74と画素部10内のスイッチング素子である薄膜トランジスタのゲート電極とに接続された複数本の走査線72が形成されている。走査線72を介して、薄膜トランジスタを選択的にスイッチングするための信号である走査信号が薄膜トランジスタに供給される。なお、複数本の走査線72に対応する複数の走査線外部端子74がセル・アレイ基板101の端部近くにY方向に沿って設けられている。走査線外部端子74は、図示しないACF(異方性導電体)等を介して走査線ドライバーIC等の走査線駆動装置70の図示しない所定の端子に接続される。
また、セル・アレイ基板101には、Y(列)方向に延び信号線外部端子84と画素部10内の薄膜トランジスタのドレイン電極とに接続された複数本の信号線82が形成されている。信号線82を介して、走査信号によって選択された薄膜トランジスタに画像信号が供給される。なお、複数本の信号線82に対応する複数の信号線外部端子84がセル・アレイ基板101の端部近くにX方向に沿って設けられている。信号線外部端子84は、図示しないACF等を介して信号線ドライバーIC等の信号線駆動装置80の図示しない所定の端子に接続される。なお、上記走査線駆動装置70や信号線駆動装置80は、セル・アレイ基板101上に配設されていてもよい。
そして、セル・アレイ基板上の走査線72と信号線82の各交差に対応して、走査線72と信号線82とによって区画された領域に画素部10がマトリクス状に配列されている。画素部10は薄膜トランジスタ20及び画素電極32を含んで構成される(図1(b))。薄膜トランジスタ20のゲート電極12は走査線72に、ドレイン領域16はドレイン電極26を介して信号線82に、それぞれ電気的に接続され導通している。ソース領域15は、画素電極32と電気的に接続され導通している。薄膜トランジスタ20の詳細は後述する。
コモン電極(対向電極)34は、画素電極32と対向するように形成され、各画素部に共通な透明電極である。コモン電極34は、例えば、TN(Twisted Nematic)モード又はVA(Vertical Alignment)モード等で動作する液晶表示装置においては、図示しない対向基板上にパターニング形成される。また、例えば、IPS(In-Plane Switching)モード又はFFS(Fringe Field Switching)モードで動作する液晶表示装置においては、コモン電極34は、セル・アレイ基板101上の各画素部のそれぞれに対応してセル・アレイ基板上にパターニング形成される。コモン電極34には共通電極線(コモン電極線)35を介して所定の電圧のコモン信号が印加される。画素電極32と対向電極34との間には電気光学部材である液晶99が配設され、セル・アレイ基板101と図示しない対向基板とが液晶99を挟持する構造をなしている。なお、参照番号38及び39は、それぞれ、ゲート・ソース間寄生容量Cgs及びゲート・ドレイン間寄生容量Cgdである。また、参照番号27は保持容量Csであり、保持容量線28を介して所定の電圧の保持容量信号が印加される。なお、図1(a)においては、保持容量線28の図示を省略している。
このような画素部10を備える液晶表示装置100の動作は、例えば次のとおりである。走査線駆動装置70は、液晶表示装置100に入力される図示しない画像信号の同期信号その他の情報に基づいて、信号線82からの画像信号を書き込むべき画素部10を行単位で選択する走査信号を出力する。信号線駆動装置80は、同じく画像信号の輝度情報等に基づいて、走査信号に同期して動作し、走査期間に選択された画素部10に画像信号を供給する。そして、選択された画素部10内にある薄膜トランジスタ20を介して、信号線駆動装置80からの画像信号に応じた電圧が画素電極32に印加される。即ち、薄膜トランジスタ20のソース領域15から液晶の光変調を制御する信号である画像信号が画素電極32に供給される。これによって、画素電極32とコモン電極34とからなる一対の電極の間に電界が生じ、この電界によって液晶99の分子の向き(液晶分子の配向)が制御される。そして、この配向変化を利用して液晶を透過する光を変調することで画像等の表示作用が行われる。このようにして液晶表示装置が構成される。
[画素部及びその周辺]
次に、図2及び図3(c)を参照しながら、スイッチング素子としてトップゲート型薄膜トランジスタを用いた画素部及びその周辺の構成を説明する。図2は、画素電極32の形成が終了した時の本実施の形態にかかる画素部10及びその周辺を含む概略の平面図である。図3(c)は、図2のA−A’線における矢視方向の概略の断面構成図である。なお、図2においては、わかりやすく描くためにゲート絶縁膜13及びパッシベーション層19を取り除いて記載しており、また、見る層を適宜変更している。
画素部10は、薄膜トランジスタ20及び画素電極32を含んで構成される。薄膜トランジスタ20は、走査線72と信号線82との交差部の近傍に設けられる。また、薄膜トランジスタ20は、半導体層14と、半導体層14の上に形成された第1絶縁層であるゲート絶縁膜13と、半導体層14の一部であるチャネル領域17の上にゲート絶縁膜13を介して形成されたゲート電極12と、半導体層14の一部でありチャネル領域17を挟んで形成されているソース領域15及びドレイン領域16を含んで構成される。また、ゲート電極12の上には第2絶縁層であるパッシベーション層19が形成され、パッシベーション層19の上には、パッシベーション層19及びゲート絶縁膜13を貫通するコンタクトホール23を介してソース領域15と導通する画素電極32が形成されている。従って、画素電極32及びソース領域15は互いに導通している。
半導体層14は、その材質としては、In、Ga及びZnを含む酸化物(IGZO)からなる透明なアモルファス半導体であることが望ましい。半導体層14は、ソース領域15、ドレイン領域16及びチャネル領域17の三つの領域を含み、これらが一体に、即ち、これら3つの領域が互いに離間されることなく島状の一個の成形物として形成されている。半導体層14の成膜時にはこれらの3つの領域のいずれにおいてもその導電率は同じであるが、後述するように半導体層の成膜後の所定の工程において紫外線を選択的に照射することにより、チャネル領域17の導電率よりもドレイン領域16及びソース領域15の導電率が高くなるように構成される。紫外線照射と導電率との関係についても詳細は後述する。
ゲート電極12は、遮光性の金属層により形成されており、各画素部10において走査線72からチャネル領域17に向けて枝状に分岐したような形状でチャネル領域17の上に形成されており、走査線72はゲート電極12と導通している。ドレイン電極26は、信号線82から各画素部10において枝状に分岐したような形状で形成されており、ドレイン領域16はドレイン電極26即ち信号線82と導通している。なお、ドレイン領域16は枝状に形成されたドレイン電極26の側端26e及びドレイン電極26の一部を上から覆うように形成されている。また、ドレイン領域16の一部はドレイン電極26の一部と平面視で重なり合うように形成されている。ドレイン電極26は半導体層14の直下に形成されている第2金属層をパターニングして成形されたものである。従って、本実施の形態の薄膜トランジスタ20は、ゲート電極12から見て金属層からなるドレイン電極26が半導体層14の向こう側にあるような構造のトップゲート型薄膜トランジスタである。また、このような構成をとるため、後述の紫外線の表面照射の際に、遮光性のあるドレイン電極26によってドレイン領域16が遮光されるということは生じない。そのため、紫外線照射によってドレイン領域16の全体が高導電率化される。
ソース領域15は、少なくとも画素部10内のコンタクトホール23を囲むように、また、画素電極32の一部と平面視で重なり合うように延びて形成されている。そして、本実施の形態にかかるソース領域15は、後述のようにその導電率が紫外線の照射によってチャネル領域17の導電率よりも高くなるように形成されている。そのため、ソース領域15の抵抗は紫外線照射前に比べて小さく、電極として機能することができる。このように、高導電率化されたソース領域15は、薄膜トランジスタ20のキャリアの源としてのソース又はソース電極25としての機能を果たす。
チャネル領域17は、後述のようにゲート電極12に対して自己整合的に、ソース領域15とドレイン領域16との間に挟まれるように形成されている。画素電極32は、透明で導電性のある電極であり、走査線72及び信号線82と平面視で重なり合わないような形状と大きさを備え、画素部10の内側におさまるように成形されている。なお、本実施の形態においては、ソース領域15も画素電極32も透明であり、しかもソース領域15が高導電率化されているため、ITO等の透明導電層からなる画素電極32をコンタクトホール23を通じて直接にソース領域15に接続させ導通をとることができる。従って、コンタクトホール23の周辺においても十分に光を透過することができ、開口率の向上に寄与する。
次に、薄膜トランジスタ20等の各部材について、より詳細に説明する。基板11としては、絶縁性及び透明性を備える基板であるガラス基板、石英基板等のほか、プラスチック系の基板を使用することができる。表示装置の表示の色を忠実に再現するためには、基板は可視光に対して透明であることがより望ましい。なお、基板11はセル・アレイ基板101の基板となる。
ドレイン電極26及び信号線82は、基板11上に第2金属層をパターニングすることにより形成される。第2金属層の材料又は構造は特に限定されず、AlやMoの単層膜でもよいが、上層にITO等の透明導電層が形成される可能性のあるときは、ITO等とAlとの界面における絶縁性の酸化膜の生成を回避するために、積層構造とすることが望ましい。例えば、ITOと接する上層はMoとし下層はAlとするというような、AlとMoを組み合わせて形成された積層膜(積層配線)が望ましい。また、半導体層の材料として酸化物半導体を用いる場合には、特に半導体層としてIGZOを用いる場合には、IGZOはITOと化学的特性が似ていることから、IGZOとAlとの界面における絶縁性の酸化膜の生成を回避するために、AlとITO又はIGZOとを接続するときには、Mo−Al−Moのような3層構造の金属層を用い、ITOやIGZOがMoを介してAlと接続されるような構造にすることが望ましい。
このように最上層及び最下層がMoを含む金属で構成される第2金属層を用いることにより、Moがいわゆるカバーメタルとして機能して絶縁性の酸化膜形成が回避されるため、第2金属層の下層が酸化物半導体に接続し上層がITO等の透明導電層に接続するような場合でも、Alと酸化物半導体層との界面、及びAlとITO等の透明導電層との界面においても低抵抗で良好なオーミックコンタクトを得ることができ、良好で信頼性の高い電気的接続をすることができる。本実施の形態においてはドレイン電極26の上にIGZOの半導体層14を形成する構成をとっているため、ドレイン電極26と半導体層14との接続だけを考えれば、上層のみをMoとする2層の積層金属層でもよいが、第2金属層を他の配線にも使用する可能性も考慮してこのようなMo−Al−Moの3層構造の積層金属層を第2金属層として用いることが望ましい。第2金属層の厚さは200nmから400nmであり、より望ましくは300nmである。
半導体層14の厚さは、特に限定されないが、50nmから150nmが望ましく、より望ましくは100nm程度である。第1絶縁層であるゲート絶縁膜13は、その材質として、酸化シリコン系や窒化シリコン系のSiOx、SiNx、又はSiOxNyの単層膜、あるいはこれらを組み合わせた積層膜を使用することができるが、酸化シリコン系が望ましい。ゲート絶縁膜13はIGZOと接するため、窒化シリコン系をゲート絶縁膜としてCVD法で形成する場合には、原料ガスの一つとして用いるアンモニアの窒素がIGZO中の酸素と結合してIGZO中の酸素を不足気味にする傾向があり、IGZOの特性が変化しやすい。酸化シリコン系であればこのような不都合は生じないため、酸化シリコン系を使用することによりIGZOの組成比を維持することができる。また、膜厚を薄く形成できる場合には液体性の酸化シリコンを用いることもできる。これにより、絶縁性と透明性のある層を形成することができる。ゲート絶縁膜13は、一般に、基板11全体を覆うように形成される。これにより、半導体層14、信号線82及びドレイン電極26はゲート絶縁膜13によって覆われる。ゲート絶縁膜13の膜厚は、100nmから500nmが望ましく、より望ましくは250nmから300nmである。
ゲート電極12及び走査線72は、第1金属層をパターニングすることにより形成される。第1金属層は、例えば、AlNd、Al、又はMoの単層膜、あるいはAlNd、Al、Mo、及びCuから選択された任意の要素を組み合わせて形成された積層膜でもよい。例えば、形成しようとする配線がAlを含み、しかも酸化物半導体やITO等の透明導電層と接続するような構造をとる可能性があるときには、第1金属層を積層構造とすることが望ましい。例えば、後工程においてITO等と接続される可能性のある上層はMoを含む金属とし下層はAlNdのようなAlを含む金属層とすることが望ましい。このような材質や構造をとることにより、ITOとAlとの界面における絶縁性の酸化膜の生成を回避し、良好な電気的接続をとることができる。第1金属層の厚さは200nmから400nmが望ましく、より望ましくは300nmである。なお、薄膜トランジスタ特性の外光による影響を防止する必要がある場合には、少なくともゲート電極には遮光性の高い材料を用いることが望ましい。
第2絶縁層であるパッシベーション層19の材質は、特に限定されないが、絶縁性と透明性とを備える窒化シリコン系や酸化シリコン系等を用いることができる。パッシベーション層19の膜厚は200nmから500nmである。パッシベーション層19は、基板全面を覆うように形成される。これにより第1金属層から形成されたゲート電極12及び走査線72等がパッシベーション層19によって覆われる。画素電極32の材質は、透明性と導電性を備える材質が望ましく、特に限定されないが、例えば、ITOが用いられる。その膜厚は望ましくは40nmから60nmであり、より望ましくは50nmである。
[製造方法]
次に、図3を参照して、本実施の形態にかかる画素部及びその周辺の製造方法を工程順に説明する。同図は本発明の一実施形態である画素部等の製造工程の説明図である。まず、図3(a)に示すように、基板11の上に第2金属層を成膜し、これをパターニングすることにより、第2金属層からなるドレイン電極26及び信号線82等を形成する(第1ステップ)。その形成方法は、特に限定されないが、スパッタリング方式を使用してもよい。第2金属層の材質や構造は前述のとおりである。なお、第2金属層をエッチングする際には、ドレイン電極26の側端26eが順テーパをなすような形状にエッチングすることが望ましい。このようにすることにより、側端26eを覆うように形成される半導体層14の段切れを防止することができる。また、本製造方法によれば、最下層が遮光性を備える第2金属層となるため、半導体層14の形成にあたって露光位置合せ精度が向上する。
次に、IGZOからなる半導体層を形成する(第2ステップ)。IGZOの成膜方法は、特に限定されないが、スパッタリング方式が望ましい。IGZOの成膜にスパッタリング方式を用いることにより、成膜時のガス流量や成膜雰囲気中の酸素分圧を制御することで導電率やキャリア濃度、移動度等をある程度制御することが可能となり、より安定した組成の成膜をすることができる。また、プラスチック基板にアモルファスIGZOを成膜する場合には、基板の耐熱性を考慮し、また基板に対するダメージを少なくするために、スパッタリング法が好ましい。
スパッタのターゲットとしては、In、Ga、Zn及びO(酸素)を含む固体のInGaZnOを用いる。InGaZnOの分子式で表されている組成比(化学量論比)はIn:Ga:Zn:O=1:1:1:4であるが、これに比べてZnや酸素がプア(poor)であるような、例えばIn:Ga:Zn:Oが1:1:0.5:3.5であるような酸化物を成膜前のターゲットとして使用することもできる。成膜後のIGZO層は透明なアモルファス半導体層であり、In、Ga、Zn及びOの各成分の組成比は、1:1:1:4に限られず、略1:1:0.5:2のようにZnや酸素がプアなものでもよい。なお、本発明において、「アモルファス」とは、完全にアモルファス状態を持つものだけをいうのではなく、本発明の趣旨を損なわない限り、微結晶を含むものも含まれる。
次に、成膜されたアモルファスIGZO層は、蓚酸等によってウェットエッチングを施すことにより所定の形状にパターニングされ、これにより、アモルファスIGZOからなる薄膜トランジスタ20の半導体層14が形成される。この半導体層14は、単一の島状をなし、後工程の紫外線照射によって、薄膜トランジスタ20のソース領域15、ドレイン領域16及びチャネル領域17の三つの領域から構成される層となる。IGZOの化学的性質がITOの化学的性質に似ていることから、紫外線の照射の前後にかかわらず、蓚酸等のITO用のエッチャントを使用することができる。このようなウェットエッチングであっても、本実施の形態にかかる薄膜トランジスタでは、IGZOの半導体層14の直上には金属層は存在しないため金属用のエッチャントを使用する必要がなく、従って金属用エッチャントがIGZOの半導体層にさらされることがない。また、ドライエッチングも使用する必要がないため、IGZO半導体層の、特にチャネル領域17がプラズマによるダメージを受けることはない。
従って、ゲート電極から見て金属層からなるソース電極及びドレイン電極がIGZO半導体層の手前側にあるような構造のトップゲート型薄膜トランジスタのように、金属層に対してウェットエッチングを施すと、チャネル領域上においてはチャネル領域上の金属層がエッチングされるだけでなくチャネル領域となるIGZO半導体層もエッチングされてしまい、IGZO半導体層の層厚が薄くなってしまったりエッチングの際にエッチング液の濃度等の局所的な不均一によって半導体層自体が除去されたりするといった不具合は生じない。また、金属層からなるソース電極及びドレイン電極に対してドライエッチング法でエッチングをする場合のように、薄膜トランジスタの半導体層のチャネル領域がプラズマによってダメージを受け薄膜トランジスタのスレッシュホールド電圧が大きくシフトしたり薄膜トランジスタのオフ電流(Ioff)の値が増加したりするというような薄膜トランジスタの特性変動も生じない。そのため、信頼性の高い薄膜トランジスタを製造することができる。また、IGZOのエッチャントとしてITOのエッチャントを兼用することができるため、薄膜トランジスタ製造工程の簡素化を図ることができる。なお、IGZO半導体層のエッチャントは蓚酸に限られるものではなく、上記のような蓚酸と同様の性質を備えるエッチャントであれば、本発明の趣旨を損なわない限り、使用することができる。
次に、ゲート絶縁膜13をCVD法等により基板全面に形成する(第3ステップ)。これにより、半導体層14及び第2金属層はゲート絶縁膜13により覆われる。形成方法としては、CVD法が望ましく、熱CVD法やプラズマCVD法等を使用することができる。基板温度の上昇を抑えたい場合、例えば、プラスチック系の基板を用いている場合には、ゲート絶縁膜形成時の基板温度は250℃程度以下にすることが望ましく、プラズマCVD法によって形成することができる。次に、第1金属層を成膜しこれをパターニングすることにより、ゲート電極12及び走査線72を形成する(第4ステップ)。第1金属層の形成方法は、特に限定されないが、スパッタリング方式を使用してもよい。なお、第1金属層の材質や構造は前述のとおりである。次に、図3(b)に示すように、紫外線22を照射する(第5ステップ)。照射の方法としては、例えば、遮光性のあるゲート電極12をシャドーマスクとして、ゲート電極12の側から半導体層14に向けて、即ち基板11の表面(正面)からゲート電極12及び半導体層14に向けて紫外線22を照射する(表面照射)。
このようにゲート電極12をシャドーマスクとして半導体層14に向けて紫外線22を照射することにより、半導体層14に対して選択的に紫外線を照射することができる。本実施の形態においては、薄膜トランジスタの半導体層の材料としてIGZOからなる透明なアモルファス酸化物を用いているため、これに紫外線22を照射することにより、半導体層の導電率を導電材料並みに高めることができる。そして、このような紫外線を半導体層の一部の領域に選択的に照射することにより、その照射された領域のみ導電率を高めることができる。従って、薄膜トランジスタ20の半導体層14のうちソース領域15及びドレイン領域16となるべき領域に紫外線を選択的に照射することにより、電極として使用できる程度の導電率を備えるソース領域15及びドレイン領域16を構成することができる。そのため、例えばアモルファスシリコン薄膜トランジスタのように、金属からなるドレイン電極等と接続するためにn+アモルファスシリコン層のような低抵抗半導体層を別途形成する必要がない。一方、半導体層のうち紫外線の照射がされなかった領域の導電率は、照射前の導電率がそのまま維持されることになるため、薄膜トランジスタのチャネル領域17となるべき領域には遮光層等を用いて紫外線を照射しないようにすることにより、その領域は薄膜トランジスタのチャネルとして使用できる導電率を備える領域となる。紫外線照射と導電率との関係の詳細は後述する。
このように本実施の形態においては、ゲート電極12をシャドーマスクとして、紫外線22を表面照射することにより、高導電率化されたソース領域15、ドレイン領域16及び紫外線照射前の導電率を持つチャネル領域17の三領域が、ゲート電極12に対して自己整合的に形成されることになる(セルフアライン)。このような自己整合型の構造がとられるため、ゲート電極12とソース電極又はソース領域15との重なり合いによるゲート・ソース間寄生容量Cgs及びそのばらつきは非常に小さくなる。そのため、いわゆる突き抜け電圧(フィードスルー電圧)及びそのばらつきも小さくなり、かかる薄膜トランジスタを例えば液晶の画素のスイッチング素子として液晶表示装置に使用することにより、表示画面上での輝度のばらつきや輝度むらを著しく低減することができる。
なお、Cgsによるこのような突き抜け電圧による不具合を少なくするために、従来と同等又はそれ以上の大きさの保持容量Cs27を備えるような構造にすればよいことが知られている。CLCを1画素あたりの液晶の容量とすれば、突き抜け電圧は、Cgs/(Cgs+CLC+Cs)に比例するため、このようにCgsに比べてCsの容量を大きくすることで突き抜け電圧自体を小さくするとともに、Cgsのばらつきによる突き抜け電圧のばらつきも小さくすることができる。しかし、Csを構成する一方の電極に遮光性のある金属を用いる場合にはCsを大きくするとCsによる遮光面積が増加するため、この方法では画素部の開口率の向上ができないという別の不具合が生じる。しかし、本実施の形態にかかる液晶表示装置や薄膜トランジスタにおいては、Cgsが小さくCsを大容量化する必要がないためこのような不具合は生じず開口率を低下させることはない。
次に、紫外線照射の条件をより詳しく説明する。まず、紫外線照射工程については、少なくとも半導体層14が形成されており、ソース領域15及びドレイン領域16となるべき半導体層が遮光されておらず、かつ、シャドーマスクとなるゲート電極12のような遮光層がチャネル領域17となるべき位置に形成されていれば、本発明の趣旨を損なわない限り、これ以降の工程でなされてもよい。
次に、紫外線照射工程における紫外線の光源、波長、照射エネルギー密度や照射時間等の照射条件は、以下のとおりである。照射する紫外線光源は、面光源であることが望ましい。面光源を用いるため、基板全体をカバーするような広い照射面積に対して一度に紫外線を一様に照射することができる。また、面光源を使用するため、光線スポットの狭小なレーザー光源の場合のように基板をスキャンする必要がないため、スキャンによる半導体層への二重照射やそれに伴う薄膜トランジスタの特性の面内ばらつきも生じない。そのため、均一な照射エネルギーでもって紫外線を照射することができ、その結果、大面積の表示画面全体にわたって多数の薄膜トランジスタを形成する場合に、工程の簡素化、量産性の向上のみならず、薄膜トランジスタの特性のばらつきを抑えて均一なものとすることができ、表示品質の高い、輝度ばらつきや輝度むらのない表示装置を得ることができる。
また、紫外線光源は、レーザー光源ではなく、特定の範囲の波長の紫外線を照射するランプを用いることができる。レーザー光源を用いないため、レーザー光による基板の発熱等による不具合を回避することができ、また、プラスチックフィルム基板を使用することが可能となる。また、レーザー光照射装置に比べて安価な紫外線照射装置を使用できる。紫外線光源として使用するランプの種類は、特に限定されないが、例えば、水銀ランプを使用することができる。照射する紫外線の波長は、約270nmから約450nmまでにわたる波長であることが望ましい。この波長の範囲の紫外線を照射することで、照射された領域の導電率を向上させることができる。紫外線照射時の基板の温度や照射雰囲気は、特に限定されないが、室温で大気中でも可能である。
次に、紫外線の照射エネルギー密度と照射時間について説明する。図4は、アモルファスのIGZO半導体層に対して、照射エネルギー密度が100mJ/sec・cmの紫外線を照射したときの、アモルファスIGZO半導体層の導電率と紫外線照射時間との関係を示したグラフである。同図から、照射エネルギー密度100mJ/sec・cmで約6時間以上照射すると導電率の上昇が飽和する傾向が認められるが、それまでの間は、照射時間が6時間で、導電率が、サンプル#1では照射前の6×10−5S/mに比べて約3.33×10倍(=105.52倍)の2×10S/mに、サンプル#2では同じく照射前の4×10−7S/mに比べて約10倍の4S/mに、指数関数的に向上することが認められる。6時間の照射時間で導電率が約3.33×10倍(=105.52倍)ないし約10倍に指数関数的に向上するということは、言い換えれば、約0.86ないし約1.09時間ごとに導電率が約1桁増加することを意味する。
紫外線の照射時間の目安としては、照射エネルギー密度を100mJ/sec・cmとした場合に、紫外線照射後の導電率(目的導電率)を紫外線照射前の導電率に対して10倍に向上させるときは、概ね、0.86・n時間ないし1.09・n時間(但し、0<n≦6)を目安に照射を行えばよい。これは積算照射エネルギー密度(=照射エネルギー密度×照射時間)でいえば、約(309・n)J/cmないし(392・n)J/cmに当たる。導電率は紫外線の積算照射エネルギー密度によるから、例えば、同じ導電率を得るのであれば、照射エネルギー密度を4倍にすれば照射時間は1/4でよい。従って、照射前の導電率を測定したうえで目的導電率を決めれば容易に照射エネルギー密度と照射時間とを設定することができ、紫外線の適切な照射によって所望の導電率を持つアモルファスIGZOからなる半導体層を得ることができる。
例えば、同図によれば、4.5時間程度(積算照射エネルギー密度で1620J/cm程度)の紫外線照射をすることにより、その導電率は約10−1S/m程度以上に向上することが認められる。また、サンプル#1のように、紫外線照射前の導電率によっては、約3.52時間程度(積算照射エネルギー密度で1267J/cm程度)でもこの程度の導電率に達する。そして、この程度の高い導電率であれば、電極として機能させることができる。
なお、ソース領域15及びドレイン領域16に照射すべき紫外線の積算照射エネルギー密度は、一般的に、ソース領域15全体及びドレイン領域16全体の抵抗がそれぞれ薄膜トランジスタ20のオン抵抗よりも低くなるような値とすることが望ましい。従って、このような観点から照射すべき積算照射エネルギー密度を設定してもよい。このようにすることにより、ソース領域全体又はドレイン領域全体の抵抗による電圧降下を、表示装置の場合であれば画像信号等の信号レベルの低下を小さくすることができる。
このように、半導体層14のソース領域15又はドレイン領域16とすべき領域に選択的に紫外線を照射することにより、成膜後に導電率を容易に制御することができる。しかも、半導体層14にダメージを与えることなくその導電率を所望の値に制御することができる。そのため、チャネル領域17よりも導電率の高いソース領域15又はドレイン領域16を形成するために従来のようにイオンドーピング等によって不純物注入を行う必要がなく、チャネル領域17、ドレイン領域16及びソース領域15の不純物濃度は同じでよい。従って、高価なイオンドーピング装置等が不要となり製造工程の合理化を図ることができるだけでなく、イオンドーピングによる半導体層のダメージを回避することができる。なお、紫外線の積算照射エネルギー密度は、アモルファスIGZO半導体層の膜厚にも依存し、一般に、膜厚が厚ければより大きなエネルギー密度を必要とする。
このように紫外線照射工程を経た後、図3(c)に示すように、酸化シリコン等を用いてCVD法により第2絶縁層であるパッシベーション層19を基板全面に形成し、さらに、コンタクトホール23を形成する(第6ステップ)。これにより、ゲート電極12及び走査線72はパッシベーション層19に覆われるとともに、ソース領域15に接続するためのコンタクトホール23を形成できる。コンタクトホール23は、パッシベーション層19及びゲート絶縁膜13を貫通しソース領域15に到達している。次に、透明導電層をスパッタリング法等により基板全面に形成し、これをパターニングすることにより、画素電極32を形成する(第7ステップ)。以上の工程により、IGZOを半導体層とするトップゲート型の薄膜トランジスタ20、画素電極32及び各種配線等が形成され、セル・アレイ基板101が形成される。
次に、セル・アレイ基板101とカラーフィルター等を設けた対向基板とに配向処理等を行い、その後、両基板をシール材で貼り合わせる。シール材は、例えば光硬化型のアクリル樹脂のような、紫外線硬化型のシール材を用いる。このようにしてシールされた液晶基板の間に液晶を注入し、駆動回路や偏光板及びバックライト等の光学部材などを取り付けることにより液晶表示装置100が完成する。なお、FFS型やIPS型の液晶表示装置の場合においても、コモン電極(対向電極)がセル・アレイ基板に備えられる等の構造上の違いはあるが、本発明を適用することができる。
以上のとおり、本実施の形態によれば、IGZOを半導体層とするトップゲート型薄膜トランジスタ及びこれを用いた液晶表示装置の製造において、半導体層の導電率の制御による半導体層へのダメージやエッチングによるチャネル領域へのダメージが生じないような薄膜トランジスタ及び液晶表示装置の製造が可能となり、信頼性の高い薄膜トランジスタ及び液晶表示装置を提供することができる。
[具体例]
以下、本発明の製造方法の具体例を説明する。絶縁性及び透明性のあるガラス基板11上に、まず、第2金属層を形成した。第2金属層はMo−Al−Moの3層構造の金属層を用いた。第2金属層の形成後、パターニングによりドレイン電極26及び信号線82を形成した。次に、半導体層14の形成にあたっては、スパッタリング法を用いた。ターゲットは、In、Ga、Zn、及びOの各成分の組成比を1:1:1:4とするインゴットを用いた。スパッタ装置の投入パワーは、0.5KWとした。成膜時の基板温度は室温とし、雰囲気は、全圧0.265Pa、酸素分圧は0.011Paとした。成膜時のガス流量は、キャリアガスとしてのArは67sccm、ホルダーガスとしてのArは22sccm、酸素は4sccmとした。なお、sccmとは、standard cc/minの略である。成膜レートは43.2nm/minである。これにより、膜厚100nmの透明なn型アモルファスIGZO半導体層を成膜することができた。
図4に示すとおり、この半導体層の導電率は、常温で、約6×10−5S/mないし4×10−7S/mであったため、薄膜トランジスタの半導体層14として使用できる。なお、導電率の測定には2探針測定法を用いた。このように成膜されたアモルファスIGZO半導体層を、フォトリソグラフィー法とエッチング法を用いることにより、適当な大きさと形状にパターニングして成形し、薄膜トランジスタのチャネル領域17、ドレイン領域16及びソース領域15となるべき半導体層14を形成した。エッチング液には濃度3.2%の蓚酸を用いた。エッチングの温度は30℃とした。このエッチングによる下層の第2金属層への影響はなかった。
次に、プラズマCVD法により酸化シリコンを用いてゲート絶縁膜13を形成した。ゲート絶縁膜13の形成時の基板温度は200℃とした。膜厚は300nmであった。次に、第1金属層を形成した。下層をAlNd層とし、上層をMoとする2層の積層された第1金属層をスパッタ法により形成し、これをパターニングしてゲート電極12及び走査線72を形成した。下層のAlNd層の組成はAlにNdを約2%含有させたものを使用した。この金属層は、遮光性を有する。第1金属層の厚さは300nmとした。
次に、基板11の表面から、ゲート電極12をシャドーマスクにして半導体層14に向けて紫外線を照射した。光源装置として、HOYA CANDEO OPTRONICS社製のUV照射装置(型番UL750)を用いた。この装置は超高圧水銀ランプを光源とする装置であり、このランプは波長が約270nmから約450nmまでにわたる紫外線を放射する。紫外線照射時の基板11の温度は室温であり、照射雰囲気は大気中で行った。なお、成膜後、紫外線照射工程の前に、特殊な雰囲気で特殊な温度でのアニール処理は行わなかった。また、レーザー照射もイオンドーピングも行わなかった。
紫外線照射エネルギー密度は100mJ/sec・cmとした。この照射エネルギー密度であれば、他の用途に用いられているような一般的な紫外線照射装置を使用して照射を行うことができるため、製造設備の合理化を図ることができる。そして、照射時間を約4.5時間(積算照射エネルギー密度で約1620J/cm)としたところ、ソース領域15及びドレイン領域16の導電率を約10−1S/mまで向上させることができた。
なお、紫外線照射後のIGZO半導体層をSSI社製XPS(X線光電子分光)分析器XPS M−Probeを用いて化学量論比の解析を行ったところ、In、Ga、Zn、及びO(酸素)の各成分の組成比は略1:1:0.6:3であった。また、紫外線照射前後のIGZO半導体層は、いずれも透明であり、リガク社のX線回折装置RINT−2000を用いて入射角1度でX線回折を行ったところ、InGaZnO結晶に見られるような回折ピークは認められず、いずれもアモルファスIGZO半導体層であることが確認された。次に、酸化シリコンを用いてCVD法でパッシベーション層19を形成し、コンタクトホール23を開口し、次に、ITOを用いて画素電極32を形成して所定のパターニングを行った。これ以降の工程は、製造方法の欄で説明したとおりである。
[変形例1]
本実施の形態においては、上述のとおり、ソース領域15は紫外線照射によって高導電率化されているため、液晶表示装置の画素電極32とソース領域15との接続にはソース電極25を設ける必要はないが、ドレイン電極26と同様に、第2金属層をパターニングすることによってソース電極25を設けることもできる。これについて、図5に基づいて説明する。
図5は、本変形例にかかる薄膜トランジスタ20周辺の概略の断面構成図である。本変形例においては、前述の実施の形態と比べ、金属層からなるソース電極25を設けている点等で相違するに過ぎないため、このような相違点を中心に説明するとともに、前記実施の形態で説明した構成要素と同一又は相当するものには同一符号を付し、その詳細な説明を省略する。
本変形例においては、薄膜トランジスタ20のソース領域15と基板11との間にソース電極25が設けられている。ソース電極25は、第2金属層をパターニングすることによって形成されソース領域15と接続されている。そして、ソース電極25を介して画素電極32とソース領域15とが導通している。また、ソース領域15の一部は、ドレイン電極26と同様、ソース電極25の一部を覆うように形成されている。そして、ソース領域15は、ドレイン領域16と同様、紫外線照射によってソース領域15の全体が高導電率化されている。また、ソース電極25は、少なくとも画素部10内のコンタクトホール23を囲むように、また、画素電極32の一部と平面視で重なり合うように延びて形成されている。
このように形成することにより、金属層からなるソース電極25及びドレイン電極26が半導体層14の直下に形成された構造を備えるトップゲート型薄膜トランジスタ、言い換えれば、ゲート電極12から見て金属層からなるソース電極25及びドレイン電極26が半導体層14の向こう側にあるような構造のトップゲート型薄膜トランジスタを構成することができる。そしてこのような構造をとる薄膜トランジスタも本実施の形態で説明した薄膜トランジスタと同様の作用及び効果を奏する。また、金属層からなるソース電極25を備えることにより、画素電極32に接続されたスイッチング素子としてだけでなく、走査線駆動装置70に含まれるゲートドライバー回路等を構成する薄膜トランジスタとしても使用することができる。なお、ドレイン電極26の側端26eと同様に、ソース電極25の側端25eが順テーパとなるように形成することが望ましい。
[変形例2]
上記実施の形態における走査線72及びゲート電極12となる第1金属層を成膜する前の工程において、さらに、紫外線を半導体層14に照射する工程(「サブ紫外線照射工程」という)を加えてもよい。例えば、前記実施の形態で説明した紫外線照射工程(「メイン紫外線照射工程」という。)とは別に、半導体層14の形成後第1金属層を成膜する前の工程において、紫外線を基板11の表面から半導体層14に向けて照射すること(表面照射)によりその導電率を向上させることができる。このサブ紫外線照射工程を追加することにより、半導体層成膜時の導電率が低いためにそのままでは薄膜トランジスタのチャネル領域17とすることが好ましくないような場合でも、その導電率をチャネル領域17として適切な導電率にまで向上させることができる。
サブ紫外線照射工程は、半導体層14をパターニングする前、即ちIGZO層の成膜後エッチング前でもよいし、又は、パターニングをした後でもよい。また、サブ紫外線照射は、ゲート絶縁膜13が透明であればゲート絶縁膜13の形成後でもよい。表面照射であるため、ソース電極25やドレイン電極26によって紫外線が遮光されることはない。紫外線を照射する領域は、半導体層のパターニング前後を問わず半導体層全体でもよいし、選択的に照射してもよく、少なくとも、将来薄膜トランジスタ20のチャネル領域17となるべき領域に照射する。なお、将来ソース領域15やドレイン領域16となるべき領域にも同時に又は異時に、同量又は異なる量の紫外線を照射してもよい。サブ紫外線照射工程は、半導体層14のチャネル領域17の導電率を制御する工程であるため、成膜後の半導体層の導電率がチャネル領域17の導電率としてはじめから適切なものである場合には照射を行う必要はない。
サブ紫外線照射工程において半導体層14の全面に紫外線を照射することにより、チャネル領域17、ドレイン領域16及びソース領域15は、いずれもその導電率が同じ目的導電率を持つ半導体層14として形成される。サブ紫外線照射の照射時間は、図4に示すとおり、照射エネルギー密度が100mJ/sec・cmの場合には、約0.41時間ないし2時間以上(積算照射エネルギー密度でいえば約148ないし724J/cm以上)にすればその導電率を約10−4S/m(ジーメンス/m)程度にまで高くすることができる。また、約1.47時間ないし2.81時間以下(積算照射エネルギー密度でいえば約529ないし1012J/cm以下)にすればその導電率を約10−3S/m程度以下に留めることができる。このようにすることにより、約10−4ないし10−3S/mの導電率を持つチャネル領域17を形成することができる。また、このようなサブ紫外線照射工程によって半導体層にダメージを与えることはない。
なお、サブ紫外線照射工程における紫外線の積算照射エネルギー密度は、ソース領域15及びドレイン領域16の最終的な目的導電率に応じて、メイン紫外線照射工程における紫外線の積算照射エネルギー密度を考慮して決定することができる。また、サブ紫外線照射工程での照射時間や積算照射エネルギー密度以外の照射条件(紫外線光源や光源装置等)は、上記実施の形態で説明したものと同様であり、また、サブ紫外線照射後の工程は、上記実施の形態及びその具体例で説明したものと同様である。以上のようにして製造された薄膜トランジスタは、液晶表示装置等の各種の表示装置に使用することができる。また、液晶表示装置等の表示装置は、テレビジョン受像機、パーソナルコンピューター用のモニター、携帯電話、車載用モニター、及びゲーム機その他のフラットパネルディスプレーとして使用することができる。
なお、図1ないし図3及び図5は本実施の形態を説明するために、本実施の形態に関連する主要な部材や部材間の関係を簡略化して記載したに過ぎないものである。ここまでの説明で言及した以外にも、薄膜トランジスタや表示装置を構成するには多くの部材が使われる。しかしそれらは当業者には周知であるので、ここでは詳しく言及しない。また、本実施の形態で説明した表示装置はあくまで一例に過ぎず、それら以外の表示装置であっても、当業者が任意に選択することができる範囲においては本発明の範囲に含まれる。そして、これまで本発明について図面に示した特定の実施の形態をもって説明してきたが、本発明は図面に示した実施の形態に限定されるものではなく、本発明の効果を奏する限り、これまで知られたいかなる構成であっても採用することができることはいうまでもないことである。
10…画素部
11…基板
12…ゲート電極(第1金属層)
13…ゲート絶縁膜(第1絶縁層)
14…半導体層
15…ソース領域
16…ドレイン領域
17…チャネル領域
19…パッシベーション層(第2絶縁層)
20…薄膜トランジスタ
22…紫外線
25…ソース電極(第2金属層)
26…ドレイン電極(第2金属層)
32…画素電極
72…走査線
82…信号線
100…液晶表示装置
101…セル・アレイ基板

Claims (15)

  1. 基板上に金属層からなるドレイン電極を形成する第1工程と、
    In、Ga及びZnを含むアモルファス酸化物からなる薄膜トランジスタの半導体層をその一部が該ドレイン電極の一部を覆うように形成する第2工程と、
    該半導体層の上にゲート絶縁膜を形成する第3工程と、
    該ゲート絶縁膜の上に遮光性を備えるゲート電極を形成する第4工程と、
    紫外線を該ゲート電極の側から該半導体層に向けて照射することにより照射前よりも導電率の高いアモルファスのソース領域及びドレイン領域を構成する第5工程と
    を含むことを特徴とする薄膜トランジスタの製造方法。
  2. 前記ソース領域又は前記ドレイン領域の前記紫外線の照射後の抵抗は、前記薄膜トランジスタのオン抵抗よりも低いことを特徴とする請求項1記載の薄膜トランジスタの製造方法。
  3. 前記半導体層のチャネル領域の不純物濃度と前記ソース領域又は前記ドレイン領域の不純物濃度とが同じであることを特徴とする請求項1又は請求項2記載の薄膜トランジスタの製造方法。
  4. 前記紫外線を照射する光源は、面光源であることを特徴とする請求項1ないし請求項3のいずれかに記載の薄膜トランジスタの製造方法。
  5. 前記紫外線を照射する光源は、水銀ランプであることを特徴とする請求項1ないし請求項4のいずれかに記載の薄膜トランジスタの製造方法。
  6. 前記紫外線の波長は、270nmから450nmまでの範囲にわたることを特徴とする請求項1ないし請求項5のいずれかに記載の薄膜トランジスタの製造方法。
  7. 前記第5工程における紫外線の積算照射エネルギー密度は、導電率を10倍(但し、0<n≦6)に増加させる場合に、(309・n)ないし(392・n)J/cmとすることを特徴とする請求項1ないし請求項6のいずれかに記載の薄膜トランジスタの製造方法。
  8. 前記第5工程における紫外線の積算照射エネルギー密度は、1620J/cm以上であることを特徴とする請求項1ないし請求項7のいずれかに記載の薄膜トランジスタの製造方法。
  9. 前記第5工程における紫外線の照射エネルギー密度は、100mJ/sec・cmであることを特徴とする請求項1ないし請求項8のいずれかに記載の薄膜トランジスタの製造方法。
  10. 前記第2工程と前記第4工程との間に、さらに、前記半導体層に紫外線を照射して紫外線照射前よりも導電率の高いアモルファスの半導体層を構成するサブ紫外線照射工程を含むことを特徴とする請求項1ないし請求項9のいずれかに記載の薄膜トランジスタの製造方法。
  11. 前記サブ紫外線照射工程における紫外線の積算照射エネルギー密度を148ないし1012J/cmとすることを特徴とする請求項10記載の薄膜トランジスタの製造方法。
  12. 前記半導体層を形成する前記第2工程は、前記アモルファス酸化物を成膜した後、蓚酸を含むエッチャントを用いたウェットエッチングによってパターニングする工程を含むことを特徴とする請求項1ないし請求項11のいずれかに記載の薄膜トランジスタの製造方法。
  13. 基板上に形成された金属からなるドレイン電極と、
    チャネル領域と紫外線の照射によって高導電率化されたドレイン領域及びソース領域とからなり該ドレイン領域の一部が該ドレイン電極の一部を覆うように形成されIn、Ga及びZnを含むアモルファス酸化物からなる薄膜トランジスタの半導体層と、
    該半導体層の上に形成されたゲート絶縁膜と、
    該ゲート絶縁膜の上に形成された遮光性を備えるゲート電極と
    を含むことを特徴とする薄膜トランジスタ。
  14. 対向する基板間に液晶を挟持する液晶表示装置の製造方法であって、
    請求項1ないし請求項12のいずれかに記載の薄膜トランジスタの製造方法によって薄膜トランジスタを形成する工程と、
    前記ゲート電極の上に絶縁層を形成する工程と、
    前記ソース領域と導通する画素電極を該絶縁層の上に形成する工程と
    を含むことを特徴とする液晶表示装置の製造方法。
  15. 対向する基板間に液晶を挟持する液晶表示装置であって、
    請求項13記載の薄膜トランジスタと、
    前記ゲート電極の上に形成された絶縁層と、
    前記ソース領域と導通し該絶縁層の上に形成された画素電極と
    を含むことを特徴とする液晶表示装置。
JP2009112496A 2009-05-07 2009-05-07 薄膜トランジスタ、液晶表示装置及びこれらの製造方法 Withdrawn JP2010263064A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009112496A JP2010263064A (ja) 2009-05-07 2009-05-07 薄膜トランジスタ、液晶表示装置及びこれらの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009112496A JP2010263064A (ja) 2009-05-07 2009-05-07 薄膜トランジスタ、液晶表示装置及びこれらの製造方法

Publications (1)

Publication Number Publication Date
JP2010263064A true JP2010263064A (ja) 2010-11-18

Family

ID=43360919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009112496A Withdrawn JP2010263064A (ja) 2009-05-07 2009-05-07 薄膜トランジスタ、液晶表示装置及びこれらの製造方法

Country Status (1)

Country Link
JP (1) JP2010263064A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091382A (ja) * 2009-09-24 2011-05-06 Semiconductor Energy Lab Co Ltd 半導体装置、電力用回路、および、半導体装置の作製方法
JP2013077815A (ja) * 2011-09-16 2013-04-25 Semiconductor Energy Lab Co Ltd 半導体装置および半導体装置の作製方法
JP2015111663A (ja) * 2013-11-01 2015-06-18 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
US9847350B2 (en) 2012-06-07 2017-12-19 Panasonic Liquid Crystal Display Co., Ltd. Liquid crystal display device and method of manufacturing a liquid crystal display device
JP2021005719A (ja) * 2012-01-20 2021-01-14 株式会社半導体エネルギー研究所 半導体装置、及び、半導体装置の作製方法
JP2021048414A (ja) * 2011-02-23 2021-03-25 株式会社半導体エネルギー研究所 半導体装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091382A (ja) * 2009-09-24 2011-05-06 Semiconductor Energy Lab Co Ltd 半導体装置、電力用回路、および、半導体装置の作製方法
US9153702B2 (en) 2009-09-24 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power circuit, and manufacturing method of semiconductor device
US9647131B2 (en) 2009-09-24 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power circuit, and manufacturing method of semiconductor device
JP2021048414A (ja) * 2011-02-23 2021-03-25 株式会社半導体エネルギー研究所 半導体装置
JP2022101670A (ja) * 2011-02-23 2022-07-06 株式会社半導体エネルギー研究所 半導体装置
JP7262435B2 (ja) 2011-02-23 2023-04-21 株式会社半導体エネルギー研究所 半導体装置
JP2013077815A (ja) * 2011-09-16 2013-04-25 Semiconductor Energy Lab Co Ltd 半導体装置および半導体装置の作製方法
JP2021005719A (ja) * 2012-01-20 2021-01-14 株式会社半導体エネルギー研究所 半導体装置、及び、半導体装置の作製方法
US9847350B2 (en) 2012-06-07 2017-12-19 Panasonic Liquid Crystal Display Co., Ltd. Liquid crystal display device and method of manufacturing a liquid crystal display device
US10276595B2 (en) 2012-06-07 2019-04-30 Panasonic Liquid Crystal Display Co., Ltd. Liquid crystal display device and method of manufacturing a liquid crystal display device
JP2015111663A (ja) * 2013-11-01 2015-06-18 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Similar Documents

Publication Publication Date Title
JP2010177223A (ja) 液晶表示装置及びその製造方法
US10303021B2 (en) BOA liquid crystal display panel and manufacturing method thereof
JP2010191107A (ja) 液晶表示装置及びその製造方法
JP2010165961A (ja) 薄膜トランジスタ、表示装置及びこれらの製造方法
JP2010147351A (ja) 液晶表示装置及びその製造方法
JP5443711B2 (ja) 表示装置
KR20170100466A (ko) 반도체 장치
JP2010272706A (ja) 薄膜トランジスタ、液晶表示装置及びこれらの製造方法
JP2010230744A (ja) 液晶表示装置及びその製造方法
JP5602450B2 (ja) 薄膜トランジスタ、その製造方法、及び表示装置
KR20100031374A (ko) 박막 트랜지스터 기판 및 그 제조 방법
KR20100075026A (ko) 박막 트랜지스터 기판 및 이의 제조 방법
US9190564B2 (en) Array substrate and method for fabricating the same
US20160284867A1 (en) Thin film transistor and display device using the same
TW200921231A (en) Liquid crystal display device and electronic device
JP6785563B2 (ja) 非線形素子、アレイ基板、およびアレイ基板の製造方法
US9123820B2 (en) Thin film transistor including semiconductor oxide layer having reduced resistance regions
JP2010263064A (ja) 薄膜トランジスタ、液晶表示装置及びこれらの製造方法
US20110084278A1 (en) Thin film transistor and method for fabricating the same
KR101908496B1 (ko) 박막 트랜지스터와 표시장치용 전극기판 및 이들의 제조방법
US11177388B2 (en) Semiconductor device and method of manufacturing semiconductor device
US11411101B2 (en) Manufacturing method of TFT substrate
US9741804B2 (en) Thin film transistor substrate and display panel having film layer with different thicknesses
US20120319104A1 (en) Method for producing circuit board, circuit board and display device
TWI518430B (zh) 顯示面板及應用其之顯示裝置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807