JP2010263008A - エラー要因抽出の表示方法及びその表示システム - Google Patents

エラー要因抽出の表示方法及びその表示システム Download PDF

Info

Publication number
JP2010263008A
JP2010263008A JP2009111224A JP2009111224A JP2010263008A JP 2010263008 A JP2010263008 A JP 2010263008A JP 2009111224 A JP2009111224 A JP 2009111224A JP 2009111224 A JP2009111224 A JP 2009111224A JP 2010263008 A JP2010263008 A JP 2010263008A
Authority
JP
Japan
Prior art keywords
error
graph
factor extraction
error factor
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009111224A
Other languages
English (en)
Inventor
Hiroto Koike
弘人 小池
Tatsuya Hachimori
達也 八森
Akemi Kono
朱美 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009111224A priority Critical patent/JP2010263008A/ja
Priority to PCT/JP2010/056713 priority patent/WO2010125919A1/ja
Publication of JP2010263008A publication Critical patent/JP2010263008A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/206Drawing of charts or graphs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Generation (AREA)

Abstract

【課題】測長SEMの測定エラーの要因で、装置の稼動状況に最も負荷を与えている修正すべきレシピの順位付けと測定エラーのシーケンス検知を容易に視覚的に判断できるエラー要因抽出の表示方法及びその表示システムを提供することにある。
【解決手段】ビジュアル情報管理部110は、測長SEMから取り込んだログ情報等から、エラー率分布やエラー内訳グラフ、相関グラフなどのエラー要因抽出グラフを作成する。ビジュアル情報制御手段118のグラフ表示処理部118Aは、エラー率算出処理部118Bによって求めた総処理数におけるロット或いは測定点エラー率からエラー率分布を作成する。強調表示処理部118Cは、入力手段120のパラメータで指定された管理レシピをグラフ上に強調表示する。等高線表示処理部118Dは、グラフ上でエラー数の面内分布を等高線で表示する。
【選択図】図5

Description

本発明は、寸法測定機能付きの走査型電子顕微鏡(測長SEM(Scanning Electron Microscope))等の動作条件を設定するレシピに対して、エラー発生時に、修正すべきレシピの順位付けとエラー要因をコンピュータ上に表示するエラー要因抽出の表示方法及びその表示システムに関する。
半導体デバイスの測定や検査に用いられる走査電子顕微鏡は、レシピと呼ばれる測定条件が登録されたプログラムに基づいて、測定或いは検査を実行する。このような走査電子顕微鏡のレシピが、適正に設定されていないと、エラー発生の原因ともなり、装置の自動化を阻害する要因となる。このようなレシピを自動作成するための手法として、半導体デバイスの設計データに基づいて、レシピを自動生成するものが知られている(例えば、特許文献1参照)。
ここで、従来、走査型電子顕微鏡の測定中にエラーが発生した場合、オペレータの経験と勘に基づいて修正するレシピの順位付け、エラー要因の診断が試みられていた。
特開2008−147143号公報
ここで、走査型電子顕微鏡の中でも、半導体デバイスは量産と少量多品種の2種類に区別できる。前者は、同じ試料が多数製造されるため同じレシピによる計測が連続的に行われる。しかし、後者の場合、多数の試料が存在するため、試料分のレシピが複数存在することになる。
計測中のレシピでエラーが発生すると、装置が停止し、その間の計測等ができなくなる。さらに、複数レシピでエラーが発生したとすると、その中でも一番多く使用しているレシピから修正する必要があり、判断するまでに多くの時間を要する。
したがって、エラー要因の診断の前処理として、装置の稼動状況に最も負荷を与えているレシピを順位付けして、効率よく修正するための「レシピ順位付け」が必要となる。また、走査型電子顕微鏡の計測処理のどのシーケンスでエラーが発生したかを検知することで、次処理でのエラー要因分析の効率向上に繋がる。
本発明の目的は、測長SEMの測定エラーの要因で、装置の稼動状況に最も負荷を与えている修正すべきレシピの順位付けと測定エラーのシーケンス検知を容易に視覚的に判断できるエラー要因抽出の表示方法及びその表示システムを提供することにある。
(1)上記目的を達成するために、本発明は、半導体デバイスの製造工程における製造プロセスの評価をモニタし、エラー要因抽出の表示方法であって、寸法測定機能付きの走査型電子顕微鏡でウェハー計測した測定条件及びエラー情報を含んだログ情報をコンピュータ上に取得して解析し、ログ情報の解析データからエラー要因抽出グラフをビジュアル化して表示するようにしたものである。
かかる方法により、修正すべきレシピの順位付けと測定エラーのシーケンス検知を容易に視覚的に判断できるものとなる。
(2)上記(1)において、好ましくは、前記エラー要因抽出グラフは、エラー率分布であり、処理数及びエラー率を軸として2次元表示するようにしたものである。
(3)上記(2)において、好ましくは、前記エラー率分布は、パラメータ設定画面で設定した管理レシピをグラフ上に強調表示されるようにしたものである。
(4)上記(2)において、好ましくは、前記エラー率分布は、エラー数の面内分布を等高線で表示するものである。
(5)上記(1)において、好ましくは、前記エラー要因抽出グラフは、エラー内訳であり、装置名、エラー数を軸として2次元表示するようにしたものである。
(6)上記(5)において、好ましくは、前記エラー内訳グラフは、測定処理(アライメント点、測定点)単位のエラーにエラーコード、シーケンス情報を付加表示するようにしたものである。
(7)上記(1)において、好ましくは、前記エラー要因抽出グラフは、相関グラフであり、測定シーケンスのエラー発生箇所前後の測定条件、測定結果を軸として表示するようにしたものである。
(8)また、上記目的を達成するために、本発明は、半導体デバイスの製造工程における製造プロセスの評価をモニタし、エラー要因抽出の表示システムであって、寸法測定機能付きの走査型電子顕微鏡でウェハー計測した測定条件及びエラー情報を含んだログ情報をコンピュータ上に取得し、注目する管理レシピを指定する入力手段と、前記入力手段により指定され、取り込まれたログ情報を解析するログ解析処理手段と、該ログ解析処理手段により解析された解析データを蓄積するデータ管理手段と、該データ管理手段に蓄積されたデータからエラー要因抽出グラフをビジュアル化して表示するビジュアル情報制御手段と、該ビジュアル情報制御手段から出力されるビジュアル情報を表示する表示手段を備えるようにしたものである。
かかる構成により、修正すべきレシピの順位付けと測定エラーのシーケンス検知を容易に視覚的に判断できるものとなる。
(9)上記(8)において、好ましくは、前記ビジュアル情報制御手段は、エラー算出処理部により求めたエラー率を分布表示するグラフ表示処理部と、管理レシピのエラー率分布を強調表示する強調表示処理部と、エラー数の面内分布を等高線表示する等高線表示処理部と、エラー内訳表示処理部と、相関表示処理部を備えるようにしたものである。
本発明によれば、測長SEMの測定エラーの要因で、装置の稼動状況に最も負荷を与えている修正すべきレシピの順位付けと測定エラーのシーケンス検知を容易に視覚的に判断できるものとなる。
本発明の一実施形態によるエラー要因抽出の表示システムを用いた製造プロセスの評価モニタシステムの構成図である。 本発明の一実施形態による製造プロセスの評価モニタシステムに用いる測長SEMの測定の流れを示すフローチャートである。 本発明の一実施形態による製造プロセスの評価モニタシステムに用いる測長SEMの測定の流れを示すフローチャートである。 本発明の一実施形態による製造プロセスの評価モニタシステムに用いる測長SEMの測定の流れを示すフローチャートである。 本発明の一実施形態によるエラー要因抽出の表示システムの構成図である。 本発明の一実施形態によるエラー要因抽出の表示システムにおける入力手段による設定動作の説明図である。 本発明の一実施形態によるエラー要因抽出の表示システムにおけるエラー算出処理部の動作を示すフローチャートである。 本発明の一実施形態によるエラー要因抽出の表示システムにおけるビジュアル情報制御手段によるエラー率分布の表示例の説明図である。 本発明の一実施形態によるエラー要因抽出の表示システムにおける各レシピのエラー率のエラー内訳の表示例の説明図である。 本発明の一実施形態によるエラー要因抽出の表示システムにおけるエラー発生箇所前後のシーケンスの測定条件を相関グラフの表示例の説明図である。
以下、図1〜図10を用いて、本発明の一実施形態によるエラー要因抽出の表示システムの構成について説明する。
最初に、図1を用いて、本実施形態によるエラー要因抽出の表示システムを用いた製造プロセスの評価モニタシステムの構成について説明する。
図1は、本発明の一実施形態によるエラー要因抽出の表示システムを用いた製造プロセスの評価モニタシステムの構成図である。
複数の測長SEM300A,300B,300Cは、ネットワーク装置200を介してエラー要因抽出の表示システム100に接続されている。なお、表示システム100は、複数の測長SEM300A,300B,300Cに接続されてログ情報の授受をしてもよいし、1台の測長SEMに接続されてもよいものである。
エラー要因抽出の表示システム100は、ビジュアル情報管理部110と、入力手段120と、表示手段130とから構成される。入力手段120により指定されたログ情報は、測長SEM300からネットワーク装置200を介してビジュアル情報管理部110に取り込まれる。ビジュアル情報管理部110は、取り込んだ測長SEM300のログ情報に基づいて、エラー率分布やエラー内訳グラフ、相関グラフなどのエラー要因抽出グラフを作成し、表示手段130にビジュアル化して表示する。エラー要因抽出の表示システム100の詳細構成及び動作については、図5以降を用いて後述する。
次に、図2〜図4を用いて、本実施形態による製造プロセスの評価モニタシステムに用いる測長SEMの測定の流れについて説明する。
図2〜図4は、本発明の一実施形態による製造プロセスの評価モニタシステムに用いる測長SEMの測定の流れを示すフローチャートである。
寸法測定機能付きの走査型電子顕微鏡(測長SEM)の基本的な構成は、例えば、特許文献1図2に示されているように、電子銃,偏向器,対物レンズ,検出器,試料ステージ,処理制御装置等から構成される。電子銃から発生した電子ビームを対物レンズにより、試料ステージに載置されたウェハーにフォーカスする。そして、偏向器により電子ビームを走査したとき、検出器から得られる二次電子や反射電子の検出信号を処理制御装置に取り込む。ウェハーには複数のチップの配線パターン等が形成されている。処理制御装置は、取り込まれた二次電子や反射電子の検出信号により、二次元像を得て、各チップの配線パターン等の寸法を測定する。また、処理制御装置は、偏向器,対物レンズ試料ステージを制御して、所定の配線パターン等の測長をする際に生じたエラーをログ情報として記憶している。
図2は、寸法測定機能付きの走査型電子顕微鏡(測長SEM)による測定の全体的な流れを示している。
最初に、ステップS10において、測定対象となるウェハーを試料室にロードする。次に、ステップS20において、光学顕微鏡像またはSEM像を用いて、ウェハーの位置を調整するウェハーアライメント処理を実行する。ウェハーアライメント処理の詳細については、図3を用いて後述する。
次に、ステップS30において、SEM像を用いて、配線パターンの寸法測定位置にウェハー上に形成されたチップを移動するアドレッシング処理、および配線パターンの寸法を測定する寸法測定処理を実行する。アドレッシング処理、および寸法測定処理の詳細については、図4を用いて後述する。
寸法測定終了後、ステップS40において、ウェハーを試料室からアンロードする。
次に、図3を用いて、ウェハーアライメント処理の詳細について説明する。
最初に、ステップS31において、試料ステージを駆動して、ウェハーのアライメント点に移動する。ウェハーの上には、位置決めのためのユニークなアライメント用パターンが予め形成されている。ウェハーのチップ上に形成される配線パターンは、例えば、特許文献1の図7や図8に示されるように、直線状のもの、L字状のもの、T字状のものや、パッドとして用いられる円形状のものなどがある。それに対して、アライメント用パターンは、これらの配線パターンの形状とは異なり、配線パターンと区別できるような形状のパターンである。例えば、十字形などのパターンである。アライメント用パターンは、光学顕微鏡により検出可能であり、また、低倍率のSEM像としても検出可能な大きさを有している。
アライメント用パターンのウェハーに対する位置は、予め決められているため、試料ステージを駆動することで、アライメント用パターンの位置に移動可能である。
次に、ステップS22において、明るさ調整を実行する。明るさ調整では、対物レンズ電流を増加減少して、最も明るくなるように調整する。
次に、ステップS23において、高さを計測可能なZセンサを用いて、試料ステージをZ軸方向(電子ビームの方向)に移動して、試料ステージ上に載置されたウェハーの高さを所定の高さに設定する。
次に、ステップS24において、プレドーズ(PreDose)を実行する。ウェハーの材質によっては、電子ビームを照射した直後に、像のコントラストが大きく変化する場合があるので、そのような場合には、所定時間だけ電子ビームを照射して、像のコントラストを安定化する。これは、SEM像によりアライメント処理を実行する場合に必要であり、光学顕微鏡像によりアライメント処理を実行する場合には不要である。
次に、ステップS25において、ウェハーの表面に対してオートフォーカスを実行する。
次に、ステップS26において、光学顕微鏡像またはSEM像を用いて、視野の中から、アライメント用パターンをパターン認識する。
次に、図4を用いて、アドレッシング処理、および寸法測定処理の詳細について説明する。
最初に、ステップS31において、ウェハーに複数形成されている複数のチップの内、第1のチップに対する配線パターンの寸法を測定するため、試料ステージを駆動して、チップ上の配線パターンの測長位置の近傍に移動する。
次に、ステップS32において、測長位置により正確に位置決めするためのアドレッシングの処理を実行する。各チップには、第1と第2のアドレッシング用パターンが形成されている。アドレッシング用パターンは、配線パターンやアライメント用パターンとも異なるユニークなパターンである。第2のアドレッシング用パターンは、測長位置の極近傍の形成されている。第1のアドレッシング用パターンは、第2のアドレッシング用パターンよりも少し離れた位置に形成されている。そこで、最初に第1のアドレッシング用パターンにより大まかに位置決めした後、第2のアドレッシング用パターンにより、測長位置の近傍に位置決めする。アドレッシング処理は、ステップS32A〜S32Fからなる。
次に、ステップS32Aにおいて、高さを計測可能なZセンサを用いて、試料ステージをZ軸方向(電子ビームの方向)に移動して、試料ステージ上に載置されたウェハーの高さを所定の高さに設定する。
そして、ステップS32Bにおいて、プレドーズ(PreDose)を実行する。
次に、ステップS32Cにおいて、チップの表面の第1のアドレッシング用パターンの周辺に対してオートフォーカスを実行する。
次に、ステップS32Dにおいて、SEM像を用いて、視野の中から、第1のアドレッシング用パターンをパターン認識する。
次に、ステップS32Eにおいて、第1のアドレッシング用パターンの位置を基準として第2のアドレッシング用パターンの近傍まで移動した上で、チップの表面の第2のアドレッシング用パターンの周辺に対してオートフォーカスを実行する。
次に、ステップS32Fにおいて、SEM像を用いて、視野の中から、第2のアドレッシング用パターンをパターン認識する。
次に、ステップS33において、配線パターンの寸法計測処理を実行する。寸法計測処理は、ステップS33A〜S33Dからなる。
最初に、ステップS33Aにおいて、寸法計測位置付近の配線パターンに対してフォーカス合わせを実行する。
次に、ステップS33Bにおいて、SEM像を用いて、視野の中から、寸法計測位置における配線パターンをパターン認識する。
次に、ステップS33C、33Dにおいて、測長処理を複数回実行する。例えば、直線状の配線パターンの測長を行う場合、配線パターンの断面形状は台形状であり、上辺の長さと下辺の長さは異なっている。そこで、第1回目の測長で、上辺の長さを計測し、第2回目の測長で、下辺の長さを計測し、さらに、左側の下辺の位置から右側の上辺の位置の寸法の計測や、右側の下辺の位置から左側の上辺の位置の寸法の計測のように、複数箇所の寸法を計測する。
寸法測定は、多くのシーケンスで構成されているため、修正レシピの順位付けと共にエラー発生シーケンスの検知は、エラー要因解析の効率向上が期待できる。なお、測定試料の1ウェハーを製造ロットの1ロットとする。
最後に、ステップS34において、メジャーメント処理で計測した配線パターンのSEM像を保存する。
次に、図5を用いて、本実施形態によるエラー要因抽出の表示システムの構成について説明する。
図5は、本発明の一実施形態によるエラー要因抽出の表示システムの構成図である。
本実施形態によるエラー要因抽出の表示システムは、ビジュアル情報管理部110と、入力手段120と、表示手段130とを備えている。入力手段120により、測長SEMで計測した測定条件、結果及びエラー情報を含んだログ情報やビジュアルパラメータを指定する。ビジュアル情報管理部110は、測長SEMから取り込んだログ情報等から、エラー率分布やエラー内訳グラフ、相関グラフなどのエラー要因抽出グラフを作成する。作成されたグラフは、表示手段130に表示される。
ビジュアル情報管理部110は、入力処理手段112と、ログ解析処理手段114と、データ管理手段116と、ビジュアル情報制御手段118とを備えている。
入力処理手段112は、ログ情報読込処理部112Aと、パラメータ読込処理部112Bとを備えている。ログ解析処理手段114は、エラー解析処理部114Aと、測定条件解析処理部114Bと、測定結果解析処理部114Cとを備えている。データ管理手段116は、解析データ管理処理部116Aとを備えている。
ビジュアル情報制御手段118は、グラフ表示処理部118Aと、エラー率算出処理部118Bと、強調表示処理部118Cと、等高線表示処理部118Dと、エラー内訳表示処理部118Eと、相関表示処理部118Fとを備えている。
なお、各手段及び各処理部の動作については、図6以降を用いて後述する。
次に、図6を用いて、本実施形態によるエラー要因抽出の表示システムにおける入力手段120による設定動作について説明する。
図6は、本発明の一実施形態によるエラー要因抽出の表示システムにおける入力手段による設定動作の説明図である。
図5に示した入力手段120は、キーボードやマウス等からなり、表示手段130に表示される画面を用いて入力するGUI(グラフィック・ユーザー・インターフェース)である。
図6は、入力手段120で指定するパラメータ設定画面を示している。パラメータ設定画面は、装置リスト601と、クラスリスト602と、レシピリスト603で構成されている。
装置リスト601には、Machine001, Machine002, Machine003にように、装置名が表示される。これらの装置名は、例えば、それぞれ、図1に示した測長SEM300A,300B,300Cに対応する。
クラスリスト300Bには、Class001, Class002, Class003にように、クラス名が表示される。これらのクラス名は、各装置毎に設定されており、例えば、製品名に相当する。なお、クラス名には、製品名の他に、工程名、ライン名が用いられることもある。
レシピリスト603には、Recepe001, Receipe002, Receipe003にように、レシピ名が表示される。測長SEMにおいては、複数の配線パターンの測長が行われるので、それぞれに異なるレシピ名が設定されている。例えば、特許文献1の図7(a)〜(i)に示すように、配線自体の幅(図7(a)、隣り合う配線のギャップ長(図7(b))、配線端部と他の配線のギャップ長(図7(c))等に対して、それぞれ異なるレシピ名が設定される。
図6に示したパラメータ設定画面において、装置を入力手段のマウス等を用いて選択すると該当の装置名の背景色は反転され、クラスリストには、選択した装置名のクラスの一覧が表示される。図示の例では、Machine001を選択したことで、Machine001に属するクラス名として、Class001〜Class005が一覧として表示される。さらに、クラスを選択すると該当するクラスで管理しているレシピの一覧がレシピリストに表示される。図示の例では、Class003を選択したことで、Class003に属するレシピ名として、Recipe001〜Receipe005が一覧として表示される。
レシピを管理レシピとして登録する場合、「Add」ボタン604を押下する。登録されたレシピは、登録リスト(ReceipeListの欄)605に追加される。図示の例では、Machine001,Class003, Receipe003が選択されている状態で「Add」ボタンを押下したことで、登録リスト605には、Machine001/Class003/Receipe003が追加表示される。
なお、登録したレシピを削除する場合、登録リスト605からレシピを選択して「Delete」ボタン606を押下する。
このように設定されたレシピは、後述する図7に示されるエラー要因抽出グラフのエラー率分布を表示する際に強調表示することで、管理しているレシピのエラー率を容易に認識することができる。
図5に示した入力処理手段104について説明する。ログ情報読込み処理部104Aは、測長SEMで計測した測定条件、結果及びエラー情報を含んだログ情報を取得する。パラメータ読込み処理部104Bは、エラー率分布の表示の際に強調表示する管理レシピの設定情報を取得する。
ログ情報読込み処理部104Aにより読み込まれたログ情報は、ログ解析処理手段105によって解析される。ログ解析処理手段105によって解析された解析データは、データ管理手段106で一元管理される。解析データ管理処理部106Aで蓄積された解析データは、エラー率算出処理部118Bでエラー率算出に用いられ、同時に画面表示装置の画面上に表示するためにビジュアル情報制御手段118によって制御される。
次に、図7を用いて、本実施形態によるエラー要因抽出の表示システムにおけるエラー算出処理部118Bによる設定動作について説明する。
図7は、本発明の一実施形態によるエラー要因抽出の表示システムにおけるエラー算出処理部の動作を示すフローチャートである。
ビジュアル情報制御手段118のエラー算出処理部118Bは、ステップS1において、指定期間に実行した同一レシピに対して解析データ管理処理部106Aから総ロット数、総ロットエラー数、総測定点数、総測定点エラー数を取得する。
次に、ステップS2において、取得データからロットエラー率、測定点エラー率を求める。ロットエラー率は、(総ロットエラー数/総ロット数)×100として算出され、測定点エラー率は、(総測定点エラー数/総測定点数)×100として算出される。
次に、ステップS3において、ロットエラー率、測定点エラー率、測定点エラー数をエラー算出処理部118Bの内部のグラフ用テーブルに記憶する。
次に、ビジュアル情報制御手段118の他の構成の動作について説明する。グラフ表示処理部118Aは、表示手段130の画面に、エラー率算出処理部118Bによって求めた総処理数におけるロット或いは測定点エラー率からエラー率分布を作成する。強調表示処理部118Cは、入力手段120のパラメータで指定された管理レシピをグラフ上に強調表示する。等高線表示処理部118Dは、グラフ上でエラー数の面内分布を等高線で表示する。エラー内訳表示処理部118Eは、エラー率分布からエラー内訳グラフを表示する。相関表示処理部118Fは、測定条件と結果の相関グラフを表示する。
ここで、図8を用いて、本実施形態によるエラー要因抽出の表示システムにおけるビジュアル情報制御手段118によるエラー率分布の表示例について説明する。
図8は、本発明の一実施形態によるエラー要因抽出の表示システムにおけるビジュアル情報制御手段によるエラー率分布の表示例の説明図である。
エラー率分布は、ロットエラー率、測定点エラー率の2種類があり、切替え表示ボタン808を選択することで、切替え表示することができる。ロットエラー率は、ウェハー1枚当りにオペレータが測定エラーによりアシストする割合を百分率で表したものである。測定点エラー率は、1測定点当りのオペレータがアシストする割合を百分率で表したものである。
図示の例では、ロットエラー率(Error Rate by Receipe)を選択してグラフ表示した場合を示している。図において、横軸は処理数(Lot Count)を示し、縦軸はエラー率(Lot Error Ration)を示している。
図6にて説明したように、パラメータで指定した管理レシピは、強調表示804により、ビジュアル化されるので注目したいレシピのエラー率を容易に識別することができる。図示の例では、強調表示804A,804B,804Cの3つが表示されている。
グラフ上のプロット(図中の菱形)にカーソルを合わせると、レシピ情報(クラス名、レシピ名)とプロット情報(処理数、エラー率)をポップアップ809で表示する。図示の例では、強調表示804A,804B,804Cのそれぞれについて、レシピ情報とプロット情報が表示されている。例えば、強調表示804Aについて見ると、レシピ情報として、クラス名:Class001と、レシピ名:Recipe001が表示され、さらに、プロット情報として、処理数:950ロットと、エラー率:95.7%が表示される。
図7で説明したエラー率分布の各情報は、リスト805に一覧表示される。
図8に示したように、エラー率分布は、縦軸のエラー率(Lot Error Ration)を、横軸を処理数(Lot Count)として表示するようにしている。従って、エラー率が同値でも処理数によって修正すべきレシピの順位付けに重み付けをつけることができる。例えば、符号LE1で示すプロットのエラー率は90%以上と、強調表示804Aで示されるプロットと同様に、高エラー率である。但し、強調表示804Aで示されるプロットのロット数は1000に近い大きなロット数であるのに対して、符号LE1で示すプロットのロット数は100以下と小さいロット数である。つまり、処理数が多くて、エラー率が高い、グラフ上の右上にプロットされるレシピほど、修正する順位が上位であることを容易に視覚的に判断することができる。
さらに、等高線表示処理部118Dは、グラフ上をエラー数の面内分布と見なして等高線表示803(803A,803B,803C)することで、グラフ上にプロットしたエラー率にどの程度のエラー数が発生しているかを定量的に判断することができる。
また、一覧表示リスト805でレシピを選択して「Open」ボタン806を押下ると、各レシピのエラー率のエラー内訳を示すことができる。この詳細については、図9を用いて後述する。
さらに、一覧表示リスト805でレシピを選択して「Analysis」ボタン807を押下ると、エラー発生箇所前後のシーケンスの測定条件を相関グラフで表示することができる。エラー発生箇所前後のシーケンスの測定条件については、図10を用いて後述する。
次に、図9を用いて、本実施形態によるエラー要因抽出の表示システムにおける各レシピのエラー率のエラー内訳の表示例について説明する。
図9は、本発明の一実施形態によるエラー要因抽出の表示システムにおける各レシピのエラー率のエラー内訳の表示例の説明図である。
図9は、図7に示した各レシピのエラー率のエラー内訳を示したグラフである。図9において、横軸は装置名(Machine Name)を示し、縦軸はエラー数(Error Count)を示している。
図9のエラー内訳グラフでは、グラフの基本情報を一覧表907に示している。
各エラー内訳グラフ901は、アライメント点エラー902および測定点エラー903(903A,903B,…,903F)に区別され、測定点エラーはエラー数の多い順から5つ目までをグラフに表示する。アライメント点エラー902は、図4に示したアドレッシング処理(ステップS32)において発生したエラーである。測定点エラー903は、図4に示したメジャーメント処理(ステップS33)において発生したエラーである。
横軸を装置名として、装置単位で同一レシピのエラー内訳グラフを表示することで、装置間差のエラー発生状況をモニタリングすることができる。これは、エラー要因の切り分け判断に有効であり、装置間差でエラー発生状況が異なると、エラー要因がレシピ起因以外として絞り込むことができ、エラー要因解析に大いに有利となる。図9の例では、Machine001はMachine002に比べてアライメント点エラー902が多く見られるため、Machine001のアライメント関連(軸調ずれ等)に問題があると分析できる。また、Machine002は、パターン認識のNo.1や、パターン認識のNo.2において、Machine001によりエラーが多いため、パターン認識に問題があると分析できる。
また、グラフ領域にカーソルを合わせると、エラー情報としてエラーコードとエラーが発生したシーケンスをポップアップ906で表示する。エラーコードはエラー発生原因、シーケンスは測定シーケンスのどのシーケンスでエラーが発生したかのエラー発生箇所を検知することができ、次アクションのエラー要因の解析時間削減が期待できる。例えば、図9の「9007:Addressing1-Pattern Matching1」のエラー発生箇所は、図4のステップS32Dのパターン認識1で発生したエラーと判断できる。
次に、図10を用いて、本実施形態によるエラー要因抽出の表示システムにおけるエラー発生箇所前後のシーケンスの測定条件を相関グラフの表示例について説明する。
図10は、本発明の一実施形態によるエラー要因抽出の表示システムにおけるエラー発生箇所前後のシーケンスの測定条件を相関グラフの表示例の説明図である。
図10は、図9で説明した「9007:Addressing1-Pattern Matching1」のエラー発生箇所前後のシーケンスの測定条件を、相関グラフで表したものである。
図10の相関グラフにおいて、横軸は、エラー発生箇所(図4のステップS32D)の前シーケンスのオートフォーカス1(図4のステップS32C)処理の測定条件である対物レンズ値を示し、Y軸は、エラー発生箇所(図4のステップS32D)の測定結果であるScore(マッチング数)を示している。 相関グラフのアクセプタンス値はScoreのしきい値を意味しており、アクセプタンス値未満のScoreはエラーであることを示す。
相関グラフの一例では、Machine001の場合のように、対物レンズ値がジャストフォーカス(対物レンズ値=0)付近ほどScoreが高く、エラーとなりづらいことが解析できる。一方、Machine002に場合では、対物レンズ値がジャストフォーカス(対物レンズ値=0)から離れており、結果的に、Scoreが低く、エラーとなりやすいことが解析できる。その結果、レシピパラメータの修正項目がフォーカス関連(例えば、図4のステップS32AのZセンサ関係や、ステップ32Cのオートフォーカス)だと特定することができる。したがって、エラー原因或いは発生箇所から、エラーが発生した前後のシーケンスの測定条件との相関グラフを用いることでエラー発生パターンを分析でき、修正ポイントを定量的に分析することができる。
以上説明したように、本実施形態によれば、測定エラーが発生したレシピのエラー率を処理数の重み付けでエラー率分布として表示することで、測長SEMの測定エラーの要因で、装置の稼動状況に最も負荷を与えている修正すべきレシピの順位付けが可能となる。したがって、オペレータは、修正すべきレシピの順位付けを、視覚的に容易に判断することができる。
また、測定エラーのシーケンス検知により、エラー発生原因、発生箇所を特定し、測定条件の相関グラフを用いることで修正ポイントを定量的に分析することが可能となる。したがって、測定エラーのシーケンス検知によるエラー要因解析の効率が向上する。
110…ビジュアル情報管理部
120…入力手段
130…表示手段
112…入力処理手段
112A…ログ情報読込処理部
112B…パラメータ読込処理部
114…ログ解析処理手段
114A…エラー解析処理部
114B…測定条件解析処理部
114C…測定結果解析処理部
116…データ管理手段
116A…解析データ管理処理部
118…ビジュアル情報制御手段
118A…グラフ表示処理部
118B…エラー率算出処理部
118C…強調表示処理部
118D…等高線表示処理部
118E…エラー内訳表示処理部
118F…相関表示処理部

Claims (9)

  1. (注:元の請求項1に対応)
    半導体デバイスの製造工程における製造プロセスの評価をモニタし、エラー要因抽出の表示方法であって、
    寸法測定機能付きの走査型電子顕微鏡でウェハー計測した測定条件及びエラー情報を含んだログ情報をコンピュータ上に取得して解析し、ログ情報の解析データからエラー要因抽出グラフをビジュアル化して表示することを特徴とするエラー要因抽出の表示方法。
  2. (注:元の請求項2の一部(エラー率分布)+元の請求項3に対応:図7)
    請求項1記載のエラー要因抽出の表示方法において、
    前記エラー要因抽出グラフは、エラー率分布であり、処理数及びエラー率を軸として2次元表示することを特徴とするエラー要因抽出の表示方法
  3. (注:元の請求項4に対応)
    請求項2記載のエラー要因抽出の表示方法において、
    前記エラー率分布は、パラメータ設定画面で設定した管理レシピをグラフ上に強調表示されることを特徴とするエラー要因抽出の表示方法。
  4. (注:元の請求項5に対応)
    請求項2記載のエラー要因抽出の表示方法において、
    前記エラー率分布は、エラー数の面内分布を等高線で表示することを特徴とするエラー要因抽出の表示方法。
  5. (注:元の請求項2の一部(エラー内訳)+元の請求項6に対応)
    請求項1記載のエラー要因抽出の表示方法において、
    前記エラー要因抽出グラフは、エラー内訳であり、装置名、エラー数を軸として2次元表示することを特徴とするエラー要因抽出の表示方法。
  6. (注:元の請求項7に対応)
    請求項5記載のエラー要因抽出の表示方法において、
    前記エラー内訳グラフは、測定処理(アライメント点、測定点)単位のエラーにエラーコード、シーケンス情報を付加表示することを特徴とするエラー要因抽出の表示方法。
  7. (注:元の請求項2の一部(相関グラフ)+元の請求項8に対応)
    請求項1記載のエラー要因抽出の表示方法において、
    前記エラー要因抽出グラフは、相関グラフであり、測定シーケンスのエラー発生箇所前後の測定条件、測定結果を軸として表示することを特徴とするエラー要因抽出の表示方法。
  8. (注:元の請求項8に対応)
    半導体デバイスの製造工程における製造プロセスの評価をモニタし、エラー要因抽出の表示システムであって、
    寸法測定機能付きの走査型電子顕微鏡でウェハー計測した測定条件及びエラー情報を含んだログ情報をコンピュータ上に取得し、注目する管理レシピを指定する入力手段と、
    前記入力手段により指定され、取り込まれたログ情報を解析するログ解析処理手段と、
    該ログ解析処理手段により解析された解析データを蓄積するデータ管理手段と、
    該データ管理手段に蓄積されたデータからエラー要因抽出グラフをビジュアル化して表示するビジュアル情報制御手段と、
    該ビジュアル情報制御手段から出力されるビジュアル情報を表示する表示手段を備えることを特徴とするエラー要因抽出の表示システム。
  9. (注:元の請求項10に対応)
    請求項8記載のエラー要因抽出の表示システムにおいて、
    前記ビジュアル情報制御手段は、
    エラー算出処理部により求めたエラー率を分布表示するグラフ表示処理部と、
    管理レシピのエラー率分布を強調表示する強調表示処理部と、
    エラー数の面内分布を等高線表示する等高線表示処理部と、
    エラー内訳表示処理部と、
    相関表示処理部を備えることを特徴とするエラー要因抽出の表示システム。
JP2009111224A 2009-04-30 2009-04-30 エラー要因抽出の表示方法及びその表示システム Pending JP2010263008A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009111224A JP2010263008A (ja) 2009-04-30 2009-04-30 エラー要因抽出の表示方法及びその表示システム
PCT/JP2010/056713 WO2010125919A1 (ja) 2009-04-30 2010-04-14 エラー要因抽出の表示方法及びその表示システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111224A JP2010263008A (ja) 2009-04-30 2009-04-30 エラー要因抽出の表示方法及びその表示システム

Publications (1)

Publication Number Publication Date
JP2010263008A true JP2010263008A (ja) 2010-11-18

Family

ID=43032072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111224A Pending JP2010263008A (ja) 2009-04-30 2009-04-30 エラー要因抽出の表示方法及びその表示システム

Country Status (2)

Country Link
JP (1) JP2010263008A (ja)
WO (1) WO2010125919A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887407B2 (ja) * 2018-08-28 2021-06-16 横河電機株式会社 装置、プログラム、プログラム記録媒体、および方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200819A (ja) * 2000-01-25 2000-07-18 Hitachi Ltd 検査デ―タ解析システムおよび検査デ―タ解析方法
JP2007024737A (ja) * 2005-07-20 2007-02-01 Hitachi High-Technologies Corp 半導体の欠陥検査装置及びその方法
JP2009087591A (ja) * 2007-09-28 2009-04-23 Hitachi High-Technologies Corp 荷電粒子線装置の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200819A (ja) * 2000-01-25 2000-07-18 Hitachi Ltd 検査デ―タ解析システムおよび検査デ―タ解析方法
JP2007024737A (ja) * 2005-07-20 2007-02-01 Hitachi High-Technologies Corp 半導体の欠陥検査装置及びその方法
JP2009087591A (ja) * 2007-09-28 2009-04-23 Hitachi High-Technologies Corp 荷電粒子線装置の制御装置

Also Published As

Publication number Publication date
WO2010125919A1 (ja) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5444092B2 (ja) 検査方法およびその装置
JP4866141B2 (ja) Sem式レビュー装置を用いた欠陥レビュー方法及びsem式欠陥レビュー装置
KR101680558B1 (ko) 결함 관찰 방법 및 결함 관찰 장치
JP5412169B2 (ja) 欠陥観察方法及び欠陥観察装置
KR101202527B1 (ko) 결함 관찰 장치 및 결함 관찰 방법
US8111902B2 (en) Method and apparatus for inspecting defects of circuit patterns
US20080298670A1 (en) Method and its apparatus for reviewing defects
US9342878B2 (en) Charged particle beam apparatus
US9165356B2 (en) Defect inspection method and defect inspection device
KR101524421B1 (ko) 결함 관찰 방법 및 결함 관찰 장치
WO2013153891A1 (ja) 荷電粒子線装置
JP2009123851A (ja) 欠陥観察分類方法及びその装置
US20110129141A1 (en) Circuit pattern examining apparatus and circuit pattern examining method
JP5390215B2 (ja) 欠陥観察方法および欠陥観察装置
JP4647974B2 (ja) 欠陥レビュー装置、データ管理装置、欠陥観察システム及び欠陥レビュー方法
JP6049052B2 (ja) ウエハ外観検査装置及びウエハ外観検査装置における感度しきい値設定方法
WO2011132766A1 (ja) レビュー方法、およびレビュー装置
WO2010125919A1 (ja) エラー要因抽出の表示方法及びその表示システム
JP4607157B2 (ja) 観察装置、観察装置のレシピ設定方法
JP6207893B2 (ja) 試料観察装置用のテンプレート作成装置
JP5163731B2 (ja) 欠陥候補の画像表示方法
JP2011185715A (ja) 検査装置及び検査方法
JP2015008059A (ja) 荷電粒子線装置および画像蓄積方法
JP2016072544A (ja) レビュー装置
JP5707127B2 (ja) 半導体装置の不良解析方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917