JP2010260962A - 硬化物の製造方法および硬化物 - Google Patents

硬化物の製造方法および硬化物 Download PDF

Info

Publication number
JP2010260962A
JP2010260962A JP2009112961A JP2009112961A JP2010260962A JP 2010260962 A JP2010260962 A JP 2010260962A JP 2009112961 A JP2009112961 A JP 2009112961A JP 2009112961 A JP2009112961 A JP 2009112961A JP 2010260962 A JP2010260962 A JP 2010260962A
Authority
JP
Japan
Prior art keywords
component
group
preferable
carbon
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009112961A
Other languages
English (en)
Inventor
Hitoshi Sashiwa
仁之 指輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2009112961A priority Critical patent/JP2010260962A/ja
Publication of JP2010260962A publication Critical patent/JP2010260962A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)

Abstract

【課題】 低温硬化工程により接着性が向上する硬化方法を提供すること。
【解決手段】 (A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(B)1分子中に少なくとも2個のSiH基を含有するケイ素化合物、(C)ヒドロシリル化触媒を含有する硬化性組成物を、60〜90℃にて0.5〜10時間加熱処理したのち、100〜250℃にて0.5〜12時間加熱処理することを特徴とする硬化物の製造方法。
【選択図】 なし

Description

本発明は硬化物の製造方法に関するものであり、更に詳しくは、耐熱性、耐光性に優れ、かつ、低温硬化工程により接着性が向上する硬化方法を提供するものである。
液晶表示装置に用いられる各種保護コーティング剤、LEDのモールド部材やダイボンド剤、あるいは各種センサーのコーティング剤をはじめとした光学材料には、高い透明性とともに高い接着性が求められる。また、接着性については製造工程あるいは使用環境条件等でさらされる高い温度にも耐えられる接着性、および常温であっても長期にわたる接着性が求められる(特許文献1)。
特開2006−152316
本発明の目的は、SiH基と反応性を有する炭素−炭素二重結合を含有する有機化合物と、SiH基を含有する化合物と、ヒドロシリル化触媒とからなる光学材料用組成物において、高い接着性を有する実用性の高い光学材料用組成物を得るための硬化方法、及びそれを用いた液晶表示装置及びLEDを提供することである。
かかる課題を解決するために本発明者らは鋭意研究の結果、(A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(B)1分子中に少なくとも2個のSiH基を含有するケイ素化合物、(C)ヒドロシリル化触媒を含有する硬化性組成物を、60〜90℃にて0.5〜10時間加熱処理したのち、100〜250℃にて0.5〜12時間加熱処理することを特徴とする硬化物の製造方法を開発することに成功し、本発明を完成するに至った。
すなわち、本発明は、
(A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(B)1分子中に少なくとも2個のSiH基を含有するケイ素化合物、(C)ヒドロシリル化触媒を含有する硬化性組成物を、60〜90℃にて0.5〜10時間加熱処理したのち、100〜250℃にて0.5〜12時間加熱処理することを特徴とする硬化物の製造方法(請求項1)であり、上記硬化性組成物を、60〜90℃にて0.5〜10時間硬化させたのち、100〜140℃にて0.5〜10時間加熱処理したのち、200℃以上にて1〜60分加熱処理することを特徴とする請求項1に記載の硬化物の製造方法(請求項2)であり、前記(A)成分が、C、H、N、O、S及びハロゲンからなる群から選択される元素からなる化合物である、請求項1及び2に記載の硬化物の製造方法(請求項3)であり、前記(A)成分が、下記一般式(I)
Figure 2010260962
(式中、R1は炭素数1〜50の一価の有機基を表し、それぞれのR1は異なっていても同一であってもよい。)で表される有機化合物である、請求項1〜3に記載の硬化物の製造方法(請求項4)であり、前記(B)成分が、(α)SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個以上含有する有機化合物と、(β)1分子中に少なくとも2個のSiH基を有する鎖状及び/又は環状のポリオルガノシロキサンとをヒドロシリル化反応して得ることができる化合物である、請求項1〜4のいずれか一項に記載の硬化物の製造方法(請求項5)であり、前記(β)成分が、下記一般式(II)
Figure 2010260962
(式中、R2は炭素数1〜6の有機基を表し、nは3〜10の数を表す。)で表される、1分子中に少なくとも3個のSiH基を有する環状ポリオルガノシロキサンである、請求項4又は5に記載の硬化物の製造方法(請求項6)であり、請求項1〜6のいずれか一項に記載の硬化物の製造方法により得られる硬化物(請求項7)である。
本発明の低温硬化工程により接着性が向上する硬化方法によって、製造工程あるいは使用環境条件等でさらされる高い温度にも耐えられる接着性、および常温であっても長期にわたる接着性を維持することが可能である。
((A)成分)
まず、本発明における(A)成分について説明する。
(A)成分は、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物であれば特に限定されない。上記有機化合物としては、ポリシロキサン−有機ブロックコポリマーやポリシロキサン−有機グラフトコポリマー等の、シロキサン単位(Si−O−Si)を含む化合物以外のものが好ましく、構成元素としてC、H、N、O、S及びハロゲン以外の元素を含まない化合物がより好ましい。シロキサン単位を含む化合物の場合は、ガス透過性やはじきの問題がある。
SiH基と反応性を有する炭素−炭素二重結合の結合位置は特に限定されず、分子内のどこに存在してもよい。 (A)成分は、単独で用いても良いし、2種以上のものを組み合わせて用いてもよい。 (A)成分の化合物は、有機重合体系の化合物と有機単量体系の化合物に分類できる。
有機重合体系化合物としては特に限定されないが、例えば、ポリエーテル系、ポリエステル系、ポリアリレート系、ポリカーボネート系、飽和炭化水素系、不飽和炭化水素系、ポリアクリル酸エステル系、ポリアミド系、フェノール−ホルムアルデヒド系(フェノール樹脂系)、ポリイミド系の化合物等が挙げられる。
有機単量体系化合物としては特に限定されないが、例えば、フェノール系、ビスフェノール系、ベンゼン、ナフタレン等の芳香族炭化水素系;鎖状、環状等の脂肪族炭化水素系;複素環系の化合物;これらの混合物等が挙げられる。
(A)成分のSiH基と反応性を有する炭素−炭素二重結合としては特に限定されないが、下記一般式(III)
Figure 2010260962
(式中R3は水素原子あるいはメチル基を表す。)で示される基が反応性の点から好適である。上記一般式(III)で示される基のうち、原料の入手の容易さから
Figure 2010260962
で示される基が特に好ましい。
さらに、(A)成分のSiH基と反応性を有する炭素−炭素二重結合としては、下記一般式(IV)で表される部分構造を環内に有する脂環式の基が、硬化物の耐熱性が高いという点から好適である。
Figure 2010260962
(式中R4は水素原子あるいはメチル基を表す。2つのR4は同じであってもよいし異なっていてもよい。)このうち、原料の入手の容易さから、下記式で表される部分構造を環内に有する脂環式の基が好適である。
Figure 2010260962
SiH基と反応性を有する炭素−炭素二重結合は(A)成分の骨格部分に直接結合していてもよく、2価以上の置換基を介して共有結合していてもよい。上記2価以上の置換基としては特に限定されないが、炭素数0〜10の置換基が好ましく、構成元素としてC、H、N、O、S及びハロゲン以外の元素を含まない置換基がより好ましい。上記2価以上の置換基の例としては、
Figure 2010260962
Figure 2010260962
が挙げられる。また、例示した2価以上の置換基の2つ以上が共有結合によりつながって1つの2価以上の置換基を構成していてもよい。
(A)成分の骨格部分に共有結合する基の例としては、ビニル基、アリル基、メタリル基、アクリル基、メタクリル基、2−ヒドロキシ−3−(アリルオキシ)プロピル基、2−アリルフェニル基、3−アリルフェニル基、4−アリルフェニル基、2−(アリルオキシ)フェニル基、3−(アリルオキシ)フェニル基、4−(アリルオキシ)フェニル基、2−(アリルオキシ)エチル基、2,2−ビス(アリルオキシメチル)ブチル基、3−アリルオキシ−2,2−ビス(アリルオキシメチル)
プロピル基、
Figure 2010260962
が挙げられる。
(A)成分の具体的な例としては、ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、1,1,2,2−テトラアリロキシエタン、ジアリリデンペンタエリスリット、トリアリルシアヌレート、トリアリルイソシアヌレート、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジアリルエーテル、1,2,4−トリビニルシクロヘキサン、ジビニルベンゼン類(純度50〜100%のもの、好ましくは純度80〜100%のもの)、ジビニルビフェニル、1,3−ジイソプロペニルベンゼン、1,4−ジイソプロペニルベンゼン、それらのオリゴマー、1,2−ポリブタジエン(1,2比率10〜100%のもの、好ましくは1,2比率50〜100%のもの)、ノボラックフェノールのアリルエーテル、アリル化ポリフェニレンオキサイド、
Figure 2010260962
Figure 2010260962
、エポキシ樹脂のグリシジル基の一部あるいは全部をアリル基に置き換えたもの等が挙げられる。
(A)成分としては、骨格部分と炭素−炭素二重結合とに分けて表現しがたい、低分子量化合物も用いることができる。上記低分子量化合物の具体例としては、ブタジエン、イソプレン、オクタジエン、デカジエン等の脂肪族鎖状ポリエン化合物系、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ジシクロペンタジエン、トリシクロペンタジエン、ノルボルナジエン等の脂肪族環状ポリエン化合物系、ビニルシクロペンテン、ビニルシクロヘキセン等の置換脂肪族環状オレフィン化合物系等が挙げられる。
(A)成分としては、耐熱性をより向上し得るという観点からは、SiH基と反応性を有する炭素−炭素二重結合を(A)成分1gあたり0.001mol以上含有するものが好ましく、0.005mol以上含有するものがより好ましく、0.008mol以上含有するものがさらに好ましい。
(A)成分のSiH基と反応性を有する炭素−炭素二重結合の個数は、1分子当たり少なくとも2個あればよいが、力学強度をより向上したい場合には2個を越えることが好ましく、3個以上であることがより好ましい。ただし(A)成分が種々の化合物の混合物であり、各化合物の上記炭素−炭素二重結合の個数が同定できない場合には、上記混合物全体に関して1分子あたりの上記炭素−炭素二重結合の平均個数を求め、それを、(A)成分の上記炭素−炭素二重結合の個数とする。(A)成分のSiH基と反応性を有する炭素−炭素二重結合の数が1分子内当たり1個以下の場合は、(B)成分と反応してもグラフト構造となるのみで架橋構造とならない。
(A)成分としては反応性が良好であるという観点からは、1分子中にビニル基を1個以上含有していることが好ましく、1分子中にビニル基を2個以上含有していることがより好ましい。また貯蔵安定性が良好となりやすいという観点からは、1分子中にビニル基を6個以下含有していることが好ましく、1分子中にビニル基を4個以下含有していることがより好ましい。
(A)成分としては、力学的耐熱性が高いという観点、並びに、原料液の糸引き性が少なく、成形性及び取扱い性が良好であるという観点からは、分子量が900未満のものが好ましく、700未満のものがより好ましく、500未満のものがさらに好ましい。
(A)成分としては、他の成分との均一な混合、および良好な作業性を得るためには、粘度が23℃において100Pa・s未満のものが好ましく、30Pa・s未満のものがより好ましく、3Pa・s未満のものがさらに好ましい。粘度はE型粘度計によって測定することができる。
(A)成分としては、着色(特に黄変)の抑制の観点からは、フェノール性水酸基およびフェノール性水酸基の誘導体を有する化合物の含有量が少ないものが好ましく、フェノール性水酸基およびフェノール性水酸基の誘導体を有する化合物を含まないものがより好ましい。本発明におけるフェノール性水酸基とは、ベンゼン環、ナフタレン環、アントラセン環等の芳香族炭化水素核に直接結合した水酸基を示し、フェノール性水酸基の誘導体とは、上記フェノール性水酸基の水素原子をメチル基、エチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、アセトキシ基等のアシル基等により置換した基を示す。
複屈折率が低い、光弾性係数が低い等のように光学特性が良好であるとともに耐候性が良好であるという観点からは、(A)成分は、脂肪族系化合物が好ましい。この場合、脂肪族系化合物とは、芳香環を含まないか又はその含有量が少ないものをいう。具体的には、芳香環の(A)成分中の成分重量比が50重量%以下であるものが好ましく、40重量%以下のものがより好ましく、30重量%以下のものがさらに好ましい。最も好ましいのは芳香族炭化水素環を含まないものである。
得られる硬化物の着色が少なく、光学的透明性が高く、耐光性が高いという観点からは、(A)成分としてはビニルシクロヘキセン、ジシクロペンタジエン、トリアリルイソシアヌレート、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジアリルエーテル、1,2,4−トリビニルシクロヘキサンが好ましく、トリアリルイソシアヌレート、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジアリルエーテル、1,2,4−トリビニルシクロヘキサンが特に好ましい。
(A)成分は、SiH基と反応性を有する炭素−炭素二重結合以外の反応性基を有していてもよい。上記反応性基としては特に限定されないが、例えば、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。上記反応性基を有している場合には得られる光学材料用組成物の接着性が高くなりやすく、得られる硬化物の強度が高くなりやすい。接着性がより高くなりうるという点からは、上記反応性基のうちエポキシ基が好ましい。また、得られる硬化物の耐熱性が高くなりやすいという点においては、上記反応性基を平均して1分子中に1個以上有していることが好ましい。
(一般式(I))
(A)成分としては、耐熱性および透明性が高いという観点から、下記一般式(I)で表される化合物が好ましい。
Figure 2010260962
(式中R1は炭素数1〜50の一価の有機基を表し、それぞれのR1は異なっていても同一であってもよい。)
上記一般式(I)のR1としては、得られる硬化物の耐熱性がより高くなりうるという観点からは、炭素数1〜20の一価の有機基が好ましく、炭素数1〜10の一価の有機基がより好ましく、炭素数1〜4の一価の有機基がさらに好ましい。好ましいR1の例としては、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基、フェネチル基、ビニル基、アリル基、グリシジル基、
Figure 2010260962
等が挙げられる。
得られる硬化物の各種材料との接着性が良好になりうるという観点からは、上記一般式(I)の3つのR1のうち少なくとも1つが、エポキシ基を一つ以上含む炭素数1〜50の一価の有機基であることが好ましく、
Figure 2010260962
で表されるエポキシ基を1個以上含む炭素数1〜50の一価の有機基であることがより好ましい。上記エポキシ基を一つ以上含む炭素数1〜50の一価の有機基としては、グリシジル基、
Figure 2010260962
が好ましい。
上記一般式(I)のR1としては、得られる硬化物の化学的な熱安定性が良好になりうるという観点からは、2個以下の酸素原子を含みかつ構成元素としてC、H、N及びO以外の元素を含まない炭素数1〜50の一価の有機基が好ましく、2個以下の酸素原子を含みかつ構成元素としてC、H及びO以外の元素を含まない炭素数1〜50の一価の有機基がより好ましく、炭素数1〜50の一価の炭化水素基がさらに好ましい。これらの好ましいR1の例としては、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基、フェネチル基、ビニル基、アリル基、グリシジル基、
Figure 2010260962
等が挙げられる。
反応性が良好になるという観点からは、上記一般式(I)の3つのR1のうち少なくとも1つが、
Figure 2010260962
で表される基を1個以上含む炭素数1〜50の一価の有機基であることが好ましく、3つのR1のうち少なくとも1つが、下記一般式(III)
Figure 2010260962
(式中R3は水素原子あるいはメチル基を表す。)で表される基を1個以上含む炭素数1〜50の一価の有機基であることがより好ましく、3つのR1のうち少なくとも2つが、下記一般式(V)
Figure 2010260962
(式中R5は直接結合あるいは炭素数1〜48の二価の有機基を表し、R6は水素原子あるいはメチル基を表す。複数のR5およびR6はそれぞれ異なっていても同一であってもよい。)で表される有機基であることがさらに好ましい。
上記一般式(V)のR5は、直接結合あるいは炭素数1〜48の二価の有機基であるが、得られる硬化物の耐熱性がより高くなりうるという観点からは、直接結合あるいは炭素数1〜20の二価の有機基が好ましく、直接結合あるいは炭素数1〜10の二価の有機基がより好ましく、直接結合あるいは炭素数1〜4の二価の有機基がさらに好ましい。なかでも好ましいR5の例としては、
Figure 2010260962
等が挙げられる。
上記一般式(V)のR5としては、得られる硬化物の化学的な熱安定性が良好になりうるという観点からは、直接結合、あるいは、2つ以下の酸素原子を含みかつ構成元素としてC、H及びO以外の元素を含まない炭素数1〜48の二価の有機基が好ましく、直接結合あるいは炭素数1〜48の二価の炭化水素基がより好ましい。なかでも好ましいR5の例としては、
Figure 2010260962
が挙げられる。
上記一般式(V)のR6は、水素原子あるいはメチル基であるが、反応性が良好であるという観点からは、水素原子が好ましい。
ただし、上記一般式(I)で表される有機化合物においても、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有することは必要である。耐熱性をより向上し得るという観点からは、SiH基と反応性を有する炭素−炭素二重結合を1分子中に3個以上含有する有機化合物であることがより好ましい。
上記一般式(I)で表される有機化合物の好ましい具体例としては、トリアリルイソシアヌレート、
Figure 2010260962
等が挙げられる。接着性向上のためには、(A)成分としてはトリアリルイソシアヌレートが好ましい。
(B)成分と良好な相溶性を有するという観点、及び、(A)成分の揮発性が低くなり、得られる光学材料からのアウトガスの問題が生じ難いという観点からは、(A)成分は、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物(α1)と、SiH基を有する鎖状及び/又は環状オルガノポリシロキサン(β)を、ヒドロシリル化反応して得ることができる化合物も好ましい。
(α1)成分としては、上述した(A)成分が挙げられる。(α1)成分は単独で用いてもよいし、2種以上のものを組み合わせて用いてもよい。
((β)成分)
(β)成分は、SiH基を有する鎖状及び/又は環状のポリオルガノシロキサンである。具体的には、例えば
Figure 2010260962
Figure 2010260962
が挙げられる。
(α1)成分との相溶性が良くなりやすいという観点から、下記一般式(II)
Figure 2010260962
(式中、R2は炭素数1〜6の有機基を表し、nは3〜10の数を表す。)で表される、1分子中に少なくとも3個のSiH基を有する環状ポリオルガノシロキサンが好ましい。
一般式(II)で表される化合物中の置換基R2は、構成元素としてC、H及びO以外の元素を含まない置換基が好ましく、炭化水素基がより好ましく、メチル基がさらに好ましい。
一般式(II)で表される化合物としては、入手容易性等から、1,3,5,7−テトラメチルシクロテトラシロキサンが好ましい。
(β)成分は単独で用いてもよいし、2種以上のものを組み合わせて用いてもよい。
((α1)成分と(β)成分の反応)
(A)成分として、(α1)成分と(β)成分をヒドロシリル化反応して得ることができる化合物を用いる場合の、(α1)成分と(β)成分とのヒドロシリル化反応に関して説明する。
尚、(α1)成分と(β)成分をヒドロシリル化反応すると、本発明の(A)成分を含む複数の化合物の混合物が得られることがあるが、そこから(A)成分を分離することなく混合物のままで用いて本発明の光学材料用組成物を作成することもできる。
(α1)成分と(β)成分をヒドロシリル化反応させる場合の(α1)成分と(β)成分の混合比率は、特に限定されないが、反応中のゲル化が抑制できるという点においては、一般に、混合する(α1)成分中のSiH基との反応性を有する炭素−炭素二重結合の総数(X)と、混合する(β)成分中のSiH基の総数(Y)との比が、X/Y≧2であることが好ましく、X/Y≧3であることがより好ましい。また(A)成分の(B)成分との相溶性がよくなりやすいという点からは、10≧X/Yであることが好ましく、5≧X/Yであることがより好ましい。
(α1)成分と(β)成分をヒドロシリル化反応させる場合には適当な触媒を用いてもよい。触媒としてはヒドロシリル化反応の触媒活性があれば特に限定されないが、例えば、白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体(例えば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金−ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4m)、白金−ホスフィン錯体(例えば、Pt(PPh34、Pt(PBu34)、白金−ホスファイト錯体(例えば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、アシュビー(Ashby)の米国特許第3159601号及び3159662号明細書中に記載された白金−炭化水素複合体、ラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒等が挙げられる。更に、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体も本発明において有用である。
白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl2O3、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4等が挙げられる。
これらの中では、触媒活性の点から、塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体等が好ましい。上記触媒は単独で使用してもよく、2種以上を併用してもよい。
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ光学材料用組成物のコストを比較的低く抑えるため、好ましい添加量の下限は、(β)成分のSiH基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限は(β)成分のSiH基1モルに対して10-1モル、より好ましくは10-2モルである。
上記触媒には助触媒を併用することが可能であり、例としてトリフェニルホスフィン等のリン系化合物、ジメチルマレエート等の1,2−ジエステル系化合物、2−ヒドロキシ−2−メチル−1−ブチン等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。助触媒の添加量は特に限定されないが、上記触媒1モルに対しての好ましい添加量の下限は10-2モル、より好ましくは10-1モルであり、好ましい添加量の上限は102モル、より好ましくは10モルである。
反応させる場合の(α1)成分、(β)成分及び触媒の混合の方法としては、各種方法をとることができるが、(α1)成分に触媒を混合したものを、(β)成分に混合する方法が好ましい。(α1)成分と(β)成分の混合物に触媒を混合する方法の場合、反応の制御が困難である。(β)成分と触媒を混合したものに(α1)成分を混合する方法をとる場合は、触媒の存在下(β)成分が混入している水分と反応性を有するため、変質することがある。
反応温度としては種々設定できるが、好ましい温度範囲の下限は30℃、より好ましくは50℃であり、好ましい温度範囲の上限は200℃、より好ましくは150℃である。反応温度が低いと十分に反応させるための反応時間が長くなり、反応温度が高いと実用的でない。反応は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。
反応時間、反応時の圧力も必要に応じ種々設定できる。
ヒドロシリル化反応の際に溶媒を使用してもよい。使用できる溶剤はヒドロシリル化反応を阻害しない限り特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、クロロホルム、塩化メチレン、1,2−ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。溶媒は2種類以上の混合溶媒として用いることもできる。溶媒としては、トルエン、テトラヒドロフラン、1,3−ジオキソラン、クロロホルムが好ましい。使用する溶媒量も適宜設定できる。
その他、反応性を制御する目的等のために種々の添加剤を用いてもよい。
(α1)成分と(β)成分を反応させた後に、溶媒、未反応の(α1)成分及び/又は(β)成分を除去することもできる。これらの揮発分を除去することにより、得られる(A)成分が揮発分を有さないため(B)成分との硬化の場合に揮発分の揮発によるボイド、クラックの問題が生じにくい。除去する方法としては、例えば、減圧脱揮の他、活性炭、ケイ酸アルミニウム、シリカゲル等による処理等が挙げられる。減圧脱揮する場合には低温で処理することが好ましい。この場合の好ましい温度の上限は100℃であり、より好ましくは60℃である。高温で処理すると増粘等の変質を伴いやすい。
(α1)成分と(β)成分の反応物である(A)成分の例としては、ビスフェノールAジアリルエーテルと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ビニルシクロヘキセンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジビニルベンゼンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジシクロペンタジエンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、トリアリルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジアリルモノグリシジルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、等を挙げることができる。
((B)成分)
次に本発明における(B)成分について説明する。
(B)成分は、1分子中に少なくとも2個のSiH基を含有する化合物であれば特に限定されない。例えば国際公開WO96/15194に記載される化合物で、1分子中に少なくとも2個のSiH基を有するもの等が使用できる。
入手性の面からは、1分子中に少なくとも2個のSiH基を有する鎖状及び/又は環状オルガノポリシロキサンが好ましい。具体的には
Figure 2010260962
Figure 2010260962
が挙げられる。なかでも、(A)成分との相溶性がよいという観点からは、下記一般式(II)
Figure 2010260962
(式中、R2は炭素数1〜6の有機基を表し、nは3〜10の数を表す。)で表される、1分子中に少なくとも2個のSiH基を有する環状オルガノポリシロキサンがより好ましい。
一般式(II)で表される化合物中の置換基R2は、構成元素としてC、H及びO以外の元素を含まない置換基が好ましく、炭化水素基がより好ましく、メチル基がさらに好ましい。
一般式(II)で表される化合物としては、入手容易性の観点からは、1,3,5,7−テトラメチルシクロテトラシロキサンであることが好ましい。
(B)成分の分子量は特に制約はなく任意のものが好適に使用できるが、より流動性を発現しやすいという観点から、低分子量のものが好ましく用いられる。この場合、好ましい分子量の下限は50であり、好ましい分子量の上限は100,000、より好ましくは1,000、さらに好ましくは700である。
(B)成分は単独で用いてもよいし、2種以上のものを組み合わせて用いてもよい。
(A)成分と良好な相溶性を有するという観点、及び、(B)成分の揮発性が低くなり、得られる組成物からのアウトガスの問題が生じ難いという観点からは、
(B)成分は、SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個以上含有する有機化合物(α)と、1分子中に少なくとも2個のSiH基を有する鎖状及び/又は環状のポリオルガノシロキサン(β)を、ヒドロシリル化反応して得ることができる化合物が好ましい。
((α)成分)
(α)成分としては、上記した(A)成分である、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物(α1)を用いることもできる。(α1)成分を用いると、得られる硬化物の架橋密度が高くなり、力学強度が高く信頼性の高い光学材料となりやすい。
また(α)成分としては、SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個含有する化合物(α2)を用いることもできる。(α2)成分を用いると、得られる硬化物が低弾性となりやすく、低応力により信頼性の高い光学材料となりやすい。
((α2)成分)
(α2)成分としては、SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個含有する化合物であれば特に限定されないが、(B)成分が(A)成分と相溶性がよくなるという点においては、有機化合物が好ましく、ポリシロキサン−有機ブロックコポリマーやポリシロキサン−有機グラフトコポリマー等の、シロキサン単位(Si−O−Si)を含む化合物以外のものがより好ましく、構成元素としてC、H、N、O、S及びハロゲン以外の元素を含まない化合物がさらに好ましい。
(α2)成分のSiH基と反応性を有する炭素−炭素二重結合の結合位置は特に限定されず、分子内のどこに存在してもよい。
(α2)成分の化合物は、重合体系の化合物と単量体系の化合物に分類できる。
重合体系化合物としては特に限定されないが、例えば、ポリシロキサン系、ポリエーテル系、ポリエステル系、ポリアリレート系、ポリカーボネート系、飽和炭化水素系、不飽和炭化水素系、ポリアクリル酸エステル系、ポリアミド系、フェノール−ホルムアルデヒド系(フェノール樹脂系)、ポリイミド系の化合物等が挙げられる。
単量体系化合物としては特に限定されないが、例えば、フェノール系、ビスフェノール系、ベンゼン、ナフタレン等の芳香族炭化水素系;鎖状、環状等の脂肪族炭化水素系;複素環系の化合物;シリコン系の化合物;これらの混合物等が挙げられる。
(α2)成分のSiH基と反応性を有する炭素−炭素二重結合としては特に限定されないが、下記一般式(III)
Figure 2010260962
(式中R3は水素原子あるいはメチル基を表す。)で示される基が反応性の点から好適である。上記一般式(III)で示される基のうち、原料の入手の容易さから、
Figure 2010260962
で示される基が特に好ましい。
さらに、(α2)成分のSiH基と反応性を有する炭素−炭素二重結合としては、下記一般式(IV)で表される部分構造を環内に有する脂環式の基が、硬化物の耐熱性が高いという点から好適である。
Figure 2010260962
(式中R4は水素原子あるいはメチル基を表す。2つのR4は同じであってもよいし異なっていてもよい。)このうち、原料の入手の容易さからは、下記式で表される部分構造を環内に有する脂環式の基が好適である。
Figure 2010260962
SiH基と反応性を有する炭素−炭素二重結合は(α2)成分の骨格部分に直接結合していてもよく、2価以上の置換基を介して共有結合していてもよい。上記2価以上の置換基としては特に限定されないが、炭素数0〜10の置換基が好ましく、(B)成分が(A)成分と相溶性がよくなりやすいという点においては、構成元素としてC、H、N、O、S及びハロゲン以外の元素を含まない置換基がより好ましい。上記2価以上の置換基の例としては、
Figure 2010260962
Figure 2010260962
が挙げられる。また、例示した2価以上の置換基の2つ以上が共有結合によりつながって1つの2価以上の置換基を構成していてもよい。
(α2)成分の骨格部分に共有結合する基の例としては、ビニル基、アリル基、メタリル基、アクリル基、メタクリル基、2−ヒドロキシ−3−(アリルオキシ)プロピル基、2−アリルフェニル基、3−アリルフェニル基、4−アリルフェニル基、2−(アリルオキシ)フェニル基、3−(アリルオキシ)フェニル基、4−(アリルオキシ)フェニル基、2−(アリルオキシ)エチル基、2,2−ビス(アリルオキシメチル)ブチル基、3−アリルオキシ−2,2−ビス(アリルオキシメチル)プロピル基、
Figure 2010260962
が挙げられる。
(α2)成分の具体的な例としては、プロペン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、1−ウンデセン、出光石油化学社製リニアレン、4,4−ジメチル−1−ペンテン、2−メチル−1−ヘキセン、2,3,3−トリメチル−1−ブテン、2,4,4−トリメチル−1−ペンテン等の鎖状脂肪族炭化水素系化合物類、シクロヘキセン、メチルシクロヘキセン、メチレンシクロヘキサン、ノルボルニレン、エチリデンシクロヘキサン、ビニルシクロヘキサン、カンフェン、カレン、α−ピネン、β−ピネン等の環状脂肪族炭化水素系化合物類、スチレン、α−メチルスチレン、インデン、アリルベンゼン、4−フェニル−1−ブテン等の芳香族炭化水素系化合物類、アルキルアリルエーテル、アリルフェニルエーテル等のアリルエーテル類、グリセリンモノアリルエーテル、エチレングリコールモノアリルエーテル、4−ビニル−1,3−ジオキソラン−2−オン等の脂肪族系化合物類、1,2−ジメトキシ−4−アリルベンゼン、o−アリルフェノール等の芳香族系化合物類、モノアリルジベンジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等の置換イソシアヌレート類、ビニルトリメチルシラン、ビニルトリメトキシシラン、ビニルトリフェニルシラン等のシリコン化合物等が挙げられる。
さらに、(α2)成分として、片末端アリル化ポリエチレンオキサイド、片末端アリル化ポリプロピレンオキサイド等のポリエーテル系樹脂;片末端アリル化ポリイソブチレン等の炭化水素系樹脂;片末端アリル化ポリブチルアクリレート、片末端アリル化ポリメチルメタクリレート等のアクリル系樹脂;等の片末端にビニル基を有するポリマーあるいはオリゴマー類等も挙げることができる。
構造は線状でも枝分かれ状でもよく、分子量は特に制約はなく種々のものを用いることができる。分子量分布も特に制限ないが、混合物の粘度が低くなり成形性が良好となりやすいという点においては、分子量分布が3以下であることが好ましく、2以下であることがより好ましく、1.5以下であることがさらに好ましい。
(α2)成分のガラス転移温度が存在する場合はこれについても特に限定はなく種々のものが用いられるが、得られる硬化物が強靭となりやすいという点においてはガラス転移温度は100℃以下が好ましく、50℃以下がより好ましく、0℃以下がさらに好ましい。好ましいポリマー又はオリゴマーの例としてはポリブチルアクリレート等が挙げられる。逆に得られる硬化物の耐熱性が高くなるという点においては、ガラス転移温度は100℃以上が好ましく、120℃以上がより好ましく、150℃以上がさらに好ましく、170℃以上が最も好ましい。ガラス転移温度は動的粘弾性測定においてtanδが極大を示す温度として求めることができる。
(α2)成分としては、得られる硬化物の耐熱性が高くなるという点においては、炭化水素化合物であることが好ましい。この場合好ましい炭素数の下限は7であり、好ましい炭素数の上限は10である。
(α2)成分は、SiH基と反応性を有する炭素−炭素二重結合以外の反応性基を有していてもよい。上記反応性基としては特に限定されないが、例えば、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。上記反応性基を有している場合には、得られる光学材料用組成物の接着性が高くなりやすく、得られる硬化物の強度が高くなりやすい。接着性がより高くなりうるという点からは、上記反応性基のうちエポキシ基が好ましい。また、得られる硬化物の耐熱性が高くなりやすいという点においては、上記反応性基を平均して1分子中に1個以上有していることが好ましい。具体的にはモノアリルジグリシジルイソシアヌレート、アリルグリシジルエーテル、アリロキシエチルメタクリレート、アリロキシエチルアクリレート、ビニルトリメトキシシラン等が挙げられる。
(α)成分は単独で用いてもよいし、2種以上のものを組み合わせて用いてもよい。
((β)成分)
(β)成分は、1分子中に少なくとも2個のSiH基を有する鎖状及び/又は環状のポリオルガノシロキサンである。具体的には、
Figure 2010260962
Figure 2010260962
が挙げられる。
(α)成分との相溶性が良くなりやすいという観点から、下記一般式(II)
Figure 2010260962
(式中、R2は炭素数1〜6の有機基を表し、nは3〜10の数を表す。)で表される、1分子中に少なくとも3個のSiH基を有する環状ポリオルガノシロキサンが好ましい。
一般式(II)で表される化合物中の置換基R2は、構成元素としてC、H及びO以外の元素を含まない置換基が好ましく、炭化水素基がより好ましく、メチル基がさらに好ましい。
一般式(II)で表される化合物としては、入手容易性等から、1,3,5,7−テトラメチルシクロテトラシロキサンが好ましい。
(β)成分は単独で用いてもよいし、2種以上のものを組み合わせて用いてもよい。
((α)成分と(β)成分の反応)
(B)成分として、(α)成分と(β)成分をヒドロシリル化反応して得ることができる化合物を用いる場合の、(α)成分と(β)成分とのヒドロシリル化反応に関して説明する。
尚、(α)成分と(β)成分をヒドロシリル化反応すると、本発明の(B)成分を含む複数の化合物の混合物が得られることがあるが、そこから(B)成分を分離することなく混合物のままで用いて本発明の光学材料用組成物を作成することもできる。
(α)成分と(β)成分をヒドロシリル化反応させる場合の(α)成分と(β)成分の混合比率は、特に限定されないが、得られる(B)成分と(A)成分とのヒドロシリル化による硬化物の強度を考えた場合、(B)成分のSiH基が多い方が好ましいため、混合する(α)成分中のSiH基との反応性を有する炭素−炭素二重結合の総数(X)と、混合する(β)成分中のSiH基の総数(Y)との比が、Y/X≧2であることが好ましく、Y/X≧3であることがより好ましい。また(B)成分の(A)成分との相溶性がよくなりやすいという点からは、10≧Y/Xであることが好ましく、5≧Y/Xであることがより好ましい。
(α)成分と(β)成分をヒドロシリル化反応させる場合には適当な触媒を用いてもよい。触媒としてはヒドロシリル化反応の触媒活性があれば特に限定されないが、例えば、白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体(例えば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金−ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4m)、白金−ホスフィン錯体(例えば、Pt(PPh34、Pt(PBu34)、白金−ホスファイト錯体(例えば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、アシュビー(Ashby)の米国特許第3159601号及び3159662号明細書中に記載された白金−炭化水素複合体、ラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒等が挙げられる。更に、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体も本発明において有用である。
白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl2O3、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4等が挙げられる。
これらの中では、触媒活性の点から、塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体等が好ましい。上記触媒は単独で使用してもよく、2種以上を併用してもよい。
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ光学材料用組成物のコストを比較的低く抑えるため、好ましい添加量の下限は、(β)成分のSiH基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限は(β)成分のSiH基1モルに対して10-1モル、より好ましくは10-2モルである。
上記触媒には助触媒を併用することが可能であり、例としてトリフェニルホスフィン等のリン系化合物、ジメチルマレエート等の1,2−ジエステル系化合物、2−ヒドロキシ−2−メチル−1−ブチン等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。助触媒の添加量は特に限定されないが、上記触媒1モルに対しての好ましい添加量の下限は10-2モル、より好ましくは10-1モルであり、好ましい添加量の上限は102モル、より好ましくは10モルである。
反応させる場合の(α)成分、(β)成分及び触媒の混合の方法としては、各種方法をとることができるが、(α)成分に触媒を混合したものを、(β)成分に混合する方法が好ましい。(α)成分と(β)成分の混合物に触媒を混合する方法の場合、反応の制御が困難である。(β)成分と触媒を混合したものに(α)成分を混合する方法をとる場合は、触媒の存在下(β)成分が混入している水分と反応性を有するため、変質することがある。
反応温度としては種々設定できるが、好ましい温度範囲の下限は30℃、より好ましくは50℃であり、好ましい温度範囲の上限は200℃、より好ましくは150℃である。反応温度が低いと十分に反応させるための反応時間が長くなり、反応温度が高いと実用的でない。反応は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。
反応時間、反応時の圧力も必要に応じ種々設定できる。
ヒドロシリル化反応の際に溶媒を使用してもよい。使用できる溶剤はヒドロシリル化反応を阻害しない限り特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、クロロホルム、塩化メチレン、1,2−ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。溶媒は2種類以上の混合溶媒として用いることもできる。溶媒としては、トルエン、テトラヒドロフラン、1,3−ジオキソラン、クロロホルムが好ましい。使用する溶媒量も適宜設定できる。
その他、反応性を制御する目的等のために種々の添加剤を用いてもよい。
(α)成分と(β)成分を反応させた後に、溶媒、未反応の(α)成分及び/又は(β)成分を除去することもできる。これらの揮発分を除去することにより、得られる(B)成分が揮発分を有さないため(A)成分との硬化の場合に揮発分の揮発によるボイド、クラックの問題が生じにくい。除去する方法としては、例えば、減圧脱揮の他、活性炭、ケイ酸アルミニウム、シリカゲル等による処理等が挙げられる。減圧脱揮する場合には低温で処理することが好ましい。この場合の好ましい温度の上限は100℃であり、より好ましくは60℃である。高温で処理すると増粘等の変質を伴いやすい。
(α)成分と(β)成分の反応物である(B)成分の例としては、ビスフェノールAジアリルエーテルと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ビニルシクロヘキセンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジビニルベンゼンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジシクロペンタジエンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、トリアリルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジアリルモノグリシジルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、アリルグリシジルエーテルと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、αメチルスチレンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、モノアリルジグリシジルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、等を挙げることができる。
((A)成分と(B)成分の混合)
(A)成分と(B)成分の組み合わせについては、(A)成分の例として挙げたもの及びそれらの各種混合物/(B)成分の例として挙げたもの及びそれらの各種混合物、の各種組み合わせを挙げることができる。
(A)成分と(B)成分の混合比率は、必要な強度を失わない限りは特に限定されないが、(B)成分中のSiH基の数(Y)の(A)成分中の炭素−炭素二重結合の数(X)に対する比において、好ましい範囲の下限はY/X≧0.3、より好ましくはY/X≧0.5、さらに好ましくはY/X≧0.7であり、好ましい範囲の上限は3≧Y/X、より好ましくは2≧Y/X、さらに好ましくは1.5≧Y/Xである。好ましい範囲からはずれた場合には十分な強度が得られなかったり、熱劣化しやすくなる場合がある。
((C)成分)
次に本発明における(C)成分について説明する。
(C)成分であるヒドロシリル化触媒としては、ヒドロシリル化反応の触媒活性があれば特に限定されないが、例えば、白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体(例えば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金−ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4m)、白金−ホスフィン錯体(例えば、Pt(PPh34、Pt(PBu34)、白金−ホスファイト錯体(例えば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、アシュビー(Ashby)の米国特許第3159601号及び3159662号明細書中に記載された白金−炭化水素複合体、ラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒等が挙げられる。更に、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体も本発明において有用である。
白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl2O3、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4等が挙げられる。
これらの中では、触媒活性の点から、塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体等が好ましい。上記触媒は単独で使用してもよく、2種以上を併用してもよい。
ヒドロシリル化触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ光学材料用組成物のコストを比較的低く抑えるため、好ましい添加量の下限は、(B)成分のSiH基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限は(B)成分のSiH基1モルに対して10-1モル、より好ましくは10-2モルである。
(添加剤)
次に本発明における任意成分について説明する。
(硬化遅延剤)
本発明の光学材料用組成物には、保存安定性を改良する目的、あるいは製造過程でのヒドロシリル化反応の反応性を調整する目的で、硬化遅延剤を配合することができる。硬化遅延剤としては特に限定されないが、例えば、脂肪族不飽和結合を含有する化合物、有機リン化合物、硫黄含有化合物、窒素含有化合物、スズ系化合物、有機過酸化物等が挙げられる。
脂肪族不飽和結合を含有する化合物として、2−ヒドロキシ−2−メチル−3−ブチン、2−ヒドロキシ−2−フェニル−3−ブチン、1−エチニル−1−シクロヘキサノール等のプロパギルアルコール類、エン−イン化合物類、ジメチルマレエート等のマレイン酸エステル類等が例示される。有機リン化合物としては、トリフェニルホスフィン等のトリオルガノホスフィン類、ジオルガノホスフィン類、オルガノホスホン類、トリオルガノホスファイト類等が例示される。硫黄含有化合物としては、単体硫黄、オルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、ベンゾチアゾールジサルファイド等が例示される。窒素含有化合物としては、アンモニア、1〜3級アルキルアミン類、アリールアミン類、尿素、ヒドラジン等が例示される。スズ系化合物としては、ハロゲン化第一スズ2水和物、カルボン酸第一スズ等が例示される。有機過酸化物としては、ジ−t−ブチルペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、過安息香酸t−ブチル等が例示される。
上記硬化遅延剤のうち、遅延活性が良好で原料入手性がよいという観点からは、ベンゾチアゾール、チアゾール、ジメチルマレエート、2−ヒドロキシ−2−メチル−3−ブチン、1−エチニル−1−シクロヘキサノールが好ましい。
上記硬化遅延剤を用いる場合の添加量は特に限定されず、種々設定できるが、ヒドロシリル化触媒1molに対する好ましい添加量の下限は10-1モル、より好ましくは1モルであり、好ましい添加量の上限は103モル、より好ましくは50モルである。 また、これらの硬化遅延剤は単独で使用してもよく、2種以上併用してもよい。
(接着性改良剤)
本発明の光学材料用組成物には、接着性改良剤を配合してもよい。接着性改良剤としては特に限定されないが、例えば、一般に用いられている接着剤、カップリング剤、フェノール樹脂、クマロン−インデン樹脂、ロジンエステル樹脂、テルペン−フェノール樹脂、α−メチルスチレン−ビニルトルエン共重合体、ポリエチルメチルスチレン、芳香族ポリイソシアネート等を挙げることができる。
カップリング剤としては例えばシランカップリング剤が挙げられる。シランカップリング剤とは、分子中に有機基と反応性のある官能基と加水分解性ケイ素基を各々少なくとも1個有する化合物である。有機基と反応性のある官能基としては特に限定されないが、取扱い性の点から、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、メタクリル基、アクリル基が特に好ましい。加水分解性ケイ素基としては特に限定されないが、取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。
好ましいシランカップリング剤としては、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が例示できる。
上記接着性改良剤を用いる場合の添加量としては特に限定されず、種々設定できるが、[(A)成分+(B)成分]100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは0.5重量部であり、好ましい添加量の上限は50重量部、より好ましくは25重量部である。添加量が少ないと接着性改良効果が表れにくく、添加量が多いと硬化物の物性に悪影響を及ぼす場合がある。
上記接着性改良剤は単独で使用してもよく、2種以上を併用してもよい。
(老化防止剤)
本発明の光学材料用組成物には老化防止剤を配合してもよい。老化防止剤としては、ヒンダートフェノール系等一般に用いられている老化防止剤の他、クエン酸やリン酸、硫黄系老化防止剤等が挙げられる。
ヒンダートフェノール系老化防止剤としては、チバスペシャリティーケミカルズ社から入手できるイルガノックス1010をはじめとして、各種のものが用いられる。
硫黄系老化防止剤としては特に限定されないが、例えば、メルカプタン類、メルカプタンの塩類;スルフィドカルボン酸エステル類、ヒンダードフェノール系スルフィド類等のスルフィド類;ポリスルフィド類、ジチオカルボン酸塩類、チオウレア類、チオホスフェイト類、スルホニウム化合物、チオアルデヒド類、チオケトン類、メルカプタール類、メルカプトール類、モノチオ酸類、ポリチオ酸類、チオアミド類、スルホキシド類等が挙げられる。上記老化防止剤は単独で使用してもよく、2種以上を併用してもよい。
(その他の添加剤)
本発明の光学材料用組成物には、以上の成分以外に、エポキシ系等の従来のモールド部材の充填材として使用及び/又は提案されているものをはじめ、着色剤、離型剤、難燃剤、難燃助剤、界面活性剤、消泡剤、乳化剤、レベリング剤、はじき防止剤、イオントラップ剤、チクソ性付与剤、粘着性付与剤、保存安定改良剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、反応性希釈剤、酸化防止剤、熱安定化剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、熱伝導性付与剤、物性調整剤等を、本発明の目的および効果を損なわない範囲において添加することができる。
(光学材料用組成物の性状)
本発明の光学材料用組成物としては、上記したように各種組み合わせのものが使用できるが、狭い隙間への充填性、コーティング等による作業性が良好であるという点においては、組成物の粘度が、23℃において1000Pa・s以下であることが好ましく、10Pa・s以下であることがより好ましく、5.0Pa・s未満であることがさらに好ましく、1.0Pa・s以下であることが特に好ましく、0.1以下であることが最も好ましい。同じ理由で、100℃において10Pa・s以下であることが好ましく、1.0Pa・s以下であることがより好ましく、0.1Pa・s以下であることがさらに好ましい。粘度の温度依存性(チクソ性)についても種々のものが使用できる。粘度はE型粘度計によって測定することができる。
本発明の光学材料用組成物の硬化性については、任意に設定できるが、120℃におけるゲル化時間が120秒以内であることが好ましく、60秒以内であることがより好ましい。また、150℃におけるゲル化時間が60秒以内であることが好ましく、30秒以内であることがより好ましい。また、100℃におけるゲル化時間が180秒以内であることが好ましく、120秒以内であることがより好ましい。硬化性が遅い場合には組成物としての作業性が悪くなる。逆に速い場合には貯蔵安定性が悪くなりやすい場合もある。上記ゲル化時間は、以下のようにして調べることができる。設定温度に調整したホットプレート上に厚み50μmのアルミ箔を置き、その上に組成物100mgを垂らしてゲル化するまでの時間を測定してゲル化時間とする。
(硬化)
本発明の光学材料用組成物は、各成分をあらかじめ混合し、組成物中のSiH基と反応性を有する炭素−炭素二重結合とSiH基の一部または全部を反応させることによって硬化させて光学材料として用いることができる。
光学材料用組成物を反応させて硬化させる場合において、(A)、(B)、(C)各成分の必要量を一度に混合して反応させてもよいが、一部を混合して反応させた後残量を混合してさらに反応させる方法や、混合した後反応条件の制御や置換基の反応性の差の利用により組成物中の官能基の一部のみを反応(Bステージ化)させてから成形等の処理を行いさらに硬化させる方法をとることもできる。これらの方法によれば成形時の粘度調整が容易となる。
硬化させる方法としては、単に混合するだけで反応させることもできるし、加熱して反応させることもできる。反応が速く、一般に耐熱性の高い材料が得られやすいという観点から加熱して反応させる方法が好ましい。
(硬化温度)
本発明では、硬化性組成物を、60〜90℃にて0.5〜10時間加熱処理したのち、100〜250℃にて0.5〜12時間加熱処理をおこなう。本発明では、この加熱処理条件に従う限り、60℃未満の温度で予備的加熱処理をおこなうことも可能である。予備的加熱処理の温度は、30℃以上60℃未満であることが好ましい。本発明の加熱処理における上限温度は、好ましくは250℃、より好ましくは220℃であり、特に好ましくは190℃である。加熱処理温度が低すぎると十分に反応させるための硬化時間が長くなることがあり、加熱処理温度が高すぎると成形加工が困難となりやすい。本発明では硬化反応を、多段階であるいは連続的に温度を変化させておこなうが、一定の温度で行うより多段階であるいは連続的に温度を上昇させながら反応させた方が、歪のない均一な硬化物が得られやすいという点において好ましい。
(硬化時間)
硬化時間も種々設定できるが、高温短時間で反応させるより、比較的低温長時間で反応させた方が、歪のない均一な硬化物が得られやすいという点において好ましい。温度範囲が60〜90℃での加熱処理時間(すなわち硬化時間)は、好ましくは0.5〜10時間、より好ましくは0.5〜5時間、特に好ましくは0.5〜3時間である。温度範囲が100〜140℃での加熱処理時間は、好ましくは0.5〜10時間、より好ましくは0.5〜5時間、特に好ましくは0.5〜3時間である。温度200℃以上での加熱処理時間は、好ましくは1〜60分、より好ましくは1〜30分、特に好ましくは1〜10分である。
硬化時の圧力も必要に応じ種々設定でき、常圧、高圧、あるいは減圧状態で反応させることもできる。場合によって発生する揮発分を取り除きやすく、モールド部材等として用いた場合に細部への充填性が良好であるという点においては、減圧状態で硬化させることが好ましい。
光学材料用組成物が使用される製造工程において、組成物中へのボイドの発生および組成物からのアウトガスによる工程上の問題が生じ難いという観点においては、硬化中の重量減少が5重量%以下であることが好ましく、3重量%以下であることがより好ましく、1重量%以下であることがさらに好ましい。硬化中の重量減少は以下のように調べることができる。熱重量分析装置を用いて光学材料用組成物10mgを室温から150℃まで10℃/分の昇温速度で昇温して、減少した重量の初期重量の割合として求めることができる。また、シリコーン汚染の問題を起こし難いという点においては、この場合の揮発成分中のSi原子の含有量が1%以下であることが好ましい。
(接着力の評価)
本発明における接着力の評価は、耐久性の指標として、初期状態と一定の条件下で保存したものの接着力の差を提示する方法(米国 MIL STD−883)を参考にしておこなっている。ここでの接着力としては、後述している実施例のダイシェア接着強度を用いる。
接着力の評価に用いる基材については特に限定されないが、アルミニウム基板、ガラス繊維強化エポキシ樹脂基板、ガラス繊維強化ポリフタルアミド基板などを用いてもよい。
(硬化物の性状)
本発明の光学材料用組成物は、耐熱性が良好であるという観点から、光学材料用組成物を硬化させて得られる硬化物のガラス転移温度(Tg)が100℃以上となるものが好ましく、150℃以上となるものがより好ましい。一方で、低応力であり、耐熱応力性が高いという観点から、光学材料用組成物を硬化させて得られる硬化物のTgが100℃未満であるものが好ましく、80℃以下であるものがより好ましい。
上記Tgは以下のようにして調べることができる。3mmx5mmx30mmの角柱状試験片を用いて引張りモード、測定周波数10Hz、歪0.1%、静/動力比1.5、昇温側度5℃/分の条件にて測定した動的粘弾性測定(アイティー計測制御社製DVA−200使用)のtanδのピーク温度をTgとする。
本発明の光学材料用組成物は、熱による着色が少ないという観点から、光学材料用組成物を硬化させて得られる硬化物を120℃で100時間空気中で保管した後の波長470nmの光線の透過率が80%以上であることが好ましい。
上記光線の透過率は以下のように測定できる。光学材料用組成物を硬化させ、3mm厚の板状サンプルを作成する。このサンプルを120℃に温度を調整した熱風(空気)循環式のオーブン中で100時間保管する。取り出したサンプルを23℃まで放冷し、分光光度計(日立U−3300型分光光度計を使用)にて波長470nmの光線の透過率を測定する。
(光学材料)
本発明でいう光学材料とは、可視光、赤外線、紫外線、X線、レーザー等の光をその材料中を通過させる用途に用いる材料一般を示す。特に限定されないが、例えば、カラーフィルター保護膜、TFT平坦化膜、基板材料等の液晶表示装置に用いられる材料;モールド部材、ダイボンド剤等の発光ダイオード(LED)に用いられる材料等が挙げられる。なお本明細書におけるモールド部材は、モールド剤、又は、封止剤のことも含む概念である。
液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、偏光子保護フィルム、カラーフィルター等;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。
LED表示装置に使用されるLED素子のモールド部材、LEDのモールド部材、前面ガラスの保護フィルム、前面ガラス代替材料;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。
カラーPDP(プラズマディスプレイ)の反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料等;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。プラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、偏光子保護フィルム;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。フィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。
光記録分野では、VD(ビデオディスク)、CD/CD−ROM、CD−R/RW、DVD−R/DVD−RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。
光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。ビデオカメラの撮影レンズ、ファインダー;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。プロジェクションテレビの投射レンズ、保護フィルム;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。光センシング機器のレンズ用材料、各種フィルム;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。
光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。光コネクタ周辺の光ファイバー材料、フェルール;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。光受動部品、光回路部品では、レンズ、導波路;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。
光ファイバー分野では、装飾ディスプレイ用照明・ライトガイド等、工業用途のセンサー類、表示・標識類等、通信インフラ用及び家庭内のデジタル機器接続用の光ファイバー;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。
半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料も挙げられる。
自動車・輸送機分野では、自動車用ヘッドランプ・テールランプ・室内ランプ等のランプ材料、ランプリフレクタ、ランプレンズ、外装板・インテリアパネル等の各種内外装品、ガラス代替品;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。鉄道車輌用の外装部品、ガラス代替品;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。航空機の外装部品、ガラス代替品;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。
建築分野では、ガラス中間膜、ガラス代替品、太陽電池周辺材料;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。
農業用では、ハウス被覆用フィルムも挙げられる。
次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光−光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子のモールド部材;それらに用いられる各種コーティング剤、保護膜、モールド部材、接着剤等も挙げられる。
以下に、本発明の実施例および比較例を示すが、本発明は以下によって限定されるものではない。
(合成例1)
2Lオートクレーブにトルエン362g、1,3,5,7−テトラメチルシクロテトラシロキサン362gを入れ、気相部を窒素で置換した後、ジャケット温105℃で加熱、攪拌した。ジアリルモノグリシジルイソシアヌレート100g、トルエン100g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.049gの混合液を90分かけて滴下した。滴下終了から2時間後に1H−NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。1,3,5,7−テトラメチルシクロテトラシロキサンの未反応率は55%だった。未反応の1,3,5,7−テトラメチルシクロテトラシロキサンとトルエンを合計5,000ppm以下まで減圧留去し、無色透明の液体を得た。
本生成物の粘度は8.1Pa・sであった。本生成物のGPC測定をすると多峰性のクロマトグラムが得られ、混合物であることが示唆された。本生成物は、1H−NMRの測定より、1,3,5,7−テトラメチルシクロテトラシロキサンのSiH基の一部がジアリルモノグリシジルイソシアヌレートのアリル基と反応したものであり、7.4mmol/gのSiH基を含有していることがわかった(反応物Aと称する)。
Figure 2010260962
(合成例2)
2Lオートクレーブにトルエン600g、1,3,5,7−テトラメチルシクロテトラシロキサン200gを入れ、気相部を窒素で置換した後、ジャケット温50℃で加熱、攪拌した。アリルグリシジルエーテル96g、トルエン96g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.027gの混合液を60分かけて滴下した。滴下終了後にジャケット温を60℃に上げて40分反応、1H−NMRでアリル基の反応率が95%以上であることを確認した。トリアリルイソシアヌレート14g、トルエン14gの混合液を滴下した後、ジャケット温を105℃に上げて、トリアリルイソシアヌレート56g、トルエン56g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.017gの混合液を30分かけて滴下した。滴下終了から4時間後に1H−NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。1,3,5,7−テトラメチルシクロテトラシロキサンの未反応率は3.9%だった。未反応の1,3,5,7−テトラメチルシクロテトラシロキサンとトルエンとアリルグリシジルエーテルの副生物(アリルグリシジルエーテルのビニル基の内転移物(シス体およびトランス体))を合計5,000ppm以下まで減圧留去し、無色透明の液体を得た。
本生成物の粘度は2.3Pa・sであった。本生成物は1H−NMRの測定より、1,3,5,7−テトラメチルシクロテトラシロキサンのSiH基の一部がアリルグリシジルエーテル及びトリアリルイソシアヌレートのアリル基と反応したものであり、5.1mmol/gのSiH基を含有していることがわかった。本生成物のGPC測定をすると多峰性のクロマトグラムが得られ、1,3,5,7−テトラメチルシクロテトラシロキサンとアリルグリシジルエーテルのみの反応物群と、1,3,5,7−テトラメチルシクロテトラシロキサンとアリルグリシジルエーテルとトリアリルイソシアヌレートが反応した化合物群の混合物であることが示唆された(反応物Bと称する)。
Figure 2010260962
1H−NMR)バリアン・テクノロジーズ・ジャパン・リミテッド製、300MHz NMR装置を用いた。合成でのアリル基の反応率は、反応液を重クロロホルムで1%程度まで希釈したものをNMR用チューブに加えて測定し、未反応アリル基由来のメチレン基のピークと、反応アリル基由来のメチレン基のピークから求めた。
(合成例3:樹脂1)
ジアリルモノグリシジルイソシアヌレート 39.89g、トリアリルイソシアヌレート 4.16g、白金−ジビニルテトラメチルジシロキサン錯体のキシレン溶液(白金3重量%含有)0.29g、及びほう酸トリメチル 0.48gを混合し、攪拌、脱泡したものをA液とした。また、合成例1で調製した反応物A 52.48g、1−エチニルシクロヘキサノール 0.29g、3―グリシドキシプロピルトリメトキシシラン(商品名:A−187)2.41gをB液とした。その後A液とB液を混合させたものを遊星式攪拌脱泡機にて攪拌・脱泡を行った。
(合成例4:樹脂2)
ジアリルモノグリシジルイソシアヌレート 31.04g、トリアリルイソシアヌレート 3.24g、老化防止剤(商品名:irganox1010) 1.42g、白金−ジビニルテトラメチルジシロキサン錯体のキシレン溶液(白金3重量%含有)0.11g、及びほう酸トリメチル 0.48gを混合し、攪拌、脱泡したものをA液とした。また、合成例1で調製した反応物A 12.92g、合成例2で調製した反応物B 48.26g、1−エチニルシクロヘキサノール 0.14g、3―グリシドキシプロピルトリメトキシシラン(商品名:A−187)2.39gをB液とした。その後A液とB液を混合させたものを遊星式攪拌脱泡機にて攪拌・脱泡を行った。
合成例3及び4で得た樹脂1及び2の配合を表1に示す。
Figure 2010260962
(実施例1−4と比較例1−4:ダイシェア接着性試験)
合成例3及び4で得た樹脂1及び2を50μmのブレードで塗布し、その塗膜に、2×2×0.2mmのサファイア板(京セラ株式会社製)のダイを2×2mmの面を下方にしてスタンプし、硬化性組成物をダイにつけた。このダイを、硬化性組成物が付着した面を下方にしてガラス繊維強化ポリフタルアミド基板(ソルベイアドバンスドポリマー社製アモデルA−4122)に乗せ、表2及び3の所定条件により硬化して試験片を作製した。このとき、得られる硬化物(ダイと基板との間の硬化物層)は厚み約30μm(厚みが10〜40μmの範囲内)になる。
得られた試験片について、デイジ社製、シリーズ4000ボンドテスター試験機、DS100KGロードセルを用いて接着強度(単位;kgF)を測定した。各硬化性組成物につきサンプル(試験片)5個を測定し、最高値と最低値を除く3点の平均を接着強度とした。
Figure 2010260962
表2から、80℃で3時間の加熱処理を実施した実施例1、2では、この加熱処理を実施していない比較例1、2よりも接着強度が向上していることがわかる。
Figure 2010260962
また表3から、60〜90℃間の複数の温度(60℃、70℃、80℃)で加熱処理した実施例3、4においても接着強度が向上していることがわかる。

Claims (7)

  1. (A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(B)1分子中に少なくとも2個のSiH基を含有するケイ素化合物、(C)ヒドロシリル化触媒を含有する硬化性組成物を、60〜90℃にて0.5〜10時間加熱処理したのち、100〜250℃にて0.5〜12時間加熱処理することを特徴とする硬化物の製造方法。
  2. 上記硬化性組成物を、60〜90℃にて0.5〜10時間加熱処理したのち、100〜140℃にて0.5〜10時間加熱処理したのち、200℃以上にて1〜60分加熱処理することを特徴とする請求項1に記載の硬化物の製造方法。
  3. 前記(A)成分が、C、H、N、O、S及びハロゲンからなる群から選択される元素からなる化合物である、請求項1又は2に記載の硬化物の製造方法。
  4. 前記(A)成分が、下記一般式(I)
    Figure 2010260962
    (式中、R1は炭素数1〜50の一価の有機基を表し、それぞれのR1は異なっていても同一であってもよい。)で表される有機化合物である、請求項1〜3のいずれか一項に記載の硬化物の製造方法。
  5. 前記(B)成分が、
    (α)SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個以上含有する有機化合物と、
    (β)1分子中に少なくとも2個のSiH基を有する鎖状及び/又は環状のポリオルガノシロキサンとをヒドロシリル化反応して得ることができる化合物である、請求項1〜4のいずれか一項に記載の硬化物の製造方法。
  6. 前記(β)成分が、下記一般式(II)
    Figure 2010260962
    (式中、R2は炭素数1〜6の有機基を表し、nは3〜10の数を表す。)で表される、1分子中に少なくとも3個のSiH基を有する環状ポリオルガノシロキサンである、請求項4又は5に記載の硬化物の製造方法。
  7. 請求項1〜6のいずれか一項に記載の硬化物の製造方法により得られる硬化物。
JP2009112961A 2009-05-07 2009-05-07 硬化物の製造方法および硬化物 Pending JP2010260962A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009112961A JP2010260962A (ja) 2009-05-07 2009-05-07 硬化物の製造方法および硬化物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009112961A JP2010260962A (ja) 2009-05-07 2009-05-07 硬化物の製造方法および硬化物

Publications (1)

Publication Number Publication Date
JP2010260962A true JP2010260962A (ja) 2010-11-18

Family

ID=43359326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009112961A Pending JP2010260962A (ja) 2009-05-07 2009-05-07 硬化物の製造方法および硬化物

Country Status (1)

Country Link
JP (1) JP2010260962A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116420A (ja) * 2012-12-07 2014-06-26 Kaneka Corp 半導体発光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116420A (ja) * 2012-12-07 2014-06-26 Kaneka Corp 半導体発光装置

Similar Documents

Publication Publication Date Title
JP5364267B2 (ja) 硬化性組成物
JP5735423B2 (ja) 光学材料用硬化性組成物
JP5260944B2 (ja) 硬化性組成物
JP4993806B2 (ja) 光学材料用組成物、光学用材料、その製造方法およびそれを用いた液晶表示装置
JP5571326B2 (ja) 硬化性組成物及びその硬化物
JP2003261783A (ja) 硬化性組成物、電子材料用組成物、半導体装置、および半導体装置の製造方法
JP2010285507A (ja) 接着性硬化性組成物
JP4723289B2 (ja) SiH基含有化合物、その製造方法、並びに、SiH基含有化合物を用いた硬化性組成物、その硬化物
JP2008260894A (ja) 硬化剤および接着性硬化性組成物
JP5367962B2 (ja) 硬化性組成物
JP5539690B2 (ja) 硬化性組成物
JP2012162666A (ja) 多面体構造ポリシロキサン系組成物
JP2002235005A (ja) 光学用材料用組成物、光学用材料およびその製造方法
JP2008274004A (ja) 硬化性樹脂組成物およびその硬化物
JP5442941B2 (ja) 硬化性組成物
JP2002241501A (ja) 硬化剤、硬化性組成物および硬化物
JP4578338B2 (ja) 硬化性組成物及びその硬化物
JP2010163520A (ja) 光学材料
JP2011099035A (ja) 透明性に優れた硬化物の製造方法および硬化物
JP2010260962A (ja) 硬化物の製造方法および硬化物
JP2011225733A (ja) 硬化性組成物及び硬化物
JP2012233118A (ja) 硬化性組成物
JP2009084437A (ja) 射出成形用硬化性組成物
JP4468737B2 (ja) 光学用材料用組成物、光学用材料およびその製造方法
JP5813357B2 (ja) 硬化性組成物