JP2010260448A - Sealing structure of vehicular radiator - Google Patents

Sealing structure of vehicular radiator Download PDF

Info

Publication number
JP2010260448A
JP2010260448A JP2009112982A JP2009112982A JP2010260448A JP 2010260448 A JP2010260448 A JP 2010260448A JP 2009112982 A JP2009112982 A JP 2009112982A JP 2009112982 A JP2009112982 A JP 2009112982A JP 2010260448 A JP2010260448 A JP 2010260448A
Authority
JP
Japan
Prior art keywords
radiator
intercooler
cooling air
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009112982A
Other languages
Japanese (ja)
Other versions
JP5314490B2 (en
Inventor
Yuichi Yokoyama
裕一 横山
Atsushi Igarashi
敦志 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Radiator Mfg Co Ltd
Original Assignee
Tokyo Radiator Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Radiator Mfg Co Ltd filed Critical Tokyo Radiator Mfg Co Ltd
Priority to JP2009112982A priority Critical patent/JP5314490B2/en
Publication of JP2010260448A publication Critical patent/JP2010260448A/en
Application granted granted Critical
Publication of JP5314490B2 publication Critical patent/JP5314490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently cool cooling water of a radiator arranged downwind by decreasing, by using an intercooler arranged upwind of a cooling wind, a temperature of the cooling wind heated by a heat exchange with high-temperature compressed air. <P>SOLUTION: A sealing structure of a vehicular radiator has: an intercooler 1 arranged with a core part 4 for passing compressed air from the inlet header 6 to the outlet header 7 between an inlet header 6 and an outlet header 7 opposing to each other and having pipe parts 6a and 7a for flowing the compressed air and spreading parts 6b and 7b formed at the tip ends of the pipe parts 6a and 7a, respectively, and for performing the heat exchange between the compressed air and the cooling wind flowing in a crossing direction with the air; and a radiator 2 arranged downwind of the cooling wind of the intercooler 1, and for performing the heat exchange between the cooling water and the cooling wind. A sealing member 17 surrounds around the cooling wind passage between the intercooler 1 and the radiator 2 to form a wind channel. In this case, a vent hole 18 is formed in a downwind area of the pipe part 6a of the inlet header 6 of the intercooler 1 by removing the sealing member 17. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、エンジンの前面にラジエータ、インタークーラなどの熱交換器を直列に搭載する車両において、ラジエータとインタークーラとの間のシール構造に関する。   The present invention relates to a seal structure between a radiator and an intercooler in a vehicle in which a heat exchanger such as a radiator or an intercooler is mounted in series on the front surface of an engine.

車両に搭載されるインタークーラは、過給器で圧縮されて高温となった圧縮空気を内部に流通させる際に熱交換を行い、圧縮空気を冷却して体積を低減し、より多くの圧縮空気をエンジンのインテークマニホールドへ送り込んでいた。   Intercoolers mounted on vehicles exchange heat when circulating compressed air that has been compressed by a supercharger to a high temperature, cool the compressed air, reduce its volume, and increase the amount of compressed air. Was sent to the intake manifold of the engine.

インタークーラ1は、図6に示すように、中空に形成した扁平管4aと板材を波形に曲成したアウターフィン4bとを交互に多数積層して、その両端を一対のエンドプレート5に貫装して形成したコア部4を有している。この各エンドプレート5には、圧縮空気を導入する入口ヘッダー6と圧縮空気を送出する出口ヘッダー7とがそれぞれ溶接またはかしめにて取り付けられ、インタークーラ1を形成している。
入口ヘッダー6から流入した圧縮空気は、各扁平管4aに分岐して通過する際にアウターフィン4bの間を通る冷却風によって冷却され、出口ヘッダー7で合流してインテークマニホールド(図示せず)へ送られる。
As shown in FIG. 6, the intercooler 1 is formed by alternately laminating a plurality of hollow flat tubes 4 a formed in a hollow and outer fins 4 b formed by bending a plate material in a corrugated manner, and penetrating both ends to a pair of end plates 5. The core portion 4 is formed. An inlet header 6 for introducing compressed air and an outlet header 7 for sending compressed air are attached to each end plate 5 by welding or caulking to form an intercooler 1.
The compressed air flowing in from the inlet header 6 is cooled by the cooling air passing between the outer fins 4b when branching and passing through the flat tubes 4a, and merges at the outlet header 7 to an intake manifold (not shown). Sent.

ラジエータ2は、図6、図7に示すように、エンジンで加熱された冷却水を冷却するために車両に搭載され、扁平管8aとアウターフィン8bとを交互に多数積層して、その両端を一対のエンドプレート9に貫装して形成したコア部8を有している。この各エンドプレート9には、アッパータンク11とロアタンク12とがそれぞれ取り付けられ、冷却水をコア部8に導入し、コア部8から送出している。   As shown in FIGS. 6 and 7, the radiator 2 is mounted on a vehicle for cooling the cooling water heated by the engine, and a plurality of flat tubes 8a and outer fins 8b are alternately stacked, and both ends thereof are mounted. It has a core portion 8 formed so as to penetrate a pair of end plates 9. An upper tank 11 and a lower tank 12 are attached to each end plate 9, and cooling water is introduced into the core portion 8 and delivered from the core portion 8.

通常、車両のエンジンの前方(冷却風風上)には冷却風を吸引するファン3が置かれ、その前方(冷却風風上)にはエンジンの冷却水を冷却するラジエータ2が配置され、圧縮空気によって高温となるインタークーラ1はラジエータ2より前方(冷却風風上)に搭載されていた(図7)。また、ラジエータ2とファン3との間には導風のため周囲を包囲するファンシュラウド16が設けられている。   Normally, a fan 3 that sucks cooling air is placed in front of the vehicle engine (on the wind of cooling air), and a radiator 2 that cools cooling water of the engine is arranged in front of it (on the wind of cooling air) to compress The intercooler 1, which is heated by air, was mounted in front of the radiator 2 (upward from the cooling wind) (FIG. 7). In addition, a fan shroud 16 is provided between the radiator 2 and the fan 3 so as to surround the surroundings for wind guidance.

ファン3には、エンジンに連結してその駆動力によって常に回転させるもの、バイメタルとオイルとを用い、ファン3の前面温度に感応して高気温時のみファンクラッチを接続して回転させるもの、あるいは、電子制御式ファンクラッチまたは電動モータを備え、ラジエータ2の冷却水温度を感知してファン3を駆動させるものがある。
これらのファン3では、車両前面の冷却風取入口から冷却風を吸い込み、インタークーラ1およびラジエータ2のそれぞれのコア部4、8を通過させて熱交換を行っていた。
The fan 3 is connected to the engine and is always rotated by the driving force thereof, the bimetal and oil are used and the fan clutch is rotated only at high temperatures in response to the front surface temperature of the fan 3, or Some have an electronically controlled fan clutch or an electric motor, and drive the fan 3 by sensing the coolant temperature of the radiator 2.
In these fans 3, cooling air is sucked from the cooling air intakes on the front surface of the vehicle, and heat exchange is performed by passing through the core portions 4 and 8 of the intercooler 1 and the radiator 2.

近年では、排気ガス規制の強化や燃費向上のために、エンジンの過給圧が上がる傾向にあり、それに伴い過給器で圧縮された圧縮空気の温度も上昇している。
これに対応するために、インタークーラ1の大型化や、コア部4の扁平管4aやアウターフィン4bの改良による熱交換効率の向上などの改良がされている。
In recent years, in order to strengthen exhaust gas regulations and improve fuel efficiency, the supercharging pressure of an engine tends to increase, and the temperature of compressed air compressed by a supercharger also increases accordingly.
In order to cope with this, improvements such as increasing the size of the intercooler 1 and improving heat exchange efficiency by improving the flat tubes 4a and outer fins 4b of the core portion 4 have been made.

また、各熱交換器を通過する冷却風の風量を上げることも熱交換性能の向上につながる。
図7、図8中の実線矢印は強い風の流れを示し、破線矢印は弱い風の流れを示している。
インタークーラ1とラジエータ2との間にシール部材を設けない従来の装置では、停車時や低速走行時には、図7に示すようにファン3がインタークーラ1、ラジエータ2側からエンジン側に吸い込む冷却風が、車両の走行などにより車両内に導入されて各熱交換器の周辺を流れる走行風よりも強いため、インタークーラ1のコア部4を通過しない走行風がインタークーラ1とラジエータ2との間から吸い込まれてラジエータ2に流れる現象(インタークーラバイパス風)が発生する。
その結果、インタークーラ1を通過する冷却風の量が減少して、インタークーラ1の熱交換性能が低下していた。
Further, increasing the amount of cooling air passing through each heat exchanger also leads to improvement in heat exchange performance.
The solid line arrows in FIGS. 7 and 8 indicate a strong wind flow, and the broken line arrows indicate a weak wind flow.
In a conventional apparatus in which no sealing member is provided between the intercooler 1 and the radiator 2, the cooling air that the fan 3 sucks from the intercooler 1 and radiator 2 side to the engine side as shown in FIG. However, since the traveling wind that is introduced into the vehicle due to traveling of the vehicle and flows around each heat exchanger is stronger, the traveling wind that does not pass through the core portion 4 of the intercooler 1 is between the intercooler 1 and the radiator 2. Phenomenon (intercooler bypass wind) that is sucked from the air and flows to the radiator 2 occurs.
As a result, the amount of cooling air passing through the intercooler 1 is reduced, and the heat exchange performance of the intercooler 1 is reduced.

また、高速走行時には、図8に示すように、ファン3が吸い込む冷却風よりも走行風が強いため、インタークーラ1を通過した冷却風がラジエータ2を通過せず、インタークーラ1とラジエータ2との間から流れ出る現象(ラジエータバイパス風)が発生する。
その結果、ラジエータ2を通過する冷却風の量が減少して、ラジエータ2の熱交換性能が低下していた。
In addition, when traveling at high speed, as shown in FIG. 8, since the traveling air is stronger than the cooling air sucked by the fan 3, the cooling air that has passed through the intercooler 1 does not pass through the radiator 2, but the intercooler 1 and the radiator 2 Phenomenon flowing out from between (radiator bypass wind) occurs.
As a result, the amount of cooling air passing through the radiator 2 is reduced, and the heat exchange performance of the radiator 2 is reduced.

そこで、効率良く冷却風を流すために、インタークーラ1とラジエータ2との間の冷却風通路の周囲をシール部材17によって包囲し、冷却風の通路を形成することで熱交換性能を向上させようとするものがあった(特許文献1)。
また、特許文献2には、冷却風の流れ方向に直列に配置されたコンデンサとラジエータのシール構造において、平板の一端を巻回して管状に成形して、この平板部分をシール部材とし、管状部分をコンデンサのヘッダーとしたことで、軽量化や部品点数を削減することができるものが記載されている。
さらに、特許文献3には、軟質樹脂フィルムを幅広環状に形成した(腹巻き状)シール部材によって、直列に配列した第一熱交換器、第二熱交換器、ファンシュラウドの側周を包囲したものが記載されている。
Therefore, in order to efficiently flow the cooling air, the periphery of the cooling air passage between the intercooler 1 and the radiator 2 is surrounded by the seal member 17 to improve the heat exchange performance by forming the cooling air passage. (Patent Document 1).
Further, in Patent Document 2, in a seal structure of a condenser and a radiator arranged in series in the flow direction of cooling air, one end of a flat plate is wound into a tubular shape, and this flat plate portion is used as a seal member, and the tubular portion It is described that can be reduced in weight and the number of parts by using as a capacitor header.
Further, in Patent Document 3, the side circumference of the first heat exchanger, the second heat exchanger, and the fan shroud arranged in series is surrounded by a sealing member in which a soft resin film is formed in a wide ring shape (belly winding shape). Is described.

特開2009−12599号公報JP 2009-12599 A 特許第3336915号公報Japanese Patent No. 3336915 特開2006−170502号公報JP 2006-170502 A

このように、インタークーラ1とラジエータ2との間の冷却風通路の全側周をシール部材17によって包囲することで(図9)、インタークーラ1を通過した冷却風を全てラジエータ2へ流すことができる(図10)。
しかし、低速時でも高速時でも登坂走行などの高負荷走行時には、インタークーラ1の入口ヘッダー6の入口パイプ部分6a付近A部では、圧縮空気の温度がラジエータ冷却水の温度(90〜100℃)以上となる。そのため、インタークーラ1を通過して熱せられた冷却風がそのまま風下のラジエータ2へ流れると、ラジエータ2の一部分では冷却水が放熱できないことになり、むしろ冷却風に加熱されて温度が上昇するおそれもあった。
In this way, the entire periphery of the cooling air passage between the intercooler 1 and the radiator 2 is surrounded by the seal member 17 (FIG. 9), so that all the cooling air that has passed through the intercooler 1 flows to the radiator 2. (FIG. 10).
However, during high-load traveling such as climbing at low speed or high speed, the temperature of the compressed air is the temperature of the radiator cooling water (90 to 100 ° C.) near the inlet pipe portion 6a of the inlet header 6 of the intercooler 1. That's it. Therefore, if the cooling air heated through the intercooler 1 flows to the radiator 2 downstream, the cooling water cannot be dissipated in a part of the radiator 2, and rather, the temperature may rise due to heating by the cooling air. There was also.

本発明は上記問題点を解決するためになされたものであり、車両に搭載されるラジエータにおいて、冷却風風上のインタークーラで高温の圧縮空気との熱交換により熱せられた冷却風の温度を下げ、冷却水を効率良く冷却することのできるラジエータのシール構造を提供することを課題とする。   The present invention has been made to solve the above-described problems. In a radiator mounted on a vehicle, the temperature of the cooling air heated by heat exchange with high-temperature compressed air by an intercooler on the cooling air is set. It is an object of the present invention to provide a radiator sealing structure that can lower the cooling water efficiently.

本発明において、上記課題が解決される手段は以下の通りである。
第1の発明は、過給器で圧縮された圧縮空気を流通させるパイプ部分とその先端で大口に形成された拡散部分とをそれぞれ有して対向する入口ヘッダーと出口ヘッダーとの間に、上記入口ヘッダーから上記出口ヘッダーへ上記圧縮空気を通過させるとともに交差方向に流れる冷却風との間で熱交換を行うコア部を配置してなるインタークーラと、このインタークーラの冷却風風下に配列され、エンジンの冷却水と上記冷却風との間で熱交換を行うラジエータと、このラジエータの冷却風風下に配列され、上記冷却風を吸引するファンとを設け、上記インタークーラと上記ラジエータとの間の冷却風通路の周囲をシール部材で包囲して風洞とした車両用ラジエータのシール構造において、上記インタークーラの入口ヘッダーのパイプ部分の風下の範囲にかけて、シール部材を取り除いて通気口を形成したことを特徴とする。
In the present invention, means for solving the above problems are as follows.
The first invention includes a pipe portion through which compressed air compressed by a supercharger is circulated and a diffusion portion formed at a large end at the tip thereof, and between the opposing inlet header and outlet header, An intercooler in which a core portion that passes the compressed air from the inlet header to the outlet header and exchanges heat with the cooling air flowing in the crossing direction is arranged, and is arranged under the cooling air of the intercooler, A radiator that exchanges heat between the cooling water of the engine and the cooling air, and a fan that is arranged under the cooling air of the radiator and sucks the cooling air, are provided between the intercooler and the radiator. In a vehicle radiator seal structure in which the periphery of the cooling air passage is surrounded by a seal member to form a wind tunnel, the leeward of the pipe portion of the inlet header of the intercooler Over the range, to remove the sealing member, characterized in that the formation of the vent.

第2の発明に係る車両用ラジエータのシール構造は、上記通気口を、上記冷却風通路の温度によって、高温下では開放される可動シールで塞いだことを特徴とする。   The seal structure for a vehicle radiator according to a second aspect of the invention is characterized in that the vent hole is closed with a movable seal that is opened at a high temperature according to the temperature of the cooling air passage.

第1の発明によれば、上記インタークーラと上記ラジエータとの間の冷却風通路の周囲をシール部材で包囲して風洞とした車両用ラジエータのシール構造において、上記インタークーラの入口ヘッダーのパイプ部分の風下の範囲にかけて、シール部材を取り除いて通気口を形成したことにより、一般道路での登坂走行など低速走行高負荷時には、インタークーラを通過していない冷えた空気が通気口から流れ込み、インタークーラを通過して熱せられた冷却風と混じり合うことで温度を下げ、風下のラジエータにおいても良好な熱交換性能を得ることができる。   According to a first aspect of the present invention, there is provided a vehicular radiator sealing structure in which a periphery of a cooling air passage between the intercooler and the radiator is surrounded by a sealing member to form a wind tunnel, and a pipe portion of an inlet header of the intercooler By removing the sealing member over the leeward area and forming the vent, cold air that has not passed through the intercooler flows from the vent when the vehicle is traveling at low speeds such as uphill traveling on ordinary roads. The temperature is lowered by mixing with the cooling air heated through the air, and good heat exchanging performance can be obtained even in the leeward radiator.

また、高速道路での登坂走行など高速走行高負荷時には、インタークーラのパイプ部分付近を通過して特に熱せられた冷却風が通気口より外部に流出するため、ラジエータにおける冷却効率を低下させることなく、良好な熱交換性能を得ることができる。
これらの結果、ファンの前面温度やラジエータの冷却水温度を感知して駆動、停止させるタイプのファンでは、稼働時間を減少させることができ、車両の燃費を向上させることができる。
In addition, during high-speed driving and high loads such as climbing on highways, the cooling air that has been heated especially after passing near the pipe part of the intercooler flows out from the vents, without reducing the cooling efficiency of the radiator. Good heat exchange performance can be obtained.
As a result, the fan that is driven and stopped by sensing the front surface temperature of the fan and the coolant temperature of the radiator can reduce the operation time and improve the fuel consumption of the vehicle.

第2の発明によれば、上記通気口を、上記冷却風通路の温度によって、高温下では開放される可動シールで塞いだことにより、冷却風の温度が低い低負荷走行時には通風孔が密閉されるため、インタークーラを通過した冷却風が全てラジエータへ流れ、一定した十分な風量で低温域での熱交換効率が高まるとともに、高負荷走行時に冷却風の温度が上昇すると(75〜100℃の間の所定の温度)、可動シールが開放されて冷却風が通気口から出入りできるようになる。
これにより、低速走行高負荷時にはインタークーラを通過していない冷えた空気が通気口から流れ込み、高速走行高負荷時にはインタークーラのパイプ部分付近を通過して特に熱せられた冷却風が通気口より外部に流出するため、ラジエータにおける良好な熱交換性能を得ることができる。
このため、ファンの前面温度やラジエータの冷却水温度を感知して駆動、停止させるタイプのファンでは、稼働時間をさらに減少させることができ、車両の燃費を向上させることができる。
According to the second aspect of the invention, the vent hole is closed with a movable seal that is opened at a high temperature depending on the temperature of the cooling air passage, so that the ventilation hole is hermetically sealed when the cooling air temperature is low and the load is low. Therefore, all of the cooling air that has passed through the intercooler flows to the radiator, and heat exchange efficiency in the low temperature region is increased with a constant and sufficient air volume, and when the temperature of the cooling air rises during high load driving (75-100 ° C At a predetermined temperature in between), the movable seal is opened, and cooling air can enter and exit from the vent.
As a result, cold air that has not passed through the intercooler flows through the vents at high speeds and high loads, and cooling air that has been heated especially by passing near the pipe portion of the intercooler at high speeds and high loads is external to the vents. Therefore, good heat exchange performance in the radiator can be obtained.
For this reason, in the type of fan that senses the front surface temperature of the fan and the coolant temperature of the radiator to drive and stop, the operating time can be further reduced, and the fuel consumption of the vehicle can be improved.

本発明の実施形態に係るラジエータのシール構造を示す正面図である。It is a front view which shows the seal structure of the radiator which concerns on embodiment of this invention. 同ラジエータのシール構造を示す側方図(低速走行高負荷時)である。It is a side view (at the time of low speed running high load) which shows the seal structure of the radiator. 同ラジエータのシール構造を示す側方図(高速走行高負荷時)である。It is a side view (at the time of high-speed running high load) which shows the seal structure of the same radiator. 本発明の別形態に係るラジエータのシール構造を示す平面説明図であり、(a)は低負荷時、(b)は高負荷時である。It is a plane explanatory view showing the seal structure of the radiator concerning another form of the present invention, (a) at the time of low load, (b) at the time of high load. 本発明の別形態に係る他のラジエータのシール構造を示す平面説明図であり、(a)は低負荷時、(b)は高負荷時である。It is plane explanatory drawing which shows the seal structure of the other radiator which concerns on another form of this invention, (a) is at the time of low load, (b) is at the time of high load. 従来のラジエータのシール構造を示す斜視図である。It is a perspective view which shows the sealing structure of the conventional radiator. 同ラジエータのシール構造を示す側方図(低速走行時)である。It is a side view (at the time of low speed driving) showing the seal structure of the same radiator. 同ラジエータのシール構造を示す側方図(高速走行時)である。It is a side view (during high-speed driving) showing the seal structure of the same radiator. シール部材を設けた従来のラジエータのシール構造を示す正面図である。It is a front view which shows the sealing structure of the conventional radiator which provided the sealing member. 同ラジエータのシール構造を示す側方図である。It is a side view which shows the seal structure of the same radiator.

以下、本発明の実施形態に係る車両用ラジエータのシール構造について説明する。
本発明の実施形態においては、図2、図3に示すように、車両の前面からエンジン(図示せず)までの間に、インタークーラ1、ラジエータ2およびファン3が直列に配置されている。
Hereinafter, the seal structure of the radiator for vehicles concerning the embodiment of the present invention is explained.
In the embodiment of the present invention, as shown in FIGS. 2 and 3, the intercooler 1, the radiator 2, and the fan 3 are arranged in series between the front of the vehicle and the engine (not shown).

インタークーラ1は、図1に示すように(図6も参照)、中空の扁平管4aと波板状のアウターフィン4bとを縦方向に交互に多数積層し、左右の両端を一対の平板状のエンドプレート5に貫装して固定したコア部4を有している。このコア部4では、過給器(図示せず)で圧縮された圧縮空気が扁平管4a中を流れ、冷却風がアウターフィン4bを交差方向に流れて、熱交換により圧縮空気が冷却される。   As shown in FIG. 1 (see also FIG. 6), the intercooler 1 has a plurality of hollow flat tubes 4a and corrugated outer fins 4b alternately stacked in the vertical direction, and a pair of flat plates on both left and right sides. The core portion 4 is fixed so as to penetrate the end plate 5. In the core portion 4, compressed air compressed by a supercharger (not shown) flows through the flat tube 4a, cooling air flows through the outer fins 4b in the cross direction, and the compressed air is cooled by heat exchange. .

コア部4の両端では、エンドプレート5、5に入口ヘッダー6および出口ヘッダー7が取り付けられる。
入口ヘッダー6は、圧縮空気を導入する入口パイプ部分6aと、この入口パイプ部分6aの先端をエンドプレート5に略一致する大口に形成した拡散部分6bとからなる。エンジンルームのスペースを考慮して、コア部4に入口ヘッダー6を取り付けた際に、入口パイプ部分6aが風下側を向くように屈曲しておく。
入口ヘッダー6は、拡散部分6bをエンドプレート5に一致させて、溶接またはかしめをすることでコア部4に取り付けられる。
At both ends of the core portion 4, the inlet header 6 and the outlet header 7 are attached to the end plates 5 and 5.
The inlet header 6 includes an inlet pipe portion 6 a for introducing compressed air, and a diffusion portion 6 b formed at the large end substantially matching the end plate 5 at the tip of the inlet pipe portion 6 a. Considering the space in the engine room, when the inlet header 6 is attached to the core portion 4, the inlet pipe portion 6a is bent so as to face the leeward side.
The inlet header 6 is attached to the core portion 4 by welding or caulking with the diffusion portion 6 b aligned with the end plate 5.

反対端のエンドプレート5には、入口ヘッダー6と左右対称に形成され、出口パイプ部分7aおよび合流部分7bを有する出口ヘッダー7が溶接またはかしめにて取り付けられる。コア部4で冷却された圧縮空気は出口ヘッダー7の合流部分7bで合流して出口パイプ部分7aからインテークマニホールド(図示せず)へ送出される。   The opposite end plate 5 is formed symmetrically with the inlet header 6 and is fitted with an outlet header 7 having an outlet pipe portion 7a and a merging portion 7b by welding or caulking. The compressed air cooled by the core portion 4 joins at the joining portion 7b of the outlet header 7 and is sent from the outlet pipe portion 7a to the intake manifold (not shown).

ラジエータ2は、図1に示すように(図6も参照)、中空の扁平管8aと波板状のアウターフィン8bとを横方向に交互に多数積層し、上下の両端を一対の平板状のエンドプレート9に貫装して固定したコア部8を有している。このコア部8では、エンジンで加熱された冷却水が扁平管8a中を流れ、冷却風がアウターフィン8bを交差方向に流れて、熱交換により冷却水が冷却される。
また、コア部8の横方向両端にはサイドプレート10を設けて保護している。
As shown in FIG. 1 (see also FIG. 6), the radiator 2 is formed by laminating a plurality of hollow flat tubes 8a and corrugated outer fins 8b alternately in the horizontal direction, and a pair of flat plate-like upper and lower ends. It has a core portion 8 that penetrates and is fixed to the end plate 9. In the core portion 8, the cooling water heated by the engine flows through the flat tube 8a, the cooling air flows through the outer fins 8b in the intersecting direction, and the cooling water is cooled by heat exchange.
Further, side plates 10 are provided at both ends in the lateral direction of the core portion 8 to protect them.

コア部8の上下端では、エンドプレート9にアッパータンク11およびロアタンク12が取り付けられる。
アッパータンク11は、冷却水を導入する冷却水入口パイプ11aと、この冷却水入口パイプ11aの先端をエンドプレート9に略一致する大口に形成した拡散部分11bとからなる。エンジンルームのスペースを考慮して、コア部8にアッパータンク11を取り付けたときに、冷却水入口パイプ11aが風下側を向くように屈曲しておく。
アッパータンク11は、拡散部分11bをエンドプレート9に一致させて、溶接またはかしめをすることでコア部8に取り付けられる。
At the upper and lower ends of the core portion 8, an upper tank 11 and a lower tank 12 are attached to the end plate 9.
The upper tank 11 includes a cooling water inlet pipe 11 a that introduces cooling water, and a diffusion portion 11 b that has a leading end of the cooling water inlet pipe 11 a that is substantially coincident with the end plate 9. In consideration of the space in the engine room, when the upper tank 11 is attached to the core portion 8, the cooling water inlet pipe 11a is bent so as to face the leeward side.
The upper tank 11 is attached to the core portion 8 by welding or caulking with the diffusion portion 11b aligned with the end plate 9.

下端側のエンドプレート9には、アッパータンク11と略同形に形成され、冷却水出口パイプ12aおよび合流部分12bを有するロアタンク12が溶接またはかしめにて取り付けられる。コア部8で冷却された冷却水はロアタンク12の合流部分12bで合流して冷却水出口パイプ12aから再びエンジンへ送出される。   A lower tank 12 that is formed in substantially the same shape as the upper tank 11 and has a cooling water outlet pipe 12a and a merging portion 12b is attached to the lower end side end plate 9 by welding or caulking. The cooling water cooled by the core portion 8 joins at the joining portion 12b of the lower tank 12, and is sent out again to the engine from the cooling water outlet pipe 12a.

ラジエータ2の両側からは、一対のインタークーラブラケット13がそれぞれ前方に突設され、インタークーラ1から下方に突出した被保持部14を保持固定している。
また、ラジエータ2両側のサイドプレート10からは、ラジエータ2を車両に搭載するための一対の車両取付ブラケット15もそれぞれ側方に突設されている。
From both sides of the radiator 2, a pair of intercooler brackets 13 project forward and hold and fix the held portions 14 projecting downward from the intercooler 1.
Further, a pair of vehicle mounting brackets 15 for mounting the radiator 2 on the vehicle are also provided on the side plates 10 on both sides of the radiator 2 so as to protrude sideways.

ファン3は、インタークーラ1およびラジエータ2の風下に配設され、ラジエータ2とファン3との間には、導風のためにファン3の側周を取り囲むファンシュラウド16が設置されている。
このファン3が回転することにより、車両の前側に設けられた冷却風取入口から外気を取り入れ、インタークーラ1のコア部4、ラジエータ2のコア部8を通過してエンジン側へと流れる冷却風を発生させる。
The fan 3 is disposed leeward of the intercooler 1 and the radiator 2, and a fan shroud 16 that surrounds the side periphery of the fan 3 is installed between the radiator 2 and the fan 3 to guide the air.
As the fan 3 rotates, outside air is taken in from a cooling air intake port provided on the front side of the vehicle, passes through the core portion 4 of the intercooler 1 and the core portion 8 of the radiator 2, and flows into the engine side. Is generated.

このようなファン3としては、エンジンに連結してその駆動力によって常に回転させるもの、バイメタルとオイルとを用い、ファン3の前面温度に感応して高気温時のみファンクラッチを接続して回転させるもの、あるいは、電子制御式ファンクラッチまたは電動モータを備え、ラジエータ2の冷却水温度を感知してファン3を駆動させるものから選択することができる。   Such a fan 3 is connected to the engine and is always rotated by its driving force. Using a bimetal and oil, a fan clutch is connected and rotated only at high temperatures in response to the front surface temperature of the fan 3. Or an electronically controlled fan clutch or an electric motor that senses the coolant temperature of the radiator 2 and drives the fan 3 can be selected.

ファンシュラウド16は、ラジエータ2のコア部8の後背面に当接する開口部と、ファン3の前側半分を収容する開口部とを有する筒形に形成され、風下側へと次第に縮径するとともに、四角筒から円筒に連続的に変化する形状とする。   The fan shroud 16 is formed in a cylindrical shape having an opening that contacts the rear rear surface of the core portion 8 of the radiator 2 and an opening that accommodates the front half of the fan 3, and gradually decreases in diameter toward the leeward side. The shape changes continuously from a square tube to a cylinder.

インタークーラ1とラジエータ2との間の冷却風通路は、図1の破線で示すシール部材17によってその周囲を包囲し、風洞を形成している。
シール部材17には、使用環境によって、各種ゴム製のもの、樹脂製のもの、金属製のものなどを使用することができる。特に耐久性が必要な環境では金属製のプレートを用いるのが望ましい。
The cooling air passage between the intercooler 1 and the radiator 2 is surrounded by a seal member 17 indicated by a broken line in FIG. 1 to form a wind tunnel.
The seal member 17 can be made of various types of rubber, resin, metal, etc., depending on the usage environment. It is desirable to use a metal plate particularly in an environment where durability is required.

シール部材17の取付箇所は冷却風通路の略全周であるが、インタークーラ1の入口ヘッダー6の入口パイプ部分6aの風下ではシール部材17を取り除いて通気口18を開口している。通気口18を設ける範囲としては、上記入口パイプ部分6aの根元部(拡散部分6bとの連結部分)の1〜5倍の寸法とする。
通気口18の位置は、入口パイプ部分6aの位置および入口パイプ部分6aによって高温になる位置に合わせて変更してよく、例えば、入口パイプ部分6aがラジエータ2の上部や下部に形成される場合にはその風下側に通気口18を形成し、また、入口パイプ部分6aがラジエータ2の角部に形成される場合には角部のシール部材17を縦横に亘って取り除いて形成しても良い。
The mounting location of the seal member 17 is substantially the entire circumference of the cooling air passage. However, the seal member 17 is removed to open the vent 18 in the lee of the inlet pipe portion 6a of the inlet header 6 of the intercooler 1. The range in which the vent hole 18 is provided is 1 to 5 times the size of the root portion of the inlet pipe portion 6a (the connecting portion with the diffusion portion 6b).
The position of the vent hole 18 may be changed according to the position of the inlet pipe portion 6a and the position where the temperature becomes high by the inlet pipe portion 6a. For example, when the inlet pipe portion 6a is formed at the upper part or the lower part of the radiator 2 May form the vent 18 on the leeward side, and if the inlet pipe portion 6a is formed at the corner of the radiator 2, the corner seal member 17 may be removed longitudinally and laterally.

これにより、本実施形態のシール構造では、一般道路の登坂走行時などの低速走行高負荷時には、図2に示すように、冷却風が走行風よりも強いため、通気口18からインタークーラバイパス風が部分的に流れ込み、入口パイプ部分6a付近を通過して最も高温になった冷却風と混じり合うことで冷却風の温度を下げるので、ラジエータ2でも良好な熱交換性能を得ることができる。
このとき、冷却風の冷却に必要な分しかインタークーラバイパス風が発生しないため、インタークーラ1の熱交換効率を低下させることがない。
As a result, in the seal structure of the present embodiment, the cooling air is stronger than the traveling air as shown in FIG. Partially flows and mixes with the cooling air that has passed through the vicinity of the inlet pipe portion 6a and becomes the highest temperature, so that the temperature of the cooling air is lowered. Therefore, the radiator 2 can also obtain good heat exchange performance.
At this time, since the intercooler bypass air is generated only for the amount necessary for cooling the cooling air, the heat exchange efficiency of the intercooler 1 is not lowered.

また、高速道路の登坂走行時などの高速走行高負荷時には、図3に示すように、冷却風よりも走行風が強いため、入口パイプ部分6a付近を通過して最も高温になった冷却風が通気口18からラジエータバイパス風として外部に流出するので、ラジエータ2における冷却効率を低下させることなく、良好な熱交換性能を得ることができる。
このとき、冷却風の放熱に必要な分しかラジエータバイパス風が発生しないため、冷却風の不足によりラジエータ2の熱交換効率を低下させることがない。
In addition, as shown in FIG. 3, when traveling at high speed, such as when traveling on an uphill on a highway, the traveling wind is stronger than the cooling wind, so that the cooling wind that has reached the highest temperature after passing through the vicinity of the inlet pipe portion 6a. Since it flows out to the outside as a radiator bypass wind from the vent hole 18, good heat exchange performance can be obtained without reducing the cooling efficiency in the radiator 2.
At this time, the radiator bypass wind is generated only as much as necessary for heat radiation of the cooling air, so that the heat exchange efficiency of the radiator 2 is not lowered due to the lack of cooling air.

これらの結果、ファン3の前面温度やラジエータ2の冷却水温度を感知して駆動、停止させるタイプのファン3では、稼働時間を減少させることができ、車両の燃費を向上させることができる。   As a result, in the fan 3 that is driven and stopped by sensing the front surface temperature of the fan 3 and the coolant temperature of the radiator 2, the operation time can be reduced and the fuel consumption of the vehicle can be improved.

本発明の実施形態の一例として、インタークーラ1の入口ヘッダー6の入口パイプ部分6aの風下に上記入口パイプ部分6aの根元部と略同じ寸法でシール部材17を取り除いて通気口18を設け、ラジエータ2前面の冷却風温度を測定した。
また、比較例として、インタークーラ1とラジエータ2の間の冷却風通路の全周をシール部材17で囲んだ場合(図9、図10)において、ラジエータ2前面の冷却風温度を測定した。
As an example of an embodiment of the present invention, a vent 18 is provided by removing the seal member 17 with the same size as the root of the inlet pipe portion 6a on the lee of the inlet pipe portion 6a of the inlet header 6 of the intercooler 1, and a radiator. 2 Cooling air temperature on the front surface was measured.
As a comparative example, when the entire circumference of the cooling air passage between the intercooler 1 and the radiator 2 is surrounded by the seal member 17 (FIGS. 9 and 10), the cooling air temperature on the front surface of the radiator 2 was measured.

その結果、比較例では、最も高温になる上記入口パイプ部分6aの風下付近では、高負荷走行時の冷却風温度が118℃であった。
これに対して、本発明の実施形態では、最も高温になる上記入口パイプ部分6aの風下付近でも、高負荷走行時の冷却風温度が82℃に抑えられた。
As a result, in the comparative example, the cooling air temperature at the time of high load traveling was 118 ° C. in the vicinity of the leeward of the inlet pipe portion 6a at the highest temperature.
On the other hand, in the embodiment of the present invention, the cooling air temperature at the time of high load traveling is suppressed to 82 ° C. even in the vicinity of the leeward of the inlet pipe portion 6a at the highest temperature.

<別形態>
別形態は、図4、図5に示すように、通気口18を75〜100℃で作動する可動シール19で塞いだことを特徴とする。
可動シール19には、例えば75〜100℃の間の所定の温度で作動するバイメタルなどの金属を使用する。
可動シール19は、図4のようにラジエータ2のサイドプレート10に一端を取り付け、または図5のようにインタークーラ1の入口ヘッダー6に一端を取り付けて、通気口18を隙間なく覆うようにし、その他の部分は拘束せずに自由に変形できるようにする。
<Another form>
Another embodiment is characterized in that, as shown in FIGS. 4 and 5, the vent 18 is closed with a movable seal 19 that operates at 75 to 100 ° C.
For the movable seal 19, for example, a metal such as a bimetal that operates at a predetermined temperature between 75 to 100 ° C. is used.
The movable seal 19 has one end attached to the side plate 10 of the radiator 2 as shown in FIG. 4 or one end attached to the inlet header 6 of the intercooler 1 as shown in FIG. The other parts can be freely deformed without being constrained.

以下、例えば75℃で作動するバイメタルを用いた可動シール19を設置した場合について説明する。
負荷が少ない走行状態ではインタークーラ1の圧縮空気の温度が低く、インタークーラ1のコア部4を通過した冷却風の温度も75℃未満になっており、可動シール19は作動せず、他のシール部材17と同様に可動シール19によって通気口18が密閉される(図4(a)、図5(a))。
このため、インタークーラ1を通過した冷却風の全量がラジエータ2へ流れ、一定した十分な風量で低温域での熱交換効率が高まる。
Hereinafter, the case where the movable seal 19 using a bimetal that operates at, for example, 75 ° C. is installed will be described.
In a traveling state with a low load, the temperature of the compressed air of the intercooler 1 is low, the temperature of the cooling air that has passed through the core portion 4 of the intercooler 1 is also less than 75 ° C., the movable seal 19 does not operate, As with the seal member 17, the vent 18 is sealed by the movable seal 19 (FIGS. 4A and 5A).
For this reason, the whole quantity of the cooling air that has passed through the intercooler 1 flows to the radiator 2, and the heat exchange efficiency in the low temperature region is increased with a constant and sufficient air volume.

他方、登坂走行などの高負荷走行時には、圧縮空気の温度が高くなり、インタークーラ1のコア部4を通過した冷却風の温度も75℃以上となるため、可動シール19が作動して通気口18が開放される(図4(b)、図5(b))。
このため、上記実施形態と同様に、低速走行高負荷時にはインタークーラ1を通過していない冷えた空気が通気口18から流れ込み(インタークーラバイパス風)、高速走行高負荷時にはインタークーラ1の入口パイプ部分6a付近を通過して特に熱せられた冷却風が通気口より外部に流出するため(ラジエータバイパス風)、ラジエータ2における良好な熱交換性能を得ることができる。
On the other hand, during high-load running such as uphill running, the temperature of the compressed air becomes high, and the temperature of the cooling air that has passed through the core portion 4 of the intercooler 1 becomes 75 ° C. or higher. 18 is opened (FIGS. 4B and 5B).
For this reason, as in the above-described embodiment, cold air that has not passed through the intercooler 1 flows through the vent 18 when the vehicle is running at low speed and high load (intercooler bypass wind), and the inlet pipe of the intercooler 1 is loaded at high speed and high load. Since the particularly heated cooling air that passes through the vicinity of the portion 6a flows out from the vent (radiator bypass air), good heat exchange performance in the radiator 2 can be obtained.

このように、冷却風の温度に応じて、通気口18の密閉状態と開放状態とを適宜切り替えるため、ファン3の前面温度やラジエータ2の冷却水温度を感知して駆動、停止させるタイプのファン3では、稼働時間をさらに減少させることができ、車両の燃費を向上させることができる。   As described above, in order to appropriately switch between the sealed state and the open state of the air vent 18 according to the temperature of the cooling air, the fan of the type that senses the front surface temperature of the fan 3 and the cooling water temperature of the radiator 2 to drive and stop the fan. 3, the operating time can be further reduced, and the fuel efficiency of the vehicle can be improved.

1 インタークーラ
2 ラジエータ
3 ファン
4 コア部
4a 扁平管
4b アウターフィン
5 エンドプレート
6 入口ヘッダー
6a パイプ部分
6b 拡散部分
7 出口ヘッダー
7a パイプ部分
7b 合流部分
8 コア部
8a 扁平管
8b アウターフィン
9 エンドプレート
10 サイドプレート
11 アッパータンク
11a 冷却水入口パイプ
11b 拡散部分
12 ロアタンク
12a 冷却水出口パイプ
12b 合流部分
13 インタークーラブラケット
14 被保持部
15 車両取付ブラケット
16 ファンシュラウド
17 シール部材
18 通気口
19 可動シール
DESCRIPTION OF SYMBOLS 1 Intercooler 2 Radiator 3 Fan 4 Core part 4a Flat tube 4b Outer fin 5 End plate 6 Inlet header 6a Pipe part 6b Diffusion part 7 Outlet header 7a Pipe part 7b Merge part 8 Core part 8a Flat tube 8b Outer fin 9 End plate 10 Side plate 11 Upper tank 11a Cooling water inlet pipe 11b Diffusion part 12 Lower tank 12a Cooling water outlet pipe 12b Junction part 13 Intercooler bracket 14 Holding part 15 Vehicle mounting bracket 16 Fan shroud 17 Seal member 18 Ventilation hole 19 Movable seal

Claims (2)

過給器で圧縮された圧縮空気を流通させるパイプ部分とその先端で大口に形成された拡散部分とをそれぞれ有して対向する入口ヘッダーと出口ヘッダーとの間に、上記入口ヘッダーから上記出口ヘッダーへ上記圧縮空気を通過させるとともに交差方向に流れる冷却風との間で熱交換を行うコア部を配置してなるインタークーラと、
このインタークーラの冷却風風下に配列され、エンジンの冷却水と上記冷却風との間で熱交換を行うラジエータと、
このラジエータの冷却風風下に配列され、上記冷却風を吸引するファンとを設け、
上記インタークーラと上記ラジエータとの間の冷却風通路の周囲をシール部材で包囲して風洞とした車両用ラジエータのシール構造において、
上記インタークーラの入口ヘッダーのパイプ部分の風下の範囲にかけて、シール部材を取り除いて通気口を形成したことを特徴とする車両用ラジエータのシール構造。
Between the inlet header and the outlet header, each having a pipe portion through which compressed air compressed by the supercharger circulates and a diffusion portion formed at the tip of the pipe and facing each other, the outlet header to the outlet header An intercooler in which a core part is disposed to allow the compressed air to pass through and to exchange heat with cooling air flowing in the crossing direction;
A radiator that is arranged under the cooling air of the intercooler and performs heat exchange between the cooling water of the engine and the cooling air;
Arranged under the cooling air of the radiator, a fan for sucking the cooling air is provided,
In a vehicle radiator seal structure in which a periphery of a cooling air passage between the intercooler and the radiator is surrounded by a seal member to form a wind tunnel,
A seal structure for a radiator for a vehicle, wherein a vent is formed by removing a seal member over a leeward range of a pipe portion of an inlet header of the intercooler.
上記通気口を、上記冷却風通路の温度によって、高温下では開放される可動シールで塞いだことを特徴とする請求項1記載の車両用ラジエータのシール構造。   2. The seal structure for a vehicle radiator according to claim 1, wherein the vent hole is closed with a movable seal that is opened at a high temperature depending on a temperature of the cooling air passage.
JP2009112982A 2009-05-07 2009-05-07 Sealing structure for vehicle radiator Active JP5314490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009112982A JP5314490B2 (en) 2009-05-07 2009-05-07 Sealing structure for vehicle radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009112982A JP5314490B2 (en) 2009-05-07 2009-05-07 Sealing structure for vehicle radiator

Publications (2)

Publication Number Publication Date
JP2010260448A true JP2010260448A (en) 2010-11-18
JP5314490B2 JP5314490B2 (en) 2013-10-16

Family

ID=43358911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009112982A Active JP5314490B2 (en) 2009-05-07 2009-05-07 Sealing structure for vehicle radiator

Country Status (1)

Country Link
JP (1) JP5314490B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095282A (en) * 2011-11-01 2013-05-20 Fuji Heavy Ind Ltd Vehicle, air conditioning apparatus, and air conditioning method
JP2015013580A (en) * 2013-07-05 2015-01-22 いすゞ自動車株式会社 Cooling device of vehicle
JP2015169128A (en) * 2014-03-07 2015-09-28 スズキ株式会社 Piping structure of intercooler for vehicle
CN109372626A (en) * 2018-12-17 2019-02-22 潍柴动力股份有限公司 A kind of integrated heat exchanger and engine
CN111152645A (en) * 2018-11-07 2020-05-15 陕西重型汽车有限公司 Cooling module assembly and vehicle
JP7416108B2 (en) 2022-03-08 2024-01-17 いすゞ自動車株式会社 engine cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054239A (en) * 1996-08-13 1998-02-24 Nissan Motor Co Ltd Cooler
JP2006327325A (en) * 2005-05-24 2006-12-07 Honda Motor Co Ltd Cooling device for fuel cell electric vehicle
JP2009012599A (en) * 2007-07-04 2009-01-22 Hino Motors Ltd Radiator seal structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054239A (en) * 1996-08-13 1998-02-24 Nissan Motor Co Ltd Cooler
JP2006327325A (en) * 2005-05-24 2006-12-07 Honda Motor Co Ltd Cooling device for fuel cell electric vehicle
JP2009012599A (en) * 2007-07-04 2009-01-22 Hino Motors Ltd Radiator seal structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095282A (en) * 2011-11-01 2013-05-20 Fuji Heavy Ind Ltd Vehicle, air conditioning apparatus, and air conditioning method
JP2015013580A (en) * 2013-07-05 2015-01-22 いすゞ自動車株式会社 Cooling device of vehicle
JP2015169128A (en) * 2014-03-07 2015-09-28 スズキ株式会社 Piping structure of intercooler for vehicle
CN111152645A (en) * 2018-11-07 2020-05-15 陕西重型汽车有限公司 Cooling module assembly and vehicle
CN109372626A (en) * 2018-12-17 2019-02-22 潍柴动力股份有限公司 A kind of integrated heat exchanger and engine
JP7416108B2 (en) 2022-03-08 2024-01-17 いすゞ自動車株式会社 engine cooling system

Also Published As

Publication number Publication date
JP5314490B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
US9593647B2 (en) Gas-to-liquid heat exchanger
JP5314490B2 (en) Sealing structure for vehicle radiator
JP4557738B2 (en) Fuel cell vehicle cooling system
JP6201886B2 (en) Intake air cooling system
JP6512158B2 (en) Vehicle cooling system
JP6327032B2 (en) Intake air cooling system
CN104564296A (en) Air duct and cooling system for vehicle
JP6556566B2 (en) Vehicle cooling system
US20130020060A1 (en) Heat exchanger
JP2009012599A (en) Radiator seal structure
US20120180989A1 (en) Vehicular air-conditioning system
CN112761770A (en) Cooling device beneficial to heat dissipation of automobile engine room
CN113412407A (en) Heat exchanger
JP2003278608A (en) Egr device
KR102633918B1 (en) Cooling module for vehicle
KR102498669B1 (en) Cooling module
JP2001263060A (en) Heat exchanger of construction equipment
JP4947001B2 (en) Heat exchanger
CN216044009U (en) Dustproof device and engine radiator with same
CN212003337U (en) Engine compartment air ducting and excavator
CN217783615U (en) Vehicle with a steering wheel
JP4161820B2 (en) Vehicle heat exchanger cooling structure
JP6464598B2 (en) Internal combustion engine cooling system
CN218788318U (en) Cooling type oil-immersed transformer
KR20140076218A (en) Cooling system using engine cover for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250