JP2010260317A - ナノファイバー積層体とその製造方法 - Google Patents

ナノファイバー積層体とその製造方法 Download PDF

Info

Publication number
JP2010260317A
JP2010260317A JP2009114800A JP2009114800A JP2010260317A JP 2010260317 A JP2010260317 A JP 2010260317A JP 2009114800 A JP2009114800 A JP 2009114800A JP 2009114800 A JP2009114800 A JP 2009114800A JP 2010260317 A JP2010260317 A JP 2010260317A
Authority
JP
Japan
Prior art keywords
nanofiber
layer
group
organic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009114800A
Other languages
English (en)
Inventor
Tadahisa Iwata
忠久 岩田
Eika Kai
衛華 開
Akira Isogai
明 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2009114800A priority Critical patent/JP2010260317A/ja
Publication of JP2010260317A publication Critical patent/JP2010260317A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

【課題】接着性に優れたナノファイバー層を有するナノファイバー積層体を提供する。
【解決手段】本発明のナノファイバー積層体は、少なくとも表面に有機物層を有する基盤と、前記有機物層を表面に有する基盤上に形成されたナノファイバー層と、を有することを特徴とする。
【選択図】図1

Description

本発明は、ナノファイバー積層体とその製造方法に関するものである。
セルロースなどの天然繊維材料をTEMPO(2,2,6,6−テトラメチル−1−ピペリジン N−オキシル)触媒の存在下で酸化させ、機械的な解繊処理を施すことで、直径数ナノメートルの高結晶性極細繊維(ナノファイバー)を製造する方法が知られている(例えば特許文献1参照)。また、この方法で作製したセルロースナノファイバーをポリエチレンテレフタレートやポリ乳酸などの基盤フィルム上に塗布すると、それぞれの本来持っているガスバリア性を大きく向上させることが明らかになっている(例えば非特許文献1参照)。
特開2001−049591号公報
Fukuzumi, H., Saito, T., Kumamoto, Y., Iwata, T. and Isogai, A., "Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation", Biomacromolecules 2009, 10, 162-165.
しかしながら、セルロースナノファイバーをポリ乳酸などの生分解性ポリエステルからなる基盤フィルムに塗布すると、セルロースなどの親水性高分子とポリエステルなどの疎水性高分子とは本来相互作用が非常に乏しいために、セルロースナノファイバーの層が基盤フィルムから容易に剥がれてしまうという課題があった。この点、基盤フィルムとは別にセルロースナノファイバーフィルムを作製し、このセルロースナノファイバーフィルムと基盤フィルムとを接着剤で貼り合わせることで多層フィルムを作製することは可能であった。しかしこの方法では、第3の物質である接着剤が必要であり、また独立したセルロースナノファイバーのフィルムを用意する必要があった。このように、セルロースナノファイバーを用いた多層フィルムは、実用化にはほど遠いのが現状である。
本発明は、上記従来技術の問題点に鑑み成されたものであって、基盤とナノファイバー層とが良好に接着されたナノファイバー積層体を提供することを目的の一つとする。
また本発明は、接着性に優れたナノファイバー層を基盤上に直接強く接着させることができる製造方法を提供することを目的の一つとする。
本発明のナノファイバー積層体は、上記課題を解決するために、少なくとも表面に有機物層を有する基盤と、前記有機物層上に形成されたナノファイバー層と、を有することを特徴とする。
この構成によれば、ナノファイバー層と基盤上に形成された有機物層の作用により、ナノファイバー層を基盤上に良好に接着することができる。
前記有機物層が、前記ナノファイバーのヒドロキシル基と分子間結合可能な基を有する有機化合物からなることが好ましい。これにより、ナノファイバーと有機物層との優れた接着性を得ることができる。
また、前記有機物層が、カルボキシル基、ヒドロキシル基、アミド基、アミノ基、イミノ基、ニトロ基、窒素を含む複合環基から選択される1つ以上の基を有する有機化合物からなることが好ましい。これらの基を有する有機化合物であれば、天然高分子由来のナノファイバーのヒドロキシル基と良好な分子間結合を形成することができる。
さらに、前記有機物層が、カルボキシル基を有する有機化合物を含むことが好ましい。これにより、特にヒドロキシル基を有するナノファイバーとの優れた接着性を得ることができる。
前記有機物層が、アクリル酸又はアクリル酸誘導体を含む有機化合物からなることが好ましい。アクリル酸溶液又はアクリル酸誘導体溶液に基盤を浸漬することで容易に基盤上に有機物層を形成することができるため、製造性に優れたナノファイバー積層体とすることができる。
前記基盤上の前記有機物層が、生分解性物質を含むことが好ましい。また、前記基盤の前記有機物層が、生分解性プラスチックを含むことが好ましい。これにより、生分解性のナノファイバー積層体とすることができる。
前記ナノファイバー層が、セルロースナノファイバーを含むことが好ましい。前記ナノファイバー層が、キチンナノファイバーを含むことも好ましい。
本発明のナノファイバー積層体の製造方法は、基盤表面に改質処理を施す工程と、改質処理された基盤表面に有機物層を形成する工程と、前記有機物層が形成された前記基盤表面にナノファイバー分散液を塗布後、乾燥させてナノファイバー層を形成する工程と、を有することを特徴とする。
この製造方法によれば、基盤の表面改質処理と、有機物層の形成という簡便な処理で、ナノファイバー層が基盤上に良好に接着されたナノファイバー積層体を製造することができる。
前記有機物層を形成する工程において、前記基盤表面の改質処理で励起された部位に、前記ナノファイバーのヒドロキシル基と分子間結合可能な基を有する有機化合物を結合させることが好ましい。
より具体的には、前記ナノファイバー層を形成する工程において、前記有機物層の前記官能基と前記ナノファイバーのヒドロキシル基との相互作用により前記ナノファイバー層を前記基盤上に接着させることが好ましい。これにより、ナノファイバーと有機物層との間で優れた接着性を得ることができる。
本発明によれば、有機物層を介して基盤とナノファイバー層とが良好に接着されたナノファイバー積層体が得られる。特に、ナノファイバー層をセルロースナノファイバーを用いて形成することで、優れたガスバリア性を奏し、しかも信頼性に優れたナノファイバー積層体を提供することができる。
また本発明の製造方法によれば、基盤表面にプラズマ処理を施すという簡便な手段により有機物層を基盤表面に結合させ、かかる有機物層を介して基盤とナノファイバー層とを良好に接着することができ、ガスバリア性及び信頼性に優れたナノファイバー積層体を容易に製造することができる。
実施形態に係るナノファイバー積層フィルムの概略断面図。 ナノファイバー積層フィルムの他の構成例を示す図。 表面処理装置の一例を示す図。
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は、本発明に係るナノファイバー積層体の一実施形態であるナノファイバー積層フィルムの製造工程とともに示す概略断面図である。
図1(c)に示すように、本実施形態のナノファイバー積層フィルム10は、基盤フィルム1(基盤)上に、有機物層2を介してナノファイバー層3が積層された構成を備えている。しかし実際には、有機物層2中の高分子鎖の大半はナノファイバー層3の中に取り込まれており、見かけ上は基盤フィルム1とナノファイバー層3との2層に見える。有機物層2及びナノファイバー層3は、基盤フィルム1の片面のみならず、両面に形成されていてもよい。また、基盤フィルム1上の一部の領域にのみ選択的に有機物層2とナノファイバー層3とが形成されていてもよい。
基盤フィルム1の材質は、用途に応じて適宜選択することができるが、ポリエチレン、ポリプロピレン等のポリオレフィン、ナイロン6、66、6/10、6/12等のポリアミド、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、脂肪族ポリエステル、ポリ乳酸(PLA)、ポリカプロラクトン、ポリブチレンサクシネート、ポリヒドロキシアルカノエート等のポリエステル、セルロース等のセロハン、三酢酸セルロース(TAC)等、構造にメチル基(−CH基)、メチレン基(−CH基)、メチン基(−CH基)を含む種々の樹脂材料を用いることができる。
さらに、基盤フィルム1としては、上記のうちでも生分解性プラスチックのフィルムを用いることが好ましい。本発明に係るナノファイバー層3は、後述するように天然高分子由来のナノファイバーにより構成されるものであり、基盤フィルム1を生分解性プラスチックとすることで、生分解性のナノファイバー積層フィルムとすることができる。
生分解性プラスチックとしては、微生物が産生するバイオプラスチックを利用するもの、天然高分子を利用するもの、生分解可能な合成高分子を利用するものなどがあり、いずれの生分解性プラスチックを用いてもよい。
バイオプラスチックとしては、ポリヒドロキシブチレートとその共重合体(共重合ポリエステル、ポリヒドロキシアルカノエート)などを挙げることができる。
天然高分子を利用するものとしては、澱粉などとポリカプロラクトンなどの生分解性を有する石油合成高分子を混合したブレンドプラスチックを挙げることができる。さらに、ポリ乳酸に澱粉を加えたものや、甲殻類から得られるキチン、キトサン又はセルロースを利用するものなどである。
合成高分子としては、ポリ乳酸、ポリリンゴ酸などの医療分野で利用されているものや、ポリカプロラクトン(PCL)などがある。また、PCLにポリヒドロキシブチレート(PHB)や炭酸カルシウムなどを混合したり、脂肪酸ポリエステルと芳香族ポリエステルとの共重合、脂肪族ポリエステルとポリアミドとのアミド−エステル交換反応の利用などによる生分解可能な合成高分子も使用可能である。
後段の実施例では、基盤フィルムとしてポリ乳酸フィルムを用いている。ポリ乳酸は、乳酸(CHCH(OH)COOH)を単位とし、複数の乳酸が連なって高分子量となった生分解性プラスチックの一種である。
ポリ乳酸を構成する単体としての乳酸には2種類の光学異性体(L型、D型)が知られており、基盤フィルム1には、L型又はD型の乳酸を単位として製造されたポリ乳酸、及びL型とD型とを任意の比で含むポリ乳酸のいずれも用いることができる。
なお、基盤フィルム1としては、少なくとも表面に有機物層を有するフィルムであればよく、基盤フィルム1自体が樹脂材料等の有機物からなるものに限らず、例えば図2(a)に示すように、フィルム基盤11上に他の有機物層12が形成されたものであってもよく、図2(b)に示すように、フィルム基盤11上に中間層13を介して他の有機物層12が形成されたものであってもよい。
これらの場合には、フィルム基盤11の材質は有機材料に限られず、無機酸化物(ガラス等)や金属などの無機材料を含む種々の材料を用いることができる。また中間層13としても、任意の材料を用いることができる。
また、図2の各図に示す基盤フィルム1において、フィルム基盤11の両面に他の有機物層12を有するものであってもよい。
また、本発明に係るナノファイバー積層体における基盤としては、本実施形態のようなフィルム状のものに限らず、任意の形状、形態の物体を用いることができる。例えば、板状や球状、棒状の基盤であってもよく、より複雑な形状に成形された立体構造物であってもよい。あるいは、繊維状の基盤であってもよく、繊維を用いた織布又は不織布の基盤であってもよい。
次に、有機物層2は、基盤フィルム1の表面を修飾し、ナノファイバー層3と基盤フィルム1との密着性を向上させる機能層である。
有機物層2は、ナノファイバー層3を構成するナノファイバーのヒドロキシル基と分子間結合が可能な基を少なくとも一つ有する有機化合物を含む。
分子間結合が可能な基としては、特に限定されないが、例えば、カルボキシル基、ヒドロキシル基、アミド基、アミノ基、イミノ基、ニトリロ基、窒素を有する複素環基、例えば、ピリジル基、イミダゾリル基、アミノピリジル基、ウラシル基などが挙げられる。
本発明において、有機物層2を構成する有機化合物とナノファイバーとの間に形成される分子間結合は、特に限定されないが、カルボキシル基とヒドロキシル基、カルボキシル基同士、ヒドロキシル基同士、アミド基同士、カルボキシル基とピリジル基等の窒素を有する複素環基、ヒドロキシル基とピリジル基等の窒素を有する複素環基、カルボキシル基とニトリロ基、ジアミノピリジル基とウラシル基により形成される分子間結合が挙げられる。
後段の実施例では、有機物層2として、基盤フィルム1の表面でグラフト重合させたポリアクリル酸を用いており、有機物層2を構成するポリアクリル酸のカルボキシル基と、セルロースシングルナノファイバーのヒドロキシル基との水素結合(分子間結合)を利用してナノファイバー層3の密着性を向上させている。
有機物層2の構成材料は、ポリアクリル酸に限られるものではなく、上述した基を有する有機化合物であれば使用することができる。例えば、メタクリル酸、2−臭化アクリル酸、2−エチルアクリル酸、3−プロピルアクリル酸、マレイン酸、及びこれらの重合物などを用いることができる。
また、有機物層2の厚さは、ナノファイバー層3の密着性を向上させる作用が得られる範囲で有機化合物の種類に応じて適宜に設定すればよい。具体的には、基盤フィルム1の表面に均一に塗布できる厚さ以上の厚さであれば、不経済とならない範囲の任意の厚さに調整できる。
ナノファイバー層3を構成するナノファイバーも、ナノファイバー積層フィルム10の用途に応じて、公知の天然高分子由来のナノファイバーから適宜に選択することができる。例えば、セルロースナノファイバーやキチンナノファイバー、あるいはタンパク質ナノファイバーを挙げることができる。これらの天然高分子由来のナノファイバーは、それらの単位構造中にカルボキシル基やヒドロキシル基を含んでおり、有機物層2を構成する有機化合物の基と水素結合させることが可能である。
特に、ナノファイバーとしてセルロースナノファイバーを用いることで、ガスバリア性が著しく向上したナノファイバー積層フィルム10を得ることができる。
セルロースナノファイバーとしては、平均繊維径が200nm以下のものを用いることが好ましく、より好ましくは1〜200nm、最も望ましくは1〜50nmの繊維径のものである。平均繊維径は、例えば、0.0001質量%に希釈した懸濁液をマイカ上に滴下して乾燥したものを観察試料として、原子間力顕微鏡(Nanoscope III Tapping mode AFM、Digital Instrument社製,プローブはナノセンサーズ社製Point Probe(NCH)使用)で繊維高さを測定することで得られる。セルロースナノファイバーが確認できる画像において、5本以上を抽出し、その繊維高さから平均繊維径を求める。
本発明で好ましく用いることができるセルロースナノファイバーは、ナノファイバーを構成するセルロースのカルボキシル基含有量により特定することができる。具体的には、本発明において用いるセルロースナノファイバーは、高いガスバリア性を得ることができる観点で、0.1〜2mmol/gであることが好ましい。より好ましくは0.4〜2mmol/g、さらに好ましくは0.6〜1.6mmol/gである。上記範囲のカルボキシル基含有量のセルロースナノファイバーは、水に分散させたときにカルボキシル基の荷電反発力により1本1本に分離させることができ、分散液を塗布したときに基盤フィルム1上に均一に広がらせることができるとともに、1本1本のナノファイバーを有機物層2の有機化合物と良好に分子間結合させることができる。
なお、カルボキシル基含有量が0.1mmol/g未満であると、ナノファイバーの製造工程においてセルロースナノファイバーの平均繊維径を200nm以下に微細化することが困難になり、収率が低下したり、所望のガスバリア性を得られなくなる。
上記のカルボキシル基含有量は、例えば以下の方法により測定することができる。
まず、セルロースナノファイバーの絶乾重量約0.5gを100mlビーカーにとり、イオン交換水を加えて全体で55mlとし、そこに0.01M塩化ナトリウム水溶液5mlを加えて懸濁液を調製し、セルロースナノファイバーが十分に分散するまでスタラーにて攪拌する。
その後、0.1M塩酸を加えてpH2.5〜3.0としてから、自動滴定装置(AUT−501、東亜デイーケーケー(株)製)を用い、0.05M水酸化ナトリウム水溶液を待ち時間60秒の条件で注入し、懸濁液の1分ごとの電導度とpHの値を測定し、pH11程度になるまで測定を続ける。
以上により得られた電導度曲線から、水酸化ナトリウム滴定量を求め、カルボキシル基含有量を算出することができる。
以上に説明した本実施形態のナノファイバー積層フィルム10では、ナノファイバー層3が有機物層2を介して基盤フィルム1上に形成されている。そして、有機物層2を構成する有機化合物と、ナノファイバー層3を構成するナノファイバーとが分子間結合を形成しているため、ナノファイバー層3が基盤フィルム1上に固定された積層フィルムとなっている。
また、ナノファイバー積層フィルム10では、ナノファイバー層3は基盤フィルム1上に形成されるため、所望の性能(ガスバリア性など)を有する範囲で薄くすることができ、ナノファイバーの使用量を低減し、安価に製造することが可能である。
(製造方法)
次に、図1に示したナノファイバー積層フィルム10の製造方法について説明する。
ナノファイバー積層フィルム10の製造方法は、基盤である基盤フィルム1の表面に改質処理を施す工程(図1(a))と、プラズマ処理された基盤フィルム1の表面に有機物層2を形成する工程(図1(b))と、有機物層2が形成された基盤フィルム1の表面にナノファイバー分散液を塗布後、乾燥させてナノファイバー層3を形成する工程(図1(c))と、を有する。
まず、基盤フィルム1の表面に改質処理を施す。例えば、ポリ乳酸やポリエチレンテレフタレートなどからなる基盤フィルム1の表面に、アルゴン雰囲気中でプラズマを照射させるプラズマ処理を実施する。このプラズマ処理により、メチル基、メチレン基、メチン基における水素原子を励起することができるので、有機物層2を構成する有機化合物を表面に結合させることができる。
プラズマ処理としては、典型的にはアルゴン雰囲気下で用いられるが、酸化性のガスを含まない雰囲気下であれば問題なく適用できる。例えば、アルゴン以外の希ガスや窒素ガスを用いたプラズマ処理であってもよい。
なお、プラズマ処理に限らず、電子線照射、ガンマ線照射、コロナ処理、UV照射、UVオゾン処理などの基盤フィルム1表面の水素あるいは酸素原子を励起させ、有機物層2を構成する有機化合物の結合性を高めることができる改質処理であれば、上記の工程に用いることができる。電子線照射、ガンマ線照射、コロナ処理、UV照射は、基盤フィルム1の表面に電子線、ガンマ線、コロナ放電、UVを照射させることで表面を改質する技術であり、UVオゾン処理は、基盤フィルム1の表面に波長240nm以下の短波長UVを照射し、UV照射とUVにより発生したオゾンとによって改質し、過酸化物を表面で重合させる技術である。
次に、基盤フィルム1のプラズマ処理された表面に、有機物層2を形成する。例えば、有機物層2を構成する有機化合物の前駆体(モノマーなど)を含む液体材料を塗布し、重合反応や析出反応を進行させることで基盤フィルム1の表面に結合した有機化合物からなる有機物層2を形成することができる。後段の実施例において用いているのもこの方法であり、有機物層2の形成材料としてアクリル酸を用い、基盤フィルム1の表面にグラフト重合させることで基盤フィルム1上にポリアクリル酸を形成している。
あるいは、前駆体を用いるのではなく、有機物層2を構成する有機化合物を液相法又は気相法を用いて基盤フィルム1上に付着させてもよい。
有機物層2の形成方法は上記に限定されず、有機物層2を構成する有機化合物の種類に応じて気相法、液相法を含む種々の形成方法から適宜選択することができる。また液相法における液体材料の塗布方法としても、印刷法、噴霧法、浸漬法などから選択して用いることができる。アクリル酸以外の有機化合物でも同様の方法を持って励起基盤表面で重合することが出来る。
なお、基盤フィルム1の表面にプラズマ処理を施した後、連続的に有機物層2を形成することが好ましい。特に、プラズマ処理の後に酸素などの酸化性のガスを基盤フィルム1に接触させないようにする。これは、プラズマ処理により励起されたラジカルが酸化され、有機物層2を構成する有機化合物の基盤フィルム1表面への結合が阻害されるのを防止するためである。
次に、有機物層2が形成された基盤フィルム1上に、ナノファイバー層3を形成する。この工程では、ナノファイバーを水や有機溶媒等の溶媒に分散させたナノファイバー分散液が用いられる。例えばセルロースナノファイバーを用いる場合には、10〜5000mPa・s程度の粘度のナノファイバー分散液が用いられる。
基盤フィルム1の有機物層2が形成された表面に、塗布法、印刷法、噴霧法、浸漬法等の公知の方法により、ナノファイバー分散液を付着させる。その後、自然乾燥、送風乾燥等の方法により乾燥させることで、ナノファイバー層3を形成することができる。
本発明の製造方法では、上記の塗布、乾燥の過程で、有機物層2を構成する有機化合物の基(ポリアクリル酸であればカルボキシル基)と、ナノファイバーの基(セルロースナノファイバーであればヒドロキシル基)との間で分子間結合が形成される。これにより、ナノファイバー層3と有機物層2とが強固に接着され、剥がれにくいナノファイバー層3が形成される。
以上の工程により、本実施形態に係るナノファイバー積層フィルム10を製造することができる。
本実施形態に係る製造方法によれば、基盤フィルム1の表面を改質処理し、有機物層2を形成するという簡便な処理で、基盤フィルム1上にナノファイバー層3が強固に接着されたナノファイバー積層フィルム10を製造することができる。
以下、実施例により本発明をさらに詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。
以下の材料を用いてナノファイバー積層フィルムを作製した。
基盤フィルムとして、ポリ(L−乳酸)フィルム(厚さ25μm)を用いた。ナノファイバー層の形成材料として、セルロースシングルナノファイバー水分散液(花王株式会社製)を用いた。有機物層の形成材料として、アクリル酸(和光純薬工業社製)を用いた。
図3は、本実施例で用いた表面処理装置の概略構成図である。図3に示す表面処理装置100は、基盤フィルム1のプラズマ処理(表面改質処理)と有機物層の形成を連続して実施することができる装置であり、真空チャンバーとしてのガラス管101、ガラス管に巻き付けた銅線コイル102、ガス源103、プラズマ発生用電源104、アクリル酸水溶液110を入れたガラス管105、真空ポンプ106、を備えて構成されている。
表面処理装置100によれば、ガラス管101内に基盤フィルム1を配置し、内部を所定圧力の処理ガス雰囲気とした状態で銅線コイル102に電力を供給することでプラズマを発生させ、基盤フィルム1表面上を励起させ、その後、ガラス管105中のアクリル酸をガラス管101内に移すことにより、表面が励起された基盤フィルム1をアクリル酸溶液に浸漬させる。
以下、本実施例のナノファイバー積層フィルムの製造手順について詳細に説明する。
まず、図3に示した表面処理装置100を用いて、ポリ(L−乳酸)フィルムをプラズマ処理した。具体的には、ガラス管101中にポリ(L−乳酸)フィルムを配置し、真空ポンプ106を動作させながらガス源105からアルゴンガスを供給し、ガラス管101内を圧力10Paのアルゴン雰囲気とした。その後、銅線コイル102に30WのRF電力(13.56MHz)を供給し、発生したプラズマによりポリ(L−乳酸)フィルムを60秒間処理した。
次に、プラズマ処理後すぐに、ガラス管105からガラス管101へアクリル酸水溶液110を供給し、プラズマ処理後のポリ(L−乳酸)フィルムを45℃に維持された5%アクリル酸水溶液に浸漬し、20時間保持した。その後、ポリアクリル酸がグラフト重合されたポリ(L−乳酸)フィルムを水中に12時間浸漬した。さらに、未反応のアクリル酸モノマーと、ポリアクリル酸のホモポリマーを除去するために、大量の水で洗浄した。
その後、室温で真空乾燥することで、ポリアクリル酸で表面修飾されたポリ(L−乳酸)フィルム(基盤フィルム上に有機物層が形成されたもの)を得た。
なお、ポリアクリル酸で表面修飾されたポリ(L−乳酸)フィルムにおけるグラフト密度(μg/cm)は、以下の式を用いて求めることができる。上記にて作製したフィルムにおけるグラフト密度は、40μg/cmであった。
[式] (修飾後のフィルム重量−修飾前のフィルム重量)/(フィルム表面積)
また、トルイジンブルーO(和光純薬工業社製)により染色することで、ポリ(L−乳酸)フィルム表面がポリアクリル酸で修飾されていることを確認することができる。実際に、トルイジンブルー水溶液(0.1M塩酸、0.034M水酸化ナトリウム、0.0013MトルイジンブルーO)に、ポリアクリル酸修飾されたポリ(L−乳酸)フィルムと、ポリアクリル酸修飾を行っていないポリ(L−乳酸)フィルムとをそれぞれ室温で1時間浸漬し、その後洗浄、乾燥させたところ、ポリアクリル酸修飾されたポリ(L−乳酸)フィルムの表面のみが青く染色された。
また、ポリアクリル酸修飾されたポリ(L−乳酸)フィルムは目視で透明であり、吸光度測定においても、ポリアクリル酸修飾を行っていないポリ(L−乳酸)フィルムの吸光度と同等であった。これにより、ポリアクリル酸修飾は、基盤フィルムの透明性に影響を与えないことが確認された。
次に、ポリアクリル酸修飾されたポリ(L−乳酸)フィルムと、ポリアクリル酸修飾を行っていないポリ(L−乳酸)フィルムとを、ガラス平板上に固定し、それぞれのフィルム上に濃度1%のセルロースシングルナノファイバー分散液を流延塗布した。その後、室温で乾燥させることで、表面にセルロースシングルナノファイバー層が形成されたナノファイバー積層フィルムを得た。それぞれのナノファイバー積層フィルムにおけるセルロースシングルナノファイバー層の厚さは約10μmであった。
次に、上記にて得られたナノファイバー積層フィルムの接着性を評価した。接着性評価には、一般的な接着テープを用いた。
具体的には、ナノファイバー積層フィルムを両面テープで白色紙に固定した後、セルロースシングルナノファイバー層の表面に接着テープを貼り付けて剥がすことで、セルロースシングルナノファイバー層の接着性を評価した。
ポリアクリル酸修飾されたポリ(L−乳酸)フィルム上に形成されたセルロースシングルナノファイバー層は、接着テープと一緒に剥がれることはなかったが、ポリアクリル酸修飾を行っていないポリ(L−乳酸)フィルム上に形成されたセルロースシングルナノファイバー層は接着テープとともに剥がれてしまった。この結果により、基盤フィルム上に有機物層を介してナノファイバー層を形成することで、ナノファイバー層の接着性を著しく向上させることができることが確認された。
10 ナノファイバー積層フィルム(ナノファイバー積層体)、1 基盤フィルム(基盤)、2 有機物層、3 ナノファイバー層、11 フィルム基盤、12 他の有機物層、13 中間層

Claims (12)

  1. 少なくとも表面に有機物層を有する基盤と、
    前記有機物層上に形成されたナノファイバー層と、
    を有することを特徴とするナノファイバー積層体。
  2. 前記有機物層が、前記ナノファイバーのヒドロキシル基と分子間結合可能な基を有する有機化合物からなることを特徴とする請求項1に記載のナノファイバー積層体。
  3. 前記有機物層が、カルボキシル基、ヒドロキシル基、アミド基、アミノ基、イミノ基、ニトロ基、窒素を含む複合環基(ピリジル基、イミダゾリル基、アミノピリジル基、ウラシル基)から選択される1つ以上の基を有する有機化合物からなることを特徴とする請求項2に記載のナノファイバー積層体。
  4. 前記有機物層が、カルボキシル基を有する有機化合物を含むことを特徴とする請求項3に記載のナノファイバー積層体。
  5. 前記有機物層が、アクリル酸又はアクリル酸誘導体を含む有機化合物からなることを特徴とする請求項4に記載のナノファイバー積層体。
  6. 前記基盤の前記有機物層が、生分解性物質を含むことを特徴とする請求項1から5のいずれか1項に記載のナノファイバー積層体。
  7. 前記基盤が、生分解性プラスチックを含むことを特徴とする請求項6に記載のナノファイバー積層体。
  8. 前記ナノファイバー層が、セルロースナノファイバーを含むことを特徴とする請求項1から7のいずれか1項に記載のナノファイバー積層体。
  9. 前記ナノファイバー層が、キチンナノファイバーを含むことを特徴とする請求項1から7のいずれか1項に記載のナノファイバー積層体。
  10. 基盤の表面に改質処理を施す工程と、
    改質処理された前記基盤表面に有機物層を形成する工程と、
    前記有機物層が形成された前記基盤表面にナノファイバー分散液を塗布後、乾燥させてナノファイバー層を形成する工程と、
    を有することを特徴とするナノファイバー積層体の製造方法。
  11. 前記有機物層を形成する工程において、前記基盤表面の改質処理で励起された部位に、前記ナノファイバーのヒドロキシル基と分子間結合可能な基を有する有機化合物を結合させることを特徴とする請求項10に記載のナノファイバー積層体の製造方法。
  12. 前記ナノファイバー層を形成する工程において、前記有機物層の前記官能基と前記ナノファイバーのヒドロキシル基との相互作用により前記ナノファイバー層を前記基盤上に接着させることを特徴とする請求項11に記載のナノファイバー積層体の製造方法。
JP2009114800A 2009-05-11 2009-05-11 ナノファイバー積層体とその製造方法 Pending JP2010260317A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009114800A JP2010260317A (ja) 2009-05-11 2009-05-11 ナノファイバー積層体とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114800A JP2010260317A (ja) 2009-05-11 2009-05-11 ナノファイバー積層体とその製造方法

Publications (1)

Publication Number Publication Date
JP2010260317A true JP2010260317A (ja) 2010-11-18

Family

ID=43358808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114800A Pending JP2010260317A (ja) 2009-05-11 2009-05-11 ナノファイバー積層体とその製造方法

Country Status (1)

Country Link
JP (1) JP2010260317A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131451A (ja) * 2009-12-24 2011-07-07 Kao Corp ガスバリア性積層体
JP2011207042A (ja) * 2010-03-30 2011-10-20 Kao Corp ガスバリア性積層体の製造方法
JP2016185711A (ja) * 2011-09-22 2016-10-27 凸版印刷株式会社 積層体及びその製造方法並びにガスバリア材
JP2017105040A (ja) * 2015-12-09 2017-06-15 富士通株式会社 セルロースナノファイバーを含有する塗装膜、電子機器筐体及びセルロースナノファイバーを含有する塗装膜の形成方法
US10000614B2 (en) 2011-10-24 2018-06-19 Teknologian Tutkimuskeskus Vtt Oy Method for the preparation of NFC films on supports
WO2021123499A1 (en) * 2019-12-16 2021-06-24 Åbo Akademi Method of producing nanocellulose films

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131451A (ja) * 2009-12-24 2011-07-07 Kao Corp ガスバリア性積層体
JP2011207042A (ja) * 2010-03-30 2011-10-20 Kao Corp ガスバリア性積層体の製造方法
JP2016185711A (ja) * 2011-09-22 2016-10-27 凸版印刷株式会社 積層体及びその製造方法並びにガスバリア材
US10000614B2 (en) 2011-10-24 2018-06-19 Teknologian Tutkimuskeskus Vtt Oy Method for the preparation of NFC films on supports
JP2017105040A (ja) * 2015-12-09 2017-06-15 富士通株式会社 セルロースナノファイバーを含有する塗装膜、電子機器筐体及びセルロースナノファイバーを含有する塗装膜の形成方法
WO2021123499A1 (en) * 2019-12-16 2021-06-24 Åbo Akademi Method of producing nanocellulose films

Similar Documents

Publication Publication Date Title
JP2010260317A (ja) ナノファイバー積層体とその製造方法
JP5319806B2 (ja) ガスバリア用材料の製造方法
Aulin et al. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties
Tao et al. Surface functionalized polypropylene: synthesis, characterization, and adhesion properties
Desmet et al. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review
JP5064479B2 (ja) ガスバリア用材料及びガスバリア性成形体とその製造方法
JP5064480B2 (ja) セルロース繊維の懸濁液とその製造方法
Tsou et al. Innovative plasma process of grafting methyl diallyl ammonium salt onto polypropylene to impart antibacterial and hydrophilic surface properties
JP6288178B2 (ja) 積層体及びその製造方法並びにガスバリア材
KR20180067535A (ko) Ncc 필름 및 그 제품
JP7415934B2 (ja) ナノセルロース及びその製造方法
JP5616056B2 (ja) 膜状成形体の製造方法
Nielsen et al. Mussel inspired surface functionalization of electrospun nanofibers for bio-applications
JP5888323B2 (ja) 積層体およびその製造方法ならびに成形容器
WO2010074341A1 (ja) セルロース繊維の懸濁液とその製造方法及び膜状成形体とその製造方法
JP2018531298A6 (ja) Ncc膜およびこれをベースにした製品
WO2006057177A1 (ja) 防湿膜用積層フィルム及びその製造方法
JP2010179579A (ja) ガスバリア性積層体とその製造方法
JP2010202856A (ja) セルロース繊維の懸濁液とその製造方法
Saxena et al. Graft polymerization of acrylic acid onto polypropylene monofilament by RF plasma
JPWO2011114987A1 (ja) セルロース分散液およびその製造方法ならびにそれを用いた成形体
JP2010202855A (ja) 膜状成形体とその製造方法
Couturaud et al. Improvement of the interfacial compatibility between cellulose and poly (l-lactide) films by plasma-induced grafting of l-lactide: The evaluation of the adhesive properties using a peel test
WO2015163289A1 (ja) 高分子積層体
JP2011207042A (ja) ガスバリア性積層体の製造方法