JP2010259961A - Catalyst and method for producing methacrylic acid - Google Patents

Catalyst and method for producing methacrylic acid Download PDF

Info

Publication number
JP2010259961A
JP2010259961A JP2009110375A JP2009110375A JP2010259961A JP 2010259961 A JP2010259961 A JP 2010259961A JP 2009110375 A JP2009110375 A JP 2009110375A JP 2009110375 A JP2009110375 A JP 2009110375A JP 2010259961 A JP2010259961 A JP 2010259961A
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
producing methacrylic
methacrolein
catalytic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009110375A
Other languages
Japanese (ja)
Inventor
Takuro Watanabe
拓朗 渡邉
Mieharu Sugiyama
美栄治 杉山
Masahide Kondo
正英 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2009110375A priority Critical patent/JP2010259961A/en
Publication of JP2010259961A publication Critical patent/JP2010259961A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst having an excellent effect of suppressing a hot spot, as the catalyst for producing methacrylic acid, which is used for producing methacrylic acid by subjecting methacrolein to vapor-phase catalytic oxidation using molecular oxygen. <P>SOLUTION: The catalyst for producing methacrylic acid is used for producing methacrylic acid by subjecting methacrolein to vapor-phase catalytic oxidation using molecular oxygen and contains at least molybdenum and phosphorus, wherein a fibrous material having thermal conductivity of ≥300 W/(m×K) is contained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用する触媒(以下、メタクリル酸製造用触媒という。)およびその触媒を用いたメタクリル酸の製造方法に関する。   The present invention relates to a catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen (hereinafter referred to as a catalyst for producing methacrylic acid) and a method for producing methacrylic acid using the catalyst. .

メタクロレインの気相接触酸化反応によりメタクリル酸を製造する際に使用する触媒に関しては数多くの提案がなされている(以下、特に断りのない限りこの気相接触酸化反応を単に「酸化反応」という。)。これら提案は主として触媒を構成する元素およびその比率に関するものである。   Numerous proposals have been made regarding a catalyst used in producing methacrylic acid by gas phase catalytic oxidation reaction of methacrolein (hereinafter, this gas phase catalytic oxidation reaction is simply referred to as “oxidation reaction” unless otherwise specified). ). These proposals mainly relate to the elements constituting the catalyst and their proportions.

酸化反応は発熱反応であるため、触媒層で蓄熱が起こる。過剰な蓄熱の結果生じる局所的異常高温帯域はホットスポットと呼ばれ、この部分では過度の酸化反応により収率が低下する。このため、酸化反応の工業的実施において、ホットスポットの発生は重大な問題であり、特に生産性を上げるために原料ガス中におけるメタクロレイン濃度を高めた場合、ホットスポットが発生し易くなる傾向があることから反応条件に関して大きな制約を強いられているのが現状である。   Since the oxidation reaction is an exothermic reaction, heat storage occurs in the catalyst layer. The local abnormally high temperature zone resulting from excessive heat storage is called a hot spot, and in this part, the yield decreases due to excessive oxidation reaction. For this reason, in the industrial implementation of the oxidation reaction, the occurrence of hot spots is a serious problem. In particular, when the concentration of methacrolein in the raw material gas is increased in order to increase productivity, hot spots tend to be easily generated. As a result, there are currently great constraints on the reaction conditions.

したがって、ホットスポット部の温度を抑えることは工業的に高収率でメタクリル酸を生産する上で非常に重要である。また、特にモリブデン含有固体酸化触媒を用いる場合、モリブデン成分が昇華しやすいことから、ホットスポットの発生を防止することは重要である。   Therefore, it is very important to suppress the temperature of the hot spot part in industrially producing methacrylic acid with a high yield. In particular, when a molybdenum-containing solid oxidation catalyst is used, it is important to prevent the occurrence of hot spots because the molybdenum component tends to sublime.

ホットスポット部の温度を抑える方法として、これまでにいくつかの提案がなされている。例えば特許文献1には、活性の異なる複数個の触媒を原料ガス入口側から出口側に向かって活性がより高くなるように充填し、この触媒層にメタクロレインおよび酸素を含む原料ガスを流通させる方法が開示されている。   As a method for suppressing the temperature of the hot spot part, several proposals have been made so far. For example, in Patent Document 1, a plurality of catalysts having different activities are packed so that the activity becomes higher from the raw material gas inlet side to the outlet side, and the raw material gas containing methacrolein and oxygen is circulated through this catalyst layer. A method is disclosed.

特許文献2には触媒層中に熱媒浴の温度と触媒層の温度との差(ΔT=触媒層の温度−熱媒浴の温度)が35℃を超える箇所が1箇所もなく、かつΔTが15〜35℃となる高温帯域を2箇所以上設けることを特徴とするメタクリル酸の製造方法が開示されている。   In Patent Document 2, there is no place in the catalyst layer where the difference between the temperature of the heat medium bath and the temperature of the catalyst layer (ΔT = temperature of the catalyst layer−temperature of the heat medium bath) exceeds 35 ° C., and ΔT Has disclosed a method for producing methacrylic acid, characterized by providing two or more high-temperature zones at a temperature of 15 to 35 ° C.

また、特許文献3には触媒成形体の強度向上を目的として平均直径が1〜20μm、平均長さが10〜3000μm、炭素含有率93%以上の炭素繊維が、該触媒に対して0.05〜10重量%存在していることを特徴とする不飽和アルデヒドの気相接触酸化による不飽和カルボン酸合成用触媒が開示されている。   Patent Document 3 discloses that carbon fibers having an average diameter of 1 to 20 μm, an average length of 10 to 3000 μm, and a carbon content of 93% or more are 0.05% relative to the catalyst for the purpose of improving the strength of the catalyst molded body. A catalyst for the synthesis of unsaturated carboxylic acids by gas phase catalytic oxidation of unsaturated aldehydes, characterized in that it is present in an amount of -10% by weight, is disclosed.

特開平4−210937号公報JP-A-4-210937 国際公開第2001/042184号パンフレットInternational Publication No. 2001/042184 Pamphlet 特開平7−251075号公報Japanese Patent Application Laid-Open No. 7-251075

しかしながら、これら公知の方法で得られる触媒は、必ずしもホットスポットの抑制効果が工業触媒としては十分でなく、更なる改良が望まれている。   However, the catalysts obtained by these known methods are not necessarily sufficient for suppressing hot spots as industrial catalysts, and further improvements are desired.

本発明は、上記事情を鑑みてなされたもので、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられるメタクリル酸製造用触媒において、ホットスポットの抑制効果が優れた触媒を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in a catalyst for producing methacrylic acid used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, the effect of suppressing hot spots is excellent. It is an object of the present invention to provide a catalyst.

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともモリブデンおよびリンを含むメタクリル酸製造用触媒において、熱伝導率が300W/(m・K)以上の繊維状物を含有することを特徴とするメタクリル酸製造用触媒である。   The present invention relates to a catalyst for producing methacrylic acid containing at least molybdenum and phosphorus, which is used for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen, and has a thermal conductivity of 300 W / (m · K). ) A catalyst for producing methacrylic acid, which contains the above fibrous material.

本発明によれば、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられるメタクリル酸製造用触媒において、ホットスポットの抑制効果が優れた触媒を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the catalyst excellent in the suppression effect of a hot spot can be provided in the catalyst for methacrylic acid manufacture used when vapor-phase catalytic oxidation of methacrolein with molecular oxygen is manufactured.

本発明の触媒は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともモリブデンおよびリンを含むメタクリル酸製造用触媒において、熱伝導率が300W/(m・K)以上の繊維状物を含有することを特徴とするメタクロレインの気相接触酸化によるメタクリル酸製造用触媒である。   The catalyst of the present invention is a catalyst for producing methacrylic acid containing at least molybdenum and phosphorus, which is used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, and has a thermal conductivity of 300 W / (m K) A catalyst for producing methacrylic acid by gas-phase catalytic oxidation of methacrolein, which contains the above fibrous material.

本発明において熱伝導率が300W/(m・K)以上の繊維状物は触媒中に含有され、存在することによって、ホットスポット部の温度を抑制する働きを有する。   In the present invention, the fibrous material having a thermal conductivity of 300 W / (m · K) or more is contained in the catalyst and, when present, functions to suppress the temperature of the hot spot portion.

本発明において熱伝導率が300W/(m・K)以上の繊維状物は特に限定されず、例えば炭素繊維や、銅や銀などの金属繊維が挙げられる。   In the present invention, the fibrous material having a thermal conductivity of 300 W / (m · K) or more is not particularly limited, and examples thereof include carbon fibers and metal fibers such as copper and silver.

効果的にホットスポット部の温度を抑制するためには熱伝導率が300W/(m・K)以上の繊維状物の触媒中の含有量は0.5〜30質量%が好ましく、より好ましくは1〜20質量%である。熱伝導率が300W/(m・K)以上の繊維状物の量は多いほどホットスポット部の温度を抑制効果が向上する傾向があり、少ないほど反応器に充填できる触媒成分の量を増やすことができる。   In order to effectively suppress the temperature of the hot spot portion, the content of the fibrous material having a thermal conductivity of 300 W / (m · K) or more is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass. The more the amount of the fibrous material having a thermal conductivity of 300 W / (m · K) or more, the more the effect of suppressing the temperature of the hot spot portion tends to be improved, and the smaller the amount, the more the catalyst component that can be charged in the reactor is increased. Can do.

本発明において熱伝導率が300W/(m・K)以上の繊維状物の形状は、平均直径1〜20μm、平均長さ10〜3000μmが好ましく、平均直径3〜15μm、平均長さ100〜1000μmがより好ましい。   In the present invention, the fibrous material having a thermal conductivity of 300 W / (m · K) or more preferably has an average diameter of 1 to 20 μm and an average length of 10 to 3000 μm, an average diameter of 3 to 15 μm, and an average length of 100 to 1000 μm. Is more preferable.

本発明の触媒を構成する触媒成分の組成は、目的とするメタクリル酸製造用触媒に応じて適宜選択できる。本発明の目的物であるメタクリル酸製造用触媒は、モリブデンおよびリンを触媒成分として含有する触媒であれば特に限定されないが、好ましくは下記の式(1)で表される組成を有するものである。   The composition of the catalyst component constituting the catalyst of the present invention can be appropriately selected according to the target catalyst for producing methacrylic acid. The catalyst for producing methacrylic acid, which is an object of the present invention, is not particularly limited as long as it contains molybdenum and phosphorus as catalyst components, but preferably has a composition represented by the following formula (1). .

aMobcCudefgh (1)
(式(1)中、P、Mo、V、CuおよびOは、それぞれリン、モリブデン、バナジウム、銅および酸素を表し、Xは、砒素、アンチモンおよびテルルからなる群より選ばれた少なくとも1種類の元素を表し、Yは、ビスマス、ゲルマニウム、ジルコニウム、銀、セレン、ケイ素、タングステン、ホウ素、鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を表し、Zは、カリウム、ルビジウムおよびセシウムからなる群より選ばれた少なくとも1種類の元素を表す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、b=12のとき、a=0.1〜3、c=0.01〜3、d=0.01〜2、eは0〜3、f=0〜3、g=0.01〜3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。)
触媒の調製に用いる触媒原料は特に限定されず、触媒の各構成元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、オキソ酸、オキソ酸塩等を組み合わせて使用することができる。モリブデン原料としては、例えば、三酸化モリブデン等の酸化モリブデン類;パラモリブデン酸アンモニウム、ジモリブデン酸アンモニウム等のモリブデン酸アンモニウム類等が挙げられる。リンの原料化合物としては、例えば、リン酸、五酸化リン、リン酸アンモニウム等が挙げられる。バナジウムの原料化合物としては、例えば、メタバナジン酸アンモニウム、五酸化バナジウム、蓚酸バナジル等が挙げられる。触媒成分の原料化合物は、触媒成分を構成する各元素に対して1種を用いても2種以上を組み合わせて用いてもよい。
P a Mo b V c Cu d X e Y f Z g O h (1)
(In the formula (1), P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, and X is at least one selected from the group consisting of arsenic, antimony and tellurium. Y represents an element, Y is selected from the group consisting of bismuth, germanium, zirconium, silver, selenium, silicon, tungsten, boron, iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and lanthanum Z represents at least one element selected from the group consisting of potassium, rubidium and cesium, a, b, c, d, e, f, g and h are each element. And when b = 12, a = 0.1-3, c = 0.01-3, d = 0.01-2, e = 0-3, f = To 3, a g = 0.01 to 3, h is an atomic ratio of oxygen required to satisfy the valence of each element.)
The catalyst raw material used for the preparation of the catalyst is not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxoacids, oxoacid salts, etc. of the respective constituent elements of the catalyst may be used in combination. it can. Examples of the molybdenum raw material include molybdenum oxides such as molybdenum trioxide; and ammonium molybdates such as ammonium paramolybdate and ammonium dimolybdate. Examples of the phosphorus source compound include phosphoric acid, phosphorus pentoxide, and ammonium phosphate. Examples of the vanadium raw material compound include ammonium metavanadate, vanadium pentoxide, and vanadyl oxalate. The raw material compound of the catalyst component may be used alone or in combination of two or more for each element constituting the catalyst component.

本発明の触媒を調製する方法は特に限定されず、成分の著しい偏在を伴わない限り、従来からよく知られている、共沈法、蒸発乾固法、酸化物混合法等の種々の方法を用いることができる。例えば、前記各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を水に溶解又は分散させて、原料溶液又はスラリーを調製する。   The method for preparing the catalyst of the present invention is not particularly limited, and various methods such as a coprecipitation method, an evaporation to dryness method, and an oxide mixing method, which are well known in the art, are used as long as there is no significant uneven distribution of components. Can be used. For example, a nitrate solution, carbonate, acetate, ammonium salt, oxide, halide or the like of each element is dissolved or dispersed in water to prepare a raw material solution or slurry.

次に、上記で得られた混合溶液又はスラリーを乾燥する。乾燥する方法は特に限定されず、例えば、スプレー乾燥機を用いて乾燥する方法、スラリードライヤーを用いて乾燥する方法、ドラムドライヤーを用いて乾燥する方法、蒸発乾固する方法等が適用できる。これらの中では、乾燥と同時に粒子が得られること、得られる粒子の形状が整った球形であることから、スプレー乾燥機を用いることが好ましい。   Next, the mixed solution or slurry obtained above is dried. The method of drying is not particularly limited, and for example, a method of drying using a spray dryer, a method of drying using a slurry dryer, a method of drying using a drum dryer, a method of evaporating to dryness, etc. can be applied. In these, since a particle | grain is obtained simultaneously with drying and the shape of the particle | grains obtained is in order, it is preferable to use a spray dryer.

次いで、得られた乾燥物を成形する。成形方法は特に限定されず、例えば、公知の押出成形、打錠成型、担持成形、転動造粒等の方法が挙げられる。成形体の形状は特に限定されず、例えば、リング状、円柱状、星型、球状等の任意の形状に成形できる。   Next, the obtained dried product is molded. The molding method is not particularly limited, and examples thereof include known methods such as extrusion molding, tableting molding, support molding, and rolling granulation. The shape of the molded body is not particularly limited, and can be formed into an arbitrary shape such as a ring shape, a columnar shape, a star shape, a spherical shape, and the like.

押出成形で成形する場合、乾燥物に水及び/又はアルコールを添加し混練りした後、押出成形を行う。混練りに当っては水及び/又はアルコールの他に、ゼラチン、セルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース等の有機バインダーを添加することもできる。   In the case of molding by extrusion molding, water and / or alcohol is added to the dried product and kneaded, followed by extrusion molding. In kneading, in addition to water and / or alcohol, an organic binder such as gelatin, cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose or the like can be added.

次に、この成形体は、必要に応じて乾燥された後、次いで熱処理される。このときの乾燥条件及び熱処理条件については特に限定はなく、公知の処理条件を適用することができる。通常、乾燥は60〜150℃の温度で1〜24時間行い、熱処理は200〜500℃、好ましくは300〜450℃の温度で1〜24時間行うことができる。なお、乾燥を省略して熱処理を行ってもよい。   Next, the molded body is dried as necessary, and then heat-treated. There are no particular limitations on the drying conditions and heat treatment conditions at this time, and known processing conditions can be applied. Usually, drying is performed at a temperature of 60 to 150 ° C. for 1 to 24 hours, and heat treatment can be performed at a temperature of 200 to 500 ° C., preferably 300 to 450 ° C. for 1 to 24 hours. Note that heat treatment may be performed without drying.

本発明の触媒を得るために熱伝導率が300W/(m・K)以上の繊維状物を触媒中に含有させる工程上の段階としては、触媒成形前であればいつでも良く、特に限定されるものではない。例えば、触媒成分を含む混合溶液中に熱伝導率が300W/(m・K)以上の繊維状物を添加混合した後、得られた乾燥粒子を成形する方法、触媒成分を含む混合溶液を乾燥した後、得られた乾燥物に熱伝導率が300W/(m・K)以上の繊維状物を添加混合したものを用いて成形する方法が挙げられる。   In order to obtain the catalyst of the present invention, a step in the process of incorporating a fibrous material having a thermal conductivity of 300 W / (m · K) or more into the catalyst may be any time before the catalyst molding, and is particularly limited. It is not a thing. For example, after adding and mixing a fibrous material having a thermal conductivity of 300 W / (m · K) or more into a mixed solution containing a catalyst component, a method of forming the resulting dry particles, and drying the mixed solution containing the catalyst component After that, a method of molding using a product obtained by adding and mixing a fibrous material having a thermal conductivity of 300 W / (m · K) or more to the obtained dried product can be mentioned.

次に、本発明のメタクリル酸の製造方法について説明する。本発明のメタクリル酸の製造方法は、上記のようにして得られたメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するものである。   Next, the manufacturing method of methacrylic acid of this invention is demonstrated. The method for producing methacrylic acid of the present invention is a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen in the presence of the methacrylic acid production catalyst obtained as described above.

気相接触酸化反応は、通常、固定床で行う。触媒層は、特に限定されず、触媒のみの無希釈層でも、不活性担体を含んだ希釈層でもよく、単一層でも複数の層から成る混合層であってもよい。   The gas phase catalytic oxidation reaction is usually performed in a fixed bed. The catalyst layer is not particularly limited, and may be an undiluted layer containing only a catalyst, a diluted layer containing an inert carrier, or a single layer or a mixed layer composed of a plurality of layers.

反応には、メタクロレインと分子状酸素とを含む原料ガスを用いることが好ましい。   In the reaction, it is preferable to use a source gas containing methacrolein and molecular oxygen.

原料ガス中のメタクロレイン濃度は、広い範囲で変えることができるが、1容量%以上が好ましく、3容量%以上がより好ましい。また、20容量%以下が好ましく、10容量%以下がより好ましい。   The concentration of methacrolein in the raw material gas can be varied within a wide range, but is preferably 1% by volume or more, and more preferably 3% by volume or more. Moreover, 20 volume% or less is preferable and 10 volume% or less is more preferable.

原料ガス中の分子状酸素濃度は、メタクロレイン1モルに対して0.4モル以上が好ましく、0.5モル以上がより好ましい。また、メタクロレイン1モルに対して4モル以下が好ましく、3モル以下がより好ましい。分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化した空気等も用いることができる。   The molecular oxygen concentration in the raw material gas is preferably 0.4 mol or more, more preferably 0.5 mol or more with respect to 1 mol of methacrolein. Moreover, 4 mol or less is preferable with respect to 1 mol of methacrolein, and 3 mol or less is more preferable. Although it is economical to use air as the molecular oxygen source, air or the like enriched with pure oxygen can also be used if necessary.

原料ガスは、メタクロレインと分子状酸素以外に、水(水蒸気)を含んでいることが好ましい。水の存在下で反応を行うことで、より高い収率でメタクリル酸が得られる。原料ガス中の水蒸気の濃度は、0.1容量%以上が好ましく、1容量%以上がより好ましい。また、50容量%以下が好ましく、40容量%以下がより好ましい。原料ガスは、低級飽和アルデヒド等の不純物を少量含んでいてもよいが、その量はできるだけ少ないことが好ましい。また、窒素、炭酸ガス等の不活性ガスを含んでいてもよい。   The source gas preferably contains water (water vapor) in addition to methacrolein and molecular oxygen. By performing the reaction in the presence of water, methacrylic acid can be obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably 0.1% by volume or more, and more preferably 1% by volume or more. Moreover, 50 volume% or less is preferable and 40 volume% or less is more preferable. The source gas may contain a small amount of impurities such as a lower saturated aldehyde, but the amount is preferably as small as possible. Moreover, inert gas, such as nitrogen and a carbon dioxide gas, may be included.

気相接触酸化反応の反応圧力は、常圧(大気圧)から5気圧までが好ましい。反応温度は、230℃以上が好ましく、250℃以上がより好ましい。また、450℃以下が好ましく、400℃以下がより好ましい。   The reaction pressure of the gas phase catalytic oxidation reaction is preferably from normal pressure (atmospheric pressure) to 5 atm. The reaction temperature is preferably 230 ° C. or higher, more preferably 250 ° C. or higher. Moreover, 450 degrees C or less is preferable and 400 degrees C or less is more preferable.

原料ガスの流量は特に限定されず、適切な接触時間になるように適宜設定することができる。接触時間は1.5秒以上が好ましく、2秒以上がより好ましい。また、15秒以下が好ましく、10秒以下がより好ましい。   The flow rate of the raw material gas is not particularly limited, and can be appropriately set so as to have an appropriate contact time. The contact time is preferably 1.5 seconds or longer, and more preferably 2 seconds or longer. Moreover, 15 seconds or less are preferable and 10 seconds or less are more preferable.

以下、本発明を実施例および比較例を用いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。下記の実施例および比較例中の「部」は質量部である。
本実施例における各値は、以下の方法に従って求めた。
(1)原料ガスおよび生成物の分析はガスクロマトグラフィーを用いて行った。なお、メタクロレインの反応率、生成するメタクリル酸の選択率および単流収率は、以下のように定義される。
メタクロレインの反応率(%)=(B/A)×100
メタクリル酸の選択率(%) =(C/B)×100
メタクリル酸の収率(%) =(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
(2)ΔTmaxは以下のように定義し測定した。
触媒層内の温度は、反応管の管軸方向に対して垂直な断面の中心に設置した保護管に挿入した熱電対により測定した。なお、保護管内部は反応系(触媒層側)と隔離されており、測定する位置は挿入する熱電対の長さを調節して変えることができる。
このとき測定した触媒層内の温度と熱媒浴の温度との差ΔT(触媒層の温度―熱媒浴の温度)を測定することでホットスポットを検出した。
このとき検出されたΔT分布のうち、局所的異常高温帯域をホットスポットと呼び、最も高温のΔTをΔTmaxとして示した。
(3)炭素繊維の熱伝導率は、特開平11−117143号公報に開示されている熱伝導率と電気比抵抗との関係を表す下記式(1)より求めた。
K=1272.4/ER−49.4 (1)
ここで、Kは炭素繊維の熱伝導率W/(m・K)、ERは炭素繊維の電気比抵抗μΩmを表す。
(4)炭素繊維の平均直径および平均長さは、無作為に抽出したサンプル100個を電子顕微鏡で観察し測定した平均値より求めた。
EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example and a comparative example, this invention is not limited to these Examples. The “parts” in the following examples and comparative examples are parts by mass.
Each value in this example was determined according to the following method.
(1) The analysis of the raw material gas and the product was performed using gas chromatography. In addition, the reaction rate of methacrolein, the selectivity of the methacrylic acid to produce | generate, and a single flow yield are defined as follows.
Reaction rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid yield (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.
(2) ΔTmax was defined and measured as follows.
The temperature in the catalyst layer was measured by a thermocouple inserted in a protective tube installed at the center of the cross section perpendicular to the tube axis direction of the reaction tube. The inside of the protective tube is isolated from the reaction system (catalyst layer side), and the measurement position can be changed by adjusting the length of the thermocouple to be inserted.
A hot spot was detected by measuring a difference ΔT (temperature of the catalyst layer−temperature of the heat medium bath) between the temperature in the catalyst layer measured at this time and the temperature of the heat medium bath.
Of the ΔT distribution detected at this time, the local abnormally high temperature zone was called a hot spot, and the highest temperature ΔT was shown as ΔTmax.
(3) The thermal conductivity of the carbon fiber was determined from the following formula (1) representing the relationship between the thermal conductivity and electrical resistivity disclosed in JP-A-11-117143.
K = 1272.4 / ER-49.4 (1)
Here, K represents the thermal conductivity W / (m · K) of the carbon fiber, and ER represents the electrical specific resistance μΩm of the carbon fiber.
(4) The average diameter and average length of the carbon fibers were determined from average values obtained by observing and measuring 100 randomly extracted samples with an electron microscope.

(実施例1)
純水400部に、三酸化モリブデン100部、メタバナジン酸アンモニウム3.4部、85質量%リン酸水溶液8.0部および硝酸銅1.1部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。40℃まで冷却後回転翼攪拌機を用いて攪拌しながら、重炭酸セシウム13.5部を純水20部に溶解した溶液を添加して15分間攪拌した。次いで硝酸アンモニウム11.6部を純水20部に溶解した溶液を添加し、更に20分間攪拌した。
Example 1
In 400 parts of pure water, 100 parts of molybdenum trioxide, 3.4 parts of ammonium metavanadate, 8.0 parts of 85 mass% phosphoric acid aqueous solution and 1.1 parts of copper nitrate were dissolved, and the temperature was raised to 95 ° C. while stirring. The mixture was warmed and stirred for 3 hours while maintaining the liquid temperature at 95 ° C. After cooling to 40 ° C., a solution obtained by dissolving 13.5 parts of cesium bicarbonate in 20 parts of pure water was added and stirred for 15 minutes while stirring using a rotary blade stirrer. Next, a solution obtained by dissolving 11.6 parts of ammonium nitrate in 20 parts of pure water was added and further stirred for 20 minutes.

以上のようにして得られた、触媒成分の原料化合物を含有する混合スラリーを並流式スプレー乾燥機を用い、乾燥機入口温度300℃、スラリー噴霧用回転円板18,000rpmの条件で乾燥した。得られた乾燥粒子の粒子径をレーザー式粒度分布測定装置により測定したところ5〜150μmの範囲にあり、その平均粒子径は30μmであった。   The mixed slurry containing the raw material compound of the catalyst component obtained as described above was dried under the conditions of a dryer inlet temperature of 300 ° C. and a slurry spraying rotating disk at 18,000 rpm using a co-current spray dryer. . When the particle size of the obtained dry particles was measured by a laser type particle size distribution measuring device, it was in the range of 5 to 150 μm, and the average particle size was 30 μm.

得られた乾燥粒子100部に対して熱伝導率500W/(m・K)、平均直径8μm、平均長さ200μmのピッチ系炭素繊維5部とヒドロキシプロピルメチルセルロース3部を加え、乾式混合した。ここにエチルアルコール50部を添加混合し、混練り機で粘土状になるまで混合(混練り)した後、ピストン式押出し成形機を用いて成形し、外径5mm、平均長さ5mmの円柱状の成形体を得た。   To 100 parts of the obtained dry particles, 5 parts of pitch-based carbon fiber having a thermal conductivity of 500 W / (m · K), an average diameter of 8 μm and an average length of 200 μm and 3 parts of hydroxypropylmethylcellulose were added and dry-mixed. 50 parts of ethyl alcohol was added and mixed here, mixed (kneaded) with a kneader until it became a clay, and then molded using a piston-type extrusion molding machine, and was formed into a cylindrical shape having an outer diameter of 5 mm and an average length of 5 mm. A molded body of was obtained.

この成形体を60℃で16時間乾燥し、次いで空気流通下に380℃で15時間熱処理することで、触媒を得た。得られた触媒の酸素以外の元素組成(以下同じ)は、次の通りであった。   This molded body was dried at 60 ° C. for 16 hours, and then heat-treated at 380 ° C. for 15 hours under air flow to obtain a catalyst. The elemental composition other than oxygen (hereinafter the same) of the obtained catalyst was as follows.

Mo120.51.3Cu0.08Cs1.2
熱処理後の触媒の内部を走査型顕微鏡で観察したところ、添加した炭素繊維の存在が確認された。触媒中の炭素繊維の含有量は5質量%であった。
Mo 12 V 0.5 P 1.3 Cu 0.08 Cs 1.2
When the inside of the catalyst after the heat treatment was observed with a scanning microscope, the presence of the added carbon fiber was confirmed. The carbon fiber content in the catalyst was 5% by mass.

この触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気10容量%、窒素75容量%の原料ガスを、反応温度290℃、接触時間3.5秒で通じて、メタクロレインの気相接触酸化反応を行った。生成物を捕集し、ガスクロマトグラフィーで分析して、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。また、反応中のホットスポットのΔTmaxを測定した。結果を表1に示す。
(実施例2)
実施例1において、乾燥粒子に混合したピッチ系炭素繊維の量を乾燥粒子100部に対して0.5部に変更した以外は、実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。その結果を表1に示す。
(実施例3)
実施例1において、乾燥粒子に混合したピッチ系炭素繊維の量を乾燥粒子100部に対して20部に変更した以外は、実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。その結果を表1に示す。
(実施例4)
実施例1において、ピッチ系炭素繊維の混合のタイミングを混練り前の触媒乾燥粒子への混合からスプレー乾燥前のスラリーへの混合に変更した以外は、実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。その結果を表1に示す。
This catalyst is filled in a reaction tube, and methacrolein 5% by volume, oxygen 10% by volume, water vapor 10% by volume, nitrogen 75% by volume is passed through a reaction temperature of 290 ° C. and a contact time of 3.5 seconds. Rain-phase catalytic oxidation reaction was performed. The product was collected and analyzed by gas chromatography to determine methacrolein reaction rate, methacrylic acid selectivity, and methacrylic acid yield. In addition, ΔTmax of the hot spot during the reaction was measured. The results are shown in Table 1.
(Example 2)
In Example 1, a catalyst was produced in the same manner as in Example 1 except that the amount of pitch-based carbon fiber mixed with the dry particles was changed to 0.5 part with respect to 100 parts of dry particles. A phase catalytic oxidation reaction was performed. The results are shown in Table 1.
(Example 3)
In Example 1, except that the amount of pitch-based carbon fiber mixed with dry particles was changed to 20 parts with respect to 100 parts of dry particles, a catalyst was produced in the same manner as in Example 1, and vapor phase contact of methacrolein An oxidation reaction was performed. The results are shown in Table 1.
Example 4
In Example 1, the catalyst was produced in the same manner as in Example 1 except that the timing of mixing the pitch-based carbon fibers was changed from mixing to the catalyst dry particles before kneading to mixing to the slurry before spray drying. The gas phase catalytic oxidation reaction of methacrolein was performed. The results are shown in Table 1.

(比較例1)
実施例1において、乾燥粒子にピッチ系炭素繊維を混合しなかった以外は、実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。その結果を表1に示す。
(Comparative Example 1)
In Example 1, a catalyst was produced in the same manner as in Example 1 except that the pitch-based carbon fibers were not mixed with the dry particles, and a gas phase catalytic oxidation reaction of methacrolein was performed. The results are shown in Table 1.

(比較例2)
実施例1において、乾燥粒子に混合したピッチ系炭素繊維を熱伝導率100W/(m・K)、平均直径8μm、平均長さ200μmのピッチ系炭素繊維に変更した以外は、実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。その結果を表1に示す。
(Comparative Example 2)
In Example 1, the pitch-based carbon fiber mixed with the dry particles was changed to pitch-based carbon fiber having a thermal conductivity of 100 W / (m · K), an average diameter of 8 μm, and an average length of 200 μm. Thus, a catalyst was produced, and a gas phase catalytic oxidation reaction of methacrolein was performed. The results are shown in Table 1.

(比較例3)
実施例1において、乾燥粒子に混合したピッチ系炭素繊維を熱伝導率10W/(m・K)、平均直径8μm、平均長さ200μmのPAN系炭素繊維に変更した以外は、実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。その結果を表1に示す。

(Comparative Example 3)
In Example 1, the pitch-based carbon fiber mixed with the dry particles was changed to PAN-based carbon fiber having a thermal conductivity of 10 W / (m · K), an average diameter of 8 μm, and an average length of 200 μm. Thus, a catalyst was produced, and a gas phase catalytic oxidation reaction of methacrolein was performed. The results are shown in Table 1.

Claims (3)

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともモリブデンおよびリンを含むメタクリル酸製造用触媒において、
熱伝導率が300W/(m・K)以上の繊維状物を含有することを特徴とするメタクリル酸製造用触媒。
In a catalyst for producing methacrylic acid containing at least molybdenum and phosphorus, used when producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen,
A catalyst for producing methacrylic acid, comprising a fibrous material having a thermal conductivity of 300 W / (m · K) or more.
熱伝導率が300W/(m・K)以上の繊維状物の形状が平均直径1〜20μm、平均長さ10〜3000μmである請求項1に記載のメタクリル酸製造用触媒。   2. The catalyst for producing methacrylic acid according to claim 1, wherein the fibrous material having a thermal conductivity of 300 W / (m · K) or more has an average diameter of 1 to 20 μm and an average length of 10 to 3000 μm. 請求項1または2に記載のメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法。   A method for producing methacrylic acid, comprising subjecting methacrolein to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst for producing methacrylic acid according to claim 1 or 2.
JP2009110375A 2009-04-30 2009-04-30 Catalyst and method for producing methacrylic acid Pending JP2010259961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110375A JP2010259961A (en) 2009-04-30 2009-04-30 Catalyst and method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110375A JP2010259961A (en) 2009-04-30 2009-04-30 Catalyst and method for producing methacrylic acid

Publications (1)

Publication Number Publication Date
JP2010259961A true JP2010259961A (en) 2010-11-18

Family

ID=43358517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110375A Pending JP2010259961A (en) 2009-04-30 2009-04-30 Catalyst and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP2010259961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020179312A (en) * 2019-04-23 2020-11-05 日本化薬株式会社 Catalyst, and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020179312A (en) * 2019-04-23 2020-11-05 日本化薬株式会社 Catalyst, and production method thereof

Similar Documents

Publication Publication Date Title
JP6294883B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP6674441B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5951121B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP4856579B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP6694884B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP2007260588A (en) Method for producing catalyst for methacrylic acid production and method for producing methacrylic acid
JP2008080232A (en) Method for re-generating catalyst for manufacturing methacrylic acid and method for manufacturing methacrylic acid
JP2008264766A (en) Oxide catalyst, manufacturing method of acrolein or acrylic acid and manufacturing method of water-absorptive resin using acrylic acid
JP2004008834A (en) Method for producing catalyst for use in manufacturing methacrylic acid
JP2004002209A (en) Method for producing unsaturated aldehyde
JP4809692B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP4372573B2 (en) Method for producing a catalyst for methacrylic acid production
JP2009297593A (en) METHOD OF PREPARING CATALYST FOR SYNTHESIS OF alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP2010259961A (en) Catalyst and method for producing methacrylic acid
JP2007090193A (en) Production method of catalyst for methacrylic acid production and production method of methacrylic acid
JP4745766B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2005066476A (en) Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid
JP5789917B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP5090796B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5024183B2 (en) Method for producing shaped catalyst comprising heteropolyacid compound
JP4606897B2 (en) Method for producing composite oxide catalyst for fluidized bed ammoxidation process
JP7105395B1 (en) Catalyst precursor, catalyst using the same, method for producing compound, and method for producing catalyst
JP5070089B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same
JP6238354B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid