JP2010257584A - 照明装置及びこの照明装置を備えた光学装置 - Google Patents

照明装置及びこの照明装置を備えた光学装置 Download PDF

Info

Publication number
JP2010257584A
JP2010257584A JP2009102666A JP2009102666A JP2010257584A JP 2010257584 A JP2010257584 A JP 2010257584A JP 2009102666 A JP2009102666 A JP 2009102666A JP 2009102666 A JP2009102666 A JP 2009102666A JP 2010257584 A JP2010257584 A JP 2010257584A
Authority
JP
Japan
Prior art keywords
light source
illumination
light
field
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009102666A
Other languages
English (en)
Other versions
JP2010257584A5 (ja
Inventor
Takeshi Sudo
武司 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009102666A priority Critical patent/JP2010257584A/ja
Publication of JP2010257584A publication Critical patent/JP2010257584A/ja
Publication of JP2010257584A5 publication Critical patent/JP2010257584A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】小型であって明るく均一な照明が可能な照明装置、この照明装置を備えた光学装置を提供する。
【解決手段】光学装置である顕微鏡100に用いる照明部(照明装置)10を、照明光を放射する光源部20と、この光源部20からの照明光を物体面Oに照射するとともに、その照明視野を、観察視野に対応して変化させる偏向部30と、から構成する。光源部20は、円周方向に略等間隔で配置された複数の光源23を有し、偏向部30は、円周方向に略等間隔で配された狭視野用レンズ33と広視野用レンズ35とを有して構成される。この偏向部30は、物体面Oにおける観察視野の変化に対応して、光源23からの照明光の照明視野を、狭視野用レンズ33及び広視野用レンズ35の何れかを用いて変化させて、物体面Oに照射するよう構成される。
【選択図】図1

Description

本発明は、照明装置及びこの照明装置を備えた光学装置に関する。
従来、顕微鏡等の光学装置を用いて金属表面や電気回路等の不透明標本の観察等を行う場合に、標本の表面全体に照明光を均一に照射するための照明装置が提案されている(例えば、特許文献1参照)。また、実体顕微鏡などで標本観察をする場合、低倍率での全体観察と高倍率での拡大観察とを同一の装置で行うため、変倍光学系が用いられている。このような変倍光学系を用いて標本観察をする場合、観察視野が倍率変化に伴って変化するため、効率的な照明を行うためには、結像視野に合わせて照明視野を変化させる必要がある。また、良好な画像を取得するためには、必要な観察視野だけを均一に照明する最適照明が不可欠である。
標本に対する低倍率での全体観察と高倍率での拡大観察を行う場合、その変倍比をβ倍とすると、低倍率時の最大観察視野と高倍率時の最小観察視野との面積比は、β2倍となる。仮に、照明光の照明視野を、1つの広い照明視野に固定した場合、最小観察視野の観察には明るさが不十分となる。具体的には、例えば、変倍比β=10倍とした場合、照射視野の面積比は、100倍変化し、最小観察視野では最大観察視野の1/100の光量となる。そのため、光量の90%以上は結像に利用されていないこととなり、光量のロスを生じる。また、最適照明を行うためには光源を大きくする必要が生じ、照明装置の大型化や高温化を招いていた。
また、変倍光学装置を用いて、標本の低倍率での全体観察及び高倍率での拡大観察を行う場合、前述したように標本の観察視野が観察倍率の変化に伴って変化する。したがって、効率的な照明を行うためには、倍率に対応して照明光の照明視野を観察視野に一致するよう変化させる必要がある。ここで、金属表面や電気回路等の不透明標本の観察に一般的に用いられる同軸落射照明や斜光照明で照明視野を変化させる場合を想定する。同軸落射照明では、結像レンズを照明レンズとして利用することで、照明視野を変化させることができるが照明光が透過するレンズ面が多いため、レンズ面で発生するフレアが画質を低下させ、また、落射用の半透過鏡部ユニットの挿入により全長が長くなるため、小型化には限界がある。一方、斜光照明では、結像レンズの外側から照明するため、照明光が結像レンズを透過せず、照明光によるフレアがない利点を有するが、照明レンズの配置位置やスペースの制限があり、照明視野の厳密な制御は難しい。
さらに、実体顕微鏡で標本観察をする場合、小さい標本は実体顕微鏡の載物台上での観察や画像取得が可能であるが、重量のある物体や大きい物体は、載物台に載置して観察等することができなかった。そのため、結像光学系部分を顕微鏡本体と分離可能に構成し、結像光学系を標本近傍にセットして本体側で画像を取得する光学装置が開発されている。しかし、このような光学装置では、本体側に設置された光源から結像光学系側に、光ファイバを用いて2次的に照明光を伝送しているため重量があり、持ち運びや操作が容易ではない。また、光量ロスの問題はあるため、光源を大きくせざるを得ず、発熱の抑制や小型化は困難であった。
特開2002−328094号広報
上述のように、特許文献1に示す照明装置は、照明光の均一な照射を目的としているが、ズーム比に伴って照明視野を変化させるものではなかった。一方、観察視野の変化に対応して照明視野を変化させる照明装置として用いられ、結像レンズを照明レンズとして利用する同軸落射照明装置等では、落射用の半透過鏡部ユニットが挿入されていることにより全長が長くなることから、嵩高となったり重量が増大するなどの理由で持ち運びが困難となる等の課題があった。
本発明はこのような課題に鑑みてなされたものであり、小型で、明るく均一な照明を行うことができる照明装置及びこの照明装置を備える光学装置を提供することを目的とする。
前記課題を解決するため、本発明に係る照明装置は、同一の発光特性を有して照明光を放射する光源を2以上有する光源部と、光源毎に設けられ、照明光を集光して物体面上の略同一領域に照射する光学部材を有し、物体面上の照明光の照明視野の大きさを変化させる偏向部と、を有する。
このような照明装置において、偏向部は、焦点距離の異なる2以上の光学部材の組を光源毎に有し、光源に2以上の光学部材のいずれかを対向させることにより、照明視野の大きさを変化させることが好ましい。
あるいは、偏向部は、光源との距離が異なる2以上の光学部材の組を光源毎に有し、光源に2以上の光学部材のいずれかを対向させることにより、照明視野の大きさを変化させることが好ましい。
このとき、光源部及び偏向部の少なくとも一方を、相対的に移動させて、光源に光学部材を対向させるように構成することが好ましい。
あるいは、このような照明装置は、光源及び光学部材の少なくとも一方を移動させて、この光源と光学部材との距離を変化させることにより、照明視野の大きさを変化させることが好ましい。
あるいは、このような照明装置は、照明視野の大きさが異なる光源及び光学部材の組を複数有し、光源のうち、照明視野の大きさが同じ光源を点灯し、残りの光源を消灯することにより照明視野の大きさを変化させることが好ましい。
また、このような照明装置において、光源部及び偏向部の各々は、物体面から出射する光を結像する結像光学系を囲む円周上に、略同一間隔で配置されることが好ましい。
また、このような照明装置において、光源はLED、若しくは、一次光源からの光を導いて放射する光ファイバーであることが好ましい。
さらに、このような照明装置において、光学部材は、レンズ、ミラー、プリズム、拡散板、回折光学素子のいずれか、又はこれらを組み合わせて構成されることが好ましい。
また、本発明に係る光学装置は、上述の照明装置のいずれかと、物体面からの光を集光して結像させる結像光学系と、を有する。
本発明に係る照明装置及び光学装置を以上のように構成すると、観察倍率に対応して照明視野を変化させることができ、いずれの倍率での観察であっても、明るく均一な照明を行うことができ、しかも小型化することができる。
第1の実施形態に係る光学装置の構成と照射視野とを示す説明図であって、(a)は狭視野用レンズに切り替えた場合の光学装置の構成と照射視野とを示す断面図であり、(b)は広視野用レンズに切り替えた場合の光学装置の構成と照射視野とを示す断面図である。 第1の実施形態に係る光学装置の照明部と結像部とを、物体面側から見た状態を示す説明図であって、(a)は偏向部と結像部とを示し、(b)は光源部と結像部とを示す。 第2の実施形態に係る照明装置を備えた光学装置の構成と照射視野とを示す説明図であって、(a)は狭視野用レンズに切り替えた場合の光学装置の構成と照射視野とを示す断面図であり、(b)は中視野用レンズに切り替えた場合の光学装置の構成と照射視野とを示す断面図であり、(c)は広視野用レンズに切り替えた場合の光学装置の構成と照射視野とを示す断面図である。 第2の実施形態に係る光学装置の照明部と結像部とを、物体面側から見た状態を示す説明図であって、(a)は偏向部と結像部とを示し、(b)は光源部と結像部とを示す。 第3の実施形態に係る照明装置を備えた光学装置の構成と照明視野とを示す説明図であって、(a)は光源とレンズとの距離を長くして狭視野用の照明視野とした場合の光学装置の構成と照射視野とを示す断面図であり、(b)は光源とレンズとの距離を短くして広視野用の照明視野とした場合の光学装置の構成と照射視野とを示す断面図である。 第3の実施形態に係る光学装置の照明部と結像部とを、物体面側から見た状態を示す説明図であって、(a)は偏向部と結像部とを示し、(b)は光源部と結像部とを示す。 第3の実施形態において、光源とレンズとの距離を長くして、照明光の照明視野を狭視野用に狭めた状態を説明するためのレンズ断面図である。 第3の実施形態において、光源とレンズとの距離を短くして、照明光の照明視野を広視野用に広げた状態を説明するためのレンズ断面図である。 第3の実施形態において、観察視野の大きさと光強度との関係を示すグラフであって、(a)は狭視野用に調整した照明光の光強度を示すグラフであり、(b)は広視野用に調整した照明光の光強度を示すグラフであり、(c)は同一面積の領域における広視野用の照明光と狭視野用の照明光との光強度を比較したグラフである。 第4の実施形態に係る光学装置の構成を示す説明図であって、(a)は狭視野用光源を点灯させて物体面に照射した状態を示す断面図であって、(b)は(a)を光軸を中心に円周方向に45°回転させた位置での断面図であって、広視野用光源を点灯させて物体面に照射した状態を示す断面図である。 第4の実施形態に係る光学装置の照明部と結像部とを、物体面側から見た状態を示す説明図であって、(a)は偏向部と結像部とを示し、(b)は光源部と結像部とを示す。
(第1の実施形態)
まず、図1及び図2を用いて、第1の実施形態に係る照明装置を備えた光学装置である顕微鏡の構成について説明する。図1(a)に示すように、第1の実施形態に係る顕微鏡100は、照明光を標本等の表面(以下、「物体面O」と呼ぶ)に照射するための照明部10(照明装置)と、物体面Oからの観察光を集光して像面Iに結像させる結像光学系40aを有する結像部40と、を有して構成される。ここで、照明部10は、照明光を放射する光源部20と、この光源部20から放射された照明光を物体面O上の略同一の領域に照射するとともに、その照明視野を、結像部40の観察倍率に対応させて変化させる偏向部30とから構成される。
光源部20は、図2(b)に示すように、結像部40の光軸方向から見たときに、結像部40の外周を取り囲むように配置されており、この結像部40を挿通する挿通孔21が中央に形成された円筒状の基部22と、この基部22に、円周方向に略等間隔で配置された4つの光源23と、を有して構成されている。これらの光源23は同一の発光特性を有するものであり、本実施形態ではLED光源を用いている(以降の実施形態においても同様である)。このような構成とすることで結像部40の外側であって、この結像部40の結像光学系40aの光軸を囲むように円周方向に略等間隔で配置された4つの光源23からの照明光が物体面Oに照射されることとなり、照明光の方向性をなくして、物体面Oに対する均一な照明が可能となる。
また、偏向部30は、図2(a)に示すように、光源部20に対して光軸方向において物体面O側に隣接して配置され、結像部40が挿通される挿通孔31が中央に形成された円筒状の本体32内に、光学部材として、狭視野用(高倍用)レンズ33及び広視野用(低倍用)レンズ35からなる一組のレンズを、円周方向に略等間隔で4組設けている。この構成により、本体32には4つの狭視野用レンズ33が光源23と略同一間隔で配置され、この狭視野用レンズ33に対して円周方向に45°ずれた位置に、4つの広視野用レンズ35が光源23と略同一間隔で配置される。また、狭視野用レンズ33として、焦点距離の短い正レンズを使用し、広視野用レンズ35として、焦点距離の長い正レンズを用いている。なお、狭視野用、広視野用レンズ33,35の光軸方向の位置(光源23からの物体面O方向の位置)は略同一となるように配置されている。また、この偏向部30は、手動若しくはアクチュエータ等の手段により、結像光学系40aの光軸を回転軸として円周方向に回転可能に構成されている。
照明部10の光源部20及び偏向部30を以上のように構成すると、偏向部30を結像部40の光軸を中心に回転させることにより、4つの狭視野用レンズ33または広視野用レンズ35のいずれかを、4つの光源23に対向するように配置することができ、観察視野に対応して照明光の照明視野を切り替えることができる。
また、結像部40の結像光学系40aは、物体面O側から順に、この物体面Oで反射された観察光を集光するための対物レンズ41と、変倍レンズ42と、像面Iに結像するための結像レンズ43とから構成される。この結像光学系40aの像面IにCCD等の撮像素子を配置することにより、物体面Oのデジタル画像を取得することができる。
それでは、この第1の実施形態に係る顕微鏡100を用い、観察視野に対応して照明視野を変化させて標本を観察する場合について説明する。
まず、標本の拡大観察を行う場合、すなわち、観察視野が狭い場合(以下、「狭視野」と呼ぶことがある)について説明する。この場合、結像部40の倍率を高倍側にしたときに、偏向部30を回転させて、図1(a)に示すように、光源23に対向する位置に狭視野用レンズ33を配置する。光源23からの照明光は、この狭視野用レンズ33に集光されて、物体面O上の、結像光学系40aの光軸を含む範囲に照射されるが、この狭視野用レンズ33は、焦点距離の短い正レンズが使用されているため、物体面O上の比較的狭い範囲が照明される。一方、標本の全体観察を行う場合、すなわち、観察視野が広い場合(以下、「広視野」と呼ぶことがある)は、結像部40の倍率を低倍側にしたときに、偏向部30を回転させて、図1(b)に示すように、光源23に対向する位置に広視野用レンズ35を配置する。このときも、光源23からの照明光は、広視野用レンズ35に集光されて、物体面O上の、結像光学系40aの光軸を含む範囲に照射されるが、この広視野用レンズ35は、焦点距離の長い正レンズが使用されているため、物体面O上の比較的広い範囲が照明される。
このように、第1の実施形態に係る顕微鏡100は、照明部10により、結像部40の倍率に応じて、その観察視野の広狭に対応させて照明視野の広狭を変化させることができるため、観察に利用されない照明光を少なくして(光量ロスを少なくして)明るい観察像を得ることができる。また、上述のように、物体面Oに対しては、光軸を中心とする4つの方向から照明されるため、この物体面Oに対して照明光を均一に照射することができる。
以上のように、第1に係る実施形態に係る顕微鏡100では、倍率変化に対応して照明部10からの照明視野を変化させることにより、光量ロスが少なく、いずれの倍率であっても明るく均一な照明での標本観察が可能となる。そのため、光源23の負荷が低減され、発熱の抑制や光源23の小型化も可能となる。また、照明部10を少ない部材で簡易な構成とすることができ、照明部10を小型化して結像性能に優れた顕微鏡100を得ることができる。
なお、この第1の実施形態においては、光源部20を固定し、偏向部30を光軸を中心に回転可能としているが、光源部20と偏向部30とを相対的に移動(回転)させればよいので、他の異なる実施形態として、偏向部30を固定し、光源部20を光軸を中心に回転可能に構成してもよい。このように光源部20を回転させて、所望のレンズ33,35に対向する位置に光源23を配置することにより、上述の説明と同様に照明視野の切り替えを行うことができる。また、本実施形態では、光源23としてLED光源を基部22に取り付けているが、1次光源からの光を導く2次光源としての光ファイバを用いてもよい。この場合も、光量のロスが少ないので、1次光源や光ファイバを含めた光源部20を小さくすることができ、照明部10や顕微鏡100の小型化を図ることができる。
また、光学部材として用いる正レンズは、両凸レンズや正メニスカスレンズ等の単レンズでも良いし、複数のレンズを組み合わせて全体として正となるように構成しても良い。また、球面レンズを用いてもよいし、非球面レンズを用いてもよい。なお、光学部材はレンズに限定されることはなく、回折光学素子、凹面鏡等のミラー、プリズム、拡散板などを用いたり、これらを組み合わせて用いてもよい。特に、広い観察視野での観察においては、広視野用レンズ34と拡散板とを組み合わせることにより、照明光を拡散させてより広い面積の照明視野を得ることができ、低倍率での観察を優れた結像性能で行うことができる。この場合、物体面O側から順に、拡散板、広視野用レンズ35、及び、光源23を配置するのが好ましい。
さらに、この第1の実施形態においては、光源部20に4つの光源23を設けた場合について説明したが、略等間隔に2つの以上の光源を有していれば、物体面O上を均一に照明することができる。また、光源23の一部を点灯させ、残りの一部を消灯させることにより、偏射照明を行うことも可能である。なお、以上に記載の内容は、以降の実施形態でも光学性能を損なわない範囲で適宜採用可能である。
(第2の実施形態)
次に、図3及び図4を用いて、第2の実施形態に係る照明装置を備えた顕微鏡について説明する。図3に示すように、この顕微鏡200の基本構成は、第1の実施形態と同様の構成であって、照明光を物体面Oに照射するための照明部210と、物体面Oからの観察光を集光して像面Iに結像させる結像部40と、を有して構成される。そして、照明部210は、照明光を放射する光源部220と、この光源部220からの照明光の照明視野を、結像部40での倍率変化に対応して変化させる偏向部230と、から構成される。また、結像部40は、第1の実施形態と同様に結像光学系40aを有し、この結像光学系40aは、物体面O側から順に、観察光を集光する対物レンズ41と、変倍レンズ42と、像面Iに結像する結像レンズ43と、から構成される。なお、第1の実施形態と同一の部材には、第1の実施形態と同一の符号を付している。
この第2の実施形態において、光源部220は、図4(b)に示すように、結像部40を挿通する挿通孔221が中央に形成された円筒状の基部222と、この基部222に、略等間隔で円周方向に配置された3つの光源223と、を有して構成されている。この場合も、結像部40の外側であって、結像光学系40aの光軸を囲むように、円周上に略等間隔で配置した3つの光源223からの照明光が照射されることにより、照明光の方向性をなくして、物体面Oに対する均一な照明が可能となる。
また、偏向部230は、図4(a)に示すように、結像部40を挿通する挿通孔231が中央に形成された円筒状の本体232内に、光学部材として、狭視野用(高倍用)レンズ233、中視野用(中倍用)レンズ234及び広視野用(低倍用)レンズ235からなる一組のレンズを、円周方向に略等間隔で3組設けている。この構成により、本体232には3つの狭視野用レンズ233が光源223の配置間隔と略同一間隔で円周方向に配置され、この狭視野用レンズ233から円周方向に40°ずれた位置に、3つの中視野用レンズ234が光源223と略同一間隔で配置され、この中視野用レンズ234から円周方向に40°ずれた位置に、3つの広視野用レンズ235が光源223と略同一間隔で配置される。
なお、第1の実施形態では、狭視野用レンズ33及び広視野用レンズ35として焦点距離の異なる正レンズを用いることで、倍率変化に対応して照明視野を変化させていた。これに対して、この第2の実施形態では、狭視野用レンズ233、中視野用レンズ234及び広視野用レンズ235として同一の正レンズを用い、各レンズ233〜235を光軸方向において異なる位置に配置することで、各正レンズ233〜235と光源223との距離を変えることにより、結像部40での倍率変化に対応して照明視野を変化させている。具体的には、図3(a)〜図3(c)に示すように、物体面Oに近い方から順に、狭視野用レンズ233、中視野用レンズ234、及び、広視野用レンズ235を配置している。すなわち、中視野用レンズ234と光源223との距離を基準に、狭視野用レンズ233は光源223から離れ、広視野用レンズ235は近づくように配置されている。
このような構成の第2の実施形態に係る顕微鏡200を用いて、低倍端と高倍端との間の中間倍率で標本の観察を行う場合には、偏向部230を回転させて、図3(b)に示すように、光源223に対向する位置に中視野用レンズ234を配置する。光源223からの照明光は、この中視野用レンズ234に集光されて、物体面O上の、結像光学系40aの光軸を含む範囲に照射される。これに対し、高倍端側の倍率で標本の拡大観察を行う場合は、偏向部230を回転させて、図3(a)に示すように、光源223に対向する位置に狭視野用レンズ233を配置する。このときも、光源223からの照明光は、この狭視野用レンズ233に集光されて、物体面O上の、結像光学系40aの光軸を含む範囲に照射されるが、この狭視野用レンズ233は光源223との距離が長いため、中視野用レンズ234に比べて物体面O上の狭い範囲が照明される。反対に、低倍端側で標本の全体観察を行う場合には、偏向部230を回転させて、図3(c)に示すように、光源223に対向する位置に広視野用レンズ235を配置する。この広視野用レンズ235は、光源223との距離が最も短いため、中視野用レンズ234に比べて物体面O上の広い範囲が照明される。したがって、低倍率、中間倍率、高倍率の何れの倍率での観察に際しても、その観察視野の広狭に対応させて照明視野の広狭を変化させることができるため、光量ロスを少なくして、照明部210及び顕微鏡200の小型化や発熱抑制を図ることができる。また、物体面Oに対しては、光軸を中心とする3つの方向から照明されるため、この物体面Oに対して照明光を均一に照射することができる。
(第3の実施形態)
次に、図5〜図9を参照して、第3の実施形態に係る照明装置を備えた顕微鏡について説明する。図5に示すように、この第3の実施形態に係る顕微鏡300の基本構成は、第1の実施形態と同様の構成を有しており、照明光を物体面Oに照明するための照明部310と、物体面Oからの観察光を集光して像面Iに結像させる結像部40と、を有して構成される。ここで、照明部310は、照明光を放射する光源部320と、この光源部320からの照明光の照明視野を、倍率変化に対応して変化させる偏向部330とから構成される。また、結像部40は、上述の第1及び第2の実施形態と同一の構成である。なお、第1の実施形態と同一の部材には、第1の実施形態と同一の符号を付している。
この第3の実施形態において、光源部320の基本構成は、第1の実施形態の構成と同様の構成をしており、図6(b)に示すように、結像部40を挿通する挿通孔321が中央に形成された円筒状の基部322に、円周方向に略等間隔で4つの光源323を設けている。また、偏向部330は、図6(a)に示すように、結像部40を挿通する挿通孔331が中央に形成された円筒状の本体332内に、光学部材としてのレンズ336を、光源323の配置間隔と略同一間隔としてこの光源323に対向させて、円周方向に略等間隔で4つ設けている。このレンズ336としては、全て同一の正レンズを用い、光軸方向の位置も同一である。
ここで、第2の実施形態においては、対向した光源223との距離が異なるように狭視野用レンズ233、中視野用レンズ234及び広視野用レンズ235を配置することにより、光源223とレンズ233〜235との距離を変化させている。これに対して、この第3の実施形態においては、レンズ336の光軸上の位置は固定で、光源323が光軸上を移動するように構成することにより、レンズ336と光源323との距離を倍率変化に対応させて変化させている。具体的には、図5に示すように、この第3の実施形態に係る光源323は、基部322内を光軸方向に移動可能に、円周方向に略等間隔で4つ設けられている。なお、この第3の実施形態においても、結像部40の外側であって、この結像部40が有する結像光学系40aの光軸を囲むように、円周方向に略等間隔で配置した4つの光源323から物体面Oに照明光を照射することにより、照明光の方向性をなくして、物体面Oに対する均一な照明が可能となる。なお、光源323を光軸方向に移動させる構成としているため、偏向部340を結像光学系40aの光軸を中心に回転可能に構成する必要はない。
このような構成の第3の実施形態の顕微鏡300を用いて、標本の観察を行う場合には、結像部40の倍率に応じて光源323を光軸方向に前後させる。すなわち、標本の拡大観察を行う場合は、図5(a)に示すように、光源323を像面I側に移動させて、レンズ336との距離を長くすることにより、物体面O上の照明領域を狭くする。反対に、標本の全体観察を行う場合には、図5(b)に示すように、光源323を物体面O側に移動させて、レンズ336との距離を短くすることにより、物体面O上の照明領域を広くする。このように、結像部40の倍率により、その観察視野の広狭に対応させて照明視野の広狭を変化させることができるため、光量ロスを少なくして、照明部310及び顕微鏡300の小型化や発熱抑制を図ることができる。また、物体面Oに対しては、光軸を中心とする4つの方向から照明されるため、この物体面Oに対して照明光を均一に照射することができる。なお、結像部40の倍率変化に応じて光源323の位置を連続的に変化させることができるように構成すると、どの倍率においても照明視野と観察視野とを略一致させることができるため、光量ロスを極力減らすことができる。もちろん、上述の第1又は第2の実施形態のように、光源323の位置を、低倍時及び高倍時や、低倍時、中倍時及び高倍時のように、有限段に設定することも可能である。
ここで、図7〜図9を用いて、第3の実施形態における、照明部310による照明視野の計算例及び光度の比較例を示す。この第3の実施形態に係る光源323は、光ファイバ(石英製 NA=0.22 配光特性:NA=0.22まで100%)を用いた100Wの点光源とする。偏向部330のレンズ336は、図7及び図8に示すように、光源323側から順に、両凸レンズL1及び物体面O側に凹面を向けた正メニスカスレンズL2の2枚のレンズから構成される。また、レンズ336の光軸と結像光学系40a(対物レンズ41)の光軸との間隔は、15.2(mm)である。
以下の表1に、レンズ336の諸元の値を掲げる。この表1において、面番号は光線の進行する方向に沿った光源323側からのレンズ面の順序を、面間隔は各光学面から次の光学面までの光軸上の距離を、屈折率はそれぞれd線(λ=587.6nm)に対する値を示している。なお、d0は光源323とレンズ336の第1面との距離を示し、結像部40での倍率変化に対応してこのd0を変化させることにより、照明視野が変化し、狭視野から広視野までの標本観察において明るく均一な照明が可能となる。ここで、以下の諸元値において掲載されている曲率半径、面間隔、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
(表1)
面番号 曲率半径 面間隔 屈折率
(d0) 1.000
1 930.00 3.000 1.835
2 -7.70 1.000 1.000
3 5.94 3.000 1.835
4 29.50 1.000
図7に、狭視野(高倍率)で標本観察する場合の照明部310の構成と、照射視野との関係を示す。この場合、レンズ336と光源323との距離を長くすることにより、照明視野を狭くしている。なお、狭視野観察における光源323とレンズ336の第1面との距離(d0)は3.5(mm)である。このように狭視野用に照明視野を狭くした照明光の物体面Oにおける光強度を、図9(a)に示す。この場合の観察視野の直径は約1mmであり、直径1mmの範囲(グラフ中の−0.5〜+0.5mmの範囲)では、光強度が約220W/mm2であった。このような光強度の照明光を用いて結像部40により像面Iに結像させることにより、狭視野の観察において優れた結像性能が得られる。
図8に、広視野(低倍率)で標本観察する場合の照明部310の構成と、照射視野との関係を示す。この場合、レンズ336と光源323との距離を短くすることにより、照明視野を広くしている。なお、光源323とレンズ336の第1面との距離(d0)は0.7(mm)である。このように広視野用に照明視野を広くした照明光の物体面Oにおける光強度を、図9(b)に示す。この場合の観察視野の直径は約7mmであり、直径7mmの範囲(グラフ中の−3.5〜+3.5mmの範囲)では、光強度が約7.5W/mm2であった。このような光強度の照明光を用いて結像光学系40aにより像面Iに結像させることにより、広視野の観察において優れた結像性能が得られる。
また、図9(c)に、狭視野用と広視野用に照明視野を切り替えた場合の、直径1mmの領域において光強度を比較したグラフを示す。このグラフに示すように、同一の領域に狭視野用の照明光を照射した際の光強度(220W/mm)は、広視野用の照明光を照射した際の光強度(7.5W/mm2)と比較して約30倍の明るさであることがわかる。照明視野を切り替えず広視野用の照明視野のままで直径1mmの範囲の狭視野の観察を行おった場合、光強度が約7.5W/mm2であるため、結像光学系40aにて像面Iに結像された像は暗く結像性能に劣るとともに、観察視野以外に照射された光量は利用されず無駄となる。しかし、本実施形態のように、照明部310により照明光を集光して照明視野を狭視野用に狭く調整することにより、全ての光量を観察視野に均一に照射することができ、光量ロスを生じることなく、結像性能に優れた像を得ることができる。
なお、以上の説明においては、光源323が基部322内を光軸方向に移動する構成として説明したが、光源323を基部321に固定し、光源部320全体が光軸上を移動する構成とすることで、光源323とレンズ326との距離を変化させてもよい。あるいは、光源323を基部321に固定し、偏向部330の本体331に対してレンズ336を光軸方向に移動可能なように構成しても上述の効果を得ることができる。また、この第3の実施形態では、レンズ336及び光源323を、等間隔で4つずつ設けているが、重量やコスト等が許容する範囲で5つ以上設けてもよい。
(第4の実施形態)
最後に、図10及び図11を参照して、第4の実施形態に係る照明装置を備えた顕微鏡装置について説明する。この第4の実施形態に係る顕微鏡400の基本構成は、第1の実施形態と同様の構成であるため、共通する部材に関しては説明を省略する。ここでは第1の実施形態と異なる、照明部410の構成を説明する。この照明部410は、図10に示すように、光源部420と偏向部430とから構成される。
偏向部430は、図11(a)に示すように、第1の実施形態と同様であって、結像部40を挿通する挿通孔431が中央に形成された円筒状の本体432に、焦点距離の異なる狭視野用(高倍用)レンズ433及び広視野用(低倍用)レンズ435を、それぞれ4つ、略等間隔で円周方向に交互に配置している。一方、光源部420は、図11(b)に示すように、この偏向部430の4組のレンズ433,435のそれぞれに対応させて、円筒状の基部422に、略等間隔で円周方向に2つの光源423,425の組を4つ設けている。この第4の実施形態における光源部420と偏向部430とは、固定されており、円周方向に回転することはできない。そのため、照明視野の切り替えは、狭視野用レンズ433に対向する光源423と広視野用レンズ435に対向する光源425とを交互に点灯させることにより行っている。なお、狭視野用レンズ433及び広視野用レンズ435は、第1の実施形態と同様に、その屈折力が異なるレンズで構成しても良いし、第2の実施形態と同様に、同一の屈折力のレンズを光源423,425との距離が異なるように配置して構成しても良い。
前述の第1の実施形態に係る照明部10では、結像部40での倍率変化に対応して照明視野を変化させる場合、偏向部30を適宜の操作手段により機械的に回転させることで、狭視野用レンズ33と広視野用レンズ35との切り替えを行っていた。この切り替えは、瞬時に行う必要があるが、偏向部30を機械的に回転させる方法では、回転速度に制限があるだけでなく、回転の高速化に比例して振動も発生するため、切り替えの高速化にも限界がある。これに対して、第4の実施形態における照明部410では、偏向部430を固定し、狭視野用及び広視野用の照明視野の切り替えを、狭視野用レンズ433に対向する光源423若しくは広視野用レンズ435に対向する光源425のいずれか一方を点灯させ、他方を消灯させることによって電気的に行うことにより、高速かつ振動の少ない切り替えを可能としている。
このように、この第4の実施形態に係る顕微鏡400においても、結像部40の倍率変化に対応して照明部410からの照明視野を変化させることにより、その観察視野の広狭に対応させて照明視野の広狭を変化させることができるため、光量ロスを少なくして、照明部410及び顕微鏡400の小型化や発熱抑制を図ることができる。また、物体面Oに対しては、光軸を中心とする4つの方向から照明されるため、この物体面Oに対して照明光を均一に照射することができる。
100,200,300,400 顕微鏡(光学装置)
10,210,310,410 照明部(照明装置)
20,220,320,420 光源部
23,223,323,423,425 光源
30,230,330,430 偏向部
33,233,433 狭視野用レンズ(光学部材)
234 中視野用レンズ(光学部材)
35,235,435 広視野用レンズ(光学部材)
336 レンズ(光学部材)
40 結像部 40a 結像光学系

Claims (10)

  1. 同一の発光特性を有して照明光を放射する光源を2以上有する光源部と、
    前記光源毎に設けられ、前記照明光を集光して物体面上の略同一領域に照射する光学部材を有し、前記物体面上の前記照明光の照明視野の大きさを変化させる偏向部と、を有する照明装置。
  2. 前記偏向部は、焦点距離の異なる2以上の前記光学部材の組を前記光源毎に有し、前記光源に前記2以上の光学部材のいずれかを対向させることにより、前記照明視野の大きさを変化させる請求項1に記載の照明装置。
  3. 前記偏向部は、前記光源との距離が異なる2以上の前記光学部材の組を前記光源毎に有し、前記光源に前記2以上の光学部材のいずれかを対向させることにより、前記照明視野の大きさを変化させる請求項1に記載の照明装置。
  4. 前記光源部及び前記偏向部の少なくとも一方を、相対的に移動させて、前記光源に前記光学部材を対向させるように構成された請求項2または3に記載の照明装置。
  5. 前記光源及び前記光学部材の少なくとも一方を移動させて、前記光源と前記光学部材との距離を変化させることにより、前記照明視野の大きさを変化させる請求項1に記載の照明装置。
  6. 前記照明視野の大きさが異なる前記光源及び前記光学部材の組を複数有し、
    前記光源のうち、前記照明視野の大きさが同じ前記光源を点灯し、残りの前記光源を消灯することにより前記照明視野の大きさを変化させる請求項1に記載の照明装置。
  7. 前記光源部及び前記偏向部の各々は、前記物体面から出射する光を結像する結像光学系を囲む円周上に、略同一間隔で配置された請求項1〜6いずれか一項に記載の照明装置。
  8. 前記光源はLED、若しくは、一次光源からの光を導いて放射する光ファイバーである請求項1〜7いずれか一項に記載の照明装置。
  9. 前記光学部材は、レンズ、ミラー、プリズム、拡散板、回折光学素子のいずれか、又はこれらを組み合わせて構成される請求項1〜8いずれか一項に記載の照明装置。
  10. 請求項1〜9いずれか一項に記載の照明装置と、
    物体面からの光を集光して結像させる結像光学系と、を有する光学装置。
JP2009102666A 2009-04-21 2009-04-21 照明装置及びこの照明装置を備えた光学装置 Pending JP2010257584A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102666A JP2010257584A (ja) 2009-04-21 2009-04-21 照明装置及びこの照明装置を備えた光学装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102666A JP2010257584A (ja) 2009-04-21 2009-04-21 照明装置及びこの照明装置を備えた光学装置

Publications (2)

Publication Number Publication Date
JP2010257584A true JP2010257584A (ja) 2010-11-11
JP2010257584A5 JP2010257584A5 (ja) 2013-04-11

Family

ID=43318314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102666A Pending JP2010257584A (ja) 2009-04-21 2009-04-21 照明装置及びこの照明装置を備えた光学装置

Country Status (1)

Country Link
JP (1) JP2010257584A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186918A (ja) * 1985-02-15 1986-08-20 Canon Inc 実体顕微鏡
JPH03177807A (ja) * 1989-12-06 1991-08-01 Nikon Corp 実体顕微鏡の照明光学系
JP2006209035A (ja) * 2005-01-31 2006-08-10 Tokyoto Igaku Kenkyu Kiko 生物顕微鏡及びそれに用いる暗視野照明装置
JP2007086503A (ja) * 2005-09-22 2007-04-05 Olympus Corp 顕微鏡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186918A (ja) * 1985-02-15 1986-08-20 Canon Inc 実体顕微鏡
JPH03177807A (ja) * 1989-12-06 1991-08-01 Nikon Corp 実体顕微鏡の照明光学系
JP2006209035A (ja) * 2005-01-31 2006-08-10 Tokyoto Igaku Kenkyu Kiko 生物顕微鏡及びそれに用いる暗視野照明装置
JP2007086503A (ja) * 2005-09-22 2007-04-05 Olympus Corp 顕微鏡

Similar Documents

Publication Publication Date Title
US10802259B2 (en) Structured illuminating apparatus, structured illuminating microscopy apparatus, and structured illuminating method
JP5387588B2 (ja) 結像光学系、この結像光学系を有する顕微鏡装置及び実体顕微鏡装置
EP1844366B1 (en) Illumination optical apparatus and optical apparatus
CN108732738B (zh) 用于显微镜的浸液物镜
JP2011028249A (ja) 照明光学系及びそれを用いた蛍光顕微鏡
KR101907845B1 (ko) 쾰러조명계를 포함하는 투과 형광현미경
JP2018081134A (ja) 顕微鏡装置、暗視野照明装置
JP2010257585A (ja) 照明装置及びこの照明装置を備えた光学装置
JP2006178440A (ja) ズーム顕微鏡
JP2006275685A (ja) Dlp式エバネッセンス顕微鏡
JP2007310264A (ja) ズーム顕微鏡
JP3861372B2 (ja) 顕微鏡
JP2010257584A (ja) 照明装置及びこの照明装置を備えた光学装置
JP2009008701A (ja) 照明装置及びこの照明装置を備えたズーム顕微鏡
JP2004309621A (ja) 顕微鏡およびズーム対物レンズ
JP2020517992A (ja) 顕微鏡用の補正対物レンズ
JP2010134191A (ja) 照明装置と、これを有する顕微鏡装置
JP2010060753A (ja) 顕微鏡装置
US9170414B2 (en) Method and apparatus for producing a super-magnified wide-field image
JP2010117624A (ja) 照明装置及びこの照明装置を備えたズーム顕微鏡
JP2014044380A (ja) 対物レンズ及び顕微鏡
JP2024054463A (ja) 観察装置、及び、照明装置
JP2013190760A (ja) 顕微鏡用照明装置
JP2012220609A (ja) 顕微鏡装置
Rehn et al. Optical design of a variable beam angle fiber light source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924